फ्रेम-ड्रैगिंग: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(15 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{short description|Effect of general relativity}}
{{short description|Effect of general relativity}}'''फ्रेम-ड्रैगिंग''' [[ अंतरिक्ष समय ]] का प्रभाव है, जिसकी भविष्यवाणी [[अल्बर्ट आइंस्टीन]] की [[सामान्य सापेक्षता]] द्वारा की गई है, जो द्रव्यमान-ऊर्जा के गैर-स्थैतिक स्थिर वितरण के कारण है। स्थिर [[क्षेत्र (भौतिकी)]] वह है जो स्थिर स्थिति में है, किन्तु उस क्षेत्र का कारण बनने वाले द्रव्यमान गैर-स्थैतिक ⁠  घूर्णन हो सकते हैं, उदाहरण के लिए सामान्यतः वह विषय जो द्रव्यमान-ऊर्जा धाराओं के कारण होने वाले प्रभावों से संबंधित है, [[गुरुत्वाकर्षण विद्युत चुंबकत्व]] के रूप में जाना जाता है, जो [[शास्त्रीय विद्युत चुंबकत्व]] के अनुरूप है।
{{About|
घूर्णन द्रव्यमान के कारण स्पेसटाइम पर प्रभाव|
वीडियो फ्रेम संपादन|फ्रेम रेट}}


{{General relativity |दृष्टिगत वस्‍तु}}
प्रथम फ्रेम-ड्रैगिंग प्रभाव 1918 में ऑस्ट्रियाई भौतिकविदों [[जोसेफ लेंस]] एवं [[हंस थिरिंग]] द्वारा सामान्य सापेक्षता के आकार में प्राप्त किया गया था, एवं इसे लेंस-थिरिंग प्रभाव के रूप में भी जाना जाता है।<ref>{{cite journal |last=Thirring |first=H. |date=1918 |title=Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie |journal=Physikalische Zeitschrift |volume=19 |page=33 |bibcode=1918PhyZ...19...33T }} [On the Effect of Rotating Distant Masses in Einstein's Theory of Gravitation]</ref><ref>{{cite journal |last=Thirring |first=H. |date=1921 |title=Berichtigung zu meiner Arbeit: 'Über die Wirkung rotierender Massen in der Einsteinschen Gravitationstheorie' |journal=Physikalische Zeitschrift |volume=22 |page=29 |bibcode=1921PhyZ...22...29T }} [Correction to my paper "On the Effect of Rotating Distant Masses in Einstein's Theory of Gravitation"]</ref><ref>{{cite journal |last=Lense |first=J. |author2=Thirring, H. |date=1918 |title=Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie |journal=Physikalische Zeitschrift |volume=19 |pages=156–163 |bibcode=1918PhyZ...19..156L}} [On the Influence of the Proper Rotation of Central Bodies on the Motions of Planets and Moons According to Einstein's Theory of Gravitation]</ref> उन्होंने भविष्यवाणी की, कि विशाल वस्तु का घूर्णन सामान्य सापेक्षता को विकृत कर देगा, जिससे पास के परीक्षण कण की कक्षा बन जाएगी। [[न्यूटोनियन यांत्रिकी]] में ऐसा नहीं होता है जिसके लिए किसी पिंड का [[गुरुत्वाकर्षण क्षेत्र]] केवल उसके द्रव्यमान पर निर्भर करता है, उसके घूर्णन पर नहीं करता है। लेंस-थिरिंग प्रभाव अधिक अल्प है, कुछ ट्रिलियन में लगभग भाग इसकी जानकारी प्राप्त करने के लिए किसी अधिक भारी वस्तु का परिक्षण करना या कोई ऐसा यंत्र बनाना आवश्यक होता है, जो अधिक ही संवेदनशील होता है।
 
आकार-कर्षण [[ अंतरिक्ष समय ]] का प्रभाव है, जिसकी भविष्यवाणी [[अल्बर्ट आइंस्टीन]] की [[सामान्य सापेक्षता]] द्वारा की गई है, जो द्रव्यमान-ऊर्जा के गैर-स्थैतिक स्थिर वितरण के कारण है। स्थिर [[क्षेत्र (भौतिकी)]] वह है जो स्थिर स्थिति में है, किन्तु उस क्षेत्र का कारण बनने वाले द्रव्यमान गैर-स्थैतिक ⁠  घूर्णन हो सकते हैं, उदाहरण के लिए सामान्यतः वह विषय जो द्रव्यमान-ऊर्जा धाराओं के कारण होने वाले प्रभावों से संबंधित है, [[गुरुत्वाकर्षण विद्युत चुंबकत्व]] के रूप में जाना जाता है, जो [[शास्त्रीय विद्युत चुंबकत्व]] के अनुरूप है।
 
प्रथम आकार-कर्षण प्रभाव 1918 में ऑस्ट्रियाई भौतिकविदों [[जोसेफ लेंस]] एवं [[हंस थिरिंग]] द्वारा सामान्य सापेक्षता के आकार में प्राप्त किया गया था, एवं इसे लेंस-थिरिंग प्रभाव के रूप में भी जाना जाता है।<ref>{{cite journal |last=Thirring |first=H. |date=1918 |title=Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie |journal=Physikalische Zeitschrift |volume=19 |page=33 |bibcode=1918PhyZ...19...33T }} [On the Effect of Rotating Distant Masses in Einstein's Theory of Gravitation]</ref><ref>{{cite journal |last=Thirring |first=H. |date=1921 |title=Berichtigung zu meiner Arbeit: 'Über die Wirkung rotierender Massen in der Einsteinschen Gravitationstheorie' |journal=Physikalische Zeitschrift |volume=22 |page=29 |bibcode=1921PhyZ...22...29T }} [Correction to my paper "On the Effect of Rotating Distant Masses in Einstein's Theory of Gravitation"]</ref><ref>{{cite journal |last=Lense |first=J. |author2=Thirring, H. |date=1918 |title=Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie |journal=Physikalische Zeitschrift |volume=19 |pages=156–163 |bibcode=1918PhyZ...19..156L}} [On the Influence of the Proper Rotation of Central Bodies on the Motions of Planets and Moons According to Einstein's Theory of Gravitation]</ref> उन्होंने भविष्यवाणी की, कि विशाल वस्तु का घूर्णन सामान्य सापेक्षता को विकृत कर देगा, जिससे पास के परीक्षण कण की कक्षा बन जाएगी। [[न्यूटोनियन यांत्रिकी]] में ऐसा नहीं होता है जिसके लिए किसी पिंड का [[गुरुत्वाकर्षण क्षेत्र]] केवल उसके द्रव्यमान पर निर्भर करता है, उसके घूर्णन पर नहीं करता है। लेंस-थिरिंग प्रभाव अधिक अल्प है, कुछ ट्रिलियन में लगभग भाग इसकी जानकारी प्राप्त करने के लिए किसी अधिक भारी वस्तु का परिक्षण करना या कोई ऐसा यंत्र बनाना आवश्यक होता है, जो अधिक ही संवेदनशील होता है।


