फ़ॉस्फ़ीन: Difference between revisions
No edit summary |
No edit summary |
||
(21 intermediate revisions by 7 users not shown) | |||
Line 1: | Line 1: | ||
{{About|{{chem2|PH3}}|कार्बनिक यौगिक|ऑर्गनोफॉस्फीन|दृश्य घटना|फॉस्फीन}} | |||
{{About|{{chem2|PH3}}| | {{Distinguish|फॉस्जीन}} | ||
{{Distinguish| | |||
{{use dmy dates |date=September 2020}} | {{use dmy dates |date=September 2020}} | ||
{{chembox | {{chembox | ||
Line 82: | Line 81: | ||
}} | }} | ||
}} | }} | ||
फ़ॉस्फ़ीन ([[ आईयूपीएसी |IUPAC]] नाम: फॉस्फेन)[[ रासायनिक सूत्र | रासायनिक सूत्र]] {{chem2|PH3}}, के साथ एक रंगहीन, ज्वलनशील, अत्यधिक विषैला यौगिक है, एक निक्टोजन हाइड्राइड के रूप में वर्गीकृत किया गया है। शुद्ध फ़ॉस्फ़ीन गंधहीन होता है, लेकिन प्रतिस्थापित फ़ॉस्फ़ीन और डिफॉस्फेन ({{chem2|P2H4}}) की उपस्थिति के कारण तकनीकी श्रेणी के नमूनों में सड़ी हुई मछली जैसी अत्यधिक अप्रिय गंध होती है। ({{chem2|P2H4}}) के निशान के साथ, {{chem2|PH3}} हवा (पायरोफोरिक) में सहज रूप से ज्वलनशील होता है, एक चमकदार लौ के साथ जलता है। फ़ॉस्फ़ीन एक अत्यधिक जहरीला श्वसन जहर है, और 50 ppm पर तुरंत [[ जीवन या स्वास्थ्य के लिए तुरंत खतरनाक |जीवन या स्वास्थ्य के लिए खतरनाक]] है। फ़ॉस्फ़ीन में एक त्रिकोणीय स्तूपिकानुमा संरचना होती है। | |||
फ़ॉस्फ़ीन ऐसे यौगिक हैं जिनमें {{chem2|PH3}} और ऑर्गनोफ़ॉस्फ़ीन सम्मिलित हैं, जो {{chem2|PH3}} से जैविक समूहों के साथ एक या एक से अधिक हाइड्रोजन परमाणुओं को प्रतिस्थापित करके प्राप्त किए जाते हैं।<ref name="goldbook phosphines">{{GoldBookRef|title=phosphines|file=P04553}}</ref> उनका सामान्य सूत्र है {{chem2|PH_{3−''n''}R_{''n''}|}}. फॉस्फेन {{chem2|P_{''n''}H_{''n''+2} }} के रूप के संतृप्त फास्फोरस हाइड्राइड होते हैं , जैसे ट्राइफॉस्फेन।<ref name="iupac phosphanes">{{GoldBookRef|title=phosphanes|file=P04548}}</ref> फ़ॉस्फ़ीन, {{chem2|PH3}}, फ़ॉस्फ़ीन में सबसे छोटा और फॉस्फेन में सबसे छोटा है। | |||
==इतिहास== | ==इतिहास== | ||
लैवोसियर के एक छात्र फिलिप गेन्गेम्ब्रे (1764-1838) ने पहली बार 1783 में पोटाश (पोटेशियम कार्बोनेट) के जलीय घोल में सफेद फास्फोरस को गर्म करके | लैवोसियर के एक छात्र फिलिप गेन्गेम्ब्रे (1764-1838) ने पहली बार 1783 में पोटाश(पोटेशियम कार्बोनेट) के जलीय घोल में सफेद फास्फोरस को गर्म करके फ़ॉस्फ़ीन प्राप्त किया था।<ref>Gengembre (1783) [https://archive.org/stream/mmoiresdemath10acad#page/651/mode/1up "Mémoire sur un nouveau gas obtenu, par l'action des substances alkalines, sur le phosphore de Kunckel"] (Memoir on a new gas obtained by the action of alkaline substances on Kunckel's phosphorus), ''Mémoires de mathématique et de physique'', '''10''' : 651–658.</ref><ref group=NB>For further information about the early history of phosphine, see: | ||
* ''The Encyclopædia Britannica'' (1911 edition), vol. 21, p. 480: [https://books.google.com/books?id=Wto9AQAAMAAJ&pg=PA480#v=onepage&q&f=false Phosphorus: Phosphine.] {{Webarchive|url=https://web.archive.org/web/20151104205338/https://books.google.com/books?id=Wto9AQAAMAAJ&pg=PA480#v=onepage&q&f=false |date=4 November 2015 }} | * ''The Encyclopædia Britannica'' (1911 edition), vol. 21, p. 480: [https://books.google.com/books?id=Wto9AQAAMAAJ&pg=PA480#v=onepage&q&f=false Phosphorus: Phosphine.] {{Webarchive|url=https://web.archive.org/web/20151104205338/https://books.google.com/books?id=Wto9AQAAMAAJ&pg=PA480#v=onepage&q&f=false |date=4 November 2015 }} | ||
* Thomas Thomson, ''A System of Chemistry'', 6th ed. (London, England: Baldwin, Cradock, and Joy, 1820), vol. 1, [https://books.google.com/books?id=zU40AQAAMAAJ&pg=PA272#v=onepage&q&f=false p. 272.] {{Webarchive|url=https://web.archive.org/web/20151104174911/https://books.google.com/books?id=zU40AQAAMAAJ&pg=PA272#v=onepage&q&f=false |date=4 November 2015 }}</ref> | * Thomas Thomson, ''A System of Chemistry'', 6th ed. (London, England: Baldwin, Cradock, and Joy, 1820), vol. 1, [https://books.google.com/books?id=zU40AQAAMAAJ&pg=PA272#v=onepage&q&f=false p. 272.] {{Webarchive|url=https://web.archive.org/web/20151104174911/https://books.google.com/books?id=zU40AQAAMAAJ&pg=PA272#v=onepage&q&f=false |date=4 November 2015 }}</ref> | ||
संभवतः मौलिक फास्फोरस के साथ इसके मजबूत संबंध के कारण, फ़ॉस्फ़ीन को एक बार तत्व का गैसीय रूप माना जाता था, लेकिन लैवोसियर (1789) ने इसे हाइड्रोजन के साथ फॉस्फोरस के संयोजन के रूप में मान्यता दी और इसे फॉस्फोर डी'हाइड्रोजीन(हाइड्रोजन का फॉस्फाइड) के रूप में वर्णित किया।<ref group="NB">Note: | |||
*[https://books.google.com/books?id=d2n7gY5SI2YC&pg=PA222#v=onepage&q&f=false On p. 222] {{Webarchive|url=https://web.archive.org/web/20170424045509/https://books.google.com/books?id=d2n7gY5SI2YC&pg=PA222#v=onepage&q&f=false |date=24 April 2017 }} of his ''Traité élémentaire de chimie'', vol. 1, (Paris, France: Cuchet, 1789), Lavoisier calls the compound of phosphorus and hydrogen ''"phosphure d'hydrogène"'' (hydrogen phosphide). However, [https://books.google.com/books?id=d2n7gY5SI2YC&pg=PA216#v=onepage&q&f=false on p. 216] {{Webarchive|url=https://web.archive.org/web/20170424085705/https://books.google.com/books?id=d2n7gY5SI2YC&pg=PA216#v=onepage&q&f=false |date=24 April 2017 }}, he calls the compound of hydrogen and phosphorus ''"Combinaison inconnue."'' (unknown combination), yet in a footnote, he says about the reactions of hydrogen with sulfur and with phosphorus: ''"Ces combinaisons ont lieu dans l'état de gaz & il en résulte du gaz hydrogène sulfurisé & phosphorisé."'' (These combinations occur in the gaseous state, and there results from them sulfurized and phosphorized hydrogen gas.) | *[https://books.google.com/books?id=d2n7gY5SI2YC&pg=PA222#v=onepage&q&f=false On p. 222] {{Webarchive|url=https://web.archive.org/web/20170424045509/https://books.google.com/books?id=d2n7gY5SI2YC&pg=PA222#v=onepage&q&f=false |date=24 April 2017 }} of his ''Traité élémentaire de chimie'', vol. 1, (Paris, France: Cuchet, 1789), Lavoisier calls the compound of phosphorus and hydrogen ''"phosphure d'hydrogène"'' (hydrogen phosphide). However, [https://books.google.com/books?id=d2n7gY5SI2YC&pg=PA216#v=onepage&q&f=false on p. 216] {{Webarchive|url=https://web.archive.org/web/20170424085705/https://books.google.com/books?id=d2n7gY5SI2YC&pg=PA216#v=onepage&q&f=false |date=24 April 2017 }}, he calls the compound of hydrogen and phosphorus ''"Combinaison inconnue."'' (unknown combination), yet in a footnote, he says about the reactions of hydrogen with sulfur and with phosphorus: ''"Ces combinaisons ont lieu dans l'état de gaz & il en résulte du gaz hydrogène sulfurisé & phosphorisé."'' (These combinations occur in the gaseous state, and there results from them sulfurized and phosphorized hydrogen gas.) | ||
