समानता (गणित): Difference between revisions
No edit summary |
No edit summary |
||
(20 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
गणित में, '''समानता''' दो मात्राओं या अधिक सामान्य रूप से दो [[गणितीय अभिव्यक्ति|गणितीय अभिव्यक्तियों]] के बीच एक संबंध है,जिसका आशय है कि मात्राओं का एक ही मान है, या अभिव्यक्तियाँ एक ही [[गणितीय वस्तु]] का प्रतिनिधित्व करती हैं। {{math|''A''}} और {{math|''B''}} के बीच समानता को {{math|1=''A'' = ''B''}} लिखा है , और {{math|''A''}} का उच्चारण {{math|''B''}} के बराबर होता है।.<ref>{{Cite web|last=Weisstein|first=Eric W.|title=समानता|url=https://mathworld.wolfram.com/समानता.html|access-date=2020-09-01|website=mathworld.wolfram.com|language=en}}</ref> प्रतीक "=" को "बराबर चिह्न" कहा जाता है। दो वस्तुएँ जो समान नहीं हैं, भिन्न कहलाती हैं<!--Redirect-->. | |||
गणित में, समानता दो मात्राओं या अधिक सामान्य रूप से दो [[गणितीय अभिव्यक्ति|गणितीय अभिव्यक्तियों]] के बीच एक संबंध है, | |||
उदाहरण के लिए: | उदाहरण के लिए: | ||
* <math>x=y</math> | * <math>x=y</math> का अर्थ है, कि {{mvar|x}} और {{mvar|y}} एक ही वस्तु को दर्शाते हैं।।<ref>{{harvnb|Rosser|2008|page=163}}.</ref> | ||
* [[पहचान (गणित)]] <math>(x+1)^2=x^2+2x+1</math> इसका तात्पर्य है कि यदि {{mvar|x}} कोई संख्या है, तो दोनों व्यंजकों का मान समान है। इसे यह कहते हुए भी समझा जा सकता है कि बराबर चिह्न के दो पक्ष एक ही कार्य (गणित) का प्रतिनिधित्व करते हैं। | * [[पहचान (गणित)]] <math>(x+1)^2=x^2+2x+1</math> इसका तात्पर्य है कि यदि {{mvar|x}} कोई संख्या है, तो दोनों व्यंजकों का मान समान है। इसे यह कहते हुए भी समझा जा सकता है कि बराबर चिह्न के दो पक्ष एक ही कार्य (गणित) का प्रतिनिधित्व करते हैं। | ||
* | *और केवल अगर <math>\{x \mid P(x)\} = \{x \mid Q(x)\}</math> <math>P(x) \Leftrightarrow Q(x).</math> यह अभिकथन, जो [[सेट-बिल्डर नोटेशन|समूह निर्माता नोटेशन]] का उपयोग करता है, का अर्थ है कि यदि तत्व संपत्ति को संतुष्ट करते हैं <math>P(x)</math> <math>Q(x),</math>को संतुष्ट करने वाले तत्वों के समान हैं तो समूह निर्माता नोटेशन के दो उपयोग एक ही समूह को परिभाषित करते हैं। इस संपत्ति को सामान्यतः दो समूहों के रूप में व्यक्त किया जाता है जिनमें समान तत्व होते हैं। यह समुच्चय सिद्धांत के सामान्य स्वयंसिद्धों में से एक है, जिसे [[विस्तार का स्वयंसिद्ध]] कहा जाता है।<ref>{{harvnb|Lévy|2002|pages=13, 358}}. {{harvnb|Mac Lane|Birkhoff|1999|page=2}}. {{harvnb|Mendelson|1964|page=5}}.</ref> | ||
Line 16: | Line 13: | ||
{{unordered list | {{unordered list | ||
|1= | |1= | ||
'' | ''प्रतिस्थापन संपत्ति'': [[किसी के लिए]] मात्रा ''a'' तथा ''b'' और कोई अभिव्यक्ति ''F''(''x''), [[सामग्री सशर्त | यदि]] ''a'' = ''b'', तब ''F''(''a'') = ''F''(''b'') (प्रतिबंध कि दोनों पक्ष [[अच्छी तरह से निर्मित सूत्र|अच्छी तरह से गठित] हों]]). | ||
इसके कुछ विशिष्ट उदाहरण हैं: | |||
{{ | {{अव्यवस्थित सूची | ||
|1= | |1= किसी के लिए [[वास्तविक संख्या]]s ''a'', ''b'', और ''c'', if ''a'' = ''b'', तब ''a'' + ''c'' = ''b'' + ''c'' (यहां, ''F''(''x'') is ''x'' + ''c''); | ||
|2= | |2= किसी के लिए [[वास्तविक संख्या]]s ''a'', ''b'', और ''c'', if ''a'' = ''b'', तब ''a'' − ''c'' = ''b'' − ''c'' (यहां, ''F''(''x'') is ''x'' − ''c''); | ||
|3= | |3= किसी के लिए [[वास्तविक संख्या]]s ''a'', ''b'', और ''c'', if ''a'' = ''b'',तब ''ac'' = ''bc'' (यहां, ''F''(''x'') is ''xc''); | ||
|4= | |4= किसी के लिए [[वास्तविक संख्या]]s ''a'', ''b'', और ''c'', if ''a'' = ''b'' और ''c'' [[शून्य से भाग|नहीं है]] [[0 (संख्या) | शून्य]], तब ''a''/''c'' = ''b''/''c'' (यहां, ''F''(''x'') is ''x''/''c''). | ||
}} | }} | ||
|2= | |2= | ||
