कॉपर थैलोसाइनिन: Difference between revisions

From Vigyanwiki
No edit summary
 
(8 intermediate revisions by 4 users not shown)
Line 40: Line 40:
| source=[https://web.archive.org/web/20170131173315/http://tx4.us/mr/mr000.htm The Mother of All HTML Colo(u)r Charts]
| source=[https://web.archive.org/web/20170131173315/http://tx4.us/mr/mr000.htm The Mother of All HTML Colo(u)r Charts]
| isccname=Vivid blue}}
| isccname=Vivid blue}}
[[File:Copper phthalocyanine powder.jpg|alt=Copper phthalocyanine|thumb|कॉपर फथलोसाइनिन पाउडर]]कॉपर फथलोसाइनिन (CuPc), जिसे फथलोसाइनिन ब्लू, फथलो ब्लू और कई समानार्थक और व्यापारिक नाम भी कहा जाता है, फथलोसाइनिन [[रंग]]ों के समूह से एक उज्ज्वल, क्रिस्टलीय, सिंथेटिक नीला वर्णक है। इसका शानदार नीला अधिकांशतः [[रँगना]] और रंगों में प्रयोग किया जाता है। इसकी उत्तम गुणों जैसे हल्की स्थिरता, टिनिंग ताकत, आवरण शक्ति और [[क्षार]] और [[ अम्ल |अम्ल]] के प्रभावों के प्रतिरोध के लिए इसकी अत्यधिक सराहना की जाती है। यह एक नीले पाउडर की प्रकार दिखता है, पानी सहित अधिकांश सॉल्वैंट्स में अघुलनशील होते है।
[[File:Copper phthalocyanine powder.jpg|alt=Copper phthalocyanine|thumb|कॉपर फथलोसाइनिन पाउडर]]कॉपर फ्थैलोसाइनीन (सीयूपीसी), जिसे फ्थैलोसाइनीन ब्लू, फथालो ब्लू और कई अन्य नामों से भी जाना जाता है, फ़ायदेमंद, क्रिस्टलीन, संश्लेषणिक नीले [[रंग]] का रंगांकित प्रदारक है जो फ़थैलोसाइनीन डाइज़ के समूह से होता है। इसका शानदार नीला अधिकांशतः [[रँगना]] और रंगों में प्रयोग किया जाता है। इसकी उत्तम गुणों जैसे हल्की स्थिरता, टिनिंग ताकत, आवरण शक्ति और [[क्षार]] और [[ अम्ल |अम्ल]] के प्रभावों के प्रतिरोध के लिए इसकी अत्यधिक सराहना की जाती है। यह एक नीले पाउडर की प्रकार दिखता है, पानी सहित अधिकांश सॉल्वैंट्स में अघुलनशील होते है।


== इतिहास ==
== प्राचीन कथा ==
मेटल थैलोसायनिन की खोज का पता [[थैलिक एसिड]] (बेंजीन-1,2-डाइकारबॉक्सिलिक एसिड) या नाइट्रोजन और धातुओं के स्रोतों के साथ इसके डेरिवेटिव की प्रतिक्रियाओं से तीव्र रंगीन उपोत्पादों के अवलोकन से लगाया जा सकता है। कॉपर (आई) साइनाइड और 1,2-डिब्रोमोबेंजीन|ओ-डिब्रोमोबेंजीन की प्रतिक्रिया से CuPc (कॉपर फथलोसाइनिन) पहली बार 1927 में तैयार किया गया था, जो मुख्य रूप से रंगहीन [[phthalonitrile|फ्थैलोनाइट्राइल]] के साथ-साथ एक तीव्र नीले उप-उत्पाद का उत्पादन करता है। कुछ वर्षों के बाद, स्कॉटिश डाईज के श्रमिकों ने धात्विक लोहे की उपस्थिति में [[फ्थेलिक एनहाइड्राइड]] और [[अमोनिया]] की प्रतिक्रिया से [[फ़्थेलिमाईड]] के संश्लेषण में फथलोसाइनिन रंगों के निशान के गठन को देखा। 1937 में, ड्यूपॉन्ट (1802–2017) ने संयुक्त राज्य अमेरिका में मोनास्ट्रल ब्लू के व्यापार नाम के अनुसार कॉपर फथलोसाइनिन ब्लू का उत्पादन प्रारंभ किया था, जिसे पहले 1935 में ग्रेट ब्रिटेन ([[इंपीरियल केमिकल इंडस्ट्रीज]]) और जर्मनी (I.G. फार्बेनइंडस्ट्री ) में लॉन्च किया गया था।<ref>{{Ullmann|author=Löbbert, Gerd|title=Phthalocyanines|year=2000|doi=10.1002/14356007.a20_213}}.</ref>
मेटल थैलोसायनिन की खोज का पता [[थैलिक एसिड]] (बेंजीन-1,2-डाइकारबॉक्सिलिक एसिड) या नाइट्रोजन और धातुओं के स्रोतों के साथ इसके डेरिवेटिव की प्रतिक्रियाओं से तीव्र रंगीन उपोत्पादों के अवलोकन से लगाया जा सकता है। कॉपर (आई) साइनाइड और 1,2-डिब्रोमोबेंजीन|ओ-डिब्रोमोबेंजीन की प्रतिक्रिया से सीयूपीसी (कॉपर फथलोसाइनिन) पहली बार 1927 में तैयार किया गया था, जो मुख्य रूप से रंगहीन [[phthalonitrile|फ्थैलोनाइट्राइल]] के साथ-साथ एक तीव्र नीले उप-उत्पाद का उत्पादन करता है। कुछ वर्षों के बाद, स्कॉटिश डाईज के श्रमिकों ने धात्विक लोहे की उपस्थिति में [[फ्थेलिक एनहाइड्राइड]] और [[अमोनिया]] की प्रतिक्रिया से [[फ़्थेलिमाईड]] के संश्लेषण में फथलोसाइनिन रंगों के निशान के गठन को देखा। 1937 में, ड्यूपॉन्ट (1802–2017) ने संयुक्त राज्य अमेरिका में मोनास्ट्रल ब्लू के व्यापार नाम के अनुसार कॉपर फथलोसाइनिन ब्लू का उत्पादन प्रारंभ किया था, जिसे पहले 1935 में ग्रेट ब्रिटेन ([[इंपीरियल केमिकल इंडस्ट्रीज]]) और जर्मनी (I.G. फार्बेनइंडस्ट्री ) में लॉन्च किया गया था।<ref>{{Ullmann|author=Löbbert, Gerd|title=Phthalocyanines|year=2000|doi=10.1002/14356007.a20_213}}.</ref>


पहले अल्फा रूपों के साथ स्थिर [[फैलाव (रसायन विज्ञान)]] बनाने में कठिनाई का अनुभव किया गया था, विशेष रूप से [[रूटाइल]] [[टाइटेनियम]] के साथ मिश्रण में, जहां नीले रंग के वर्णक प्रवाहित होते थे। बीटा फॉर्म अधिक स्थिर था,जैसा कि उत्तम स्थिर अल्फा फॉर्म था। आज,और भी समावयवी रूप उपलब्ध हैं।
पहले अल्फा रूपों के साथ स्थिर [[फैलाव (रसायन विज्ञान)]] बनाने में कठिनाई का अनुभव किया गया था, विशेष रूप से [[रूटाइल]] [[टाइटेनियम]] के साथ मिश्रण में, जहां नीले रंग के वर्णक प्रवाहित होते थे। बीटा फॉर्म अधिक स्थिर था,जैसा कि उत्तम स्थिर अल्फा फॉर्म था। आज,और भी समावयवी रूप उपलब्ध हैं।