*In Robert Kerr's 1790 English translation of Lavoisier's ''Traité élémentaire de chimie'' ... — namely, Lavoisier with Robert Kerr, trans., ''Elements of Chemistry'' ... (Edinburgh, Scotland: William Creech, 1790) — Kerr translates Lavoisier's ''"phosphure d'hydrogène"'' as "phosphuret of hydrogen" ([https://archive.org/details/b28754761/page/204 p. 204]), and whereas Lavoisier — on p. 216 of his ''Traité élémentaire de chimie'' ... — gave no name to the combination of hydrogen and phosphorus, Kerr calls it "hydruret of phosphorus, or phosphuret of hydrogen" ([https://archive.org/details/b28754761/page/198 p. 198]). Lavoisier's note about this compound — ''"Combinaison inconnue."'' — is translated: "Hitherto unknown." Lavoisier's footnote is translated as: "These combinations take place in the state of gas, and form, respectively, sulphurated and phosphorated oxygen gas." The word "oxygen" in the translation is an error because the original text clearly reads ''"hydrogène"'' (hydrogen). (The error was corrected in subsequent editions.)</ref> | *In Robert Kerr's 1790 English translation of Lavoisier's ''Traité élémentaire de chimie'' ... — namely, Lavoisier with Robert Kerr, trans., ''Elements of Chemistry'' ... (Edinburgh, Scotland: William Creech, 1790) — Kerr translates Lavoisier's ''"phosphure d'hydrogène"'' as "phosphuret of hydrogen" ([https://archive.org/details/b28754761/page/204 p. 204]), and whereas Lavoisier — on p. 216 of his ''Traité élémentaire de chimie'' ... — gave no name to the combination of hydrogen and phosphorus, Kerr calls it "hydruret of phosphorus, or phosphuret of hydrogen" ([https://archive.org/details/b28754761/page/198 p. 198]). Lavoisier's note about this compound — ''"Combinaison inconnue."'' — is translated: "Hitherto unknown." Lavoisier's footnote is translated as: "These combinations take place in the state of gas, and form, respectively, sulphurated and phosphorated oxygen gas." The word "oxygen" in the translation is an error because the original text clearly reads ''"hydrogène"'' (hydrogen). (The error was corrected in subsequent editions.)</ref> | ||
1844 में, फ्रांसीसी रसायनज्ञ लुई जैक्स थेनार्ड के पुत्र पॉल थेनार्ड ने [[ कैल्शियम फॉस्फाइड | कैल्शियम फॉस्फाइड]] से उत्पन्न | 1844 में, फ्रांसीसी रसायनज्ञ लुई जैक्स थेनार्ड के पुत्र पॉल थेनार्ड ने [[ कैल्शियम फॉस्फाइड | कैल्शियम फॉस्फाइड]] से उत्पन्न फ़ॉस्फ़ीन से डिफोस्फीन को अलग करने के लिए एक ठंडे जाल का उपयोग किया, जिससे यह प्रदर्शित हुआ कि {{chem2|P2H4}}, {{chem2|PH3}} से जुड़ी सहज ज्वलनशीलता के लिए जिम्मेदार है और विशिष्ट नारंगी/भूरे रंग जो सतहों पर बन सकता है, जो एक बहुलकीकरण उत्पाद है।<ref>Paul Thénard (1844) [http://gallica.bnf.fr/ark:/12148/bpt6k2977n/f652.image.langEN "Mémoire sur les combinaisons du phosphore avec l'hydrogène"] {{Webarchive|url=https://web.archive.org/web/20151015161430/http://gallica.bnf.fr/ark:/12148/bpt6k2977n/f652.image.langEN |date=15 October 2015 }} (Memoir on the compounds of phosphorus with hydrogen), ''Comptes rendus'', '''18''' : 652–655.</ref> उन्होंने डिफोस्फीन के सूत्र को {{chem2|PH2}} माना, और इस प्रकार तात्विक फास्फोरस, उच्च बहुलक और फ़ॉस्फ़ीन के बीच एक मध्यवर्ती। कैल्शियम फॉस्फाइड (नाममात्र) {{chem2|Ca3P2}}) अन्य फॉस्फाइड की तुलना में अधिक {{chem2|P2H4}} का उत्पादन करता है क्योंकि प्रारंभिक सामग्री में P-P संबंध की प्रधानता होती है। | ||
"फ़ॉस्फ़ीन" नाम का पहली बार 1857 में ऑर्गनोफॉस्फोरस यौगिकों के लिए उपयोग किया गया था, जो कार्बनिक [[ अमाइन |अमाइन]] ({{chem2|NR3}}) के अनुरूप था।<ref group="NB">In 1857, [[August Wilhelm von Hofmann]] announced the synthesis of organic compounds containing phosphorus, which he named "[[trimethylphosphine]]" and "[[triethylphosphine]]", in analogy with "amine" (organo-nitrogen compounds), "arsine" (organo-arsenic compounds), and "stibine" (organo-antimony compounds).</ref><ref>{{cite journal |author1= A.W. Hofmann |author2= Auguste Cahours |year= 1857 |url= https://books.google.com/books?id=ZKkOAAAAIAAJ&q=phosphine&pg=PA523 |title= फास्फोरस आधारों पर शोध|journal= Proceedings of the Royal Society of London |number= 8 |pages= 523–527 |quote= (''पृष्ठ 524 से:'') आधार Me<sub>3</sub>P और E<sub>3</sub>P, इस प्रतिक्रिया के उत्पाद, जिन्हें हम क्रमशः ट्राइमेथिलफोस्फीन और ट्राइएथिलफोस्फीन कहते हैं, ...|access-date= 19 November 2020 |archive-date= 10 February 2022 |archive-url= https://web.archive.org/web/20220210111914/https://books.google.com/books?id=ZKkOAAAAIAAJ&q=phosphine&pg=PA523 |url-status= live }}</ref> गैस {{chem2|PH3}} को 1865 (या इससे पहले) द्वारा फ़ॉस्फ़ीन नाम दिया गया था।<ref>William Odling, ''A Course of Practical Chemistry Arranged for the Use of Medical Students'', 2nd ed. (London, England: Longmans, Green, and Co., 1865), [https://books.google.com/books?id=PQZZAAAAYAAJ&pg=PA227#v=onepage&q&f=false pp. 227], 230.</ref> | |||
== संरचना और गुण == | == संरचना और गुण == | ||
{{chem2|PH3}} ''C''<sub>3''v''</sub> आणविक समरूपता के साथ एक त्रिकोणीय | {{chem2|PH3}}'', C''<sub>3''v''</sub> आणविक समरूपता के साथ एक त्रिकोणीय स्तूपिका अणु है । P−H संबंध की लंबाई 1.42 Å है, H−P−H संबंध कोण 93.5° हैं। द्विध्रुव आघूर्ण 0.58 D है, जो श्रृंखला में मिथाइल समूहों के प्रतिस्थापन (रसायन विज्ञान) के साथ बढ़ता है: {{chem2|CH3PH2}}, 1.10 D; {{chem2|(CH3)2PH}}, 1.23 D; {{chem2|(CH3)3P}}, 1.19 D। इसके विपरीत, अमाइन के द्विध्रुव आघूर्ण प्रतिस्थापन के साथ घटते हैं, जो [[ अमोनिया |अमोनिया]] से शुरू होता है, जिसका द्विध्रुव आघूर्ण 1.47 D होता है। निम्न द्विध्रुव आघूर्ण और लगभग लाम्बिक बंधन कोण इस निष्कर्ष पर ले जाते हैं कि {{chem2|PH3}} में P−H संबंध लगभग पूरी तरह से pσ(P) – sσ(H) हैं और फॉस्फोरस 3s कक्षीय इस अणु में फॉस्फोरस और हाइड्रोजन के बीच के बंधन में बहुत कम योगदान देता है। इस कारण से, फॉस्फोरस पर अकेला जोड़ा मुख्य रूप से फॉस्फोरस के 3s कक्षीय द्वारा मुख्य रूप से गठित माना जा सकता है। <sup>31</sup>P NMR वर्णक्रम में फॉस्फोरस परमाणु का अपफील्ड रासायनिक बदलाव इस निष्कर्ष के अनुरूप है कि अकेला युग्म विद्युदअणु 3s कक्षीय (फ्लक, 1973) पर अधिग्रहण कर लेता है। यह इलेक्ट्रॉनिक संरचना सामान्य रूप से नाभिकरागिता की कमी और विशेष रूप से मूलभूतता की कमी (p''K''<sub>aH</sub> = –14),<ref>{{Cite book|title=कार्बनिक रसायन विज्ञान का परिचय|last1=Streitwieser|first1=Andrew|last2=Heathcock|first2=Clayton H.|last3=Kosower|first3=Edward M.|publisher=Medtech (Scientific International, reprint of revised 4th edition, Macmillan, 1998)|year=2017|isbn=9789385998898|location=New Delhi|pages=828}}</ref> के साथ-साथ केवल कमजोर हाइड्रोजन बंध बनाने की क्षमता की ओर ले जाती है।<ref>{{ cite journal | author = Sennikov, P. G. | title = दूसरी पंक्ति (PH<sub>3</sub>, H<sub>2</sub>S) और तीसरी पंक्ति (ASH<sub>3</sub>, H<sub>2) द्वारा कमजोर H-बंधन </उप>से) हाइड्राइड्स| journal = Journal of Physical Chemistry | year = 1994 | volume = 98 | issue = 19 | pages = 4973–4981 | doi = 10.1021/j100070a006 }}</ref> | ||
{{chem2|PH3}} की जलीय घुलनशीलता मामूली है; 0.22 cm<sup>3</sup> गैस 1 cm<sup>3</sup> पानी में घुलती है। गैर-ध्रुवीय P−H संबंध के कारण पानी की तुलना में गैर-ध्रुवीय विलायक में फ़ॉस्फ़ीन अधिक आसानी से घुल जाता है। यह पानी में तकनीकी रूप से [[ उभयचरवाद |उभयधर्मी]] है, लेकिन अम्ल और क्षार गतिविधि खराब है। प्रोटॉन विनिमय एक फॉस्फोनियम ({{chem2|PH4+}}) आयन के माध्यम से अम्लीय घोल में और फॉस्फेनाइड ({{chem2|PH2−}}) के माध्यम से उच्च pH पर, संतुलन स्थिरांक K<sub>b</sub> = {{val|4e-28}} और ''K''<sub>a</sub> = 41.6×10<sup>−29</sup> के साथ होता है। | |||
=== पानी === | === पानी === | ||
उच्च दबाव और तापमान पर पानी के संपर्क में | उच्च दबाव और तापमान पर पानी के संपर्क में फ़ॉस्फ़ीन फॉस्फोरिक अम्ल और हाइड्रोजन का उत्पादन करता है:<ref name=":0">{{Cite report |url=https://uwaterloo.ca/giga-to-nanoelectronics-centre/sites/ca.giga-to-nanoelectronics-centre/files/uploads/files/phosphine-hydrogen.pdf |title=सामग्री सुरक्षा डेटा शीट: फॉस्फीन / हाइड्रोजन गैस मिश्रण|date=September 8, 2008 |publisher=Matheson TRI-GAS, inc.}}</ref><ref>{{Cite journal |last=Rabinowitz |first=Joseph |last2=Woeller |first2=Fritz |last3=Flores |first3=Jose |last4=Krebsbach |first4=Rita |date=November 1969 |title=फॉस्फीन, मीथेन, अमोनिया और पानी के मिश्रण में विद्युत निर्वहन प्रतिक्रियाएं|url=https://www.nature.com/articles/224796a0 |journal=Nature |language=en |volume=224 |issue=5221 |pages=796–798 |doi=10.1038/224796a0 |issn=1476-4687}}</ref> | ||
<chem> PH3 + 4H2O ->[Pressure and Temperature] H3PO4 + 4H2 | |||
</chem> | |||
=== जलना === | === जलना === | ||