2015 में, न्यूटोनियन वर्तन कानूनों के नए सामान्य-सापेक्षवादी विस्तार को आकार के ज्यामितीय कर्षण का वर्णन करने के लिए प्रस्तुत किया गया था, जिसमें नए शोध किये गए एंटीकर्षण प्रभाव को सम्मिलित किया गया था।<ref>{{Cite journal |doi = 10.1103/PhysRevD.91.124053|title = द्रव निकायों को घुमाने में सामान्य-सापेक्षतावादी रोटेशन कानून|journal = Physical Review D|volume = 91|issue = 12|pages = 124053|year = 2015|last1 = Mach|first1 = Patryk|last2 = Malec|first2 = Edward|bibcode = 2015PhRvD..91l4053M|arxiv = 1501.04539|s2cid = 118605334}}</ref>
2015 में, न्यूटोनियन वर्तन कानूनों के नए सामान्य-सापेक्षवादी विस्तार को आकार के ज्यामितीय कर्षण का वर्णन करने के लिए प्रस्तुत किया गया था, जिसमें नए शोध किये गए एंटीकर्षण प्रभाव को सम्मिलित किया गया था।<ref>{{Cite journal |doi = 10.1103/PhysRevD.91.124053|title = द्रव निकायों को घुमाने में सामान्य-सापेक्षतावादी रोटेशन कानून|journal = Physical Review D|volume = 91|issue = 12|pages = 124053|year = 2015|last1 = Mach|first1 = Patryk|last2 = Malec|first2 = Edward|bibcode = 2015PhRvD..91l4053M|arxiv = 1501.04539|s2cid = 118605334}}</ref>
Line 14: Line 7:


== प्रभाव ==
== प्रभाव ==
घूर्णी आकार-कर्षण (लेंस-थिरिंग प्रभाव) सापेक्षता के सामान्य सिद्धांत एवं बड़े स्तर पर वस्तुओं को घुमाने के आसपास समान सिद्धांतों में प्रकट होता है। लेंस-थिरिंग प्रभाव के अनुसार, संदर्भ का आकार जिसमें  घड़ी सबसे तीव्रता से टिकती है वह दूर के पर्यवेक्षक द्वारा देखी गई वस्तु के चारों ओर घूम रहा है। इसका अर्थ यह भी है कि वस्तु के घूर्णन की दिशा में यात्रा करने वाला प्रकाश, घूर्णन के विरुद्ध चलने वाले प्रकाश की तुलना में बड़े स्तर पर वस्तु को तीव्रता से ज्ञात करेगा, जैसा कि दूर के पर्यवेक्षक द्वारा देखा गया है। यह अब सबसे उचित ज्ञात आकार-कर्षण प्रभाव है। आंशिक रूप से [[ग्रेविटी प्रोब बी]] प्रयोग के लिए गुणात्मक रूप से, आकार-कर्षण को विद्युत चुम्बकीय प्रेरण के गुरुत्वाकर्षण अनुरूप के रूप में देखा जा सकता है।
घूर्णी फ्रेम-ड्रैगिंग (लेंस-थिरिंग प्रभाव) सापेक्षता के सामान्य सिद्धांत एवं बड़े स्तर पर वस्तुओं को घुमाने के आसपास समान सिद्धांतों में प्रकट होता है। लेंस-थिरिंग प्रभाव के अनुसार, संदर्भ का आकार जिसमें  घड़ी सबसे तीव्रता से टिकती है वह दूर के पर्यवेक्षक द्वारा देखी गई वस्तु के चारों ओर घूम रहा है। इसका अर्थ यह भी है कि वस्तु के घूर्णन की दिशा में यात्रा करने वाला प्रकाश, घूर्णन के विरुद्ध चलने वाले प्रकाश की तुलना में बड़े स्तर पर वस्तु को तीव्रता से ज्ञात करेगा, जैसा कि दूर के पर्यवेक्षक द्वारा देखा गया है। यह अब सबसे उचित ज्ञात फ्रेम-ड्रैगिंग प्रभाव है। आंशिक रूप से [[ग्रेविटी प्रोब बी]] प्रयोग के लिए गुणात्मक रूप से, फ्रेम-ड्रैगिंग को विद्युत चुम्बकीय प्रेरण के गुरुत्वाकर्षण अनुरूप के रूप में देखा जा सकता है।


साथ ही, आंतरिक क्षेत्र को बाहरी क्षेत्र की तुलना में अधिक खींचा जाता है। यह रुचिकर स्थानीय रूप से घूमने वाले आकार का उत्पादन करता है। उदाहरण के लिए, कल्पना करें कि उत्तर-दक्षिण-उन्मुख आइस स्केटर, घूमते हुए ब्लैक होल के भूमध्य रेखा पर कक्षा में एवं तारों के संबंध में घूर्णी रूप से विश्राम कर रही है। [[इलेक्ट्रोमैग्नेटिक इंडक्शन|गुरुत्वाकर्षण चुंबकीय प्रेरण]] के कारण ब्लैक होल की ओर बढ़ाए गए हाथ को स्पिनवर्ड में घुमा दिया जाएगा (टोर्क्ड उद्धरणों में है क्योंकि गुरुत्वाकर्षण प्रभाव को सामान्य सापेक्षता के अनुसार बल नहीं माना जाता है)। इसी प्रकार ब्लैक होल से दूर विस्तृत हुई शाखा को स्पिनवर्ड के विपरीत मोड़ दिया जाएगा। इसलिए वह ब्लैक होल के प्रति-घूर्णन अर्थ में घूर्णी रूप से तीव्र हो जाएगी। यह रोजमर्रा के अनुभव के विपरीत है। विशेष घुमाव दर उपस्थित है, क्या उसे प्रारम्भ में उस दर पर घूमना चाहिए, जब वह अपनी शाखा को फैलाती है, जड़त्वीय प्रभाव एवं आकार-कर्षण प्रभाव संतुलित होंगे एवं उसकी घुमाव की दर नहीं बदलेगी। तुल्यता सिद्धांत के कारण, गुरुत्वाकर्षण प्रभाव जड़त्वीय प्रभावों से स्थानीय रूप से अप्रभेद्य हैं, इसलिए यह घुमाव दर, जिस पर जब वह अपनी शाखा को विस्तृत करती है, कुछ भी नहीं होता है, गैर-घूर्णन के लिए उसका स्थानीय संदर्भ है। यह आकार स्थिर तारों के संबंध में घूम रहा है एवं ब्लैक होल के संबंध में प्रति-घूर्णन कर रहा है। यह प्रभाव परमाणु घुमाव के कारण परमाणु विस्तार में [[अतिसूक्ष्म संरचना]] के अनुरूप है। उपयोगी रूपक ग्रहीय गियर प्रणाली है जिसमें ब्लैक होल सन गियर है, आइस स्केटर ग्रहीय गियर है एवं बाहरी ब्रह्मांड रिंग गियर है।  