== पर्यायवाची और व्यापार नाम ==
== पर्यायवाची और व्यापार नाम ==
पदार्थ, [[IUPAC]] नाम {{chem name|(29''H'',31''H''-फ्थैलोसायनिनेटो (2−)-''N''29,''N''30,''N''31,''N''32)कॉपर(II)}}, अनेक नामों से जाना जाता है<ref name="ECHA">{{cite web | title=पदार्थ की जानकारी| website=ECHA | url=https://echa.europa.eu/substance-information/-/substanceinfo/100.005.169 | access-date=2021-11-18}}</ref> जैसे कि मोनास्ट्रल ब्लू, थैलो ब्लू, हेलियो ब्लू,<ref>''Toxic Substances Control Act Chemical Substance Inventory'': volume 2</ref> थालो ब्लू, विनसर ब्लू,<ref>''Spectroscopic Properties of Inorganic and Organometallic Compounds'': volume 40</ref> थैलोसाइनिन ब्लू, कलर इंडेक्स इंटरनेशनल|सी.आई. वर्णक नीला 15:2,<ref>''Chem Product Index'' by Friedrich W. Derz</ref><ref>''Coloring of Plastics: Fundamentals'', r. Robert A. Charvat</ref> कॉपर फथलोसाइनिन नीला,<ref>''Paint and Coating Testing Manual'', e. Joseph V. Koleske</ref> कॉपर टेट्राबेंज़ोपोरफाइराज़िन,<ref>''User guide and indices to the initial inventory, substance name index'', US EPA</ref> क्यू-फथलोब्लू,<ref>''Industrial Organic Pigments: Production, Crystal Structures, Properties, Applications'' by Klaus Hunger & Martin U. Schmidt</ref> पी.बी.15.2,<ref>''The Porphyrin Handbook: Applications of Phthalocyanines'', e. Karl Kadish, Kevin M. Smith & Roger Guilard</ref><ref>''Tattoo Inks: Analysis, Pigments, Legislation'' by Gerald Prior</ref><ref>''Pigment + Füllstoff: Tabellen'' by Olaf Lückert</ref> सी.आई. 74160,<ref>''Material Safety Data Sheets Service'' 7:89, Information Handling Services</ref><ref>''Coloring of Food, Drugs, and Cosmetics'' by Gisbert Otterstätter</ref><ref>''Chemical Formulation: An Overview of Surfactant Based Chemical Preparations Used in Everyday Life'' by Anthony E. Hargreaves</ref> और [[ब्रिटिश रेल]] ब्लू।<ref>''Waterloo Station: A History of London's busiest terminus'' by Robert Lordan</ref> कई अन्य व्यापार नाम और समानार्थक शब्द उपस्थित हैं।<ref name="t2"/>संक्षिप्त नाम CuPc का भी उपयोग किया जाता है।<ref>e.g. [http://www.egmrs.org/EJS/PDF/vo252/307.pdf Structural and Transport Properties of Copper Phthalocyanine (CuPc) Thin Films] {{Webarchive|url=https://web.archive.org/web/20120305095058/http://www.egmrs.org/EJS/PDF/vo252/307.pdf |date=2012-03-05 }} ''www.egmrs.org''</ref>
यह पदार्थ, [[IUPAC]] नाम {{chem name|(29''H'',31''H''-फ्थैलोसायनिनेटो (2−)-''N''29,''N''30,''N''31,''N''32)कॉपर(II)}}, अनेक नामों से जाना जाता है<ref name="ECHA">{{cite web | title=पदार्थ की जानकारी| website=ECHA | url=https://echa.europa.eu/substance-information/-/substanceinfo/100.005.169 | access-date=2021-11-18}}</ref> जैसे कि मोनास्ट्रल ब्लू, थैलो ब्लू, हेलियो ब्लू,<ref>''Toxic Substances Control Act Chemical Substance Inventory'': volume 2</ref> थालो ब्लू, विनसर ब्लू,<ref>''Spectroscopic Properties of Inorganic and Organometallic Compounds'': volume 40</ref> थैलोसाइनिन ब्लू, कलर इंडेक्स इंटरनेशनल|सी.आई. वर्णक नीला 15:2,<ref>''Chem Product Index'' by Friedrich W. Derz</ref><ref>''Coloring of Plastics: Fundamentals'', r. Robert A. Charvat</ref> कॉपर फथलोसाइनिन नीला,<ref>''Paint and Coating Testing Manual'', e. Joseph V. Koleske</ref> कॉपर टेट्राबेंज़ोपोरफाइराज़िन,<ref>''User guide and indices to the initial inventory, substance name index'', US EPA</ref> क्यू-फथलोब्लू,<ref>''Industrial Organic Pigments: Production, Crystal Structures, Properties, Applications'' by Klaus Hunger & Martin U. Schmidt</ref> पी.बी.15.2,<ref>''The Porphyrin Handbook: Applications of Phthalocyanines'', e. Karl Kadish, Kevin M. Smith & Roger Guilard</ref><ref>''Tattoo Inks: Analysis, Pigments, Legislation'' by Gerald Prior</ref><ref>''Pigment + Füllstoff: Tabellen'' by Olaf Lückert</ref> सी.आई. 74160,<ref>''Material Safety Data Sheets Service'' 7:89, Information Handling Services</ref><ref>''Coloring of Food, Drugs, and Cosmetics'' by Gisbert Otterstätter</ref><ref>''Chemical Formulation: An Overview of Surfactant Based Chemical Preparations Used in Everyday Life'' by Anthony E. Hargreaves</ref> और [[ब्रिटिश रेल]] ब्लू।<ref>''Waterloo Station: A History of London's busiest terminus'' by Robert Lordan</ref> कई अन्य व्यापार नाम और समानार्थक शब्द उपस्थित हैं।<ref name="t2"/>संक्षिप्त नाम सीयूपीसी का भी उपयोग किया जाता है।<ref>e.g. [http://www.egmrs.org/EJS/PDF/vo252/307.pdf Structural and Transport Properties of Copper Phthalocyanine (CuPc) Thin Films] {{Webarchive|url=https://web.archive.org/web/20120305095058/http://www.egmrs.org/EJS/PDF/vo252/307.pdf |date=2012-03-05 }} ''www.egmrs.org''</ref>
== निर्माण ==
== निर्माण ==
कॉपर फथलोसाइनिन के उत्पादन के लिए दो निर्माण प्रक्रियाओं ने व्यावसायिक महत्व प्राप्त किया है:
कॉपर फथलोसाइनिन के उत्पादन के लिए दो निर्माण प्रक्रियाओं ने व्यावसायिक महत्व प्राप्त किया है:
Line 55: Line 55:
* थैलिक एनहाइड्राइड/[[यूरिया]] प्रक्रिया, ग्रेट ब्रिटेन और संयुक्त राज्य अमेरिका में विकसित हुई।
* थैलिक एनहाइड्राइड/[[यूरिया]] प्रक्रिया, ग्रेट ब्रिटेन और संयुक्त राज्य अमेरिका में विकसित हुई।


दोनों प्रक्रियो के बिना (बेकिंग प्रक्रिया) या विलायक (विलायक प्रक्रिया) के साथ किया जा सकता है। बेकिंग प्रक्रिया (70 से 80%) की तुलना में सॉल्वेंट प्रक्रिया (> 95%) के साथ उच्च पैदावार प्राप्त की जा सकती है, जिससे सॉल्वेंट प्रक्रिया ने प्रारंभ में अधिक रुचि का अनुकरण किया हो। चूंकि,हाल के रुझान मुख्य रूप से आर्थिक और पारिस्थितिक चिंताओं (विलायक-मुक्त, कम समय) के आधार पर बेकिंग प्रक्रिया के लिए एक विपरीत प्रवृत्ति दिखाते हैं।
दोनों दृष्टिकोण या तो बिना वस्त्राग्रहण के (बेकिंग प्रक्रिया) या वस्त्राग्रहण के साथ (विलयन प्रक्रिया) पूर्ण किए जा सकते हैं। विलयन प्रक्रिया में उच्चतर प्राप्तिशीलता (95% से अधिक) बेकिंग प्रक्रिया (70 से 80%) की समानता में हो सकती है, इसलिए विलयन प्रक्रिया प्रारंभ में अधिक रुचि को प्रेरित करती है। चूंकि , हाल के प्रवृत्तियाँ आर्थिक और पर्यावरण संबंधी चिंताओं के कारण मुख्य रूप से बेकिंग प्रक्रिया के लिए उल्टा रुझान दिखा रहे हैं (वस्त्राग्रहण रहित, कम समय में प्राप्ति)


=== Phthalonitrile प्रक्रिया ===
=== फथालोनाइट्राइल प्रक्रिया ===
इस दृष्टिकोण में 200 डिग्री सेल्सियस से 240 डिग्री सेल्सियस पर तांबे के नमक,सामान्यतः पर [[कॉपर (आई) क्लोराइड]] | कॉपर (आई) क्लोराइड के साथ थैलोनिट्रिल को गर्म करना सम्मलित है। फ्थैलोनाइट्राइल से सकल प्रतिक्रिया समीकरण निम्नानुसार लिखा जा सकता है:
यह दृष्टिकोण फ्टलोनिटरीले को एक कॉपर लवण के साथ गर्म करके होता है,सामान्यतः [[कॉपर (आई) क्लोराइड|कॉपर (I) क्लोराइड]] को 200°C से 240°C तक। फ्टलोनिटरीले से ब्रूट प्रतिक्रिया समीकरण निम्नलिखित रूप में लिखा जा सकता है:
=== Phthalic एनहाइड्राइड/यूरिया प्रक्रिया ===
 
<chem>4 C6H4(CN)2 +  Cu^2+ + 2e- -> CuPc
</chem>
=== फथैलिक एनहाइड्राइड/यूरिया प्रक्रिया ===
थैलिक एनहाइड्राइड और यूरिया से सकल प्रतिक्रिया समीकरण निम्नानुसार लिखा जा सकता है:
थैलिक एनहाइड्राइड और यूरिया से सकल प्रतिक्रिया समीकरण निम्नानुसार लिखा जा सकता है:


Line 70: Line 73:


===रंगीन===
===रंगीन===
इसकी स्थिरता के कारण, स्याही, कोटिंग्स और कई [[प्लास्टिक]] में भी थैलो ब्लू का उपयोग किया जाता है। वर्णक अघुलनशील है और सामग्री में माइग्रेट करने की कोई प्रवृत्ति नहीं है। यह मुद्रण स्याही और पैकेजिंग उद्योग में उपयोग किया जाने वाला एक मानक वर्णक है। 1980 और 1990 के दशक में अकेले जापान में औद्योगिक उत्पादन 10,000 टन प्रति वर्ष के क्रम का था।<ref name="t2"/>वर्णक उत्पादित उच्चतम मात्रा वर्णक है।<ref>{{cite journal|url=http://www.worldscinet.com/jpp/04/0404/S1088424600000669.html |title=फथलोसाइनिन के औद्योगिक अनुप्रयोग|first=Peter |last=Gregory |journal=Journal of Porphyrins and Phthalocyanines |volume=4 |issue=4 |year=2000 |pages=432–437 |publisher=worldscinet.com|doi=10.1002/(SICI)1099-1409(200006/07)4:4<432::AID-JPP254>3.0.CO;2-N }}</ref>
अपनी स्थिरता के कारण, फ़ेनो नीला भी मसालों, परतों और कई [[प्लास्टिक]] में उपयोग किया जाता है। इस रंग कोशिका अविघट है और सामग्री में प्रवास करने की प्रवृत्ति नहीं होती। यह छपाई इंक और पैकेजिंग उद्योग में उपयोग होने वाला एक मानक रंग कोशिका है। जापान में कमात्र1 980 और 1990 के दशक में औद्योगिक उत्पादन 10,000 टन प्रतिवर्ष का था। यह रंग कोशिका सबसे अधिक मात्रा में उत्पादित किया जाने वाला रंग कोशिका है।<ref name="t2"/><ref>{{cite journal|url=http://www.worldscinet.com/jpp/04/0404/S1088424600000669.html |title=फथलोसाइनिन के औद्योगिक अनुप्रयोग|first=Peter |last=Gregory |journal=Journal of Porphyrins and Phthalocyanines |volume=4 |issue=4 |year=2000 |pages=432–437 |publisher=worldscinet.com|doi=10.1002/(SICI)1099-1409(200006/07)4:4<432::AID-JPP254>3.0.CO;2-N }}</ref>
सभी प्रमुख कलाकारों के पिगमेंट निर्माता कॉपर थैलोसायनिन के वेरिएंट का उत्पादन करते हैं, [http://www.handprint.com/HP/WCL/waterb.html कलर इंडेक्स PB15 (नीला)] और [http://www.handprint.com/ HP/WCL/waterg.html कलर इंडेक्स PG7 और PG36 (हरा)]।