हवा में फ़ॉस्फ़ीन जलाने से फॉस्फोरस पेंटोक्साइड (P<sub>2</sub>O<sub>5</sub>) उत्पन्न होता है (जो पानी के साथ प्रतिक्रिया करके फॉस्फोरिक एसिड बनाता है):<ref>{{Cite web |date=2021-07-08 |title=फॉस्फीन: फेफड़े को नुकसान पहुंचाने वाला एजेंट {{!}} NIOSH {{!}} सीडीसी|url=https://www.cdc.gov/niosh/ershdb/emergencyresponsecard_29750035.html |access-date=2022-07-04 |website=www.cdc.gov |language=en-us}}</ref><ref name=":0" /> | |||
:{{chem2|2PH3 + 4O2 → P2O5 + 3H2O}} | :{{chem2|2PH3 + 4O2 → P2O5 + 3H2O}} | ||
==तैयारी और घटना == | ==तैयारी और घटना == | ||
फ़ॉस्फ़ीन को विभिन्न तरीकों से तैयार किया जा सकता है।<ref>{{ cite book | author = Toy, A. D. F. | title = फास्फोरस की रसायन शास्त्र| publisher = Pergamon Press | location = Oxford, UK | year = 1973 }}</ref> औद्योगिक रूप से इसे सोडियम या पोटेशियम हाइड्रॉक्साइड के साथ सफेद फास्फोरस की प्रतिक्रिया से बनाया जा सकता है, जो उप-उत्पाद के रूप में पोटेशियम या सोडियम हाइपोफॉस्फाइट का उत्पादन करता है। | |||
:{{chem2|3 KOH + P4 + 3 H2O → 3 KH2PO2 + PH3}} | :{{chem2|3 KOH + P4 + 3 H2O → 3 KH2PO2 + PH3}} | ||
:{{chem2|3 NaOH + P4 + 3 H2O → 3 NaH2PO2 + PH3}} | :{{chem2|3 NaOH + P4 + 3 H2O → 3 NaH2PO2 + PH3}} | ||
वैकल्पिक रूप से, सफेद फास्फोरस के | वैकल्पिक रूप से, सफेद फास्फोरस के अम्ल-उत्प्रेरित अनुपातहीनता से फॉस्फोरिक अम्ल और फ़ॉस्फ़ीन प्राप्त होता है। दोनों मार्गों का औद्योगिक महत्व है; यदि फ़ॉस्फ़ीन को प्रतिस्थापित फ़ॉस्फ़ीन की और प्रतिक्रिया की आवश्यकता है तो अम्ल मार्ग पसंदीदा तरीका है। अम्ल मार्ग को शुद्धिकरण और दबाव की आवश्यकता होती है। | ||
=== प्रयोगशाला मार्ग === | === प्रयोगशाला मार्ग === | ||
यह फॉस्फोरस | यह फॉस्फोरस अम्ल के अनुपातहीनता से प्रयोगशाला में तैयार किया जाता है:<ref>Gokhale, S. D.; Jolly, W. L., "Phosphine", Inorganic Syntheses 1967, volume 9, pp. 56–58. {{doi|10.1002/9780470132401.ch17}}</ref> | ||
:{{chem2|4 H3PO3 → PH3 + 3 H3PO4}} | :{{chem2|4 H3PO3 → PH3 + 3 H3PO4}} | ||
फ़ॉस्फ़ीन का विकास लगभग 200 °C पर होता है। | |||
वैकल्पिक | वैकल्पिक विधियाँ ट्रिस (ट्राइमिथाइलसिलिल) फ़ॉस्फ़ीन, या धातु फॉस्फाइड जैसे [[ एल्युमिनियम फास्फाइड |एल्युमिनियम फास्फाइड]], या कैल्शियम फॉस्फाइड के हाइड्रोलिसिस हैं: | ||
:{{chem2|Ca3P2 + H2O → Ca(OH)3 + PH3}} | :{{chem2|Ca3P2 + H2O → Ca(OH)3 + PH3}} | ||
{{chem2|P2H4}} से मुक्त फ़ॉस्फ़ीन के शुद्ध नमूने, फॉस्फोनियम पर पोटेशियम हाइड्रॉक्साइड की क्रिया का उपयोग करके तैयार किए जा सकते है: | |||
:{{chem2|[PH4]I + KOH -> PH3 + KI + H2O}} | :{{chem2|[PH4]I + KOH -> PH3 + KI + H2O}} | ||
=== घटना === | === घटना === | ||
फ़ॉस्फ़ीन बहुत कम और अत्यधिक परिवर्तनशील सांद्रता पर पृथ्वी के वायुमंडल का एक विश्वव्यापी घटक है।<ref>{{ cite journal |author1=Glindemann, D. |author2=Bergmann, A. |author3=Stottmeister, U. | author4=Gassmann, G.| title = निचले स्थलीय क्षोभमंडल में फॉस्फीन| journal = Naturwissenschaften | year = 1996 | volume = 83 | issue = 3 | pages = 131-133 | doi = 10.1007/BF01142179 |bibcode = 1996NW.....83..131G }}</ref> यह वैश्विक फास्फोरस जैव रासायनिक चक्र में महत्वपूर्ण योगदान दे सकता है। सबसे संभावित स्रोत क्षयकारी कार्बनिक पदार्थों में फॉस्फेट की कमी है, संभवतः आंशिक कटौती और अनुपातहीनता के माध्यम से, क्योंकि पर्यावरण प्रणालियों में फॉस्फेट को सीधे फ़ॉस्फ़ीन में परिवर्तित करने के लिए पर्याप्त शक्ति के ज्ञात कम करने वाले घटक नहीं है।<ref>{{ cite journal |author1=Roels, J. |author2=Verstraete, W. | title = वाष्पशील फास्फोरस यौगिकों का जैविक गठन, एक समीक्षा पत्र| journal = Bioresource Technology | year = 2001 | volume = 79 | issue = 3 | pages = 243–250 | doi = 10.1016/S0960-8524(01)00032-3 | pmid = 11499578 }}</ref> | |||
यह [[ बृहस्पति | बृहस्पति]] के वातावरण में भी पाया जाता है।<ref>{{cite news |last1=Kaplan |first1=Sarah |title=पहले पानी के बादल हमारे सौर मंडल के बाहर पाए जाते हैं — एक असफल तारे के आसपास|url=https://www.washingtonpost.com/news/speaking-of-science/wp/2016/07/11/the-first-water-clouds-are-found-outside-our-solar-system-around-a-failed-star/ |access-date=September 14, 2020 |newspaper=The Washington Post |date=July 11, 2016 |archive-date=15 September 2020 |archive-url=https://web.archive.org/web/20200915162551/https://www.washingtonpost.com/news/speaking-of-science/wp/2016/07/11/the-first-water-clouds-are-found-outside-our-solar-system-around-a-failed-star/ |url-status=live }}</ref> | |||
==== संभावित अलौकिक जैव हस्ताक्षर (बायोसिग्नेचर) ==== | |||
{{see also|शुक्र पर जीवन}} | |||
2020 में एक स्पेक्ट्रोस्कोपिक विश्लेषण में शुक्र के वातावरण में फ़ॉस्फ़ीन के संकेतों को मात्रा में दिखाया गया था जिसे ज्ञात [[ अजैविक घटक |अजैविक घटक]] द्वारा समझाया नहीं जा सकता था।<ref name=2020AsBio..20..235S>{{cite journal |title= एक्सोप्लैनेट वायुमंडल में बायोसिग्नेचर गैस के रूप में फॉस्फीन|last1= Sousa-Silva |first1=Clara |last2=Seager |first2=Sara |last3=Ranjan |first3=Sukrit |last4=Petkowski |first4=Janusz Jurand |last5=Zhan |first5=Zhuchang |last6=Hu |first6=Renyu |last7=Bains |first7=William |publication-date= February 2020 |journal= Astrobiology |volume= 20 |number= 2 |date= 11 October 2019 |doi= 10.1089/ast.2018.1954 |bibcode= 2020AsBio..20..235S|pages= 235–268 |pmid= 31755740 |s2cid= 204401807 |arxiv= 1910.05224 }}</ref><ref name=NewsMIT-20191218>{{cite news |url= https://news.mit.edu/2019/phosphine-aliens-stink-1218 |title= एक संकेत है कि एलियंस से बदबू आ सकती है|date= 18 December 2019 |publisher= MIT News |first= Jennifer |last= Chu |access-date= 14 September 2020 |archive-date= 18 February 2021 |archive-url= https://web.archive.org/web/20210218041422/https://news.mit.edu/2019/phosphine-aliens-stink-1218 |url-status= live }}</ref><ref name=SciNews-20191226>{{cite news |title= फॉस्फीन चट्टानी ग्रहों पर एलियन एनारोबिक जीवन के अस्तित्व का संकेत दे सकता है|url= http://www.sci-news.com/astronomy/phosphine-biosignature-gas-07957.html |date= 26 December 2019 |newspaper= Sci-News |access-date= 15 September 2020 |archive-date= 14 September 2020 |archive-url= https://web.archive.org/web/20200914100028/http://www.sci-news.com/astronomy/phosphine-biosignature-gas-07957.html |url-status= live }}</ref> बाद में इस कार्य के पुन: विश्लेषण से पता चला कि प्रक्षेप त्रुटियां की गई थीं, निश्चित कलन विधि के साथ जानकारी का पुन: विश्लेषण या तो फ़ॉस्फ़ीन का पता लगाने में परिणाम नहीं देता है<ref>{{citation|last1=Snellen|first1=I. A. G.|title=Re-analysis of the 267-GHz ALMA observations of Venus No statistically significant detection of phosphine|journal=Astronomy and Astrophysics|volume=644|pages=L2|year=2020|arxiv=2010.09761|bibcode=2020A&A...644L...2S|doi=10.1051/0004-6361/202039717|last2=Guzman-Ramirez|first2=L.|last3=Hogerheijde|first3=M. R.|last4=Hygate|first4=A. P. S.|last5=van der Tak|first5=F. F. S.|s2cid=224803085}}</ref><ref name=Thompson2020>{{citation|arxiv=2010.15188|title=The statistical reliability of 267 GHz JCMT observations of Venus: No significant evidence for phosphine absorption|year=2021|last1=Thompson|first1=M. A.|journal=Monthly Notices of the Royal Astronomical Society: Letters|volume=501|issue=1|pages=L18–L22|doi=10.1093/mnrasl/slaa187|bibcode=2021MNRAS.501L..18T|s2cid=225103303}}</ref> या 1 ppb की बहुत कम सांद्रता के साथ इसका पता लगाता है।<ref name=Greaves202011>{{citation|arxiv=2011.08176|title=Reply to: No evidence of phosphine in the atmosphere of Venus from independent analyses|year=2021|last1=Greaves|first1=Jane S.|last2=Richards|first2=Anita M. S.|last3=Bains|first3=William|last4=Rimmer|first4=Paul B.|last5=Clements|first5=David L.|last6=Seager|first6=Sara|last7=Petkowski|first7=Janusz J.|last8=Sousa-Silva|first8=Clara|last9=Ranjan|first9=Sukrit|last10=Fraser|first10=Helen J.|journal=Nature Astronomy|volume=5|issue=7|pages=636–639|doi=10.1038/s41550-021-01424-x|bibcode=2021NatAs...5..636G|s2cid=233296859}}</ref>{{Disputed inline|date=November 2021}} | |||
== आवेदन == | == आवेदन == | ||