'' | ''प्रतिवर्त गुण'': किसी भी मात्रा के लिए ''a'', ''a'' = ''a''. | ||
|3= | |3= | ||
'' | ''सममित संपत्ति'': किसी भी मात्रा के लिए ''a'' और ''b'', [[सामग्री सशर्त | यदि]] ''a'' = ''b'', तब ''b'' = ''a''. | ||
|4= | |4= | ||
'' | ''सकर्मक संपत्ति'':किसी भी मात्रा के लिए ''a'', ''b'', और ''c'', [[सामग्री सशर्त | यदि]] ''a'' = ''b'' [[और (तर्क) | और]] ''b'' = ''c'', तब ''a'' = ''c''.<ref>{{Cite web|last=Weisstein|first=Eric W.|title=Equal|url=https://mathworld.wolfram.com/Equal.html|access-date=2020-09-01|website=mathworld.wolfram.com|language=en}}</ref> | ||
}} | }} | ||
ये अंतिम तीन गुण समानता को एक [[तुल्यता संबंध]] बनाते हैं। वे मूल रूप से प्राकृतिक संख्याओं के लिए पीआनो स्वयंसिद्धों में | ये अंतिम तीन गुण समानता को एक [[तुल्यता संबंध]] बनाते हैं। वे मूल रूप से प्राकृतिक संख्याओं के लिए पीआनो स्वयंसिद्धों में सम्मलित थे। चूँकि सममित और सकर्मक गुणों को सामान्यतः मौलिक के रूप में देखा जाता है, उन्हें प्रतिस्थापन और प्रतिवर्ती गुणों से घटाया जा सकता है। | ||
== विधेय के रूप में समानता == | == विधेय के रूप में समानता == | ||
जब ''A'' और ''B'' पूरी तरह से निर्दिष्ट नहीं होते हैं या कुछ [[चर (गणित)]] पर निर्भर होते हैं, तो समानता एक [[प्रस्ताव (गणित)]] है, जो कुछ मूल्यों के लिए सही हो सकता है और अन्य मूल्यों के लिए गलत हो सकता है। समानता एक [[द्विआधारी संबंध]] है ( | जब ''A'' और ''B'' पूरी तरह से निर्दिष्ट नहीं होते हैं या कुछ [[चर (गणित)]] पर निर्भर होते हैं, तो समानता एक [[प्रस्ताव (गणित)]] है, जो कुछ मूल्यों के लिए सही हो सकता है और अन्य मूल्यों के लिए गलत हो सकता है। समानता एक [[द्विआधारी संबंध]] है (एक दो-तर्क [[विधेय (गणितीय तर्क)]]) जो अपने तर्कों से एक सत्य मान (गलत या सत्य) उत्पन्न कर सकता है। [[कंप्यूटर प्रोग्रामिंग]] में, दो भावों से इसकी गणना को [[रिलेशनल ऑपरेटर|संबंधपरक संकारक]] के रूप में जाना जाता है। | ||
== पहचान == | == पहचान == | ||
{{main| | {{main|पहचान (गणित) | ||
जब A और B को कुछ चरों के फलन (गणित) के रूप में देखा जा सकता है, तब A = B का | }} | ||
जब A और B को कुछ चरों के फलन (गणित) के रूप में देखा जा सकता है, तब A = B का अर्थ है कि A और B एक ही फलन को परिभाषित करते हैं। कार्यों की ऐसी समानता को कभी-कभी एक तत्समक | |||
(पहचान गणित) कहा जाता है। एक उदाहरण है <math>\left(x + 1\right)\left(x + 1\right) = x^2 + 2 x + 1.</math> कभी-कभी, लेकिन हमेशा नहीं, एक [[ट्रिपल बार]] के साथ एक पहचान लिखी जाती है: <math>\left(x + 1\right)\left(x + 1\right) \equiv x^2 + 2 x + 1.</math> | (पहचान गणित) कहा जाता है। एक उदाहरण है <math>\left(x + 1\right)\left(x + 1\right) = x^2 + 2 x + 1.</math> कभी-कभी, लेकिन हमेशा नहीं, एक [[ट्रिपल बार]] के साथ एक पहचान लिखी जाती है: <math>\left(x + 1\right)\left(x + 1\right) \equiv x^2 + 2 x + 1.</math> | ||
== [[समीकरण]] == | == [[समीकरण]] == | ||
एक समीकरण कुछ चरों के मान ज्ञात करने की समस्या है, जिसे | एक समीकरण कुछ चरों के मान ज्ञात करने की समस्या है, जिसे {{em|अज्ञात }} कहा जाता है जिसके लिए निर्दिष्ट समानता सत्य है। शब्द समीकरण भी एक समानता संबंध को संदर्भित कर सकता है जो केवल उन चरों के मूल्यों के लिए संतुष्ट होता है जिनमें रुचि होती है। उदाहरण के लिए, <math>x^2 + y^2 = 1</math> [[यूनिट सर्कल|इकाई घेरा]] {{em|समीकरण }} का है। | ||
कोई मानक संकेतन नहीं है जो एक समीकरण को एक पहचान से | कोई मानक संकेतन नहीं है जो एक समीकरण को एक पहचान से भिन्न करता है, या समानता संबंध के अन्य उपयोग: किसी को अभिव्यक्ति के शब्दार्थ और संदर्भ से एक उपयुक्त व्याख्या का अनुमान लगाना पड़ता है। किसी दिए गए डोमेन में चर के सभी मूल्यों के लिए एक पहचान को सही माना जाता है। एक "समीकरण" का अर्थ कभी-कभी एक पहचान हो सकता है, लेकिन अधिक बार नहीं, यह चर स्थान के एक उपसमुच्चय के रूप में निर्दिष्ट करता है जहां समीकरण सत्य है। | ||