कलाकार के पैलेट पर एक सामान्य घटक, थैलो ब्लू हरे रंग की ओर पूर्वाग्रह के साथ एक शांत नीला है। इसमें तीव्र टिंटिंग ताकत होती है और अन्य रंगों के साथ मिलाने पर यह आसानी से मिश्रण को खत्म कर देता है। यह एक पारदर्शी धुंधला रंग है और इसे ग्लेज़िंग तकनीकों का उपयोग करके लगाया जा सकता है।
भी मुख्य कलाकार रंग कोशिका निर्माताओं ने कॉपर फ्थैलोसाइनेट के विभिन्न रूपांतर, जिन्हें, [http://www.handprint.com/HP/WCL/waterb.html कलर इंडेक्स PB15 (नीला)] और [http://www.handprint.com/ HP/WCL/waterg.html कलर इंडेक्स PG7 और PG36 (हरा)]।


यह उत्पादों की एक विस्तृत विविधता में उपस्थित है,<ref>{{Cite web|url=https://incidecoder.com/ingredients/ci-74160|title = Ci 74160 (With Product List)}}</ref> जैसे रंग जमाव बाल कंडीशनर,<ref>{{Cite web|url=https://kosterkeunen.com/formulas/color-deposition-conditioner-ultra-violet#post-5632|title = Color Deposition Conditioner "Ultra Violet"}}</ref> आई पैच, परफ्यूम, शैम्पू, त्वचा की देखभाल करने वाले उत्पाद, साबुन, सनस्क्रीन, टैटू स्याही,<ref>''Forensic Analysis of Tattoos and Tattoo Inks'' by Michelle D. Miranda, page 163: Muddy Water Blue</ref> टूथपेस्ट। <ref>{{Cite web|url=https://hautschutzengel.de/_/produkt/51660.html#h2tab1a|title = Dentalux Complex 7 Total Care Plus Zahncreme Inhaltsstoffe - Hautschutzengel}}</ref> और यहां तक ​​कि टर्फ कलरेंट भी <ref>{{Cite web|url= https://gilbasolutions.com/guide-to-turf-pigment-and-paint-7| title = वर्टमैक्स टर्फ रंगद्रव्य और पेंट| date = 17 February 2022}}</ref>
कलाकार की पैलेट पर एक सामान्य घटक के रूप में, फ़ेनो नीला एक शीतल नीला रंग है जिसमें हरा की ओर रुझान होता है। इसमें गहराई वाली टिंटिंग शक्ति होती है और अन्य रंगों के साथ मिश्रण में आसानी से प्रभाव डालता है। यह एक पारदर्शी ध्यान कराने वाला रंग है और इसे ग्लेजिंग तकनीक का उपयोग करके लागू किया जा सकता है।
 
यह विविध उत्पादों में उपस्थित होता है,<ref>{{Cite web|url=https://incidecoder.com/ingredients/ci-74160|title = Ci 74160 (With Product List)}}</ref> जैसे कलर निर्धारण हेयर कंडीशनर,<ref>{{Cite web|url=https://kosterkeunen.com/formulas/color-deposition-conditioner-ultra-violet#post-5632|title = Color Deposition Conditioner "Ultra Violet"}}</ref> आई पैच, सुगंध, शैम्पू, त्वचा की देखभाल उत्पाद, साबुन, सनस्क्रीन, टैटू इंक,<ref>''Forensic Analysis of Tattoos and Tattoo Inks'' by Michelle D. Miranda, page 163: Muddy Water Blue</ref> टूथपेस्ट। <ref>{{Cite web|url=https://hautschutzengel.de/_/produkt/51660.html#h2tab1a|title = Dentalux Complex 7 Total Care Plus Zahncreme Inhaltsstoffe - Hautschutzengel}}</ref> और यहां तक ​​कि टर्फ कलरेंट भी बनाता है। <ref>{{Cite web|url= https://gilbasolutions.com/guide-to-turf-pigment-and-paint-7| title = वर्टमैक्स टर्फ रंगद्रव्य और पेंट| date = 17 February 2022}}</ref>
== अनुसंधान ==
== अनुसंधान ==
CuPc की अधिकांशतः [[आणविक इलेक्ट्रॉनिक्स]] के संदर्भ में जांच की गई है। इसकी उच्च [[रासायनिक स्थिरता]] और समान वृद्धि के कारण यह कार्बनिक सौर कोशिकाओं के लिए संभावित रूप से अनुकूल है।<ref>{{cite journal|last1=Szybowicz|first1=M|title=एफटी-आईआर का उच्च तापमान अध्ययन और वैक्यूम जमा क्यूपीसी पतली फिल्मों के रमन स्कैटरिंग स्पेक्ट्रा|journal=Journal of Molecular Structure|date=October 2004|volume=704|issue=1–3|doi=10.1016/j.molstruc.2004.01.053|pages=107–113|bibcode=2004JMoSt.704..107S}}</ref><ref>{{cite journal|last1=Bala|first1=M|last2=Wojdyla|first2=M|last3=Rebarz|first3=M|last4=Szybowic|first4=M|last5=Drozdowski|first5=M|last6=Grodzicki|first6=A|last7=Piszczek|first7=P|title=Influence of central metal atom in MPc (M = Cu, Zn, Mg, Co) on Raman, FT-IR, absorbance, reflectance, and photoluminescence spectra|journal=J. Optoelectron. Adv. M.|date=2009|volume=11|issue=3|pages=264–269}}</ref> CuPc सामान्यतः पर दाता / [[इलेक्ट्रॉन स्वीकर्ता]] आधारित सौर कोशिकाओं में [[इलेक्ट्रॉन दाता]] की भूमिका निभाता है। सबसे आम दाता/स्वीकर्ता आर्किटेक्चर में से एक CuPc/C है<sub>60</sub>  
सीयूपीसी की अधिकांशतः [[आणविक इलेक्ट्रॉनिक्स]] के संदर्भ में जांच की गई है। इसकी उच्च [[रासायनिक स्थिरता]] और समान वृद्धि के कारण यह कार्बनिक सौर कोशिकाओं के लिए संभावित रूप से अनुकूल है।<ref>{{cite journal|last1=Szybowicz|first1=M|title=एफटी-आईआर का उच्च तापमान अध्ययन और वैक्यूम जमा क्यूपीसी पतली फिल्मों के रमन स्कैटरिंग स्पेक्ट्रा|journal=Journal of Molecular Structure|date=October 2004|volume=704|issue=1–3|doi=10.1016/j.molstruc.2004.01.053|pages=107–113|bibcode=2004JMoSt.704..107S}}</ref><ref>{{cite journal|last1=Bala|first1=M|last2=Wojdyla|first2=M|last3=Rebarz|first3=M|last4=Szybowic|first4=M|last5=Drozdowski|first5=M|last6=Grodzicki|first6=A|last7=Piszczek|first7=P|title=Influence of central metal atom in MPc (M = Cu, Zn, Mg, Co) on Raman, FT-IR, absorbance, reflectance, and photoluminescence spectra|journal=J. Optoelectron. Adv. M.|date=2009|volume=11|issue=3|pages=264–269}}</ref> सीयूपीसी सामान्यतः पर दाता / [[इलेक्ट्रॉन स्वीकर्ता]] आधारित सौर कोशिकाओं में [[इलेक्ट्रॉन दाता]] की भूमिका निभाता है। सबसे आम दाता/स्वीकर्ता आर्किटेक्चर में से एक CuPc/C<sub>60</sub> है([[ buckminsterfullerene |बकमिन्स्टरफुलरीन]] ) जो तेजी से छोटे कार्बनिक अणुओं के अध्ययन के लिए एक मॉडल प्रणाली बन गई।<ref>{{cite journal|last1=Askat E|first1=Jailaubekov|title=Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics|journal=Nature Materials|date=2013|volume=12|issue=1|pages=66–73|doi=10.1038/nmat3500|pmid=23223125|bibcode=2013NatMa..12...66J}}</ref><ref>{{cite journal|last1=Xin|first1=Li|title=CuPc/C<sub>60</sub> bulk heterojunction photovoltaic cells with evidence of phase segregation|journal=Organic Electronics|date=January 2013|volume=14|pages=250–254|doi=10.1016/j.orgel.2012.10.041}}</ref> ऐसी प्रणाली में फोटॉन से इलेक्ट्रॉन रूपांतरण दक्षता अधिकतर 5% तक पहुंच जाती है।
 
([[ buckminsterfullerene | बकमिन्स्टरफुलरीन]] ) जो तेजी से छोटे कार्बनिक अणुओं के अध्ययन के लिए एक मॉडल प्रणाली बन गई।<ref>{{cite journal|last1=Askat E|first1=Jailaubekov|title=Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics|journal=Nature Materials|date=2013|volume=12|issue=1|pages=66–73|doi=10.1038/nmat3500|pmid=23223125|bibcode=2013NatMa..12...66J}}</ref><ref>{{cite journal|last1=Xin|first1=Li|title=CuPc/C<sub>60</sub> bulk heterojunction photovoltaic cells with evidence of phase segregation|journal=Organic Electronics|date=January 2013|volume=14|pages=250–254|doi=10.1016/j.orgel.2012.10.041}}</ref> ऐसी प्रणाली में फोटॉन से इलेक्ट्रॉन रूपांतरण दक्षता अधिकतर 5% तक पहुंच जाती है।
 
CuPc को [[जैविक क्षेत्र-प्रभाव ट्रांजिस्टर]] के एक घटक के रूप में भी जांचा गया है।<ref>{{cite journal|doi=10.1007/s00339-009-5268-1|title=समाधान-संसाधित धातु फथलोसाइनिन पर आधारित लो वोल्टेज ऑपरेटिंग ओएफईटी|journal=Applied Physics A|volume=96|issue=3|pages=763|year=2009|last1=Chaidogiannos|first1=G.|last2=Petraki|first2=F.|last3=Glezos|first3=N.|last4=Kennou|first4=S.|last5=Nešpůrek|first5=S.|bibcode=2009ApPhA..96..763C|s2cid=98694166}}</ref>
 