=== ऑर्गनोफॉस्फोरस रसायन === | === ऑर्गनोफॉस्फोरस रसायन === | ||
फ़ॉस्फ़ीन कई ऑर्गनोफॉस्फोरस यौगिकों का अग्रदूत है। यह टेट्राकिस (हाइड्रॉक्सीमिथाइल) फॉस्फोनियम क्लोराइड देने के लिए हाइड्रोजन क्लोराइड की उपस्थिति में फॉर्मलाडेहाइड के साथ प्रतिक्रिया करता है, जिसका उपयोग वस्त्रों में किया जाता है। विभिन्न प्रकार के फ़ॉस्फ़ीन के लिए अल्केन्स का [[ हाइड्रोफॉस्फिनेशन ]] बहुमुखी मार्ग है। उदाहरण के लिए, मूलभूत उत्प्रेरक की उपस्थिति में {{chem2|PH3}} माइकल स्वीकर्ता को जोड़ता है। इस प्रकार [[ acrylonitrile | एक्रिलोनिट्राइल]] के साथ, यह ट्रिस (सायनोएथिल) फ़ॉस्फ़ीन देने के लिए प्रतिक्रिया करता है:<ref name=RussRev>{{cite journal|title=ऑर्गनोफॉस्फोरस यौगिकों के संश्लेषण में फॉस्फीन|first1=Boris A. |last1=Trofimov|first2=Svetlana N. |last2=Arbuzova|first3=Nina K. |last3=Gusarova|year=1999|journal=Russian Chemical Reviews|volume=68|issue=3 |pages=215–227 |doi=10.1070/RC1999v068n03ABEH000464|bibcode=1999RuCRv..68..215T }}</ref> | |||
:{{chem2|PH3 + 3 CH2\dCHZ → P(CH2CH2Z)3}} ( | :{{chem2|PH3 + 3 CH2\dCHZ → P(CH2CH2Z)3}} (Z is {{chem2|NO2}}, CN, or {{chem2|C(O)NH2}}) | ||
अम्ल उत्प्रेरण [[ आइसोब्यूटिलीन |आइसोब्यूटिलीन]] और संबंधित अनुरूप के साथ हाइड्रोफॉस्फिनेशन पर लागू होता है: | |||
:{{chem2|PH3 + R2C\dCH2 → R2(CH3)CPH2}} ( | :{{chem2|PH3 + R2C\dCH2 → R2(CH3)CPH2}} (R is {{chem2|CH3}}, alkyl, etc.) | ||
=== माइक्रोइलेक्ट्रॉनिक === | === माइक्रोइलेक्ट्रॉनिक === | ||
फ़ॉस्फ़ीन का उपयोग अर्धचालक उद्योग में एक अपमिश्रक (डोपेंट) के रूप में किया जाता है, और यौगिक अर्धचालकों के निक्षेपण के लिए एक अग्रदूत के रूप में किया जाता है। व्यावसायिक रूप से महत्वपूर्ण उत्पादों में गैलियम फॉस्फाइड और इंडियम फॉस्फाइड सम्मिलित हैं।<ref>{{ Ullmann |author1=Bettermann, G. |author2=Krause, W. |author3=Riess, G. |author4=Hofmann, T. | year = 2002 | doi = 10.1002/14356007.a19_527 | title= Phosphorus Compounds, Inorganic | isbn = 3527306730 }}</ref> | |||
=== धुआंरी === | |||
कृषि उपयोग के लिए, एल्युमिनियम फॉस्फाइड (AlP), कैल्शियम फॉस्फाइड (Ca<sub>3</sub>P<sub>2</sub>) , या जिंक फास्फाइड (Zn<sub>3</sub>P<sub>2</sub>) के छर्रों वायुमंडलीय पानी या कृन्तकों के पेट के अम्ल के संपर्क में आने पर फ़ॉस्फ़ीन छोड़ते हैं। इन छर्रों में जारी किए गए फ़ॉस्फ़ीन के प्रज्वलन या [[ विस्फोट |विस्फोट]] की क्षमता को कम करने वाले कारक भी होते हैं। एक और हालिया विकल्प स्वयं फ़ॉस्फ़ीन गैस का उपयोग है जिसे ज्वलनशीलता बिंदु से नीचे लाने के लिए {{chem2|CO2}} या {{chem2|N2}} या यहां तक कि हवा के साथ तनुकरण की आवश्यकता होती है। गैस का उपयोग धातु फॉस्फाइड द्वारा छोड़े गए ठोस अवशेषों से संबंधित मुद्दों से बचा जाता है और इसके परिणामस्वरूप लक्षित कीटों का तेजी से और अधिक कुशल नियंत्रण होता है। | |||
क्योंकि मॉन्ट्रियल प्रोटोकॉल के तहत कुछ देशों में पहले से लोकप्रिय [[ धुआंरी |धुआंरी]] मिथाइल ब्रोमाइड को को हटा दिया गया है, फ़ॉस्फ़ीन एकमात्र व्यापक रूप से उपयोग किया जाने वाला, लागत प्रभावी, तेजी से काम करने वाला धुआंरी है जो संग्रहीत उत्पाद पर अवशेष नहीं छोड़ता है। फ़ॉस्फ़ीन के प्रति उच्च स्तर के प्रतिरोध वाले कीट एशिया, ऑस्ट्रेलिया और ब्राजील में आम हो गए हैं। अन्य क्षेत्रों में भी उच्च स्तर का प्रतिरोध होने की संभावना है, लेकिन इसकी बारीकी से निगरानी नहीं की गई है। [[ डायहाइड्रोलिपोमाइड डिहाइड्रोजनेज |डायहाइड्रोलिपोमाइड डिहाइड्रोजनेज]] आनुवंशिक में फ़ॉस्फ़ीन के उच्च स्तर के प्रतिरोध में योगदान देने वाले आनुवंशिक रूपों की पहचान की गई है।<ref name=DLD>{{cite journal |last1=Schlipalius |first1=D. I. |last2=Valmas |first2=N. |last3=Tuck |first3=A. G. |last4=Jagadeesan |first4=R. |last5=Ma |first5=L. |last6=Kaur |first6=R. |date=2012 |title=एक कोर मेटाबोलिक एंजाइम फॉस्फीन गैस के प्रतिरोध की मध्यस्थता करता है|journal=Science |volume=338 |issue=6108 |pages=807–810 |doi=10.1126/science.1224951 |display-authors=etal |pmid=23139334 |bibcode=2012Sci...338..807S |s2cid=10390339}}</ref> इस आनुवंशिक की पहचान अब प्रतिरोधी कीड़ों की तेजी से आणविक पहचान की अनुमति देती है। | |||
== | ==विषाक्तता और सुरक्षा == | ||
मौतें एल्यूमीनियम फॉस्फाइड या फ़ॉस्फ़ीन युक्त धूमन सामग्री के आकस्मिक संपर्क के परिणामस्वरूप हुई है।<ref name="haaretz.com">{{cite news | url = http://www.haaretz.com/news/national/1.570036 | title = यरूशलेम में कीटों के छिड़काव के बाद दो बच्चों की मौत| newspaper = Haaretz | author1 = Ido Efrati | author2 = Nir Hasson | date = 2014-01-22 | access-date = 2014-01-23 | archive-date = 23 January 2014 | archive-url = https://web.archive.org/web/20140123064603/http://www.haaretz.com/news/national/1.570036 | url-status = live }}</ref><ref>{{cite web |language= es |url= http://www.rtve.es/noticias/20140203/familia-alcala-guadaira-murio-tras-inhalar-fosfina-unos-tapones/869841.shtml |title= कुछ कैप्स से फॉस्फीन लेने के बाद अल्काला डी गुआडेरा के परिवार की मृत्यु हो गई|date= 2014-02-03 |publisher= Radio y Televisión Española |agency= EFE |website= RTVE.es |access-date= 23 July 2014 |archive-date= 2 March 2014 |archive-url= https://web.archive.org/web/20140302205408/http://www.rtve.es/noticias/20140203/familia-alcala-guadaira-murio-tras-inhalar-fosfina-unos-tapones/869841.shtml |url-status= live }}</ref><ref name=cbcth>{{cite news | url=http://www.cbc.ca/news/deaths-of-quebec-women-in-thailand-may-have-been-caused-by-pesticide-1.2569434 | title=थाईलैंड में क्यूबेक महिलाओं की मौत कीटनाशक के कारण हो सकती है| date=13 March 2014 | publisher=CBC News | author=Julia Sisler | access-date=3 April 2017 | archive-date=4 April 2017 | archive-url=https://web.archive.org/web/20170404131909/http://www.cbc.ca/news/deaths-of-quebec-women-in-thailand-may-have-been-caused-by-pesticide-1.2569434 | url-status=live }}</ref><ref name=wp17>{{cite news|title=घर के नीचे जहरीली गैस छोड़े कीटनाशक से 4 बच्चों की मौत, पुलिस का कहना है|url=https://www.washingtonpost.com/news/post-nation/wp/2017/01/03/4-children-killed-after-pesticide-released-toxic-gas-underneath-their-home-police-say/|access-date=6 January 2017|newspaper=Washington Post|author=Amy B Wang|date=3 January 2017|archive-date=25 June 2018|archive-url=https://web.archive.org/web/20180625161014/https://www.washingtonpost.com/news/post-nation/wp/2017/01/03/4-children-killed-after-pesticide-released-toxic-gas-underneath-their-home-police-say/|url-status=live}}</ref> यह या तो [[ अंतःश्वसन |अंतःश्वसन]] या ट्रांसडर्मली द्वारा अवशोषित किया जा सकता है।<ref name=haaretz.com/> श्वसन विष के रूप में, यह ऑक्सीजन के परिवहन को प्रभावित करता है या शरीर में विभिन्न कोशिकाओं द्वारा ऑक्सीजन के उपयोग में हस्तक्षेप करता है।<ref name=cbcth/>संसर्ग के परिणामस्वरूप फुफ्फुसीय एडिमा (फेफड़ों में तरल पदार्थ भर जाता हैं) होता है।<ref name=wp17/>फ़ॉस्फ़ीन गैस हवा से भारी होती है इसलिए यह फर्श के पास रहती है।<ref name=cbcfm>{{cite web | url = http://www.cbc.ca/news/canada/edmonton/pesticide-blamed-in-8-month-old-s-death-in-fort-mcmurray-1.2967286 | title = फोर्ट मैकमुरे में 8 महीने के बच्चे की मौत में कीटनाशक को दोषी ठहराया गया| publisher = CBC News | date = 2015-02-23 | access-date = 2015-02-23 | archive-date = 24 February 2015 | archive-url = https://web.archive.org/web/20150224051710/http://www.cbc.ca/news/canada/edmonton/pesticide-blamed-in-8-month-old-s-death-in-fort-mcmurray-1.2967286 | url-status = live }}</ref> | |||
फ़ॉस्फ़ीन मुख्य रूप से एक अवकरण विष प्रतीत होता है, जो उपचयनकर (ऑक्सीडेटिव) तनाव और माइटोकॉन्ड्रियल रोग को प्रेरित करके कोशिका क्षति का कारण बनता है।<ref>{{cite journal |last1=Nath |first1=NS |last2=Bhattacharya |first2=I |last3=Tuck |first3=AG |last4=Schlipalius |first4=DI |last5=Ebert |first5=PR |title=फॉस्फीन विषाक्तता के तंत्र|journal=Journal of Toxicology |date=2011 |volume=2011 |pages=494168 |doi=10.1155/2011/494168 |pmid=21776261|pmc=3135219 |doi-access=free }}</ref> कीड़ों में प्रतिरोध माइटोकॉन्ड्रियल चयापचय आनुवंशिक में उत्परिवर्तन के कारण होता है।<ref name="DLD" /> | |||