== अनुमानित समानता == | == अनुमानित समानता == | ||
कुछ [[गणितीय तर्क]] ऐसे हैं जिनमें समानता की कोई धारणा नहीं है। यह दो [[वास्तविक संख्या]] | कुछ [[गणितीय तर्क]] ऐसे हैं जिनमें समानता की कोई धारणा नहीं है। यह दो [[वास्तविक संख्या|वास्तविक संख्याओं]] की समानता की [[अनिर्णीत समस्या]] को दर्शाता है, जो [[पूर्णांक|पूर्णांकों]], मूल अंकगणितीय संक्रियाओं, लघुगणक और घातीय फलन से जुड़े सूत्रों द्वारा परिभाषित है। दूसरे शब्दों में, ऐसी समानता तय करने के लिए कोई कलन विधि सम्मलित नहीं हो सकती है । | ||
द्विआधारी संबंध [[सन्निकटन]] (प्रतीक द्वारा निरूपित <math>\approx</math>) वास्तविक संख्याओं या अन्य चीजों के बीच, भले ही अधिक | द्विआधारी संबंध [[सन्निकटन]] (प्रतीक द्वारा निरूपित <math>\approx</math>) वास्तविक संख्याओं या अन्य चीजों के बीच, भले ही अधिक त्रुटिहीन रूप से परिभाषित हो, सकर्मक नहीं है (चूंकि कई छोटे [[अंतर (गणित)]] कुछ बड़ा जोड़ सकते हैं)। चूँकि , समानता [[लगभग हर जगह]] सकर्मक है। | ||
परीक्षण के | परीक्षण के अंतर्गत एक संदिग्ध समानता को ≟ प्रतीक का उपयोग करके निरूपित किया जा सकता है। | ||
== तुल्यता, सर्वांगसमता और समरूपता से संबंध == | == तुल्यता, सर्वांगसमता और समरूपता से संबंध == | ||
{{Main| | {{Main|तुल्यता संबंध | ||
एक संबंध के रूप में देखा गया, समानता एक समुच्चय पर | |समाकृतिकता | ||
|सर्वांगसमता संबंध | |||
|सर्वांगसमता (ज्यामिति) | |||
}} | |||
एक संबंध के रूप में देखा गया, समानता एक समुच्चय पर तुल्यता संबंध की अधिक सामान्य अवधारणा का मूलरूप है: वे द्विआधारी संबंध जो [[प्रतिवर्त संबंध]], [[सममित संबंध]] और [[सकर्मक संबंध]] हैं। पहचान संबंध एक तुल्यता संबंध है। विलोमतः, मान लीजिए कि R एक तुल्यता संबंध है, और आइए हम x के तुल्यता वर्ग को ''x<sup>R</sup>'' से निरूपित करें, जिसमें सभी अवयव z ऐसे हैं कि x R z है। तब संबंध x R y समता ''x<sup>R</sup>'' = ''y<sup>R</sup>'' के तुल्य है। यह इस प्रकार है कि समानता किसी भी समुच्चय S पर इस अर्थ में सबसे अच्छा तुल्यता संबंध है कि यह ऐसा संबंध है जिसमें सबसे छोटा तुल्यता वर्ग है (प्रत्येक वर्ग को एक तत्व में घटाया जाता है)। | |||
कुछ संदर्भों में, समानता को तुल्यता संबंध या तुल्याकारिता से स्पष्ट रूप से | कुछ संदर्भों में, समानता को तुल्यता संबंध या तुल्याकारिता से स्पष्ट रूप से भिन्न किया जाता है।<ref>{{Harv|Mazur|2007}}</ref> उदाहरण के लिए, कोई [[परिमेय संख्या|परिमेय संख्याओं]] से से भिन्नों को अलग कर सकता है, बाद वाला अंशों का तुल्यता वर्ग है: भिन्न <math>1/2</math> तथा <math>2/4</math> के रूप में भिन्न हैं (प्रतीकों के विभिन्न तार के रूप में) लेकिन वे एक ही परिमेय संख्या (संख्या रेखा पर एक ही बिंदु) का प्रतिनिधित्व करते हैं। यह भेद भागफल समुच्चय की धारणा को जन्म देता है। | ||
इसी | इसी प्रकार समूह | ||
:<math>\{\text{A}, \text{B}, \text{C}\} </math> तथा <math>\{ 1, 2, 3 \} </math> | :<math>\{\text{A}, \text{B}, \text{C}\} </math> तथा <math>\{ 1, 2, 3 \} </math> | ||
समान | समान समूह नहीं हैं - पहले में अक्षर होते हैं, जबकि दूसरे में संख्याएँ होती हैं - लेकिन वे दोनों तीन तत्वों के समूह हैं और इस प्रकार आइसोमॉर्फिक हैं, जिसका अर्थ है कि उनके बीच एक आक्षेप है। उदाहरण के लिए | ||
:<math>\text{A} \mapsto 1, \text{B} \mapsto 2, \text{C} \mapsto 3.</math> | :<math>\text{A} \mapsto 1, \text{B} \mapsto 2, \text{C} \mapsto 3.</math> | ||
चूँकि, समरूपता के अन्य विकल्प हैं, जैसे | |||
:<math>\text{A} \mapsto 3, \text{B} \mapsto 2, \text{C} \mapsto 1,</math> | :<math>\text{A} \mapsto 3, \text{B} \mapsto 2, \text{C} \mapsto 1,</math> | ||