साथ ही, आंतरिक क्षेत्र को बाहरी क्षेत्र की तुलना में अधिक खींचा जाता है। यह रुचिकर स्थानीय रूप से घूमने वाले आकार का उत्पादन करता है। उदाहरण के लिए, कल्पना करें कि उत्तर-दक्षिण-उन्मुख आइस स्केटर, घूमते हुए ब्लैक छिद्र के भूमध्य रेखा पर कक्षा में एवं तारों के संबंध में घूर्णी रूप से विश्राम कर रही है। [[इलेक्ट्रोमैग्नेटिक इंडक्शन|गुरुत्वाकर्षण चुंबकीय प्रेरण]] के कारण ब्लैक छिद्र की ओर बढ़ाए गए हाथ को स्पिनवर्ड में घुमा दिया जाएगा (टोर्क्ड उद्धरणों में है क्योंकि गुरुत्वाकर्षण प्रभाव को सामान्य सापेक्षता के अनुसार बल नहीं माना जाता है)। इसी प्रकार ब्लैक छिद्र से दूर विस्तृत हुई शाखा को स्पिनवर्ड के विपरीत मोड़ दिया जाएगा। इसलिए वह ब्लैक छिद्र के प्रति-घूर्णन अर्थ में घूर्णी रूप से तीव्र हो जाएगी। यह रोजमर्रा के अनुभव के विपरीत है। विशेष घुमाव दर उपस्थित है, क्या उसे प्रारम्भ में उस दर पर घूमना चाहिए, जब वह अपनी शाखा को फैलाती है, जड़त्वीय प्रभाव एवं फ्रेम-ड्रैगिंग प्रभाव संतुलित होंगे एवं उसकी घुमाव की दर नहीं बदलेगी। तुल्यता सिद्धांत के कारण, गुरुत्वाकर्षण प्रभाव जड़त्वीय प्रभावों से स्थानीय रूप से अप्रभेद्य हैं, इसलिए यह घुमाव दर, जिस पर जब वह अपनी शाखा को विस्तृत करती है, कुछ भी नहीं होता है, गैर-घूर्णन के लिए उसका स्थानीय संदर्भ है। यह आकार स्थिर तारों के संबंध में घूम रहा है एवं ब्लैक छिद्र के संबंध में प्रति-घूर्णन कर रहा है। यह प्रभाव परमाणु घुमाव के कारण परमाणु विस्तार में [[अतिसूक्ष्म संरचना]] के अनुरूप है। उपयोगी रूपक ग्रहीय गियर प्रणाली है जिसमें ब्लैक छिद्र सन गियर है, आइस स्केटर ग्रहीय गियर है एवं बाहरी ब्रह्मांड रिंग गियर है।  


एक एवं दिलचस्प परिणाम यह है कि, एक भूमध्यरेखीय कक्षा में विवश एक वस्तु के लिए,  किन्तु  फ्रीफॉल में नहीं, इसका वजन अधिक होता है यदि स्पिनवर्ड की परिक्रमा करते हैं, एवं स्पिनवर्ड की परिक्रमा करते हैं तो कम। उदाहरण के लिए, एक सस्पेंडेड इक्वेटोरियल बॉलिंग एले में, एक बॉलिंग बॉल जो एंटी-स्पिनवर्ड रोल की जाती है, उसी बॉल को स्पिन की दिशा में रोल करने से ज्यादा वजन होता है। ध्यान दें, आकार कर्षण किसी भी दिशा में गेंदबाजी गेंद को न तो गति देगा एवं न ही धीमा करेगा। यह चिपचिपाहट नहीं है। इसी प्रकार, घूर्णन वस्तु पर निलंबित एक स्थिर [[ सीधा लटकना ]] सूचीबद्ध नहीं होगा। यह लंबवत लटका होगा। यदि यह गिरना शुरू हो जाता है, तो इंडक्शन इसे स्पिन की दिशा में धकेल देगा।
भूमध्यरेखीय कक्षा में विवश वस्तु के लिए,  किन्तु  निर्बाध गिरावट में नहीं, इसका भार अधिक होता है यदि स्पिनवर्ड की परिक्रमा करते हैं, उदाहरण के लिए, निलंबित भूमध्यरेखीय गेंदबाजी गली में, बॉलिंग बॉल जो एंटी-स्पिनवर्ड रोल की जाती है, उसी बॉल को घुमाव की दिशा में रोल करने से अधिक भार होता है। ध्यान दें, आकार कर्षण किसी भी दिशा में गेंदबाजी गेंद को न तो गति देगा एवं न ही मंद करता है। यह चिपचिपाहट नहीं है। इसी प्रकार, घूर्णन वस्तु पर निलंबित स्थिर[[ सीधा लटकना ]] सूचीबद्ध नहीं होगा। यह लंबवत लटका होगा। यदि यह गिरना प्रारम्भ हो जाता है, तो प्रवर्तन इसे घुमाव की दिशा में निर्वाह कर देता है।


रैखिक आकार कर्षण समान रूप से सापेक्षता के सामान्य सिद्धांत का अपरिहार्य परिणाम है, जो रैखिक गति पर लागू होता है। यद्यपि इसमें यकीनन घूर्णी प्रभाव के समान सैद्धांतिक वैधता है, प्रभाव के प्रायोगिक सत्यापन को प्राप्त करने में कठिनाई का अर्थ है कि इसे अधिक कम चर्चा प्राप्त होती है एवं अक्सर आकार-कर्षण पर लेखों से हटा दिया जाता है ( किन्तु  आइंस्टीन, 1921 देखें)।<ref>Einstein, A ''[[The Meaning of Relativity]]'' (contains transcripts of his 1921 Princeton lectures).</ref>
रैखिक आकार कर्षण समान रूप से सापेक्षता के सामान्य सिद्धांत का अपरिहार्य परिणाम है, जो रैखिक गति पर लागू होता है। यद्यपि इसमें यकीनन घूर्णी प्रभाव के समान सैद्धांतिक वैधता है, प्रभाव के प्रायोगिक सत्यापन को प्राप्त करने में कठिनाई का अर्थ है कि इसे अधिक कम चर्चा प्राप्त होती है एवं अक्सर फ्रेम-ड्रैगिंग पर लेखों से हटा दिया जाता है ( किन्तु  आइंस्टीन, 1921 देखें)।<ref>Einstein, A ''[[The Meaning of Relativity]]'' (contains transcripts of his 1921 Princeton lectures).</ref>
स्टेटिक मास वृद्धि एक ही पेपर में आइंस्टीन द्वारा नोट किया गया तीसरा प्रभाव है।<ref>{{Cite book|title=सापेक्षता का अर्थ|last=Einstein |first=A. |date=1987 |publisher=Chapman and Hall |location=London |pages=95–96 }}</ref> प्रभाव एक पिंड की [[जड़ता]] में वृद्धि है जब अन्य पिंडों को पास में रखा जाता है। जबकि सख्ती से आकार कर्षण प्रभाव नहीं है (आइंस्टीन द्वारा शब्द आकार कर्षण का उपयोग नहीं किया जाता है), यह आइंस्टीन द्वारा प्रदर्शित किया जाता है कि यह सामान्य सापेक्षता के समान समीकरण से निकला है। यह एक छोटा सा प्रभाव भी है जिसकी प्रयोगात्मक रूप से पुष्टि करना मुश्किल है।
स्टेटिक मास वृद्धि एक ही पेपर में आइंस्टीन द्वारा नोट किया गया तीसरा प्रभाव है।<ref>{{Cite book|title=सापेक्षता का अर्थ|last=Einstein |first=A. |date=1987 |publisher=Chapman and Hall |location=London |pages=95–96 }}</ref> प्रभाव एक पिंड की [[जड़ता]] में वृद्धि होती है, जब अन्य पिंडों को पास में रखा जाता है। जबकि सख्ती से आकार कर्षण प्रभाव नहीं है (आइंस्टीन द्वारा शब्द आकार कर्षण का उपयोग नहीं किया जाता है), यह आइंस्टीन द्वारा प्रदर्शित किया जाता है, कि यह सामान्य सापेक्षता के समान समीकरण से निकला है। यह एक छोटा सा प्रभाव भी है जिसकी प्रयोगात्मक रूप से पुष्टि करना कठिन होता है।


== प्रायोगिक परीक्षण ==
== प्रायोगिक परीक्षण ==