फ़ॉस्फ़ीन को साँस द्वारा शरीर में अवशोषित किया जा सकता है। फ़ॉस्फ़ीन तरल के साथ सीधा संपर्क - हालांकि होने की संभावना नहीं है - अन्य परिशीतन तरल पदार्थों की तरह शीतदंश का कारण बन सकता है। फ़ॉस्फ़ीन गैस का मुख्य लक्षित अंग श्वसन पथ है।<ref>{{cite web | url = https://www.cdc.gov/niosh/ershdb/EmergencyResponseCard_29750035.html | title = NIOSH आपातकालीन प्रतिक्रिया कार्ड| publisher = CDC | access-date = 2010-04-06 | archive-date = 2 October 2017 | archive-url = https://web.archive.org/web/20171002191640/https://www.cdc.gov/niosh/ershdb/emergencyresponsecard_29750035.html | url-status = live }}</ref> 2009 के U.S. नेशनल इंस्टीट्यूट फॉर ऑक्यूपेशनल सेफ्टी एंड हेल्थ (NIOSH) पॉकेट गाइड, और यूएस ऑक्यूपेशनल सेफ्टी एंड हेल्थ एडमिनिस्ट्रेशन (OSHA) विनियमन के अनुसार, 8 घंटे का औसत श्वसन जोखिम 0.3 ppm से अधिक नहीं होना चाहिए। NIOSH अनुशंसा करता है कि फ़ॉस्फ़ीन गैस के लिए अल्पकालिक श्वसन जोखिम 1 ppm से अधिक नहीं होना चाहिए। तत्काल खतरनाक जीवन या स्वास्थ्य स्तर 50 ppm है। फ़ॉस्फ़ीन गैस के अत्यधिक संपर्क में आने से मतली, उल्टी, पेट में दर्द, दस्त, प्यास, सीने में जकड़न, [[ श्वास कष्ट | श्वास कष्ट]] (सांस लेने में कठिनाई), मांसपेशियों में दर्द, ठंड लगना, स्तब्ध हो जाना या बेहोशी और फुफ्फुसीय एडिमा होती है।<ref>{{cite web | url = https://www.cdc.gov/niosh/npg/npgd0505.html | title = NIOSH पॉकेट गाइड| publisher = CDC | date = 2009-02-03 | access-date = 2010-04-06 | archive-date = 11 May 2017 | archive-url = https://web.archive.org/web/20170511081428/https://www.cdc.gov/niosh/npg/npgd0505.html | url-status = live }}</ref><ref>{{cite web | url = http://www.inchem.org/documents/pds/pds/pest46_e.htm | title = डब्ल्यूएचओ - कीटनाशकों पर डेटा शीट - संख्या 46: फॉस्फीन| website= Inchem.org | access-date = 2010-04-06 | archive-url = https://web.archive.org/web/20100218102324/http://www.inchem.org/documents/pds/pds/pest46_e.htm | archive-date = 18 February 2010 | url-status = dead }}</ref> फ़ॉस्फ़ीन में 0.3 ppm से कम सांद्रता में सड़ने वाली मछली या लहसुन की गंध की सूचना दी गई है। गंध आमतौर पर प्रयोगशाला क्षेत्रों या फ़ॉस्फ़ीन प्रसंस्करण तक ही सीमित होती है क्योंकि गंध पर्यावरण से फ़ॉस्फ़ीन निकालने के तरीके से आती है। हालांकि, यह कहीं और हो सकता है, जैसे औद्योगिक अपशिष्ट भराव क्षेत्र में। उच्च सांद्रता के संपर्क में आने से घ्राण थकान हो सकती है।<ref>{{Cite report |url=https://www.cdc.gov/niosh/docs/99-126/ |title=NIOSH अलर्ट: धूमन के दौरान फॉस्फीन विषाक्तता और विस्फोटों को रोकना।|date=1999-09-01 |publisher=CDC |doi=10.26616/nioshpub99126 |language=en-US |access-date=2010-04-06 |archive-date=19 June 2017 |archive-url=https://web.archive.org/web/20170619104259/https://www.cdc.gov/niosh/docs/99-126/ |url-status=live }}</ref> | |||
=== विस्फोटकता === | === विस्फोटकता === | ||
फ़ॉस्फ़ीन गैस हवा से सघन है और इसलिए निचले इलाकों में एकत्र हो सकती है। यह हवा के साथ विस्फोटक मिश्रण बना सकता है, और स्वयं प्रज्वलित भी हो सकता है।<ref name=":0" /> | |||
==यह भी देखें== | ==यह भी देखें== | ||
* | *डिफॉस्फेन, {{chem2|H2P\sPH2}}, सरलीकृत करने के लिए {{chem2|P2H4}} | ||
*[[ डिफोस्फीन ]], | *[[ डिफोस्फीन |डिफ़ॉस्फ़ीन]] , HP=PH | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
Line 192: | Line 180: | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
* [http://www.inchem.org/documents/icsc/icsc/eics0694.htm International Chemical Safety Card 0694]<!-- Syntax: {{ICSC|AllDigits|TwoDigits}} --> | * [http://www.inchem.org/documents/icsc/icsc/eics0694.htm International Chemical Safety Card 0694]<!-- Syntax: {{ICSC|AllDigits|TwoDigits}} --> | ||
* [https://www.cdc.gov/niosh/topics/phosphine/ CDC – Phosphine – NIOSH Workplace Safety and Health Topic] | * [https://www.cdc.gov/niosh/topics/phosphine/ CDC – Phosphine – NIOSH Workplace Safety and Health Topic] | ||
[[Category:AC with 0 elements]] | |||
[[Category:Articles containing unverified chemical infoboxes]] | |||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category:Articles with invalid date parameter in template]] | |||
[[Category:Articles with short description]] | |||
[[Category:Articles without KEGG source]] | |||
[[Category: | [[Category:CS1 English-language sources (en)]] | ||
[[Category:CS1 español-language sources (es)]] | |||
[[Category:CS1 français-language sources (fr)]] | |||
[[Category:CS1 maint]] | |||
[[Category:CS1 Ελληνικά-language sources (el)]] | |||
[[Category:Chembox having GHS data]] | |||
[[Category:Citation Style 1 templates|W]] | |||
[[Category:Collapse templates]] | |||
[[Category:Created On 20/10/2022]] | |||
[[Category:Exclude in print]] | |||
[[Category:Interwiki category linking templates]] | |||
[[Category:Interwiki link templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages using collapsible list with both background and text-align in titlestyle|background:transparent;font-weight:normal;text-align:left ]] | |||
[[Category:Pages with empty portal template]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Portal-inline template with redlinked portals]] | |||
[[Category:Portal templates with redlinked portals]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates based on the Citation/CS1 Lua module]] | |||
[[Category:Templates generating COinS|Cite web]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates used by AutoWikiBrowser|Cite web]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Use dmy dates from September 2020]] | |||
[[Category:Webarchive template wayback links]] | |||
[[Category:Wikimedia Commons templates]] | |||
[[Category:Wikipedia fully protected templates|Cite web]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:औद्योगिक गैसें]] | |||
[[Category:कार्यात्मक समूह]] | [[Category:कार्यात्मक समूह]] | ||
[[Category: | [[Category:फॉस्फेनस|*]] | ||
[[Category: | [[Category:फॉस्फोरस(-III) यौगिक]] | ||
[[Category: फॉस्फोरस हाइड्राइड्स]] | [[Category:फॉस्फोरस हाइड्राइड्स]] | ||
[[Category: | [[Category:फ्यूमिगेंट्स]] | ||
[[Category:रक्त एजेंट]] | [[Category:रक्त एजेंट]] | ||
Latest revision as of 15:09, 27 October 2023
| |||
Names | |||
---|---|---|---|
IUPAC name
Phosphane
| |||
Other names
Hydrogen phosphide
Phosphamine Phosphorus trihydride Phosphorated hydrogen | |||
Identifiers | |||
3D model (JSmol)
|
|||
ChEBI | |||
ChemSpider | |||
EC Number |
| ||
287 | |||
PubChem CID
|
|||
RTECS number |
| ||
UNII | |||
UN number | 2199 | ||
| |||
| |||
Properties | |||
PH3 | |||
Molar mass | 33.99758 g/mol | ||
Appearance | Colourless gas | ||
Odor | odorless as pure compound; fish-like or garlic-like commercially[1] | ||
Density | 1.379 g/L, gas (25 °C) | ||
Melting point | −132.8 °C (−207.0 °F; 140.3 K) | ||
Boiling point | −87.7 °C (−125.9 °F; 185.5 K) | ||
31.2 mg/100 ml (17 °C) | |||
Solubility | Soluble in alcohol, ether, CS2 slightly soluble in benzene, chloroform, ethanol | ||
Vapor pressure | 41.3 atm (20 °C)[1] | ||
Conjugate acid | [[Phosphonium#Phosphonium, PH+4|Phosphonium (chemical formula PH+ 4)]] | ||
Refractive index (nD)
|
2.144 | ||
Viscosity | 1.1×10−5 Pa⋅s | ||
Structure | |||
Trigonal pyramidal | |||
0.58 D | |||
Thermochemistry | |||
Heat capacity (C)
|
37 J/mol⋅K | ||
Std molar
entropy (S⦵298) |
210 J/mol⋅K[2] | ||
Std enthalpy of
formation (ΔfH⦵298) |
5 kJ/mol[2] | ||
Gibbs free energy (ΔfG⦵)
|
13 kJ/mol | ||
Hazards | |||
GHS labelling: | |||
NFPA 704 (fire diamond) | |||
Flash point | Flammable gas | ||
38 °C (100 °F; 311 K) (see text) | |||
Explosive limits | 1.79–98%[1] | ||
Lethal dose or concentration (LD, LC): | |||
LD50 (median dose)
|
3.03 mg/kg (rat, oral) | ||