और इन | और इन समूहों को इस प्रकार के विकल्प के बिना पहचाना नहीं जा सकता है - कोई भी विवरण जो उन्हें पहचानता है पहचान की पसंद पर निर्भर करता है। यह अंतर, समरूपता समानता के साथ संबंध, [[श्रेणी सिद्धांत]] में मूलभूत महत्व का है और श्रेणी सिद्धांत के विकास के लिए एक प्रेरणा है। | ||
कुछ | कुछ स्थिति में, एक समान दो गणितीय वस्तुओं के रूप में विचार किया जा सकता है जो केवल गुणों और संरचना के लिए समकक्ष हैं। शब्द [[सर्वांगसमता संबंध]] (और संबंधित प्रतीक <math>\cong</math>) इस प्रकार की समानता के लिए सामान्यतः उपयोग किया जाता है, और इसे वस्तुओं के बीच [[समरूपता वर्ग|समरूपता वर्गों]] के भागफल समूह के रूप में परिभाषित किया जाता है। उदाहरण के लिए, [[ज्यामिति]] में, दो ज्यामितीय आकृतियों को [[सर्वांगसमता (ज्यामिति)]] कहा जाता है, जब एक को दूसरे के साथ मेल खाने के लिए ले जाया जा सकता है, और समानता/सर्वांगसमता संबंध आकृतियों के बीच समरूपता का समरूपता वर्ग है। समूह के समरूपता के समान, गुणों और संरचना के साथ ऐसी गणितीय वस्तुओं के बीच समरूपता और समानता/अनुरूपता के बीच का अंतर श्रेणी सिद्धांत के विकास के साथ-साथ होमोटोपी प्रकार के सिद्धांत और [[असमान नींव]] के लिए एक प्रेरणा थी। | ||
== तार्किक परिभाषाएँ == | == तार्किक परिभाषाएँ == | ||
{{See also| | {{See also|प्रथम-क्रम तर्क समानता और इसके सिद्धांत | ||
|अविवेकियों की पहचान | |||
}} | |||
[[लाइबनिट्स]] ने समानता की धारणा को इस प्रकार बताया: | [[लाइबनिट्स]] ने समानता की धारणा को इस प्रकार बताया: | ||
: किसी भी x और y को देखते हुए, x = y यदि | : किसी भी x और y को देखते हुए, x = y यदि केवल , कोई [[विधेय (गणित)]] P, P(x) और P(y) दिया गया हो। | ||
== सेट सिद्धांत में समानता == | == सेट सिद्धांत में समानता == | ||
{{Main| | {{Main|विस्तार का स्वयंसिद्ध | ||
}} | |||
समूह सिद्धांत में समूह की समानता को दो भिन्न -भिन्न उपायों से अभिगृहीत किया जाता है, यह इस बात पर निर्भर करता है कि क्या स्वयंसिद्ध पहले-क्रम की भाषा पर समानता के साथ या बिना आधारित हैं। | |||
समानता के साथ प्रथम-क्रम तर्क के आधार पर समानता समूह करें समानता के साथ पहले क्रम के तर्क में, विस्तार का स्वयंसिद्ध बताता है कि दो समूह जिनमें समान तत्व होते हैं, वही समूह होते हैं।<ref>{{harvnb|Kleene|2002|page=189}}. {{harvnb|Lévy|2002|page=13}}. {{harvnb|Shoenfield|2001|page=239}}.</ref> | |||
समानता के साथ पहले क्रम के तर्क में, विस्तार का स्वयंसिद्ध बताता है कि दो | |||
* तर्क सिद्धांत: x = y ⇒ ∀z, (z ∈ x ⇔ z ∈ y) | * तर्क सिद्धांत: x = y ⇒ ∀z, (z ∈ x ⇔ z ∈ y) | ||
* तर्क सिद्धांत: x = y ⇒ ∀z, (x ∈ z ⇔ y ∈ z) | * तर्क सिद्धांत: x = y ⇒ ∀z, (x ∈ z ⇔ y ∈ z) | ||
* सिद्धांत सिद्धांत | * सिद्धांत सिद्धांत समूह करें: (∀z, (z ∈ x ⇔ z ∈ y)) ⇒ x = y | ||
पहले क्रम के तर्क में आधे काम को | पहले क्रम के तर्क में आधे काम को सम्मिलित करना केवल सुविधा का विषय माना जा सकता है, जैसा कि लेवी ने टिप्पणी की है। | ||
: हम प्रथम-क्रम विधेय कलन को समानता के साथ क्यों लेते हैं इसका कारण सुविधा का विषय है; इसके द्वारा हम समानता को परिभाषित करने और उसके सभी गुणों को सिद्ध करने के श्रम को बचाते हैं; यह बोझ अब तर्क द्वारा ग्रहण किया जाता है।<ref>{{harvnb|Lévy|2002|page=4}}.</ref> | : हम प्रथम-क्रम विधेय कलन को समानता के साथ क्यों लेते हैं इसका कारण सुविधा का विषय है; इसके द्वारा हम समानता को परिभाषित करने और उसके सभी गुणों को सिद्ध करने के श्रम को बचाते हैं; यह बोझ अब तर्क द्वारा ग्रहण किया जाता है।<ref>{{harvnb|Lévy|2002|page=4}}.</ref> | ||
=== समानता के बिना प्रथम-क्रम तर्क के आधार पर समानता | === समानता के बिना प्रथम-क्रम तर्क के आधार पर समानता समूह करें === | ||
समानता के बिना पहले क्रम के तर्क में, दो | समानता के बिना पहले क्रम के तर्क में, दो समूहों को बराबर परिभाषित किया जाता है यदि उनमें समान तत्व होते हैं। तब विस्तार की अभिधारणा बताती है कि दो समान समुच्चय एक ही समुच्चय में समाहित हैं।<ref>{{harvnb|Mendelson|1964|pages=159–161}}. {{harvnb|Rosser|2008|pages=211–213}}</ref> | ||