1976 में वैन पैटन एवं एवरिट<ref>{{Cite journal|last1=Van Patten |first1=R. A. |last2=Everitt |first2=C. W. F. |year=1976 |title=आइंस्टीन के सापेक्षता के सामान्य सिद्धांत और जियोडेसी में बेहतर मापन का एक नया परीक्षण प्राप्त करने के लिए दो काउंटर-ऑर्बिटिंग ड्रैग-फ्री उपग्रहों के साथ संभावित प्रयोग|journal= Physical Review Letters|volume=36 |issue=12 |pages=629–632 |doi=10.1103/PhysRevLett.36.629 |bibcode=1976PhRvL..36..629V|s2cid=120984879 }}</ref><ref>{{Cite journal|last1=Van Patten |first1=R. A. |last2=Everitt |first2=C. W. F. |year=1976 |title=आइंस्टीन के सापेक्षता के सामान्य सिद्धांत और जियोडेसी में बेहतर माप का एक नया परीक्षण प्राप्त करने के लिए दो काउंटर-रोटेटिंग ड्रैग-फ्री उपग्रहों के साथ एक संभावित प्रयोग|journal= Celestial Mechanics|volume=13 |issue=4 |pages=429–447 |doi=10.1007/BF01229096 |bibcode = 1976CeMec..13..429V |s2cid=121577510 }}</ref> ड्रैग-फ्री उपकरण के साथ स्थलीय ध्रुवीय कक्षाओं में रखे जाने वाले काउंटर-ऑर्बिटिंग स्पेसक्राफ्ट की एक जोड़ी के लेंस-थिरिंग नोड प्रीसेशन को मापने के उद्देश्य से एक समर्पित मिशन को लागू करने का प्रस्ताव है। इस प्रकार के विचार का कुछ समतुल्य, सस्ता संस्करण 1986 में सिउफोलिनी द्वारा प्रस्तुत किया गया था<ref>{{Cite journal|last=Ciufolini |first=I. |year=1986 |title=Measurement of Lense–Thirring Drag on High-Altitude Laser-Ranged Artificial Satellites |journal= Physical Review Letters|volume=56 |issue=4 |pages=278–281 |doi=10.1103/PhysRevLett.56.278 |pmid=10033146 |bibcode=1986PhRvL..56..278C}}</ref> जिन्होंने 1976 में लॉन्च किए गए [[LAGEOS]] उपग्रह के समान एक कक्षा में एक निष्क्रिय, जियोडेटिक उपग्रह लॉन्च करने का प्रस्ताव रखा, इसके अलावा कक्षीय विमानों को 180 डिग्री से अलग किया जाना चाहिए: तथाकथित तितली विन्यास। मापने योग्य मात्रा, इस मामले में, LAGEOS के नोड्स एवं नए अंतरिक्ष यान का योग था, जिसे बाद में LAGEOS III, LARES (उपग्रह), WEBER-SAT नाम दिया गया।
1976 में वैन पैटन एवं एवरिट<ref>{{Cite journal|last1=Van Patten |first1=R. A. |last2=Everitt |first2=C. W. F. |year=1976 |title=आइंस्टीन के सापेक्षता के सामान्य सिद्धांत और जियोडेसी में बेहतर मापन का एक नया परीक्षण प्राप्त करने के लिए दो काउंटर-ऑर्बिटिंग ड्रैग-फ्री उपग्रहों के साथ संभावित प्रयोग|journal= Physical Review Letters|volume=36 |issue=12 |pages=629–632 |doi=10.1103/PhysRevLett.36.629 |bibcode=1976PhRvL..36..629V|s2cid=120984879 }}</ref><ref>{{Cite journal|last1=Van Patten |first1=R. A. |last2=Everitt |first2=C. W. F. |year=1976 |title=आइंस्टीन के सापेक्षता के सामान्य सिद्धांत और जियोडेसी में बेहतर माप का एक नया परीक्षण प्राप्त करने के लिए दो काउंटर-रोटेटिंग ड्रैग-फ्री उपग्रहों के साथ एक संभावित प्रयोग|journal= Celestial Mechanics|volume=13 |issue=4 |pages=429–447 |doi=10.1007/BF01229096 |bibcode = 1976CeMec..13..429V |s2cid=121577510 }}</ref> कर्षण-मुक्त उपकरण के साथ स्थलीय ध्रुवीय कक्षाओं में रखे जाने वाले प्रति-परिक्रमा अंतरिक्ष यान की जोड़ी के लेंस-थिरिंग नोड पुरस्सरण को मापने के उद्देश्य से समर्पित मिशन को प्रारम्भ करने का प्रस्ताव है। इस प्रकार के विचार का कुछ समतुल्य, अल्पमूल्य संस्करण 1986 में सिउफोलिनी द्वारा प्रस्तुत किया गया था<ref>{{Cite journal|last=Ciufolini |first=I. |year=1986 |title=Measurement of Lense–Thirring Drag on High-Altitude Laser-Ranged Artificial Satellites |journal= Physical Review Letters|volume=56 |issue=4 |pages=278–281 |doi=10.1103/PhysRevLett.56.278 |pmid=10033146 |bibcode=1986PhRvL..56..278C}}</ref> जिन्होंने 1976 में प्रसारित किए गए। (LAGEOS) [[LAGEOS|लाजोस]] उपग्रह के समान कक्षा में निष्क्रिय, भू गणितीय उपग्रह प्रसारित करने का प्रस्ताव रखा, इसके अतिरिक्त कक्षीय विमानों को 180 डिग्री से भिन्न किया जाना चाहिए। तथाकथित तितली विन्यास मापने योग्य मात्रा, इस विषय में, लाजियोस के नोड्स एवं नए अंतरिक्ष यान का योग था, जिसे पश्चात में लाजियोस III, उपग्रह वेबर-सैट नाम दिया गया।


उपस्थिता कक्षीय पिंडों से जुड़े परिदृश्यों के दायरे को सीमित करते हुए, लेंस-थिरिंग प्रभाव को मापने के लिए LAGEOS उपग्रह [[लार्स (उपग्रह)]] लेजर रेंजिंग ([[सैटेलाइट लेजर रेंजिंग]]) तकनीक का उपयोग करने का प्रथम प्रस्ताव 1977-1978 का है।<ref>{{Cite journal |bibcode = 1978A&A....69..321C|title = पृथ्वी के कृत्रिम उपग्रहों की गति पर सापेक्ष प्रभाव|journal = Astronomy and Astrophysics|volume = 69|pages = 321|last1 = Cugusi|first1 = L.|last2 = Proverbio|first2 = E.|year = 1978}}</ref> 1996 में LAGEOS एवं [[LAGEOS II]] उपग्रहों का उपयोग करके परीक्षण प्रभावी ढंग से किए जाने लगे हैं,<ref>{{Cite journal |doi = 10.1007/BF02731140|title = लेजर-रेंज वाले उपग्रहों का उपयोग करके जड़त्वीय फ्रेम और गुरुत्वाकर्षण चुंबकीय क्षेत्र को खींचने का मापन|journal = Il Nuovo Cimento A|volume = 109|issue = 5|pages = 575–590|year = 1996|last1 = Ciufolini|first1 = I.|last2 = Lucchesi|first2 = D.|last3 = Vespe|first3 = F.|last4 = Mandiello|first4 = A.|bibcode = 1996NCimA.109..575C|s2cid = 124860519}}</ref> एक रणनीति के अनुसार<ref>{{Cite journal |doi = 10.1007/BF02773551|title = दो कक्षीय उपग्रहों का उपयोग करके गुरुत्वाकर्षण क्षेत्र को मापने की एक नई विधि पर|journal = Il Nuovo Cimento A|volume = 109|issue = 12|pages = 1709–1720|year = 1996|last1 = Ciufolini|first1 = I.