LC50 (median concentration)
|
11 ppm (rat, 4 hr)[3] | ||
LCLo (lowest published)
|
1000 ppm (mammal, 5 min) 270 ppm (mouse, 2 hr) 100 ppm (guinea pig, 4 hr) 50 ppm (cat, 2 hr) 2500 ppm (rabbit, 20 min) 1000 ppm (human, 5 min)[3] | ||
NIOSH (US health exposure limits): | |||
PEL (Permissible)
|
TWA 0.3 ppm (0.4 mg/m3)[1] | ||
REL (Recommended)
|
TWA 0.3 ppm (0.4 mg/m3), ST 1 ppm (1 mg/m3)[1] | ||
IDLH (Immediate danger)
|
50 ppm[1] | ||
Safety data sheet (SDS) | ICSC 0694 | ||
Related compounds | |||
Other cations
|
|||
Related compounds
|
|||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
फ़ॉस्फ़ीन (IUPAC नाम: फॉस्फेन) रासायनिक सूत्र PH3, के साथ एक रंगहीन, ज्वलनशील, अत्यधिक विषैला यौगिक है, एक निक्टोजन हाइड्राइड के रूप में वर्गीकृत किया गया है। शुद्ध फ़ॉस्फ़ीन गंधहीन होता है, लेकिन प्रतिस्थापित फ़ॉस्फ़ीन और डिफॉस्फेन (P2H4) की उपस्थिति के कारण तकनीकी श्रेणी के नमूनों में सड़ी हुई मछली जैसी अत्यधिक अप्रिय गंध होती है। (P2H4) के निशान के साथ, PH3 हवा (पायरोफोरिक) में सहज रूप से ज्वलनशील होता है, एक चमकदार लौ के साथ जलता है। फ़ॉस्फ़ीन एक अत्यधिक जहरीला श्वसन जहर है, और 50 ppm पर तुरंत जीवन या स्वास्थ्य के लिए खतरनाक है। फ़ॉस्फ़ीन में एक त्रिकोणीय स्तूपिकानुमा संरचना होती है।
फ़ॉस्फ़ीन ऐसे यौगिक हैं जिनमें PH3 और ऑर्गनोफ़ॉस्फ़ीन सम्मिलित हैं, जो PH3 से जैविक समूहों के साथ एक या एक से अधिक हाइड्रोजन परमाणुओं को प्रतिस्थापित करके प्राप्त किए जाते हैं।[4] उनका सामान्य सूत्र है PH3-nRn. फॉस्फेन PnHn+2 के रूप के संतृप्त फास्फोरस हाइड्राइड होते हैं , जैसे ट्राइफॉस्फेन।[5] फ़ॉस्फ़ीन, PH3, फ़ॉस्फ़ीन में सबसे छोटा और फॉस्फेन में सबसे छोटा है।
इतिहास
लैवोसियर के एक छात्र फिलिप गेन्गेम्ब्रे (1764-1838) ने पहली बार 1783 में पोटाश(पोटेशियम कार्बोनेट) के जलीय घोल में सफेद फास्फोरस को गर्म करके फ़ॉस्फ़ीन प्राप्त किया था।[6][NB 1]
संभवतः मौलिक फास्फोरस के साथ इसके मजबूत संबंध के कारण, फ़ॉस्फ़ीन को एक बार तत्व का गैसीय रूप माना जाता था, लेकिन लैवोसियर (1789) ने इसे हाइड्रोजन के साथ फॉस्फोरस के संयोजन के रूप में मान्यता दी और इसे फॉस्फोर डी'हाइड्रोजीन(हाइड्रोजन का फॉस्फाइड) के रूप में वर्णित किया।[NB 2]
1844 में, फ्रांसीसी रसायनज्ञ लुई जैक्स थेनार्ड के पुत्र पॉल थेनार्ड ने कैल्शियम फॉस्फाइड से उत्पन्न फ़ॉस्फ़ीन से डिफोस्फीन को अलग करने के लिए एक ठंडे जाल का उपयोग किया, जिससे यह प्रदर्शित हुआ कि P2H4, PH3 से जुड़ी सहज ज्वलनशीलता के लिए जिम्मेदार है और विशिष्ट नारंगी/भूरे रंग जो सतहों पर बन सकता है, जो एक बहुलकीकरण उत्पाद है।[7] उन्होंने डिफोस्फीन के सूत्र को PH2 माना, और इस प्रकार तात्विक फास्फोरस, उच्च बहुलक और फ़ॉस्फ़ीन के बीच एक मध्यवर्ती। कैल्शियम फॉस्फाइड (नाममात्र) Ca3P2) अन्य फॉस्फाइड की तुलना में अधिक P2H4 का उत्पादन करता है क्योंकि प्रारंभिक सामग्री में P-P संबंध की प्रधानता होती है।
"फ़ॉस्फ़ीन" नाम का पहली बार 1857 में ऑर्गनोफॉस्फोरस यौगिकों के लिए उपयोग किया गया था, जो कार्बनिक अमाइन (NR3) के अनुरूप था।[NB 3][8] गैस PH3 को 1865 (या इससे पहले) द्वारा फ़ॉस्फ़ीन नाम दिया गया था।[9]
संरचना और गुण
PH3, C3v आणविक समरूपता के साथ एक त्रिकोणीय स्तूपिका अणु है । P−H संबंध की लंबाई 1.42 Å है, H−P−H संबंध कोण 93.5° हैं। द्विध्रुव आघूर्ण 0.58 D है, जो श्रृंखला में मिथाइल समूहों के प्रतिस्थापन (रसायन विज्ञान) के साथ बढ़ता है: CH3PH2, 1.10 D; (CH3)2PH, 1.23 D; (CH3)3P, 1.19 D। इसके विपरीत, अमाइन के द्विध्रुव आघूर्ण प्रतिस्थापन के साथ घटते हैं, जो अमोनिया से शुरू होता है, जिसका द्विध्रुव आघूर्ण 1.47 D होता है। निम्न द्विध्रुव आघूर्ण और लगभग लाम्बिक बंधन कोण इस निष्कर्ष पर ले जाते हैं कि PH3 में P−H संबंध लगभग पूरी तरह से pσ(P) – sσ(H) हैं और फॉस्फोरस 3s कक्षीय इस अणु में फॉस्फोरस और हाइड्रोजन के बीच के बंधन में बहुत कम योगदान देता है। इस कारण से, फॉस्फोरस पर अकेला जोड़ा मुख्य रूप से फॉस्फोरस के 3s कक्षीय द्वारा मुख्य रूप से गठित माना जा सकता है। 31P NMR वर्णक्रम में फॉस्फोरस परमाणु का अपफील्ड रासायनिक बदलाव इस निष्कर्ष के अनुरूप है कि अकेला युग्म विद्युदअणु 3s कक्षीय (फ्लक, 1973) पर अधिग्रहण कर लेता है। यह इलेक्ट्रॉनिक संरचना सामान्य रूप से नाभिकरागिता की कमी और विशेष रूप से मूलभूतता की कमी (pKaH = –14),[10] के साथ-साथ केवल कमजोर हाइड्रोजन बंध बनाने की क्षमता की ओर ले जाती है।[11]
PH3 की जलीय घुलनशीलता मामूली है; 0.22 cm3 गैस 1 cm3 पानी में घुलती है। गैर-ध्रुवीय P−H संबंध के कारण पानी की तुलना में गैर-ध्रुवीय विलायक में फ़ॉस्फ़ीन अधिक आसानी से घुल जाता है। यह पानी में तकनीकी रूप से उभयधर्मी है, लेकिन अम्ल और क्षार गतिविधि खराब है। प्रोटॉन विनिमय एक फॉस्फोनियम (PH+4) आयन के माध्यम से अम्लीय घोल में और फॉस्फेनाइड (PH−2) के माध्यम से उच्च pH पर, संतुलन स्थिरांक Kb = 4×10−28 और Ka = 41.6×10−29 के साथ होता है।
पानी
उच्च दबाव और तापमान पर पानी के संपर्क में फ़ॉस्फ़ीन फॉस्फोरिक अम्ल और हाइड्रोजन का उत्पादन करता है:[12][13]
जलना
हवा में फ़ॉस्फ़ीन जलाने से फॉस्फोरस पेंटोक्साइड (P2O5) उत्पन्न होता है (जो पानी के साथ प्रतिक्रिया करके फॉस्फोरिक एसिड बनाता है):[14][12]
- 2PH3 + 4O2 → P2O5 + 3H2O
तैयारी और घटना
फ़ॉस्फ़ीन को विभिन्न तरीकों से तैयार किया जा सकता है।[15] औद्योगिक रूप से इसे सोडियम या पोटेशियम हाइड्रॉक्साइड के साथ सफेद फास्फोरस की प्रतिक्रिया से बनाया जा सकता है, जो उप-उत्पाद के रूप में पोटेशियम या सोडियम हाइपोफॉस्फाइट का उत्पादन करता है।
- 3 KOH + P4 + 3 H2O → 3 KH2PO2 + PH3
- 3 NaOH + P4 + 3 H2O → 3 NaH2PO2 + PH3
वैकल्पिक रूप से, सफेद फास्फोरस के अम्ल-उत्प्रेरित अनुपातहीनता से फॉस्फोरिक अम्ल और फ़ॉस्फ़ीन प्राप्त होता है। दोनों मार्गों का औद्योगिक महत्व है; यदि फ़ॉस्फ़ीन को प्रतिस्थापित फ़ॉस्फ़ीन की और प्रतिक्रिया की आवश्यकता है तो अम्ल मार्ग पसंदीदा तरीका है। अम्ल मार्ग को शुद्धिकरण और दबाव की आवश्यकता होती है।
प्रयोगशाला मार्ग
यह फॉस्फोरस अम्ल के अनुपातहीनता से प्रयोगशाला में तैयार किया जाता है:[16]
- 4 H3PO3 → PH3 + 3 H3PO4
फ़ॉस्फ़ीन का विकास लगभग 200 °C पर होता है।
वैकल्पिक विधियाँ ट्रिस (ट्राइमिथाइलसिलिल) फ़ॉस्फ़ीन, या धातु फॉस्फाइड जैसे एल्युमिनियम फास्फाइड, या कैल्शियम फॉस्फाइड के हाइड्रोलिसिस हैं:
- Ca3P2 + H2O → Ca(OH)3 + PH3
P2H4 से मुक्त फ़ॉस्फ़ीन के शुद्ध नमूने, फॉस्फोनियम पर पोटेशियम हाइड्रॉक्साइड की क्रिया का उपयोग करके तैयार किए जा सकते है:
- [PH4]I + KOH → PH3 + KI + H2O
घटना
फ़ॉस्फ़ीन बहुत कम और अत्यधिक परिवर्तनशील सांद्रता पर पृथ्वी के वायुमंडल का एक विश्वव्यापी घटक है।[17] यह वैश्विक फास्फोरस जैव रासायनिक चक्र में महत्वपूर्ण योगदान दे सकता है। सबसे संभावित स्रोत क्षयकारी कार्बनिक पदार्थों में फॉस्फेट की कमी है, संभवतः आंशिक कटौती और अनुपातहीनता के माध्यम से, क्योंकि पर्यावरण प्रणालियों में फॉस्फेट को सीधे फ़ॉस्फ़ीन में परिवर्तित करने के लिए पर्याप्त शक्ति के ज्ञात कम करने वाले घटक नहीं है।[18]
यह बृहस्पति के वातावरण में भी पाया जाता है।[19]
संभावित अलौकिक जैव हस्ताक्षर (बायोसिग्नेचर)
2020 में एक स्पेक्ट्रोस्कोपिक विश्लेषण में शुक्र के वातावरण में फ़ॉस्फ़ीन के संकेतों को मात्रा में दिखाया गया था जिसे ज्ञात अजैविक घटक द्वारा समझाया नहीं जा सकता था।[20][21][22] बाद में इस कार्य के पुन: विश्लेषण से पता चला कि प्रक्षेप त्रुटियां की गई थीं, निश्चित कलन विधि के साथ जानकारी का पुन: विश्लेषण या तो फ़ॉस्फ़ीन का पता लगाने में परिणाम नहीं देता है[23][24] या 1 ppb की बहुत कम सांद्रता के साथ इसका पता लगाता है।[25][disputed ]
आवेदन
ऑर्गनोफॉस्फोरस रसायन
फ़ॉस्फ़ीन कई ऑर्गनोफॉस्फोरस यौगिकों का अग्रदूत है। यह टेट्राकिस (हाइड्रॉक्सीमिथाइल) फॉस्फोनियम क्लोराइड देने के लिए हाइड्रोजन क्लोराइड की उपस्थिति में फॉर्मलाडेहाइड के साथ प्रतिक्रिया करता है, जिसका उपयोग वस्त्रों में किया जाता है। विभिन्न प्रकार के फ़ॉस्फ़ीन के लिए अल्केन्स का हाइड्रोफॉस्फिनेशन बहुमुखी मार्ग है। उदाहरण के लिए, मूलभूत उत्प्रेरक की उपस्थिति में PH3 माइकल स्वीकर्ता को जोड़ता है। इस प्रकार एक्रिलोनिट्राइल के साथ, यह ट्रिस (सायनोएथिल) फ़ॉस्फ़ीन देने के लिए प्रतिक्रिया करता है:[26]
- PH3 + 3 CH2=CHZ → P(CH2CH2Z)3 (Z is NO2, CN, or C(O)NH2)
अम्ल उत्प्रेरण आइसोब्यूटिलीन और संबंधित अनुरूप के साथ हाइड्रोफॉस्फिनेशन पर लागू होता है:
- PH3 + R2C=CH2 → R2(CH3)CPH2 (R is CH3, alkyl, etc.)