[[ क्वांटम कम्प्यूटिंग | क्वांटम कम्प्यूटिंग]] में डेटा स्टोरेज के लिए कॉपर फ्थैलोसायनीन (CuPc) का सुझाव दिया गया है, क्योंकि इसके इलेक्ट्रॉन लंबे समय तक सुपरपोजिशन में रह सकते हैं।<ref>[http://phys.org/news/2013-10-material-quantum-blue.html New material for quantum computing discovered out of the blue]. phys.org. October 27, 2013</ref>


डिवाइस निर्माण में उपयोग के लिए CuPc को आसानी से एक पतली फिल्म में संसाधित किया जा सकता है, जो इसे एक आकर्षक [[qubit|क्यूबिट]] उम्मीदवार बनाता है।<ref>{{cite news| title=क्वांटम कम्प्यूटिंग की कुंजी, घर के करीब|first=Douglas |last=Quenqua  |date=November 4, 2013 |work=[[The New York Times]] |url=https://www.nytimes.com/2013/11/05/science/a-key-to-quantum-computing-close-to-home.html}}</ref>
सीयूपीसी को [[जैविक क्षेत्र-प्रभाव ट्रांजिस्टर]] के एक घटक के रूप में भी जांचा गया है।<ref>{{cite journal|doi=10.1007/s00339-009-5268-1|title=समाधान-संसाधित धातु फथलोसाइनिन पर आधारित लो वोल्टेज ऑपरेटिंग ओएफईटी|journal=Applied Physics A|volume=96|issue=3|pages=763|year=2009|last1=Chaidogiannos|first1=G.|last2=Petraki|first2=F.|last3=Glezos|first3=N.|last4=Kennou|first4=S.|last5=Nešpůrek|first5=S.|bibcode=2009ApPhA..96..763C|s2cid=98694166}}</ref>[[ क्वांटम कम्प्यूटिंग |क्वांटम कम्प्यूटिंग]] में डेटा स्टोरेज के लिए कॉपर फ्थैलोसायनीन (CuPc) का सुझाव दिया गया है, क्योंकि इसके इलेक्ट्रॉन लंबे समय तक सुपरपोजिशन में रह सकते हैं।<ref>[http://phys.org/news/2013-10-material-quantum-blue.html New material for quantum computing discovered out of the blue]. phys.org. October 27, 2013</ref>डिवाइस निर्माण में उपयोग के लिए सीयूपीसी को आसानी से एक पतली फिल्म में संसाधित किया जा सकता है, जो इसे एक आकर्षक [[qubit|क्यूबिट]] उम्मीदवार बनाता है।<ref>{{cite news| title=क्वांटम कम्प्यूटिंग की कुंजी, घर के करीब|first=Douglas |last=Quenqua  |date=November 4, 2013 |work=[[The New York Times]] |url=https://www.nytimes.com/2013/11/05/science/a-key-to-quantum-computing-close-to-home.html}}</ref>
== डेरिवेटिव्स ==
== डेरिवेटिव्स ==
सभी कृत्रिम कार्बनिक पिगमेंट का अधिकतर 25% थैलोसाइनिन डेरिवेटिव हैं।<ref name="Ullmann">Gerd Löbbert "Phthalocyanines" in Ullmann's Encyclopedia of Industrial Chemistry, 2002, Wiley-VCH, Weinheim. {{doi| 10.1002/14356007.a20_213}}.</ref> कॉपर फथालोसायनिन रंजक एक या एक से अधिक [[सल्फोनिक एसिड]] कार्यों जैसे घुलनशील समूहों को प्रस्तुत करके उत्पादित किए जाते हैं। इन रंगों का कपड़ा रंगाई के विभिन्न क्षेत्रों ([[कपास]] के लिए प्रत्यक्ष रंग), कताई रंगाई और [[कागज उद्योग]] में व्यापक उपयोग होता है। डायरेक्ट ब्लू 86 क्यूपीसी-सल्फोनिक एसिड का [[सोडियम]] नमक है, चूँकि डायरेक्ट ब्लू 199 क्यूपीसी-सल्फोनिक एसिड का चतुष्कोणीय अमोनियम नमक है। इन सल्फोनिक एसिड के चतुष्कोणीय अमोनियम लवण कार्बनिक सॉल्वैंट्स में घुलनशीलता के कारण विलायक रंगों के रूप में उपयोग किए जाते हैं, जैसे सॉल्वेंट ब्लू 38 और सॉल्वेंट ब्लू 48। कोबाल्ट फ्थालोसाइनिन और एक [[अमाइन]] से प्राप्त डाई थैलोजेन डाई आईबीएन है। 1,3-डायमिनोआइसोइंडोलीन, फथालोसायनिन निर्माण के समय बनने वाला मध्यवर्ती, तांबे के नमक के साथ संयोजन में उपयोग किया जाता है, डाई जीके 161 प्रदान करता है। कॉपर फथलोसाइनिन का उपयोग [[Phthalocyanine ग्रीन जी|फ्थैलोसायनीन ग्रीन जी]] के निर्माण के लिए स्रोत सामग्री के रूप में भी किया जाता है।
सभी कृत्रिम कार्बनिक पिगमेंट का अधिकतर 25% थैलोसाइनिन डेरिवेटिव हैं।<ref name="Ullmann">Gerd Löbbert "Phthalocyanines" in Ullmann's Encyclopedia of Industrial Chemistry, 2002, Wiley-VCH, Weinheim. {{doi| 10.1002/14356007.a20_213}}.</ref> कॉपर फथालोसायनिन रंजक एक या एक से अधिक [[सल्फोनिक एसिड]] कार्यों जैसे घुलनशील समूहों को प्रस्तुत करके उत्पादित किए जाते हैं। इन रंगों का कपड़ा रंगाई के विभिन्न क्षेत्रों ([[कपास]] के लिए प्रत्यक्ष रंग), कताई रंगाई और [[कागज उद्योग]] में व्यापक उपयोग होता है। डायरेक्ट ब्लू 86 क्यूपीसी-सल्फोनिक एसिड का [[सोडियम]] नमक है, चूँकि डायरेक्ट ब्लू 199 क्यूपीसी-सल्फोनिक एसिड का चतुष्कोणीय अमोनियम नमक है। इन सल्फोनिक एसिड के चतुष्कोणीय अमोनियम लवण कार्बनिक सॉल्वैंट्स में घुलनशीलता के कारण विलायक रंगों के रूप में उपयोग किए जाते हैं, जैसे सॉल्वेंट ब्लू 38 और सॉल्वेंट ब्लू 48 में होती है। कोबाल्ट फ्थालोसाइनिन और एक [[अमाइन]] से प्राप्त डाई थैलोजेन डाई आईबीएन है। 1,3-डायमिनोआइसोइंडोलीन, फथालोसायनिन निर्माण के समय बनने वाला मध्यवर्ती, तांबे के नमक के साथ संयोजन में उपयोग किया जाता है, डाई जीके 161 प्रदान करता है। कॉपर फथलोसाइनिन का उपयोग [[Phthalocyanine ग्रीन जी|फ्थैलोसायनीन ग्रीन जी]] के निर्माण के लिए स्रोत सामग्री के रूप में भी किया जाता है।


== संरचना, प्रतिक्रियाशीलता और गुण ==
== संरचना, प्रतिक्रियाशीलता और गुण ==
[[File:CUPOCY15.png|thumb|left|CuPc की क्रिस्टल संरचना का भाग, इसके स्लिप्ड-स्टैक पैकिंग मोटिफ को उजागर करता है।<ref>{{cite journal|authors=P.Erk, H.Hengelsberg, M.F.Haddow, R.van Gelder|journal=CrystEngComm|year=2004|volume=6|page=474|title=क्रिस्टल इंजीनियरिंग की अभिनव गति|issue=78|doi=10.1039/b409282a}}</ref>]][[ ताँबा | ताँबा]] [[थैलोसाइनिन]] कॉपर (II) का एक कॉम्प्लेक्स है, जिसमें फथलोसाइनिन का संयुग्म आधार होता है,अर्थात Cu<sup>2+</sup>Pc<sup>2−</sup>. विवरण तांबे के पोर्फिरीन के समान है, जो औपचारिक रूप से पोर्फिरीन के दोहरे अवक्षेपण द्वारा प्राप्त किया जाता है। क्यूपीसी डी के अंतर्गत आता है<sub>4h</sub> [[बिंदु समूह]]। यह प्रति अणु एक अयुग्मित इलेक्ट्रॉन के साथ अनुचुंबकीय है।
[[File:CUPOCY15.png|thumb|left|सीयूपीसी की क्रिस्टल संरचना का भाग, इसके स्लिप्ड-स्टैक पैकिंग मोटिफ को उजागर करता है।<ref>{{cite journal|authors=P.Erk, H.Hengelsberg, M.F.Haddow, R.van Gelder|journal=CrystEngComm|year=2004|volume=6|page=474|title=क्रिस्टल इंजीनियरिंग की अभिनव गति|issue=78|doi=10.1039/b409282a}}</ref>]][[ ताँबा | ताँबा]] [[थैलोसाइनिन]] कॉपर (II) का यौगिक है जो फ्थैलोसाइनेट के संयुक्त आधार के साथ रहित होता है, अर्थात् Cu<sup>2+</sup>Pc<sup>2−</sup> इस विवरण को कॉपर पोर्फायरिनों के लिए भी योग्य साबित किया जा सकता है, जो पोर्फायरिनों के द्वितीय संयुक्त द्वारा डबल प्रोटोनेशन से विकसित होते हैं। सीयूपीसी ''D''<sub>4h</sub> [[बिंदु समूह]] में