* | * समुच्चय सिद्धांत परिभाषा: x = y का अर्थ है ∀z, (z ∈ x ⇔ z ∈ y) | ||
* | * समुच्चय सिद्धांत स्वयंसिद्ध: x = y ⇒ ∀z, (x ∈ z ⇔ y ∈ z) | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 136: | Line 139: | ||
{{Refend}} | {{Refend}} | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
* {{springer|title=Equality axioms|id=p/e035910}} | * {{springer|title=Equality axioms|id=p/e035910}} | ||
Line 165: | Line 144: | ||
{{Mathematical logic}} | {{Mathematical logic}} | ||
{{DEFAULTSORT:Equality (Mathematics)}} | {{DEFAULTSORT:Equality (Mathematics)}} | ||
[[Category: | [[Category:All articles needing additional references|Equality (Mathematics)]] | ||
[[Category:Created On 26/11/2022]] | [[Category:Articles needing additional references from दिसंबर 2015|Equality (Mathematics)]] | ||
[[Category:Articles with hatnote templates targeting a nonexistent page|Equality (Mathematics)]] | |||
[[Category:Articles with invalid date parameter in template|Equality (Mathematics)]] | |||
[[Category:Articles with short description|Equality (Mathematics)]] | |||
[[Category:CS1 English-language sources (en)]] | |||
[[Category:CS1 français-language sources (fr)]] | |||
[[Category:CS1 maint]] | |||
[[Category:CS1 Ελληνικά-language sources (el)]] | |||
[[Category:Citation Style 1 templates|W]] | |||
[[Category:Collapse templates|Equality (Mathematics)]] | |||
[[Category:Created On 26/11/2022|Equality (Mathematics)]] | |||
[[Category:Machine Translated Page|Equality (Mathematics)]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|Equality (Mathematics)]] | |||
[[Category:Pages with empty portal template|Equality (Mathematics)]] | |||
[[Category:Pages with script errors|Equality (Mathematics)]] | |||
[[Category:Portal-inline template with redlinked portals|Equality (Mathematics)]] | |||
[[Category:Short description with empty Wikidata description|Equality (Mathematics)]] | |||
[[Category:Sidebars with styles needing conversion|Equality (Mathematics)]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates based on the Citation/CS1 Lua module]] | |||
[[Category:Templates generating COinS|Cite web]] | |||
[[Category:Templates generating microformats|Equality (Mathematics)]] | |||
[[Category:Templates that are not mobile friendly|Equality (Mathematics)]] | |||
[[Category:Templates used by AutoWikiBrowser|Cite web]] | |||
[[Category:Templates using TemplateData|Equality (Mathematics)]] | |||
[[Category:Use dmy dates from July 2013|Equality (Mathematics)]] | |||
[[Category:Wikipedia fully protected templates|Cite web]] | |||
[[Category:Wikipedia metatemplates|Equality (Mathematics)]] | |||
[[Category:गणितीय तर्क|Equality (Mathematics)]] | |||
[[Category:तुल्यता (गणित)|Equality (Mathematics)]] | |||
[[Category:द्विआधारी संबंध|Equality (Mathematics)]] | |||
[[Category:प्राथमिक अंकगणित|Equality (Mathematics)]] |
Latest revision as of 12:34, 27 October 2023
गणित में, समानता दो मात्राओं या अधिक सामान्य रूप से दो गणितीय अभिव्यक्तियों के बीच एक संबंध है,जिसका आशय है कि मात्राओं का एक ही मान है, या अभिव्यक्तियाँ एक ही गणितीय वस्तु का प्रतिनिधित्व करती हैं। A और B के बीच समानता को A = B लिखा है , और A का उच्चारण B के बराबर होता है।.[1] प्रतीक "=" को "बराबर चिह्न" कहा जाता है। दो वस्तुएँ जो समान नहीं हैं, भिन्न कहलाती हैं.