माइक्रोइलेक्ट्रॉनिक
फ़ॉस्फ़ीन का उपयोग अर्धचालक उद्योग में एक अपमिश्रक (डोपेंट) के रूप में किया जाता है, और यौगिक अर्धचालकों के निक्षेपण के लिए एक अग्रदूत के रूप में किया जाता है। व्यावसायिक रूप से महत्वपूर्ण उत्पादों में गैलियम फॉस्फाइड और इंडियम फॉस्फाइड सम्मिलित हैं।[27]
धुआंरी
कृषि उपयोग के लिए, एल्युमिनियम फॉस्फाइड (AlP), कैल्शियम फॉस्फाइड (Ca3P2) , या जिंक फास्फाइड (Zn3P2) के छर्रों वायुमंडलीय पानी या कृन्तकों के पेट के अम्ल के संपर्क में आने पर फ़ॉस्फ़ीन छोड़ते हैं। इन छर्रों में जारी किए गए फ़ॉस्फ़ीन के प्रज्वलन या विस्फोट की क्षमता को कम करने वाले कारक भी होते हैं। एक और हालिया विकल्प स्वयं फ़ॉस्फ़ीन गैस का उपयोग है जिसे ज्वलनशीलता बिंदु से नीचे लाने के लिए CO2 या N2 या यहां तक कि हवा के साथ तनुकरण की आवश्यकता होती है। गैस का उपयोग धातु फॉस्फाइड द्वारा छोड़े गए ठोस अवशेषों से संबंधित मुद्दों से बचा जाता है और इसके परिणामस्वरूप लक्षित कीटों का तेजी से और अधिक कुशल नियंत्रण होता है।
क्योंकि मॉन्ट्रियल प्रोटोकॉल के तहत कुछ देशों में पहले से लोकप्रिय धुआंरी मिथाइल ब्रोमाइड को को हटा दिया गया है, फ़ॉस्फ़ीन एकमात्र व्यापक रूप से उपयोग किया जाने वाला, लागत प्रभावी, तेजी से काम करने वाला धुआंरी है जो संग्रहीत उत्पाद पर अवशेष नहीं छोड़ता है। फ़ॉस्फ़ीन के प्रति उच्च स्तर के प्रतिरोध वाले कीट एशिया, ऑस्ट्रेलिया और ब्राजील में आम हो गए हैं। अन्य क्षेत्रों में भी उच्च स्तर का प्रतिरोध होने की संभावना है, लेकिन इसकी बारीकी से निगरानी नहीं की गई है। डायहाइड्रोलिपोमाइड डिहाइड्रोजनेज आनुवंशिक में फ़ॉस्फ़ीन के उच्च स्तर के प्रतिरोध में योगदान देने वाले आनुवंशिक रूपों की पहचान की गई है।[28] इस आनुवंशिक की पहचान अब प्रतिरोधी कीड़ों की तेजी से आणविक पहचान की अनुमति देती है।
विषाक्तता और सुरक्षा
मौतें एल्यूमीनियम फॉस्फाइड या फ़ॉस्फ़ीन युक्त धूमन सामग्री के आकस्मिक संपर्क के परिणामस्वरूप हुई है।[29][30][31][32] यह या तो अंतःश्वसन या ट्रांसडर्मली द्वारा अवशोषित किया जा सकता है।[29] श्वसन विष के रूप में, यह ऑक्सीजन के परिवहन को प्रभावित करता है या शरीर में विभिन्न कोशिकाओं द्वारा ऑक्सीजन के उपयोग में हस्तक्षेप करता है।[31]संसर्ग के परिणामस्वरूप फुफ्फुसीय एडिमा (फेफड़ों में तरल पदार्थ भर जाता हैं) होता है।[32]फ़ॉस्फ़ीन गैस हवा से भारी होती है इसलिए यह फर्श के पास रहती है।[33]
फ़ॉस्फ़ीन मुख्य रूप से एक अवकरण विष प्रतीत होता है, जो उपचयनकर (ऑक्सीडेटिव) तनाव और माइटोकॉन्ड्रियल रोग को प्रेरित करके कोशिका क्षति का कारण बनता है।[34] कीड़ों में प्रतिरोध माइटोकॉन्ड्रियल चयापचय आनुवंशिक में उत्परिवर्तन के कारण होता है।[28]
फ़ॉस्फ़ीन को साँस द्वारा शरीर में अवशोषित किया जा सकता है। फ़ॉस्फ़ीन तरल के साथ सीधा संपर्क - हालांकि होने की संभावना नहीं है - अन्य परिशीतन तरल पदार्थों की तरह शीतदंश का कारण बन सकता है। फ़ॉस्फ़ीन गैस का मुख्य लक्षित अंग श्वसन पथ है।[35] 2009 के U.S. नेशनल इंस्टीट्यूट फॉर ऑक्यूपेशनल सेफ्टी एंड हेल्थ (NIOSH) पॉकेट गाइड, और यूएस ऑक्यूपेशनल सेफ्टी एंड हेल्थ एडमिनिस्ट्रेशन (OSHA) विनियमन के अनुसार, 8 घंटे का औसत श्वसन जोखिम 0.3 ppm से अधिक नहीं होना चाहिए। NIOSH अनुशंसा करता है कि फ़ॉस्फ़ीन गैस के लिए अल्पकालिक श्वसन जोखिम 1 ppm से अधिक नहीं होना चाहिए। तत्काल खतरनाक जीवन या स्वास्थ्य स्तर 50 ppm है। फ़ॉस्फ़ीन गैस के अत्यधिक संपर्क में आने से मतली, उल्टी, पेट में दर्द, दस्त, प्यास, सीने में जकड़न, श्वास कष्ट (सांस लेने में कठिनाई), मांसपेशियों में दर्द, ठंड लगना, स्तब्ध हो जाना या बेहोशी और फुफ्फुसीय एडिमा होती है।[36][37] फ़ॉस्फ़ीन में 0.3 ppm से कम सांद्रता में सड़ने वाली मछली या लहसुन की गंध की सूचना दी गई है। गंध आमतौर पर प्रयोगशाला क्षेत्रों या फ़ॉस्फ़ीन प्रसंस्करण तक ही सीमित होती है क्योंकि गंध पर्यावरण से फ़ॉस्फ़ीन निकालने के तरीके से आती है। हालांकि, यह कहीं और हो सकता है, जैसे औद्योगिक अपशिष्ट भराव क्षेत्र में। उच्च सांद्रता के संपर्क में आने से घ्राण थकान हो सकती है।[38]
विस्फोटकता
फ़ॉस्फ़ीन गैस हवा से सघन है और इसलिए निचले इलाकों में एकत्र हो सकती है। यह हवा के साथ विस्फोटक मिश्रण बना सकता है, और स्वयं प्रज्वलित भी हो सकता है।[12]
यह भी देखें
- डिफॉस्फेन, H2P−PH2, सरलीकृत करने के लिए P2H4
- डिफ़ॉस्फ़ीन , HP=PH
टिप्पणियाँ
- ↑ For further information about the early history of phosphine, see:
- The Encyclopædia Britannica (1911 edition), vol. 21, p. 480: Phosphorus: Phosphine. Archived 4 November 2015 at the Wayback Machine
- Thomas Thomson, A System of Chemistry, 6th ed. (London, England: Baldwin, Cradock, and Joy, 1820), vol. 1, p. 272. Archived 4 November 2015 at the Wayback Machine
- ↑ Note:
- On p. 222 Archived 24 April 2017 at the Wayback Machine of his Traité élémentaire de chimie, vol. 1, (Paris, France: Cuchet, 1789), Lavoisier calls the compound of phosphorus and hydrogen "phosphure d'hydrogène" (hydrogen phosphide). However, on p. 216 Archived 24 April 2017 at the Wayback Machine, he calls the compound of hydrogen and phosphorus "Combinaison inconnue." (unknown combination), yet in a footnote, he says about the reactions of hydrogen with sulfur and with phosphorus: "Ces combinaisons ont lieu dans l'état de gaz & il en résulte du gaz hydrogène sulfurisé & phosphorisé." (These combinations occur in the gaseous state, and there results from them sulfurized and phosphorized hydrogen gas.)
- In Robert Kerr's 1790 English translation of Lavoisier's Traité élémentaire de chimie ... — namely, Lavoisier with Robert Kerr, trans., Elements of Chemistry ... (Edinburgh, Scotland: William Creech, 1790) — Kerr translates Lavoisier's "phosphure d'hydrogène" as "phosphuret of hydrogen" (p. 204), and whereas Lavoisier — on p. 216 of his Traité élémentaire de chimie ... — gave no name to the combination of hydrogen and phosphorus, Kerr calls it "hydruret of phosphorus, or phosphuret of hydrogen" (p. 198). Lavoisier's note about this compound — "Combinaison inconnue." — is translated: "Hitherto unknown." Lavoisier's footnote is translated as: "These combinations take place in the state of gas, and form, respectively, sulphurated and phosphorated oxygen gas." The word "oxygen" in the translation is an error because the original text clearly reads "hydrogène" (hydrogen). (The error was corrected in subsequent editions.)