पदार्थ पानी में व्यावहारिक रूप से अघुलनशील है (<0.1 g/100 ml at {{convert|20|C}}),<ref name="t1">[http://www.chemblink.com/products/147-14-8.htm Copper phthalocyanine] ''chemblink.com''</ref> किन्तु केंद्रित सल्फ्यूरिक एसिड में घुलनशील।<ref name="t2" />ठोस का घनत्व ~1.6 g/cm<sup>3 है।<ref name="t2">[http://www.inchem.org/documents/sids/sids/147148.pdf COPPER PHTHALOCYANINE, CAS No.: 147-14-8] {{Webarchive|url=https://web.archive.org/web/20170516224832/http://www.inchem.org/documents/sids/sids/147148.pdf |date=2017-05-16 }} ''inchem.org''</ref> रंग λ के साथ π-π* इलेक्ट्रॉनिक संक्रमण के कारण होता हैmax ≈ 610 एनएम<sup>।<sup><ref>H. S. Rzepa, [http://www.ch.imperial.ac.uk/rzepa/blog/?p=3641 www.ch.imperial.ac.uk/rzepa/blog/?p=3641], Accessed: 2011-03-08. (Archived by WebCite® at https://www.webcitation.org/5x2Q0jeBj {{Webarchive|url=https://web.archive.org/web/20200921101102/https://www.webcitation.org/5x2Q0jeBj |date=2020-09-21 }})</ref>
सम्मिलित होता है। इसका पैरामैग्नेटिक गुणसूत्र प्रति मोलेक्यूल एक एकल इलेक्ट्रॉन के साथ होता है।
 
इस पदार्थ को पानी में अवावधिक रूप से अनमिश्रित माना जाता है (<0.1 g/100 ml at {{convert|20|C}}),<ref name="t1">[http://www.chemblink.com/products/147-14-8.htm Copper phthalocyanine] ''chemblink.com''</ref> लेकिन गहरे सल्फ्यूरिक अम्ल में विलयनीय होता है।<ref name="t2" />ठोस का घनत्व लगभग ~1.6 g/cm<sup>3 होता है।<sup><ref name="t2">[http://www.inchem.org/documents/sids/sids/147148.pdf COPPER PHTHALOCYANINE, CAS No.: 147-14-8] {{Webarchive|url=https://web.archive.org/web/20170516224832/http://www.inchem.org/documents/sids/sids/147148.pdf |date=2017-05-16 }} ''inchem.org''</ref> इसकी रंगत एक π–π* इलेक्ट्रॉनिक संक्रमण के कारण होती है, जिसमें max ≈ 610 एनएम होता है।<ref>H. S. Rzepa, [http://www.ch.imperial.ac.uk/rzepa/blog/?p=3641 www.ch.imperial.ac.uk/rzepa/blog/?p=3641], Accessed: 2011-03-08. (Archived by WebCite® at https://www.webcitation.org/5x2Q0jeBj {{Webarchive|url=https://web.archive.org/web/20200921101102/https://www.webcitation.org/5x2Q0jeBj |date=2020-09-21 }})</ref>
=== क्रिस्टलीय चरण ===
=== क्रिस्टलीय चरण ===
CuPc बिभिन्न रूपों (पॉलीमॉर्फ्स) में क्रिस्टलीकृत होता है। पांच अलग -अलग बहुरूपियों की पहचान की गई है:<ref>{{cite journal|last1=James H.|first1=Sharp|last2=Martin|first2=Abkowitz|title=एक कॉपर Phthalocyanine बहुरूपी की डिमेरिक संरचना|journal=J. Phys. Chem.|date=1973|volume=77|issue=11|doi=10.1021/j100623a012|pages=477–481}}</ref><ref>{{cite journal|last1=Jacques M.|first1=Assour|title=Phthalocyanines के बहुरूपी संशोधनों पर|journal=J. Phys. Chem.|date=1965|volume=69|issue=7|doi=10.1021/j100891a026|pages=2295–2299}}</ref><ref>{{cite journal|last1=A.K.|first1=Hassan|last2=R.D.|first2=Gould|title=कॉपर Phthalocyanine की तापीय रूप से वाष्पित पतली फिल्मों का संरचनात्मक अध्ययन|journal=Physica Status Solidi A|date=2006|volume=132|issue=1|doi=10.1002/pssa.2211320110|pages=91–101|bibcode=1992PSSAR.132...91H}}</ref><ref>{{cite journal|last1=Hai|first1=Wang|last2=Soumaya|first2=Mauthoor|last3=Salahud|first3=Din|last4=Jules A.|first4=Gardener|last5=Rio|first5=Chang|last6=Marc|first6=Warner|last7=Gabriel|first7=Aeppli|last8=David W.|first8=McComb|last9=Mary P.|first9=Ryan|last10=Wei|first10=Wu|last11=Andrew J.|first11=Fisher|last12=Marshall|first12=Stoneham|last13=Sandrine|first13=Heutz|title=नई क्रिस्टल संरचना और ब्रॉड ऑप्टिकल अवशोषण के साथ अल्ट्रालॉन्ग कॉपर थैलोसाइनिन नैनोवायर|journal=ACS Nano|date=June 7, 2010|volume=4|issue=7|pages=3921–3926|doi=10.1021/nn100782w|pmid=20527798|arxiv=1012.2141|s2cid=2209898}}</ref> चरण α, β, η, γ और χ। CuPc में दो सबसे आम संरचनाएं β चरण और मेटास्टेबल α चरण हैं। उन चरणों को उनके पड़ोसी अणुओं के अतिव्यापन से अलग किया जा सकता है। α चरण में एक बड़ा ओवरलैप होता है और इस प्रकार, β चरण (~4.8 Å) की समानता में एक छोटा Cu-Cu रिक्ति (~3.8 Å) होता है।<ref>{{cite journal|last1=Amy C|first1=Cruickshank|last2=Christian J|first2=Dotzler|last3=Salahud|first3=Din|last4=Sandrine|first4=Heutz|author-link4=Sandrine Heutz |last5=Michael F|first5=Toney|last6=Mary P|first6=Ryan|title=ZnO (1100) पर कॉपर फथलोसाइनिन फिल्मों की क्रिस्टलीय संरचना|journal=Journal of the American Chemical Society|date=2012|volume=134|issue=35|doi=10.1021/ja305760b|pages=14302–14305|pmid=22897507}}</ref>
सीयूपीसी क्रिस्टल कई रूपों (पॉलिमॉर्फ्स) में संघटित होता है। पांच विभिन्न पॉलिमॉर्फ्स की पहचान की गई हैं:<ref>{{cite journal|last1=James H.|first1=Sharp|last2=Martin|first2=Abkowitz|title=एक कॉपर Phthalocyanine बहुरूपी की डिमेरिक संरचना|journal=J. Phys. Chem.|date=1973|volume=77|issue=11|doi=10.1021/j100623a012|pages=477–481}}</ref><ref>{{cite journal|last1=Jacques M.|first1=Assour|title=Phthalocyanines के बहुरूपी संशोधनों पर|journal=J. Phys. Chem.|date=1965|volume=69|issue=7|doi=10.1021/j100891a026|pages=2295–2299}}</ref><ref>{{cite journal|last1=A.K.|first1=Hassan|last2=R.D.|first2=Gould|title=कॉपर Phthalocyanine की तापीय रूप से वाष्पित पतली फिल्मों का संरचनात्मक अध्ययन|journal=Physica Status Solidi A|date=2006|volume=132|issue=1|doi=10.1002/pssa.2211320110|pages=91–101|bibcode=1992PSSAR.132...91H}}</ref><ref>{{cite journal|last1=Hai|first1=Wang|last2=Soumaya|first2=Mauthoor|last3=Salahud|first3=Din|last4=Jules A.|first4=Gardener|last5=Rio|first5=Chang|last6=Marc|first6=Warner|last7=Gabriel|first7=Aeppli|last8=David W.|first8=McComb|last9=Mary P.|first9=Ryan|last10=Wei|first10=Wu|last11=Andrew J.|first11=Fisher|last12=Marshall|first12=Stoneham|last13=Sandrine|first13=Heutz|title=नई क्रिस्टल संरचना और ब्रॉड ऑप्टिकल अवशोषण के साथ अल्ट्रालॉन्ग कॉपर थैलोसाइनिन नैनोवायर|journal=ACS Nano|date=June 7, 2010|volume=4|issue=7|pages=3921–3926|doi=10.1021/nn100782w|pmid=20527798|arxiv=1012.2141|s2cid=2209898}}</ref> चरण α, चरण β, चरण η, चरण γ और चरण χ। सीयूपीसी में दो सबसे सामान्य संरचनाएं होती हैं: चरण β और अप्रत्यक्ष चरण α। इन चरणों को उनके पड़ोसी मोलेक्यूलों के ओवरलैप के द्वारा पहचाना जा सकता है। चरण α में ओवरलैप अधिक होता है और इसलिए, क्यू-क्यू अंतरद्वारी दूरी (~3.8 एंग्सट्रॉम) चरण β (~4.8 एंग्सट्रॉम) की तुलना में छोटी होती है।<ref>{{cite journal|last1=Amy C|first1=Cruickshank|last2=Christian J|first2=Dotzler|last3=Salahud|first3=Din|last4=Sandrine|first4=Heutz|author-link4=Sandrine Heutz |last5=Michael F|first5=Toney|last6=Mary P|first6=Ryan|title=ZnO (1100) पर कॉपर फथलोसाइनिन फिल्मों की क्रिस्टलीय संरचना|journal=Journal of the American Chemical Society|date=2012|volume=134|issue=35|doi=10.1021/ja305760b|pages=14302–14305|pmid=22897507}}</ref>
=== विषाक्तता और खतरे ===
=== विषाक्तता और खतरे ===
यौगिक गैर-बायोडिग्रेडेबल है,किन्तु मछली या पौधों के लिए विषाक्त नहीं है।<ref name="t2"/>इस परिसर से कोई विशेष खतरे जुड़े नहीं हैं।<ref>[http://www.cornelius.co.uk/Documents/MSDS/Sitrament_Blue_GCN_(Blue_15.3)/$File/01030R-2%20gcn.pdf Safety data sheet] {{Webarchive|url=https://web.archive.org/web/20120228212401/http://www.cornelius.co.uk/Documents/MSDS/Sitrament_Blue_GCN_(Blue_15.3)/$File/01030R-2%20gcn.pdf |date=2012-02-28 }} ''cornelius.co.uk''</ref> ओरल मेडियन घातक खुराक | LD<sub>50</sub>स्तनधारियों में 5 ग्राम प्रति किग्रा से अधिक होने का अनुमान है, अंतर्ग्रहण के उस स्तर पर कोई बुरा प्रभाव नहीं पाया गया,<ref name="t2"/>लंबे समय तक सेवन के लिए चूहों में कम चिंता की अनुमानित खुराक 0.2 मिलीग्राम/किग्रा प्रति दिन थी।<ref name="t2"/>कोई प्रमाण कार्सिनोजेनिक प्रभावों को इंगित नहीं करता है।<ref name="t2"/>सल्फोनेटेड थैलोसायनिन को अंडों को सीधे इंजेक्ट करने पर चिकन भ्रूण के विकास में न्यूरानाटॉमिकल दोष पैदा करने के लिए पाया गया है।<ref>{{cite journal | pmid = 2931590 | volume=31 | title=चिक भ्रूण में सल्फोनेटेड फथलोसाइनिन प्रेरित कॉडल मालफॉर्मेटिव सिंड्रोम।| journal=Morphol Embryol (Bucur) | pages=173–81 | last1 = Sandor | first1 = S | last2 = Prelipceanu | first2 = O | last3 = Checiu | first3 = I| year=1985 | issue=3 }}</ref>
यह संयोजन अविघट्य है, लेकिन मछलियों या पौधों के लिए यह विषाक्त नहीं है।<ref name="t2"/>स संयोजन के साथ कोई विशेष खतरे जुड़े नहीं हैं।<ref>[http://www.cornelius.co.uk/Documents/MSDS/Sitrament_Blue_GCN_(Blue_15.3)/$File/01030R-2%20gcn.pdf Safety data sheet] {{Webarchive|url=https://web.archive.org/web/20120228212401/http://www.cornelius.co.uk/Documents/MSDS/Sitrament_Blue_GCN_(Blue_15.3)/$File/01030R-2%20gcn.pdf |date=2012-02-28 }} ''cornelius.co.uk''</ref> सद्रावण LD<sub>50</sub>जंतुओं में अनुमानित रूप से 5 ग्राम प्रति किलोग्राम से अधिक है, जिस प्रमाण में इसके सेवन के उस स्तर पर कोई हानिकारक प्रभाव नहीं पाए गए हैं,<ref name="t2"/>निरंतर सेवन के लिए न्यूनतम संदेहजनक मात्रा न्यूनतम होने का अनुमानित खुराक रैट्स में 0.2 मिलीग्राम/किलोग्राम प्रति दिन थी।<ref name="t2"/>कैंसरोजन प्रभाव का कोई साक्ष्य नहीं है।<ref name="t2"/>सल्फोनेटेड फ्थैलोसाइन ने विकसित चूजे के अंडों में सीधे इंजेक्शन करने पर विकसित चिकन मुर्गे के न्यूरोएनाटॉमिकल दोष प्रकट किए हैं।<ref>{{cite journal | pmid = 2931590 | volume=31 | title=चिक भ्रूण में सल्फोनेटेड फथलोसाइनिन प्रेरित कॉडल मालफॉर्मेटिव सिंड्रोम।| journal=Morphol Embryol (Bucur) | pages=173–81 | last1 = Sandor | first1 = S | last2 = Prelipceanu | first2 = O | last3 = Checiu | first3 = I| year=1985 | issue=3 }}</ref>