|bibcode = 1996NCimA.109.1709C|s2cid = 120415056}}</ref> दोनों उपग्रहों के नोड्स एवं LAGEOS II की उपभू के उपयुक्त संयोजन का उपयोग सम्मिलित है। LAGEOS उपग्रहों के साथ नवीनतम परीक्षण 2004-2006 में किए गए हैं<ref>{{Cite journal |doi = 10.1038/nature03007|pmid = 15496915|title = A confirmation of the general relativistic prediction of the Lense–Thirring effect|journal = Nature|volume = 431|issue = 7011|pages = 958–960|year = 2004|last1 = Ciufolini|first1 = I.|last2 = Pavlis|first2 = E. C.|bibcode = 2004Natur.431..958C|s2cid = 4423434}}</ref><ref>{{Cite journal |doi = 10.1016/j.newast.2006.02.001|title = CHAMP और GRACE से अर्थ ग्रेविटी मॉडल का उपयोग करके फ्रेम-ड्रैगिंग का निर्धारण|journal = New Astronomy|volume = 11|issue = 8|pages = 527–550|year = 2006|last1 = Ciufolini|first1 = I.|last2 = Pavlis|first2 = E.C.|last3 = Peron|first3 = R.|bibcode = 2006NewA...11..527C}}</ref> LAGEOS II की पेरिजी को हटाकर एवं एक रैखिक संयोजन का उपयोग करके।<ref>{{cite journal|last1=Iorio|first1=L.|last2=Morea|first2=A.|date=2004|title=लेंस-थिरिंग प्रभाव के मापन पर नई पृथ्वी गुरुत्वाकर्षण मॉडल का प्रभाव|journal=[[General Relativity and Gravitation]]|volume=36|issue=6|pages=1321–1333|doi=10.1023/B:GERG.0000022390.05674.99|bibcode=2004GReGr..36.1321I|arxiv=gr-qc/0304011|s2cid=119098428}}</ref> हाल ही में, साहित्य में कृत्रिम उपग्रहों के साथ लेंस-थिरिंग प्रभाव को मापने के प्रयासों का व्यापक अवलोकन प्रकाशित किया गया था।<ref>{{cite journal|last=Renzetti|first=G.|date=2013|title=कृत्रिम उपग्रहों के साथ कक्षीय फ्रेम-ड्रैगिंग को मापने के प्रयासों का इतिहास|journal=[[Central European Journal of Physics]]|volume=11|issue=5|pages=531–544|doi=10.2478/s11534-013-0189-1|bibcode=2013CEJPh..11..531R|doi-access=free}}</ref> LAGEOS उपग्रहों के साथ परीक्षणों में पहुंची समग्र सटीकता कुछ विवाद का विषय है।<ref>{{cite journal|last=Renzetti|first=G.|date=2014|title=हाल के डेटा विश्लेषणों के मद्देनजर लाजोस फ्रेम-ड्रैगिंग प्रयोग पर कुछ विचार|journal=[[New Astronomy (journal)|New Astronomy]]|volume=29|pages=25–27|doi=10.1016/j.newast.2013.10.008|bibcode=2014NewA...29...25R}}</ref><ref>{{cite journal|last1=Iorio|first1=L.|last2=Lichtenegger|first2=H. I. M.|last3=Ruggiero|first3=M. L.|last4=Corda|first4=C.|date=2011|title=सौर मंडल में लेंस-थिरिंग प्रभाव की घटना|journal=[[Astrophysics and Space Science]]|volume=331|issue=2|arxiv=1009.3225|pages=351–395|doi=10.1007/s10509-010-0489-5|bibcode=2011Ap&SS.331..351I|s2cid=119206212}}</ref><ref>{{cite journal|last1=Ciufolini|first1=I.|last2=Paolozzi|first2=A.|last3=Pavlis|first3=E. C.|last4=Ries|first4=J.|last5=Koenig|first5=R.|last6=Matzner|first6=R.|last7=Sindoni|first7=G.|last8=Neumeyer|first8=H.|date=2011|title=उपग्रह लेज़र रेंजिंग के साथ गुरुत्वीय भौतिकी का परीक्षण|journal=[[The European Physical Journal Plus]]|volume=126|issue=8|page=72|doi=10.1140/epjp/i2011-11072-2|bibcode=2011EPJP..126...72C|s2cid=122205903}}</ref>
उपस्थिता कक्षीय पिंडों से जुड़े परिदृश्यों के वृत को सीमित करते हुए, लेंस-थिरिंग प्रभाव को मापने के लिए लाजियोस उपग्रह [[लार्स (उपग्रह)]] लेजर रेंजिंग ([[सैटेलाइट लेजर रेंजिंग|उपग्रह लेजर रेंजिंग]]) प्रविधि का उपयोग करने का प्रथम प्रस्ताव 1977-1978 का है।<ref>{{Cite journal |bibcode = 1978A&A....69..321C|title = पृथ्वी के कृत्रिम उपग्रहों की गति पर सापेक्ष प्रभाव|journal = Astronomy and Astrophysics|volume = 69|pages = 321|last1 = Cugusi|first1 = L.|last2 = Proverbio|first2 = E.|year = 1978}}</ref> 1996 में लाजियोस एवं [[LAGEOS II|लाजियोस II]] उपग्रहों का उपयोग करके परीक्षण प्रभावी रूप से किए जाने लगे हैं।<ref>{{Cite journal |doi = 10.1007/BF02731140|title = लेजर-रेंज वाले उपग्रहों का उपयोग करके जड़त्वीय फ्रेम और गुरुत्वाकर्षण चुंबकीय क्षेत्र को खींचने का मापन|journal = Il Nuovo Cimento A|volume = 109|issue = 5|pages = 575–590|year = 1996|last1 = Ciufolini|first1 = I.|last2 = Lucchesi|first2 = D.|last3 = Vespe|first3 = F.|last4 = Mandiello|first4 = A.|bibcode = 1996NCimA.109..575C|s2cid = 124860519}}</ref> रणनीति के अनुसार<ref>{{Cite journal |doi = 10.1007/BF02773551|title = दो कक्षीय उपग्रहों का उपयोग करके गुरुत्वाकर्षण क्षेत्र को मापने की एक नई विधि पर|journal = Il Nuovo Cimento A|volume = 109|issue = 12|pages = 1709–1720|year = 1996|last1 = Ciufolini|first1 = I.|bibcode = 1996NCimA.109.1709C|s2cid = 120415056}}</ref> दोनों उपग्रहों के नोड्स एवं लाजियोस II के उपयुक्त संयोजन का उपयोग सम्मिलित है। लाजियोस उपग्रहों के साथ नवीनतम परीक्षण 2004-2006 में किए गए हैं।<ref>{{Cite journal |doi = 10.1038/nature03007|pmid = 15496915|title = A confirmation of the general relativistic prediction of the Lense–Thirring effect|journal = Nature|volume = 431|issue = 7011|pages = 958–960|year = 2004|last1 = Ciufolini|first1 = I.|last2 = Pavlis|first2 = E. C.