- ↑ In 1857, August Wilhelm von Hofmann announced the synthesis of organic compounds containing phosphorus, which he named "trimethylphosphine" and "triethylphosphine", in analogy with "amine" (organo-nitrogen compounds), "arsine" (organo-arsenic compounds), and "stibine" (organo-antimony compounds).
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 NIOSH Pocket Guide to Chemical Hazards. "#0505". National Institute for Occupational Safety and Health (NIOSH).
- ↑ 2.0 2.1 Zumdahl, Steven S. (2009). Chemical Principles (6th ed.). Houghton Mifflin. p. A22. ISBN 978-0-618-94690-7.
- ↑ 3.0 3.1 "Phosphine". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
- ↑ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "phosphines". doi:10.1351/goldbook.P04553
- ↑ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "phosphanes". doi:10.1351/goldbook.P04548
- ↑ Gengembre (1783) "Mémoire sur un nouveau gas obtenu, par l'action des substances alkalines, sur le phosphore de Kunckel" (Memoir on a new gas obtained by the action of alkaline substances on Kunckel's phosphorus), Mémoires de mathématique et de physique, 10 : 651–658.
- ↑ Paul Thénard (1844) "Mémoire sur les combinaisons du phosphore avec l'hydrogène" Archived 15 October 2015 at the Wayback Machine (Memoir on the compounds of phosphorus with hydrogen), Comptes rendus, 18 : 652–655.
- ↑ A.W. Hofmann; Auguste Cahours (1857). "फास्फोरस आधारों पर शोध". Proceedings of the Royal Society of London (8): 523–527. Archived from the original on 10 February 2022. Retrieved 19 November 2020.
(पृष्ठ 524 से:) आधार Me3P और E3P, इस प्रतिक्रिया के उत्पाद, जिन्हें हम क्रमशः ट्राइमेथिलफोस्फीन और ट्राइएथिलफोस्फीन कहते हैं, ...
- ↑ William Odling, A Course of Practical Chemistry Arranged for the Use of Medical Students, 2nd ed. (London, England: Longmans, Green, and Co., 1865), pp. 227, 230.
- ↑ Streitwieser, Andrew; Heathcock, Clayton H.; Kosower, Edward M. (2017). कार्बनिक रसायन विज्ञान का परिचय. New Delhi: Medtech (Scientific International, reprint of revised 4th edition, Macmillan, 1998). p. 828. ISBN 9789385998898.
- ↑ Sennikov, P. G. (1994). "दूसरी पंक्ति (PH3, H2S) और तीसरी पंक्ति (ASH3, H2) द्वारा कमजोर H-बंधन </उप>से) हाइड्राइड्स". Journal of Physical Chemistry. 98 (19): 4973–4981. doi:10.1021/j100070a006.
- ↑ 12.0 12.1 12.2 सामग्री सुरक्षा डेटा शीट: फॉस्फीन / हाइड्रोजन गैस मिश्रण (PDF) (Report). Matheson TRI-GAS, inc. 8 September 2008.
- ↑ Rabinowitz, Joseph; Woeller, Fritz; Flores, Jose; Krebsbach, Rita (November 1969). "फॉस्फीन, मीथेन, अमोनिया और पानी के मिश्रण में विद्युत निर्वहन प्रतिक्रियाएं". Nature (in English). 224 (5221): 796–798. doi:10.1038/224796a0. ISSN 1476-4687.
- ↑ "फॉस्फीन: फेफड़े को नुकसान पहुंचाने वाला एजेंट | NIOSH | सीडीसी". www.cdc.gov (in English). 8 July 2021. Retrieved 4 July 2022.
- ↑ Toy, A. D. F. (1973). फास्फोरस की रसायन शास्त्र. Oxford, UK: Pergamon Press.
- ↑ Gokhale, S. D.; Jolly, W. L., "Phosphine", Inorganic Syntheses 1967, volume 9, pp. 56–58. doi:10.1002/9780470132401.ch17
- ↑ Glindemann, D.; Bergmann, A.; Stottmeister, U.; Gassmann, G. (1996). "निचले स्थलीय क्षोभमंडल में फॉस्फीन". Naturwissenschaften. 83 (3): 131–133. Bibcode:1996NW.....83..131G. doi:10.1007/BF01142179.
- ↑ Roels, J.; Verstraete, W. (2001). "वाष्पशील फास्फोरस यौगिकों का जैविक गठन, एक समीक्षा पत्र". Bioresource Technology. 79 (3): 243–250. doi:10.1016/S0960-8524(01)00032-3. PMID 11499578.
- ↑ Kaplan, Sarah (11 July 2016). "पहले पानी के बादल हमारे सौर मंडल के बाहर पाए जाते हैं — एक असफल तारे के आसपास". The Washington Post. Archived from the original on 15 September 2020. Retrieved 14 September 2020.
- ↑ Sousa-Silva, Clara; Seager, Sara; Ranjan, Sukrit; Petkowski, Janusz Jurand; Zhan, Zhuchang; Hu, Renyu; Bains, William (11 October 2019). "एक्सोप्लैनेट वायुमंडल में बायोसिग्नेचर गैस के रूप में फॉस्फीन". Astrobiology (published February 2020). 20 (2): 235–268. arXiv:1910.05224. Bibcode:2020AsBio..20..235S. doi:10.1089/ast.2018.1954. PMID 31755740. S2CID 204401807.
- ↑ Chu, Jennifer (18 December 2019). "एक संकेत है कि एलियंस से बदबू आ सकती है". MIT News. Archived from the original on 18 February 2021. Retrieved 14 September 2020.
- ↑ "फॉस्फीन चट्टानी ग्रहों पर एलियन एनारोबिक जीवन के अस्तित्व का संकेत दे सकता है". Sci-News. 26 December 2019. Archived from the original on 14 September 2020. Retrieved 15 September 2020.
- ↑ Snellen, I. A. G.; Guzman-Ramirez, L.; Hogerheijde, M. R.; Hygate, A. P. S.; van der Tak, F. F. S. (2020), "Re-analysis of the 267-GHz ALMA observations of Venus No statistically significant detection of phosphine", Astronomy and Astrophysics, 644: L2, arXiv:2010.09761, Bibcode:2020A&A...644L...2S, doi:10.1051/0004-6361/202039717, S2CID 224803085
- ↑ Thompson, M. A. (2021), "The statistical reliability of 267 GHz JCMT observations of Venus: No significant evidence for phosphine absorption", Monthly Notices of the Royal Astronomical Society: Letters, 501 (1): L18–L22, arXiv:2010.15188, Bibcode:2021MNRAS.501L..18T, doi:10.1093/mnrasl/slaa187, S2CID 225103303
- ↑ Greaves, Jane S.; Richards, Anita M. S.; Bains, William; Rimmer, Paul B.; Clements, David L.; Seager, Sara; Petkowski, Janusz J.; Sousa-Silva, Clara; Ranjan, Sukrit; Fraser, Helen J. (2021), "Reply to: No evidence of phosphine in the atmosphere of Venus from independent analyses", Nature Astronomy, 5 (7): 636–639, arXiv:2011.08176, Bibcode:2021NatAs...5..636G, doi:10.1038/s41550-021-01424-x, S2CID 233296859
- ↑ Trofimov, Boris A.; Arbuzova, Svetlana N.; Gusarova, Nina K. (1999). "ऑर्गनोफॉस्फोरस यौगिकों के संश्लेषण में फॉस्फीन". Russian Chemical Reviews. 68 (3): 215–227. Bibcode:1999RuCRv..68..215T. doi:10.1070/RC1999v068n03ABEH000464.
- ↑ Bettermann, G.; Krause, W.; Riess, G.; Hofmann, T. (2002). "Phosphorus Compounds, Inorganic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a19_527.
- ↑ 28.0 28.1 Schlipalius, D. I.; Valmas, N.; Tuck, A. G.; Jagadeesan, R.; Ma, L.; Kaur, R.; et al. (2012). "एक कोर मेटाबोलिक एंजाइम फॉस्फीन गैस के प्रतिरोध की मध्यस्थता करता है". Science. 338 (6108): 807–810. Bibcode:2012Sci...338..807S. doi:10.1126/science.1224951. PMID 23139334. S2CID 10390339.
- ↑ 29.0 29.1 Ido Efrati; Nir Hasson (22 January 2014). "यरूशलेम में कीटों के छिड़काव के बाद दो बच्चों की मौत". Haaretz. Archived from the original on 23 January 2014. Retrieved 23 January 2014.
- ↑ "कुछ कैप्स से फॉस्फीन लेने के बाद अल्काला डी गुआडेरा के परिवार की मृत्यु हो गई". RTVE.es (in español). Radio y Televisión Española. EFE. 3 February 2014. Archived from the original on 2 March 2014. Retrieved 23 July 2014.
- ↑ 31.0 31.1 Julia Sisler (13 March 2014). "थाईलैंड में क्यूबेक महिलाओं की मौत कीटनाशक के कारण हो सकती है". CBC News. Archived from the original on 4 April 2017. Retrieved 3 April 2017.
- ↑ 32.0 32.1 Amy B Wang (3 January 2017). "घर के नीचे जहरीली गैस छोड़े कीटनाशक से 4 बच्चों की मौत, पुलिस का कहना है". Washington Post. Archived from the original on 25 June 2018. Retrieved 6 January 2017.
- ↑ "फोर्ट मैकमुरे में 8 महीने के बच्चे की मौत में कीटनाशक को दोषी ठहराया गया". CBC News. 23 February 2015. Archived from the original on 24 February 2015. Retrieved 23 February 2015.
- ↑ Nath, NS; Bhattacharya, I; Tuck, AG; Schlipalius, DI; Ebert, PR (2011). "फॉस्फीन विषाक्तता के तंत्र". Journal of Toxicology. 2011: 494168. doi:10.1155/2011/494168. PMC 3135219. PMID 21776261.
- ↑ "NIOSH आपातकालीन प्रतिक्रिया कार्ड". CDC. Archived from the original on 2 October 2017. Retrieved 6 April 2010.
- ↑ "NIOSH पॉकेट गाइड". CDC. 3 February 2009. Archived from the original on 11 May 2017. Retrieved 6 April 2010.
- ↑ "डब्ल्यूएचओ - कीटनाशकों पर डेटा शीट - संख्या 46: फॉस्फीन". Inchem.org. Archived from the original on 18 February 2010. Retrieved 6 April 2010.
- ↑ NIOSH अलर्ट: धूमन के दौरान फॉस्फीन विषाक्तता और विस्फोटों को रोकना। (Report) (in English). CDC. 1 September 1999. doi:10.26616/nioshpub99126. Archived from the original on 19 June 2017. Retrieved 6 April 2010.
अग्रिम पठन
- Fluck, E. (1973). "The Chemistry of Phosphine". Topics in Current Chemistry. Fortschritte der Chemischen Forschung. 35: 1–64. doi:10.1007/BFb0051358. ISBN 3-540-06080-4.
- World Health Organisation (1988). Phosphine and Selected Metal Phosphides. Environmental Health Criteria. Vol. 73. Geneva: Joint sponsorship of UNEP, ILO and WHO.