== यह भी देखें ==
== यह भी देखें ==
* फ्थैलोसायनीन ग्रीन जी
* फ्थैलोसायनीन ग्रीन जी
* {{section link|ब्रिटिश रेल कॉर्पोरेट वर्दी|रेल नीला}} - 1965 के बाद से ब्रिटिश रेल ट्रेनों के लिए मानक वस्त्र के रूप में वर्णक का उपयोग किया जाता है।
* {{section link|ब्रिटिश रेल कॉर्पोरेट वर्दी|रेल नीला}} - 1965 के बाद से ब्रिटिश रेल ट्रेनों के लिए मानक वस्त्र के रूप में वर्णक का उपयोग किया जाता है।
* पेंटिंग का आनंद - रंगद्रव्य पर आधारित ऑइल पेंट का अधिकांशतः शो में उपयोग किया जाता था।
* पेंटिंग का आनंद - रंगद्रव्य पर आधारित ऑइल पेंट का अधिकांशतः शो में उपयोग किया जाता था।
* [[रंगों की सूची]]
* [[रंगों की सूची]]
Line 112: Line 112:
*[http://www.ch.ic.ac.uk/video/linstead/ Patrick Linstead talking about phthalocyanine] ''Imperial College London, Chemistry department''
*[http://www.ch.ic.ac.uk/video/linstead/ Patrick Linstead talking about phthalocyanine] ''Imperial College London, Chemistry department''


{{Shades of blue}}
[[Category:All articles with unsourced statements]]
[[Category: पिग्मेंट्स]] [[Category: कार्बनिक रंजक]] [[Category: Phthalocyanines]] [[Category: नीले रंग के स्वरूप]] [[Category: कॉपर (II) यौगिक]] [[Category: कॉपर कॉम्प्लेक्स]]  
[[Category:Articles containing unverified chemical infoboxes]]
 
[[Category:Articles with unsourced statements from March 2023]]
 
[[Category:Articles without InChI source]]
 
[[Category:Articles without KEGG source]]
[[Category: Machine Translated Page]]
[[Category:CS1 maint]]
[[Category:Collapse templates]]
[[Category:Created On 02/05/2023]]
[[Category:Created On 02/05/2023]]
[[Category:ECHA InfoCard ID from Wikidata]]
[[Category:E number from Wikidata]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages using collapsible list with both background and text-align in titlestyle|background:transparent;font-weight:normal;text-align:left ]]
[[Category:Pages using infobox color with deprecated parameters]]
[[Category:Pages with script errors]]
[[Category:Phthalocyanines]]
[[Category:Shades of color templates|Blue]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Webarchive template wayback links]]
[[Category:Wikipedia metatemplates]]
[[Category:कार्बनिक रंजक]]
[[Category:कॉपर (II) यौगिक]]
[[Category:कॉपर कॉम्प्लेक्स]]
[[Category:नीले रंग के स्वरूप]]
[[Category:पिग्मेंट्स]]

Latest revision as of 16:03, 26 October 2023

कॉपर थैलोसाइनिन
Copper phthalocyanine.svg
Names
IUPAC name
(29H,31H-phthalocyaninato(2−)-N29,N30,N31,N32)copper(II)
Other names
Copper(II) phthalocyanine
Monastral blue
Phthalocyanine blue
Phthalo blue
Thalo blue
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
UNII
  • InChI=1S/C32H16N8.Cu/c1-2-10-18-17(9-1)25-33-26(18)38-28-21-13-5-6-14-22(21)30(35-28)40-32-24-16-8-7-15-23(24)31(36-32)39-29-20-12-4-3-11-19(20)27(34-29)37-25;/h1-16H;/q-2;+2
    Key: XCJYREBRNVKWGJ-UHFFFAOYSA-N
  • c12=cc=cc=c1c3=nc4=c5c=cc=cc5=c(n=c6c7=cc=cc=c7c(n=c8c9=c(c(n8[Cu-2]158)=nc2=n13)c=cc=c9)=[n+]56)[n+]48
Properties
C32H16CuN8
Molar mass 576.082 g·mol−1
Appearance dark blue solid
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Phthalo blue
 
Copper Phtalocyanine Blue.JPG
Phthalocyanine blue pigment powder
About these coordinates     Color coordinates
Hex triplet#000F89
sRGBB (r, g, b)(0, 15, 137)
CMYKH (c, m, y, k)(100, 89, 0, 46)
HSV (h, s, v)(233°, 100%, 54%)
CIELChuv (L, C, h)(16, 61, 265°)
SourceThe Mother of All HTML Colo(u)r Charts
ISCC–NBS descriptorVivid blue
B: Normalized to [0–255] (byte)
H: Normalized to [0–100] (hundred)
Copper phthalocyanine
कॉपर फथलोसाइनिन पाउडर

कॉपर फ्थैलोसाइनीन (सीयूपीसी), जिसे फ्थैलोसाइनीन ब्लू, फथालो ब्लू और कई अन्य नामों से भी जाना जाता है, फ़ायदेमंद, क्रिस्टलीन, संश्लेषणिक नीले रंग का रंगांकित प्रदारक है जो फ़थैलोसाइनीन डाइज़ के समूह से होता है। इसका शानदार नीला अधिकांशतः रँगना और रंगों में प्रयोग किया जाता है। इसकी उत्तम गुणों जैसे हल्की स्थिरता, टिनिंग ताकत, आवरण शक्ति और क्षार और अम्ल के प्रभावों के प्रतिरोध के लिए इसकी अत्यधिक सराहना की जाती है। यह एक नीले पाउडर की प्रकार दिखता है, पानी सहित अधिकांश सॉल्वैंट्स में अघुलनशील होते है।

प्राचीन कथा

मेटल थैलोसायनिन की खोज का पता थैलिक एसिड (बेंजीन-1,2-डाइकारबॉक्सिलिक एसिड) या नाइट्रोजन और धातुओं के स्रोतों के साथ इसके डेरिवेटिव की प्रतिक्रियाओं से तीव्र रंगीन उपोत्पादों के अवलोकन से लगाया जा सकता है। कॉपर (आई) साइनाइड और 1,2-डिब्रोमोबेंजीन|ओ-डिब्रोमोबेंजीन की प्रतिक्रिया से सीयूपीसी (कॉपर फथलोसाइनिन) पहली बार 1927 में तैयार किया गया था, जो मुख्य रूप से रंगहीन फ्थैलोनाइट्राइल के साथ-साथ एक तीव्र नीले उप-उत्पाद का उत्पादन करता है। कुछ वर्षों के बाद, स्कॉटिश डाईज के श्रमिकों ने धात्विक लोहे की उपस्थिति में फ्थेलिक एनहाइड्राइड और अमोनिया की प्रतिक्रिया से फ़्थेलिमाईड के संश्लेषण में फथलोसाइनिन रंगों के निशान के गठन को देखा। 1937 में, ड्यूपॉन्ट (1802–2017) ने संयुक्त राज्य अमेरिका में मोनास्ट्रल ब्लू के व्यापार नाम के अनुसार कॉपर फथलोसाइनिन ब्लू का उत्पादन प्रारंभ किया था, जिसे पहले 1935 में ग्रेट ब्रिटेन (इंपीरियल केमिकल इंडस्ट्रीज) और जर्मनी (I.G. फार्बेनइंडस्ट्री ) में लॉन्च किया गया था।[1]