|bibcode = 2004Natur.431..958C|s2cid = 4423434}}</ref><ref>{{Cite journal |doi = 10.1016/j.newast.2006.02.001|title = CHAMP और GRACE से अर्थ ग्रेविटी मॉडल का उपयोग करके फ्रेम-ड्रैगिंग का निर्धारण|journal = New Astronomy|volume = 11|issue = 8|pages = 527–550|year = 2006|last1 = Ciufolini|first1 = I.|last2 = Pavlis|first2 = E.C.|last3 = Peron|first3 = R.|bibcode = 2006NewA...11..527C}}</ref> लाजियोस II की पेरिजी को हटाकर एवं रैखिक संयोजन का उपयोग करके<ref>{{cite journal|last1=Iorio|first1=L.|last2=Morea|first2=A.|date=2004|title=लेंस-थिरिंग प्रभाव के मापन पर नई पृथ्वी गुरुत्वाकर्षण मॉडल का प्रभाव|journal=[[General Relativity and Gravitation]]|volume=36|issue=6|pages=1321–1333|doi=10.1023/B:GERG.0000022390.05674.99|bibcode=2004GReGr..36.1321I|arxiv=gr-qc/0304011|s2cid=119098428}}</ref> शीघ्र ही, साहित्य में कृत्रिम उपग्रहों के साथ लेंस-थिरिंग प्रभाव को मापने के प्रयासों का व्यापक अवलोकन प्रकाशित किया गया था।<ref>{{cite journal|last=Renzetti|first=G.|date=2013|title=कृत्रिम उपग्रहों के साथ कक्षीय फ्रेम-ड्रैगिंग को मापने के प्रयासों का इतिहास|journal=[[Central European Journal of Physics]]|volume=11|issue=5|pages=531–544|doi=10.2478/s11534-013-0189-1|bibcode=2013CEJPh..11..531R|doi-access=free}}</ref> लाजियोस उपग्रहों के साथ परीक्षणों में पहुंची समग्र स्थिरता कुछ विवाद का विषय है।<ref>{{cite journal|last=Renzetti|first=G.|date=2014|title=हाल के डेटा विश्लेषणों के मद्देनजर लाजोस फ्रेम-ड्रैगिंग प्रयोग पर कुछ विचार|journal=[[New Astronomy (journal)|New Astronomy]]|volume=29|pages=25–27|doi=10.1016/j.newast.2013.10.008|bibcode=2014NewA...29...25R}}</ref><ref>{{cite journal|last1=Iorio|first1=L.|last2=Lichtenegger|first2=H. I. M.|last3=Ruggiero|first3=M. L.|last4=Corda|first4=C.|date=2011|title=सौर मंडल में लेंस-थिरिंग प्रभाव की घटना|journal=[[Astrophysics and Space Science]]|volume=331|issue=2|arxiv=1009.3225|pages=351–395|doi=10.1007/s10509-010-0489-5|bibcode=2011Ap&SS.331..351I|s2cid=119206212}}</ref><ref>{{cite journal|last1=Ciufolini|first1=I.|last2=Paolozzi|first2=A.|last3=Pavlis|first3=E. C.|last4=Ries|first4=J.|last5=Koenig|first5=R.|last6=Matzner|first6=R.|last7=Sindoni|first7=G.|last8=Neumeyer|first8=H.|date=2011|title=उपग्रह लेज़र रेंजिंग के साथ गुरुत्वीय भौतिकी का परीक्षण|journal=[[The European Physical Journal Plus]]|volume=126|issue=8|page=72|doi=10.1140/epjp/i2011-11072-2|bibcode=2011EPJP..126...72C|s2cid=122205903}}</ref> ग्रेविटी प्रोब बी प्रयोग<ref>Everitt, C. W. F, The Gyroscope Experiment I. General Description and Analysis of Gyroscope Performance. In: Bertotti, B. (Ed.), ''Proc. Int. School Phys. "Enrico Fermi" Course LVI''. New Academic Press, New York, pp. 331–360, 1974. Reprinted in: Ruffini, R. J., Sigismondi, C. (Eds.), ''Nonlinear Gravitodynamics. The Lense–Thirring Effect''. World Scientific, Singapore, pp. 439–468, 2003.</ref><ref>Everitt, C. W. F., et al., Gravity Probe B: Countdown to Launch. In: Laemmerzahl, C., Everitt, C. W. F., Hehl, F. W. (Eds.), ''Gyros, Clocks, Interferometers...: Testing Relativistic Gravity in Space''. Springer, Berlin, pp. 52–82, 2001.</ref> स्टैनफोर्ड समूह एवं नासा द्वारा उपग्रह-आधारित मिशन था, जिसका उपयोग प्रयोगात्मक रूप से एक अन्य ग्रेविटोमैग्नेटिक प्रभाव को मापने के लिए किया जाता था। जाइरोस्कोप का [[ शिफ पुरस्सरण ]],<ref>Pugh, G. E., Proposal for a Satellite Test of the Coriolis Prediction of General Relativity, ''WSEG, Research Memorandum No. 11'', 1959. Reprinted in: Ruffini, R. J., Sigismondi, C. (Eds.), ''Nonlinear Gravitodynamics. The Lense–Thirring Effect''. World Scientific, Singapore, pp. 414–426, 2003.</ref><ref>[[Leonard I. Schiff|Schiff, L.]], On Experimental Tests of the General Theory of Relativity, ''Am. J. Phys.'', '''28''', 340–343, 1960.</ref><ref>{{cite journal |author1=Ries, J. C. |author2=Eanes, R. J. |author3=Tapley, B. D. |author4=Peterson, G. E. |title=एसएलआर और ग्रेस ग्रेविटी मिशन के साथ एक बेहतर लेंस-थिरिंग परीक्षण की संभावनाएँ|journal=Proc. 13th Int. Laser Ranging Workshop NASA CP 2003 |date=2003 |url=https://cddis.nasa.gov/lw13/docs/presentations/sci_ries_1p.pdf}}</ref> अपेक्षित 1% स्थिरता दुर्भाग्य से ऐसी स्थिरता प्राप्त नहीं हुई थी। अप्रैल 2007 में निर्धारित किए गए प्रथम प्रारंभिक परिणामों ने स्थिरता की ओर संकेत दिया। <ref>Muhlfelder, B., Mac Keiser, G., and Turneaure, J., Gravity Probe B Experiment Error, ''poster L1.00027 presented at the American Physical Society (APS) meeting in Jacksonville, Florida, on 14–17 April 2007'', 2007.</ref> 256–128%, दिसंबर 2007 में लगभग 13% तक पहुँचने की आशा के साथ <ref>{{cite web|url=https://einstein.stanford.edu/content/press_releases/SU/pr-aps-041807.pdf|title=StanfordNews 4/14/07|website=einstein.stanford.edu|access-date=2019-09-27}}</ref>2008 में नासा खगोल भौतिकी प्रभाग संचालन मिशन की वरिष्ठ समीक्षा विवरण में कहा गया था, कि यह संभावना नहीं थी कि ग्रेविटी प्रोब बी टीम सामान्य सापेक्षता (आकार सहित) के वर्तमान में अप्रयुक्त दृष्टिकोण के ठोस परीक्षण का निर्माण करने के लिए आवश्यक स्तर तक त्रुटियों को अर्घ्य करने में सक्षम होगी।