उदाहरण के लिए:
- का अर्थ है, कि x और y एक ही वस्तु को दर्शाते हैं।।[2]
- पहचान (गणित) इसका तात्पर्य है कि यदि x कोई संख्या है, तो दोनों व्यंजकों का मान समान है। इसे यह कहते हुए भी समझा जा सकता है कि बराबर चिह्न के दो पक्ष एक ही कार्य (गणित) का प्रतिनिधित्व करते हैं।
- और केवल अगर यह अभिकथन, जो समूह निर्माता नोटेशन का उपयोग करता है, का अर्थ है कि यदि तत्व संपत्ति को संतुष्ट करते हैं को संतुष्ट करने वाले तत्वों के समान हैं तो समूह निर्माता नोटेशन के दो उपयोग एक ही समूह को परिभाषित करते हैं। इस संपत्ति को सामान्यतः दो समूहों के रूप में व्यक्त किया जाता है जिनमें समान तत्व होते हैं। यह समुच्चय सिद्धांत के सामान्य स्वयंसिद्धों में से एक है, जिसे विस्तार का स्वयंसिद्ध कहा जाता है।[3]
व्युत्पत्ति
शब्द की व्युत्पत्ति लैटिन भाषा के एक्वालिस ("समान", "समान", "तुलनीय", "समान") से हुई है, जो एसेस ("समान", "स्तर", "निष्पक्ष", "न्यायसंगत") से है।
मूल गुण
- प्रतिस्थापन संपत्ति: किसी के लिए मात्रा a तथा b और कोई अभिव्यक्ति F(x), यदि a = b, तब F(a) = F(b) (प्रतिबंध कि दोनों पक्ष अच्छी तरह से गठित] हों).
इसके कुछ विशिष्ट उदाहरण हैं:
Template:अव्यवस्थित सूची - प्रतिवर्त गुण: किसी भी मात्रा के लिए a, a = a.
- सममित संपत्ति: किसी भी मात्रा के लिए a और b, यदि a = b, तब b = a.
- सकर्मक संपत्ति:किसी भी मात्रा के लिए a, b, और c, यदि a = b और b = c, तब a = c.[4]
ये अंतिम तीन गुण समानता को एक तुल्यता संबंध बनाते हैं। वे मूल रूप से प्राकृतिक संख्याओं के लिए पीआनो स्वयंसिद्धों में सम्मलित थे। चूँकि सममित और सकर्मक गुणों को सामान्यतः मौलिक के रूप में देखा जाता है, उन्हें प्रतिस्थापन और प्रतिवर्ती गुणों से घटाया जा सकता है।
विधेय के रूप में समानता
जब A और B पूरी तरह से निर्दिष्ट नहीं होते हैं या कुछ चर (गणित) पर निर्भर होते हैं, तो समानता एक प्रस्ताव (गणित) है, जो कुछ मूल्यों के लिए सही हो सकता है और अन्य मूल्यों के लिए गलत हो सकता है। समानता एक द्विआधारी संबंध है (एक दो-तर्क विधेय (गणितीय तर्क)) जो अपने तर्कों से एक सत्य मान (गलत या सत्य) उत्पन्न कर सकता है। कंप्यूटर प्रोग्रामिंग में, दो भावों से इसकी गणना को संबंधपरक संकारक के रूप में जाना जाता है।
पहचान
जब A और B को कुछ चरों के फलन (गणित) के रूप में देखा जा सकता है, तब A = B का अर्थ है कि A और B एक ही फलन को परिभाषित करते हैं। कार्यों की ऐसी समानता को कभी-कभी एक तत्समक
(पहचान गणित) कहा जाता है। एक उदाहरण है कभी-कभी, लेकिन हमेशा नहीं, एक ट्रिपल बार के साथ एक पहचान लिखी जाती है:
समीकरण
एक समीकरण कुछ चरों के मान ज्ञात करने की समस्या है, जिसे अज्ञात कहा जाता है जिसके लिए निर्दिष्ट समानता सत्य है। शब्द समीकरण भी एक समानता संबंध को संदर्भित कर सकता है जो केवल उन चरों के मूल्यों के लिए संतुष्ट होता है जिनमें रुचि होती है। उदाहरण के लिए, इकाई घेरा समीकरण का है।
कोई मानक संकेतन नहीं है जो एक समीकरण को एक पहचान से भिन्न करता है, या समानता संबंध के अन्य उपयोग: किसी को अभिव्यक्ति के शब्दार्थ और संदर्भ से एक उपयुक्त व्याख्या का अनुमान लगाना पड़ता है। किसी दिए गए डोमेन में चर के सभी मूल्यों के लिए एक पहचान को सही माना जाता है। एक "समीकरण" का अर्थ कभी-कभी एक पहचान हो सकता है, लेकिन अधिक बार नहीं, यह चर स्थान के एक उपसमुच्चय के रूप में निर्दिष्ट करता है जहां समीकरण सत्य है।