पहले अल्फा रूपों के साथ स्थिर फैलाव (रसायन विज्ञान) बनाने में कठिनाई का अनुभव किया गया था, विशेष रूप से रूटाइल टाइटेनियम के साथ मिश्रण में, जहां नीले रंग के वर्णक प्रवाहित होते थे। बीटा फॉर्म अधिक स्थिर था,जैसा कि उत्तम स्थिर अल्फा फॉर्म था। आज,और भी समावयवी रूप उपलब्ध हैं।

पर्यायवाची और व्यापार नाम

यह पदार्थ, IUPAC नाम (29H,31H-फ्थैलोसायनिनेटो (2−)-N29,N30,N31,N32)कॉपर(II), अनेक नामों से जाना जाता है[2] जैसे कि मोनास्ट्रल ब्लू, थैलो ब्लू, हेलियो ब्लू,[3] थालो ब्लू, विनसर ब्लू,[4] थैलोसाइनिन ब्लू, कलर इंडेक्स इंटरनेशनल|सी.आई. वर्णक नीला 15:2,[5][6] कॉपर फथलोसाइनिन नीला,[7] कॉपर टेट्राबेंज़ोपोरफाइराज़िन,[8] क्यू-फथलोब्लू,[9] पी.बी.15.2,[10][11][12] सी.आई. 74160,[13][14][15] और ब्रिटिश रेल ब्लू।[16] कई अन्य व्यापार नाम और समानार्थक शब्द उपस्थित हैं।[17]संक्षिप्त नाम सीयूपीसी का भी उपयोग किया जाता है।[18]

निर्माण

कॉपर फथलोसाइनिन के उत्पादन के लिए दो निर्माण प्रक्रियाओं ने व्यावसायिक महत्व प्राप्त किया है:

  • थैलोनिट्राइल प्रक्रिया, मुख्य रूप से जर्मनी में उपयोग की जाती है
  • थैलिक एनहाइड्राइड/यूरिया प्रक्रिया, ग्रेट ब्रिटेन और संयुक्त राज्य अमेरिका में विकसित हुई।

दोनों दृष्टिकोण या तो बिना वस्त्राग्रहण के (बेकिंग प्रक्रिया) या वस्त्राग्रहण के साथ (विलयन प्रक्रिया) पूर्ण किए जा सकते हैं। विलयन प्रक्रिया में उच्चतर प्राप्तिशीलता (95% से अधिक) बेकिंग प्रक्रिया (70 से 80%) की समानता में हो सकती है, इसलिए विलयन प्रक्रिया प्रारंभ में अधिक रुचि को प्रेरित करती है। चूंकि , हाल के प्रवृत्तियाँ आर्थिक और पर्यावरण संबंधी चिंताओं के कारण मुख्य रूप से बेकिंग प्रक्रिया के लिए उल्टा रुझान दिखा रहे हैं (वस्त्राग्रहण रहित, कम समय में प्राप्ति)।

फथालोनाइट्राइल प्रक्रिया

यह दृष्टिकोण फ्टलोनिटरीले को एक कॉपर लवण के साथ गर्म करके होता है,सामान्यतः कॉपर (I) क्लोराइड को 200°C से 240°C तक। फ्टलोनिटरीले से ब्रूट प्रतिक्रिया समीकरण निम्नलिखित रूप में लिखा जा सकता है:

फथैलिक एनहाइड्राइड/यूरिया प्रक्रिया

थैलिक एनहाइड्राइड और यूरिया से सकल प्रतिक्रिया समीकरण निम्नानुसार लिखा जा सकता है:

अनुप्रयोग

कटैलिसीस

रेडॉक्स प्रतिक्रियाओं के उत्प्रेरक के रूप में धातु फथलोसाइनिन की लंबे समय से जांच की गई है। ब्याज के क्षेत्र ऑक्सीजन की कमी की प्रतिक्रिया और हाइड्रोजन सल्फाइड को हटाने से गैस की धाराओं का मीठा होना है।[citation needed]

रंगीन

अपनी स्थिरता के कारण, फ़ेनो नीला भी मसालों, परतों और कई प्लास्टिक में उपयोग किया जाता है। इस रंग कोशिका अविघट है और सामग्री में प्रवास करने की प्रवृत्ति नहीं होती। यह छपाई इंक और पैकेजिंग उद्योग में उपयोग होने वाला एक मानक रंग कोशिका है। जापान में कमात्र1 980 और 1990 के दशक में औद्योगिक उत्पादन 10,000 टन प्रतिवर्ष का था। यह रंग कोशिका सबसे अधिक मात्रा में उत्पादित किया जाने वाला रंग कोशिका है।[17][19]

भी मुख्य कलाकार रंग कोशिका निर्माताओं ने कॉपर फ्थैलोसाइनेट के विभिन्न रूपांतर, जिन्हें, कलर इंडेक्स PB15 (नीला) और HP/WCL/waterg.html कलर इंडेक्स PG7 और PG36 (हरा)

कलाकार की पैलेट पर एक सामान्य घटक के रूप में, फ़ेनो नीला एक शीतल नीला रंग है जिसमें हरा की ओर रुझान होता है। इसमें गहराई वाली टिंटिंग शक्ति होती है और अन्य रंगों के साथ मिश्रण में आसानी से प्रभाव डालता है। यह एक पारदर्शी ध्यान कराने वाला रंग है और इसे ग्लेजिंग तकनीक का उपयोग करके लागू किया जा सकता है।

यह विविध उत्पादों में उपस्थित होता है,[20] जैसे कलर निर्धारण हेयर कंडीशनर,[21] आई पैच, सुगंध, शैम्पू, त्वचा की देखभाल उत्पाद, साबुन, सनस्क्रीन, टैटू इंक,[22] टूथपेस्ट। [23] और यहां तक ​​कि टर्फ कलरेंट भी बनाता है। [24]

अनुसंधान

सीयूपीसी की अधिकांशतः आणविक इलेक्ट्रॉनिक्स के संदर्भ में जांच की गई है। इसकी उच्च रासायनिक स्थिरता और समान वृद्धि के कारण यह कार्बनिक सौर कोशिकाओं के लिए संभावित रूप से अनुकूल है।[25][26] सीयूपीसी सामान्यतः पर दाता / इलेक्ट्रॉन स्वीकर्ता आधारित सौर कोशिकाओं में इलेक्ट्रॉन दाता की भूमिका निभाता है। सबसे आम दाता/स्वीकर्ता आर्किटेक्चर में से एक CuPc/C60 है(बकमिन्स्टरफुलरीन ) जो तेजी से छोटे कार्बनिक अणुओं के अध्ययन के लिए एक मॉडल प्रणाली बन गई।[27][28] ऐसी प्रणाली में फोटॉन से इलेक्ट्रॉन रूपांतरण दक्षता अधिकतर 5% तक पहुंच जाती है।

सीयूपीसी को जैविक क्षेत्र-प्रभाव ट्रांजिस्टर के एक घटक के रूप में भी जांचा गया है।[29]क्वांटम कम्प्यूटिंग में डेटा स्टोरेज के लिए कॉपर फ्थैलोसायनीन (CuPc) का सुझाव दिया गया है, क्योंकि इसके इलेक्ट्रॉन लंबे समय तक सुपरपोजिशन में रह सकते हैं।[30]डिवाइस निर्माण में उपयोग के लिए सीयूपीसी को आसानी से एक पतली फिल्म में संसाधित किया जा सकता है, जो इसे एक आकर्षक क्यूबिट उम्मीदवार बनाता है।[31]

डेरिवेटिव्स

सभी कृत्रिम कार्बनिक पिगमेंट का अधिकतर 25% थैलोसाइनिन डेरिवेटिव हैं।[32] कॉपर फथालोसायनिन रंजक एक या एक से अधिक सल्फोनिक एसिड कार्यों जैसे घुलनशील समूहों को प्रस्तुत करके उत्पादित किए जाते हैं। इन रंगों का कपड़ा रंगाई के विभिन्न क्षेत्रों (कपास के लिए प्रत्यक्ष रंग), कताई रंगाई और कागज उद्योग में व्यापक उपयोग होता है। डायरेक्ट ब्लू 86 क्यूपीसी-सल्फोनिक एसिड का सोडियम नमक है, चूँकि डायरेक्ट ब्लू 199 क्यूपीसी-सल्फोनिक एसिड का चतुष्कोणीय अमोनियम नमक है। इन सल्फोनिक एसिड के चतुष्कोणीय अमोनियम लवण कार्बनिक सॉल्वैंट्स में घुलनशीलता के कारण विलायक रंगों के रूप में उपयोग किए जाते हैं, जैसे सॉल्वेंट ब्लू 38 और सॉल्वेंट ब्लू 48 में होती है। कोबाल्ट फ्थालोसाइनिन और एक अमाइन से प्राप्त डाई थैलोजेन डाई आईबीएन है। 1,3-डायमिनोआइसोइंडोलीन, फथालोसायनिन निर्माण के समय बनने वाला मध्यवर्ती, तांबे के नमक के साथ संयोजन में उपयोग किया जाता है, डाई जीके 161 प्रदान करता है। कॉपर फथलोसाइनिन का उपयोग फ्थैलोसायनीन ग्रीन जी के निर्माण के लिए स्रोत सामग्री के रूप में भी किया जाता है।

संरचना, प्रतिक्रियाशीलता और गुण

सीयूपीसी की क्रिस्टल संरचना का भाग, इसके स्लिप्ड-स्टैक पैकिंग मोटिफ को उजागर करता है।[33]

ताँबा थैलोसाइनिन कॉपर (II) का यौगिक है जो फ्थैलोसाइनेट के संयुक्त आधार के साथ रहित होता है, अर्थात् Cu2+Pc2− इस विवरण को कॉपर पोर्फायरिनों के लिए भी योग्य साबित किया जा सकता है, जो पोर्फायरिनों के द्वितीय संयुक्त द्वारा डबल प्रोटोनेशन से विकसित होते हैं। सीयूपीसी D4h बिंदु समूह में