<ref>{{cite web|url=http://nasascience.nasa.gov/astrophysics/about-us/science-strategy/senior-reviews/AstroSR08_Report.pdf|title=Report of the 2008 Senior Review of the Astrophysics Division Operating Missions|access-date=2009-03-20|url-status=dead|archive-url=https://web.archive.org/web/20080921103646/http://nasascience.nasa.gov/astrophysics/about-us/science-strategy/senior-reviews/AstroSR08_Report.pdf/|archive-date=2008-09-21}} ''Report of the 2008 Senior Review of the Astrophysics Division Operating Missions'', NASA</ref><ref>[https://www.newscientist.com/article/dn13938-gravity-probe-b-scores-f-in-nasa-review.html ''Gravity Probe B scores 'F' in NASA review''], Jeff Hecht, New Scientist – Space, May 20, 2008</ref> 4 मई, 2011 को स्टैनफोर्ड स्थित विश्लेषण समूह एवं नासा ने अंतिम प्रतिवेदन की घोषणा की,<ref>{{cite web|url=http://einstein.stanford.edu/highlights/status1.html|title=Gravity Probe B - MISSION STATUS}}</ref> एवं इसमें जीपी-बी के डेटा ने लगभग 19 प्रतिशत की त्रुटि के साथ फ्रेम-ड्रैगिंग प्रभाव का प्रदर्शन किया, एवं आइंस्टीन का अनुमानित मूल्य विश्वास अंतराल के केंद्र में था।<ref>{{cite web|url=http://www.sciencenews.org/view/generic/id/73870/title/Gravity_Probe_B_finally_pays_off_|title=गुरुत्वाकर्षण जांच बी अंत में भुगतान करता है|date=2013-09-23}}</ref><ref name=PRL>{{cite news|url=http://prl.aps.org/accepted/L/ea070Y8dQ491d22a28828c95f660a57ac82e7d8c0|journal=Physical Review Letters|title=Gravity Probe B: Final results of a space experiment to test general relativity|date=2011-05-01|access-date=2011-05-06}}</ref> नासा ने उपग्रह के लिए आकार कर्षण के सत्यापन में सफलता के प्रभुत्व को प्रकाशित किया<ref>{{cite web|last1=Ramanujan|first1=Krishna|title=जैसे-जैसे दुनिया बदलती है यह समय और स्थान को खींचती है|url=https://www.nasa.gov/vision/earth/lookingatearth/earth_drag.html|website=NASA|publisher=Goddard Space Flight Center|access-date=23 August 2019}}</ref> एवं ग्रेविटी प्रोब बी,<ref>{{cite web|last1=Perrotto|first1=Trent J.|title=ग्रेविटी प्रोब बी|url=https://www.nasa.gov/mission_pages/gpb/gpb_results.html|website=NASA|publisher=Headquarters, Washington|access-date=23 August 2019}}</ref> जिनमें से दोनों प्रभुत्व अभी भी सार्वजनिक दृश्य में हैं। इटली में शोध समूह,<ref>{{cite journal|pmc=4946852|year=2016|last1=Ciufolini|first1=I.|title=A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model: Measurement of Earth's dragging of inertial frames|journal=The European Physical Journal C|volume=76|issue=3|pages=120|last2=Paolozzi|first2=A.|last3=Pavlis|first3=E. C.|last4=Koenig|first4=R.|last5=Ries|first5=J.|last6=Gurzadyan|first6=V.|last7=Matzner|first7=R.|last8=Penrose|first8=R.|last9=Sindoni|first9=G.|last10=Paris|first10=C.|last11=Khachatryan|first11=H.|last12=Mirzoyan|first12=S.|pmid=27471430|doi=10.1140/epjc/s10052-016-3961-8|bibcode=2016EPJC...76..120C|arxiv=1603.09674}}</ref> यूएसए, एवं यूके ने पीयर रिव्यू जर्नल में प्रकाशित ग्रेस ग्रेविटी प्रतिरूप के साथ आकार कर्षण के सत्यापन में सफलता का प्रभुत्व किया। सभी प्रभुत्व में अधिक स्थिरता एवं अन्य गुरुत्वाकर्षण प्रतिरूप पर आगे के शोध के लिए अनुरोध सम्मिलित हैं।
ग्रेविटी प्रोब बी प्रयोग<ref>Everitt, C. W. F, The Gyroscope Experiment I. General Description and Analysis of Gyroscope Performance. In: Bertotti, B. (Ed.), ''Proc. Int. School Phys. "Enrico Fermi" Course LVI''. New Academic Press, New York, pp. 331–360, 1974. Reprinted in: Ruffini, R. J., Sigismondi, C. (Eds.), ''Nonlinear Gravitodynamics. The Lense–Thirring Effect''. World Scientific, Singapore, pp. 439–468, 2003.</ref><ref>Everitt, C. W. F., et al., Gravity Probe B: Countdown to Launch. In: Laemmerzahl, C., Everitt, C. W. F., Hehl, F. W. (Eds.), ''Gyros, Clocks, Interferometers...: Testing Relativistic Gravity in Space''. Springer, Berlin, pp. 52–82, 2001.</ref> स्टैनफोर्ड समूह एवं नासा द्वारा एक उपग्रह-आधारित मिशन था, जिसका उपयोग प्रयोगात्मक रूप से एक अन्य ग्रेविटोमैग्नेटिक प्रभाव को मापने के लिए किया जाता था, जाइरोस्कोप का [[ शिफ पुरस्सरण ]],<ref>Pugh, G. E., Proposal for a Satellite Test of the Coriolis Prediction of General Relativity, ''WSEG, Research Memorandum No. 11'', 1959. Reprinted in: Ruffini, R. J., Sigismondi, C. (Eds.), ''Nonlinear Gravitodynamics. The Lense–Thirring Effect''. World Scientific, Singapore, pp. 414–426, 2003.</ref><ref>[[Leonard I. Schiff|Schiff, L.]], On Experimental Tests of the General Theory of Relativity, ''Am. J. Phys.'', '''28''', 340–343, 1960.