अनुमानित समानता
कुछ गणितीय तर्क ऐसे हैं जिनमें समानता की कोई धारणा नहीं है। यह दो वास्तविक संख्याओं की समानता की अनिर्णीत समस्या को दर्शाता है, जो पूर्णांकों, मूल अंकगणितीय संक्रियाओं, लघुगणक और घातीय फलन से जुड़े सूत्रों द्वारा परिभाषित है। दूसरे शब्दों में, ऐसी समानता तय करने के लिए कोई कलन विधि सम्मलित नहीं हो सकती है ।
द्विआधारी संबंध सन्निकटन (प्रतीक द्वारा निरूपित ) वास्तविक संख्याओं या अन्य चीजों के बीच, भले ही अधिक त्रुटिहीन रूप से परिभाषित हो, सकर्मक नहीं है (चूंकि कई छोटे अंतर (गणित) कुछ बड़ा जोड़ सकते हैं)। चूँकि , समानता लगभग हर जगह सकर्मक है।
परीक्षण के अंतर्गत एक संदिग्ध समानता को ≟ प्रतीक का उपयोग करके निरूपित किया जा सकता है।
तुल्यता, सर्वांगसमता और समरूपता से संबंध
एक संबंध के रूप में देखा गया, समानता एक समुच्चय पर तुल्यता संबंध की अधिक सामान्य अवधारणा का मूलरूप है: वे द्विआधारी संबंध जो प्रतिवर्त संबंध, सममित संबंध और सकर्मक संबंध हैं। पहचान संबंध एक तुल्यता संबंध है। विलोमतः, मान लीजिए कि R एक तुल्यता संबंध है, और आइए हम x के तुल्यता वर्ग को xR से निरूपित करें, जिसमें सभी अवयव z ऐसे हैं कि x R z है। तब संबंध x R y समता xR = yR के तुल्य है। यह इस प्रकार है कि समानता किसी भी समुच्चय S पर इस अर्थ में सबसे अच्छा तुल्यता संबंध है कि यह ऐसा संबंध है जिसमें सबसे छोटा तुल्यता वर्ग है (प्रत्येक वर्ग को एक तत्व में घटाया जाता है)।
कुछ संदर्भों में, समानता को तुल्यता संबंध या तुल्याकारिता से स्पष्ट रूप से भिन्न किया जाता है।[5] उदाहरण के लिए, कोई परिमेय संख्याओं से से भिन्नों को अलग कर सकता है, बाद वाला अंशों का तुल्यता वर्ग है: भिन्न तथा के रूप में भिन्न हैं (प्रतीकों के विभिन्न तार के रूप में) लेकिन वे एक ही परिमेय संख्या (संख्या रेखा पर एक ही बिंदु) का प्रतिनिधित्व करते हैं। यह भेद भागफल समुच्चय की धारणा को जन्म देता है।
इसी प्रकार समूह
- तथा
समान समूह नहीं हैं - पहले में अक्षर होते हैं, जबकि दूसरे में संख्याएँ होती हैं - लेकिन वे दोनों तीन तत्वों के समूह हैं और इस प्रकार आइसोमॉर्फिक हैं, जिसका अर्थ है कि उनके बीच एक आक्षेप है। उदाहरण के लिए
चूँकि, समरूपता के अन्य विकल्प हैं, जैसे
और इन समूहों को इस प्रकार के विकल्प के बिना पहचाना नहीं जा सकता है - कोई भी विवरण जो उन्हें पहचानता है पहचान की पसंद पर निर्भर करता है। यह अंतर, समरूपता समानता के साथ संबंध, श्रेणी सिद्धांत में मूलभूत महत्व का है और श्रेणी सिद्धांत के विकास के लिए एक प्रेरणा है।
कुछ स्थिति में, एक समान दो गणितीय वस्तुओं के रूप में विचार किया जा सकता है जो केवल गुणों और संरचना के लिए समकक्ष हैं। शब्द सर्वांगसमता संबंध (और संबंधित प्रतीक ) इस प्रकार की समानता के लिए सामान्यतः उपयोग किया जाता है, और इसे वस्तुओं के बीच समरूपता वर्गों के भागफल समूह के रूप में परिभाषित किया जाता है। उदाहरण के लिए, ज्यामिति में, दो ज्यामितीय आकृतियों को सर्वांगसमता (ज्यामिति) कहा जाता है, जब एक को दूसरे के साथ मेल खाने के लिए ले जाया जा सकता है, और समानता/सर्वांगसमता संबंध आकृतियों के बीच समरूपता का समरूपता वर्ग है। समूह के समरूपता के समान, गुणों और संरचना के साथ ऐसी गणितीय वस्तुओं के बीच समरूपता और समानता/अनुरूपता के बीच का अंतर श्रेणी सिद्धांत के विकास के साथ-साथ होमोटोपी प्रकार के सिद्धांत और असमान नींव के लिए एक प्रेरणा थी।