सम्मिलित होता है। इसका पैरामैग्नेटिक गुणसूत्र प्रति मोलेक्यूल एक एकल इलेक्ट्रॉन के साथ होता है।

इस पदार्थ को पानी में अवावधिक रूप से अनमिश्रित माना जाता है (<0.1 g/100 ml at 20 °C (68 °F)),[34] लेकिन गहरे सल्फ्यूरिक अम्ल में विलयनीय होता है।[17]ठोस का घनत्व लगभग ~1.6 g/cm3 होता है।[17] इसकी रंगत एक π–π* इलेक्ट्रॉनिक संक्रमण के कारण होती है, जिसमें max ≈ 610 एनएम होता है।[35]

क्रिस्टलीय चरण

सीयूपीसी क्रिस्टल कई रूपों (पॉलिमॉर्फ्स) में संघटित होता है। पांच विभिन्न पॉलिमॉर्फ्स की पहचान की गई हैं:[36][37][38][39] चरण α, चरण β, चरण η, चरण γ और चरण χ। सीयूपीसी में दो सबसे सामान्य संरचनाएं होती हैं: चरण β और अप्रत्यक्ष चरण α। इन चरणों को उनके पड़ोसी मोलेक्यूलों के ओवरलैप के द्वारा पहचाना जा सकता है। चरण α में ओवरलैप अधिक होता है और इसलिए, क्यू-क्यू अंतरद्वारी दूरी (~3.8 एंग्सट्रॉम) चरण β (~4.8 एंग्सट्रॉम) की तुलना में छोटी होती है।[40]

विषाक्तता और खतरे

यह संयोजन अविघट्य है, लेकिन मछलियों या पौधों के लिए यह विषाक्त नहीं है।[17]स संयोजन के साथ कोई विशेष खतरे जुड़े नहीं हैं।[41] सद्रावण LD50जंतुओं में अनुमानित रूप से 5 ग्राम प्रति किलोग्राम से अधिक है, जिस प्रमाण में इसके सेवन के उस स्तर पर कोई हानिकारक प्रभाव नहीं पाए गए हैं,[17]निरंतर सेवन के लिए न्यूनतम संदेहजनक मात्रा न्यूनतम होने का अनुमानित खुराक रैट्स में 0.2 मिलीग्राम/किलोग्राम प्रति दिन थी।[17]कैंसरोजन प्रभाव का कोई साक्ष्य नहीं है।[17]सल्फोनेटेड फ्थैलोसाइन ने विकसित चूजे के अंडों में सीधे इंजेक्शन करने पर विकसित चिकन मुर्गे के न्यूरोएनाटॉमिकल दोष प्रकट किए हैं।[42]

यह भी देखें

संदर्भ

  1. Löbbert, Gerd (2000). "Phthalocyanines". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a20_213..
  2. "पदार्थ की जानकारी". ECHA. Retrieved 2021-11-18.
  3. Toxic Substances Control Act Chemical Substance Inventory: volume 2
  4. Spectroscopic Properties of Inorganic and Organometallic Compounds: volume 40
  5. Chem Product Index by Friedrich W. Derz
  6. Coloring of Plastics: Fundamentals, r. Robert A. Charvat
  7. Paint and Coating Testing Manual, e. Joseph V. Koleske
  8. User guide and indices to the initial inventory, substance name index, US EPA
  9. Industrial Organic Pigments: Production, Crystal Structures, Properties, Applications by Klaus Hunger & Martin U. Schmidt
  10. The Porphyrin Handbook: Applications of Phthalocyanines, e. Karl Kadish, Kevin M. Smith & Roger Guilard
  11. Tattoo Inks: Analysis, Pigments, Legislation by Gerald Prior
  12. Pigment + Füllstoff: Tabellen by Olaf Lückert
  13. Material Safety Data Sheets Service 7:89, Information Handling Services
  14. Coloring of Food, Drugs, and Cosmetics by Gisbert Otterstätter
  15. Chemical Formulation: An Overview of Surfactant Based Chemical Preparations Used in Everyday Life by Anthony E. Hargreaves
  16. Waterloo Station: A History of London's busiest terminus by Robert Lordan
  17. 17.0 17.1 17.2 17.3 17.4 17.5 17.6 17.7 COPPER PHTHALOCYANINE, CAS No.: 147-14-8 Archived 2017-05-16 at the Wayback Machine inchem.org
  18. e.g. Structural and Transport Properties of Copper Phthalocyanine (CuPc) Thin Films Archived 2012-03-05 at the Wayback Machine www.egmrs.org
  19. Gregory, Peter (2000). "फथलोसाइनिन के औद्योगिक अनुप्रयोग". Journal of Porphyrins and Phthalocyanines. worldscinet.com. 4 (4): 432–437. doi:10.1002/(SICI)1099-1409(200006/07)4:4<432::AID-JPP254>3.0.CO;2-N.
  20. "Ci 74160 (With Product List)".
  21. "Color Deposition Conditioner "Ultra Violet"".
  22. Forensic Analysis of Tattoos and Tattoo Inks by Michelle D. Miranda, page 163: Muddy Water Blue
  23. "Dentalux Complex 7 Total Care Plus Zahncreme Inhaltsstoffe - Hautschutzengel".
  24. "वर्टमैक्स टर्फ रंगद्रव्य और पेंट". 17 February 2022.
  25. Szybowicz, M (October 2004). "एफटी-आईआर का उच्च तापमान अध्ययन और वैक्यूम जमा क्यूपीसी पतली फिल्मों के रमन स्कैटरिंग स्पेक्ट्रा". Journal of Molecular Structure. 704 (1–3): 107–113. Bibcode:2004JMoSt.704..107S. doi:10.1016/j.molstruc.2004.01.053.
  26. Bala, M; Wojdyla, M; Rebarz, M; Szybowic, M; Drozdowski, M; Grodzicki, A; Piszczek, P (2009). "Influence of central metal atom in MPc (M = Cu, Zn, Mg, Co) on Raman, FT-IR, absorbance, reflectance, and photoluminescence spectra". J. Optoelectron. Adv. M. 11 (3): 264–269.
  27. Askat E, Jailaubekov (2013). "Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics". Nature Materials. 12 (1): 66–73. Bibcode:2013NatMa..12...66J. doi:10.1038/nmat3500. PMID 23223125.
  28. Xin, Li (January 2013). "CuPc/C60 bulk heterojunction photovoltaic cells with evidence of phase segregation". Organic Electronics. 14: 250–254. doi:10.1016/j.orgel.2012.10.041.
  29. Chaidogiannos, G.; Petraki, F.; Glezos, N.; Kennou, S.; Nešpůrek, S. (2009). "समाधान-संसाधित धातु फथलोसाइनिन पर आधारित लो वोल्टेज ऑपरेटिंग ओएफईटी". Applied Physics A. 96 (3): 763. Bibcode:2009ApPhA..96..763C. doi:10.1007/s00339-009-5268-1. S2CID 98694166.
  30. New material for quantum computing discovered out of the blue. phys.org. October 27, 2013
  31. Quenqua, Douglas (November 4, 2013). "क्वांटम कम्प्यूटिंग की कुंजी, घर के करीब". The New York Times.
  32. Gerd Löbbert "Phthalocyanines" in Ullmann's Encyclopedia of Industrial Chemistry, 2002, Wiley-VCH, Weinheim. doi:10.1002/14356007.a20_213.
  33. P.Erk, H.Hengelsberg, M.F.Haddow, R.van Gelder (2004). "क्रिस्टल इंजीनियरिंग की अभिनव गति". CrystEngComm. 6 (78): 474. doi:10.1039/b409282a.{{cite journal}}: CS1 maint: uses authors parameter (link)
  34. Copper phthalocyanine chemblink.com
  35. H. S. Rzepa, www.ch.imperial.ac.uk/rzepa/blog/?p=3641, Accessed: 2011-03-08. (Archived by WebCite® at https://www.webcitation.org/5x2Q0jeBj Archived 2020-09-21 at the Wayback Machine)
  36. James H., Sharp; Martin, Abkowitz (1973). "एक कॉपर Phthalocyanine बहुरूपी की डिमेरिक संरचना". J. Phys. Chem. 77 (11): 477–481. doi:10.1021/j100623a012.
  37. Jacques M., Assour (1965). "Phthalocyanines के बहुरूपी संशोधनों पर". J. Phys. Chem. 69 (7): 2295–2299. doi:10.1021/j100891a026.
  38. A.K., Hassan; R.D., Gould (2006). "कॉपर Phthalocyanine की तापीय रूप से वाष्पित पतली फिल्मों का संरचनात्मक अध्ययन". Physica Status Solidi A. 132 (1): 91–101. Bibcode:1992PSSAR.132...91H. doi:10.1002/pssa.2211320110.
  39. Hai, Wang; Soumaya, Mauthoor; Salahud, Din; Jules A., Gardener; Rio, Chang; Marc, Warner; Gabriel, Aeppli; David W., McComb; Mary P., Ryan; Wei, Wu; Andrew J., Fisher; Marshall, Stoneham; Sandrine, Heutz (June 7, 2010). "नई क्रिस्टल संरचना और ब्रॉड ऑप्टिकल अवशोषण के साथ अल्ट्रालॉन्ग कॉपर थैलोसाइनिन नैनोवायर". ACS Nano. 4 (7): 3921–3926. arXiv:1012.2141. doi:10.1021/nn100782w. PMID 20527798. S2CID 2209898.
  40. Amy C, Cruickshank; Christian J, Dotzler; Salahud, Din; Sandrine, Heutz; Michael F, Toney; Mary P, Ryan (2012). "ZnO (1100) पर कॉपर फथलोसाइनिन फिल्मों की क्रिस्टलीय संरचना". Journal of the American Chemical Society. 134 (35): 14302–14305. doi:10.1021/ja305760b. PMID 22897507.
  41. Safety data sheet Archived 2012-02-28 at the Wayback Machine cornelius.co.uk
  42. Sandor, S; Prelipceanu, O; Checiu, I (1985). "चिक भ्रूण में सल्फोनेटेड फथलोसाइनिन प्रेरित कॉडल मालफॉर्मेटिव सिंड्रोम।". Morphol Embryol (Bucur). 31 (3): 173–81. PMID 2931590.


बाहरी संबंध