तार्किक परिभाषाएँ
लाइबनिट्स ने समानता की धारणा को इस प्रकार बताया:
- किसी भी x और y को देखते हुए, x = y यदि केवल , कोई विधेय (गणित) P, P(x) और P(y) दिया गया हो।
सेट सिद्धांत में समानता
समूह सिद्धांत में समूह की समानता को दो भिन्न -भिन्न उपायों से अभिगृहीत किया जाता है, यह इस बात पर निर्भर करता है कि क्या स्वयंसिद्ध पहले-क्रम की भाषा पर समानता के साथ या बिना आधारित हैं।
समानता के साथ प्रथम-क्रम तर्क के आधार पर समानता समूह करें समानता के साथ पहले क्रम के तर्क में, विस्तार का स्वयंसिद्ध बताता है कि दो समूह जिनमें समान तत्व होते हैं, वही समूह होते हैं।[6]
- तर्क सिद्धांत: x = y ⇒ ∀z, (z ∈ x ⇔ z ∈ y)
- तर्क सिद्धांत: x = y ⇒ ∀z, (x ∈ z ⇔ y ∈ z)
- सिद्धांत सिद्धांत समूह करें: (∀z, (z ∈ x ⇔ z ∈ y)) ⇒ x = y
पहले क्रम के तर्क में आधे काम को सम्मिलित करना केवल सुविधा का विषय माना जा सकता है, जैसा कि लेवी ने टिप्पणी की है।
- हम प्रथम-क्रम विधेय कलन को समानता के साथ क्यों लेते हैं इसका कारण सुविधा का विषय है; इसके द्वारा हम समानता को परिभाषित करने और उसके सभी गुणों को सिद्ध करने के श्रम को बचाते हैं; यह बोझ अब तर्क द्वारा ग्रहण किया जाता है।[7]
समानता के बिना प्रथम-क्रम तर्क के आधार पर समानता समूह करें
समानता के बिना पहले क्रम के तर्क में, दो समूहों को बराबर परिभाषित किया जाता है यदि उनमें समान तत्व होते हैं। तब विस्तार की अभिधारणा बताती है कि दो समान समुच्चय एक ही समुच्चय में समाहित हैं।[8]
- समुच्चय सिद्धांत परिभाषा: x = y का अर्थ है ∀z, (z ∈ x ⇔ z ∈ y)
- समुच्चय सिद्धांत स्वयंसिद्ध: x = y ⇒ ∀z, (x ∈ z ⇔ y ∈ z)
यह भी देखें
- विस्तार
- होमोटॉपी टाइप थ्योरी
- असमानता (गणित)
- गणितीय प्रतीकों की सूची
- तार्किक समानता
- आनुपातिकता (गणित)
टिप्पणियाँ
- ↑ Weisstein, Eric W. "समानता". mathworld.wolfram.com (in English). Retrieved 2020-09-01.
- ↑ Rosser 2008, p. 163.
- ↑ Lévy 2002, pp. 13, 358. Mac Lane & Birkhoff 1999, p. 2. Mendelson 1964, p. 5.
- ↑ Weisstein, Eric W. "Equal". mathworld.wolfram.com (in English). Retrieved 2020-09-01.
- ↑ (Mazur 2007)
- ↑ Kleene 2002, p. 189. Lévy 2002, p. 13. Shoenfield 2001, p. 239.
- ↑ Lévy 2002, p. 4.
- ↑ Mendelson 1964, pp. 159–161. Rosser 2008, pp. 211–213
संदर्भ
- Kleene, Stephen Cole (2002) [1967]. Mathematical Logic. Mineola, New York: Dover Publications. ISBN 978-0-486-42533-7.
- Lévy, Azriel (2002) [1979]. Basic set theory. Mineola, New York: Dover Publications. ISBN 978-0-486-42079-0.
- Mac Lane, Saunders; Birkhoff, Garrett (1999) [1967]. Algebra (Third ed.). Providence, Rhode Island: American Mathematical Society.
- Mazur, Barry (12 June 2007), When is one thing equal to some other thing? (PDF)
- Mendelson, Elliott (1964). Introduction to Mathematical Logic. New York: Van Nostrand Reinhold.
- Rosser, John Barkley (2008) [1953]. Logic for mathematicians. Mineola, New York: Dover Publication. ISBN 978-0-486-46898-3.
- Shoenfield, Joseph Robert (2001) [1967]. Mathematical Logic (2nd ed.). A K Peters. ISBN 978-1-56881-135-2.
बाहरी संबंध
- "Equality axioms", Encyclopedia of Mathematics, EMS Press, 2001 [1994]