</ref><ref>{{cite journal |author1=Ries, J. C. |author2=Eanes, R. J. |author3=Tapley, B. D. |author4=Peterson, G. E. |title=एसएलआर और ग्रेस ग्रेविटी मिशन के साथ एक बेहतर लेंस-थिरिंग परीक्षण की संभावनाएँ|journal=Proc. 13th Int. Laser Ranging Workshop NASA CP 2003 |date=2003 |url=https://cddis.nasa.gov/lw13/docs/presentations/sci_ries_1p.pdf}}</ref> अपेक्षित 1% सटीकता या बेहतर के लिए। दुर्भाग्य से ऐसी सटीकता हासिल नहीं हुई थी। अप्रैल 2007 में जारी किए गए पहले प्रारंभिक परिणामों ने सटीकता की ओर इशारा किया<ref>Muhlfelder, B., Mac Keiser, G., and Turneaure, J., Gravity Probe B Experiment Error, ''poster L1.00027 presented at the American Physical Society (APS) meeting in Jacksonville, Florida, on 14–17 April 2007'', 2007.</ref> 256–128%, दिसंबर 2007 में लगभग 13% तक पहुँचने की आशा के साथ।<ref>{{cite web|url=https://einstein.stanford.edu/content/press_releases/SU/pr-aps-041807.pdf|title=StanfordNews 4/14/07|website=einstein.stanford.edu|access-date=2019-09-27}}</ref>
2008 में नासा एस्ट्रोफिजिक्स डिवीजन ऑपरेटिंग मिशन की वरिष्ठ समीक्षा रिपोर्ट में कहा गया था कि यह संभावना नहीं थी कि ग्रेविटी प्रोब बी टीम सामान्य सापेक्षता (आकार सहित) के वर्तमान में अप्रयुक्त पहलुओं के एक ठोस परीक्षण का निर्माण करने के लिए आवश्यक स्तर तक त्रुटियों को कम करने में सक्षम होगी। खींचना)।<ref>{{cite web|url=http://nasascience.nasa.gov/astrophysics/about-us/science-strategy/senior-reviews/AstroSR08_Report.pdf|title=Report of the 2008 Senior Review of the Astrophysics Division Operating Missions|access-date=2009-03-20|url-status=dead|archive-url=https://web.archive.org/web/20080921103646/http://nasascience.nasa.gov/astrophysics/about-us/science-strategy/senior-reviews/AstroSR08_Report.pdf/|archive-date=2008-09-21}} ''Report of the 2008 Senior Review of the Astrophysics Division Operating Missions'', NASA</ref><ref>[https://www.newscientist.com/article/dn13938-gravity-probe-b-scores-f-in-nasa-review.html ''Gravity Probe B scores 'F' in NASA review''], Jeff Hecht, New Scientist – Space, May 20, 2008</ref>
4 मई, 2011 को स्टैनफोर्ड स्थित विश्लेषण समूह एवं नासा ने अंतिम रिपोर्ट की घोषणा की,<ref>{{cite web|url=http://einstein.stanford.edu/highlights/status1.html|title=Gravity Probe B - MISSION STATUS}}</ref> एवं इसमें जीपी-बी के डेटा ने लगभग 19 प्रतिशत की त्रुटि के साथ आकार-कर्षण प्रभाव का प्रदर्शन किया, एवं आइंस्टीन का अनुमानित मूल्य विश्वास अंतराल के केंद्र में था।<ref>{{cite web|url=http://www.sciencenews.org/view/generic/id/73870/title/Gravity_Probe_B_finally_pays_off_|title=गुरुत्वाकर्षण जांच बी अंत में भुगतान करता है|date=2013-09-23}}</ref><ref name=PRL>{{cite news|url=http://prl.aps.org/accepted/L/ea070Y8dQ491d22a28828c95f660a57ac82e7d8c0|journal=Physical Review Letters|title=Gravity Probe B: Final results of a space experiment to test general relativity|date=2011-05-01|access-date=2011-05-06}}</ref>
नासा ने ग्रेस (उपग्रह) के लिए आकार कर्षण के सत्यापन में सफलता के दावों को प्रकाशित किया<ref>{{cite web|last1=Ramanujan|first1=Krishna|title=जैसे-जैसे दुनिया बदलती है यह समय और स्थान को खींचती है|url=https://www.nasa.gov/vision/earth/lookingatearth/earth_drag.html|website=NASA|publisher=Goddard Space Flight Center|access-date=23 August 2019}}</ref> एवं ग्रेविटी प्रोब बी,<ref>{{cite web|last1=Perrotto|first1=Trent J.|title=ग्रेविटी प्रोब बी|url=https://www.nasa.gov/mission_pages/gpb/gpb_results.html|website=NASA|publisher=Headquarters, Washington|access-date=23 August 2019}}</ref> जिनमें से दोनों दावे अभी भी सार्वजनिक दृश्य में हैं। इटली में एक शोध समूह,<ref>{{cite journal|pmc=4946852|year=2016|last1=Ciufolini|first1=I.|title=A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model: Measurement of Earth's dragging of inertial frames|journal=The European Physical Journal C|volume=76|issue=3|pages=120|last2=Paolozzi|first2=A.|last3=Pavlis|first3=E. C.|last4=Koenig|first4=R.|last5=Ries|first5=J.|last6=Gurzadyan|first6=V.|last7=Matzner|first7=R.|last8=Penrose|first8=R.|last9=Sindoni|first9=G.|last10=Paris|first10=C.|last11=Khachatryan|first11=H.|last12=Mirzoyan|first12=S.|pmid=27471430|doi=10.1140/epjc/s10052-016-3961-8|bibcode=2016EPJC...76..120C|arxiv=1603.09674}}</ref> यूएसए, एवं यूके ने पीयर रिव्यू जर्नल में प्रकाशित ग्रेस ग्रेविटी मॉडल के साथ आकार कर्षण के सत्यापन में सफलता का दावा किया। सभी दावों में अधिक सटीकता एवं अन्य गुरुत्वाकर्षण मॉडल पर आगे के शोध के लिए सिफारिशें सम्मिलित हैं।


कताई, सुपरमैसिव ब्लैक होल के करीब परिक्रमा करने वाले सितारों के मामले में, आकार कर्षण से स्टार के ऑर्बिटल प्लेन को ब्लैक होल स्पिन अक्ष के बारे में लेंस-थिरिंग पुरस्सरण का कारण बनना चाहिए। मिल्की वे [[आकाशगंगा]] के केंद्र में सितारों की [[ astrometry ]] निगरानी के माध्यम से अगले कुछ वर्षों में इस प्रभाव का पता लगाया जाना चाहिए।<ref>{{cite journal|last1=Merritt|first1=D.|last2=Alexander|first2=T.|last3=Mikkola|first3=S.|last4=Will|first4=C.|author-link=David Merritt|title=तारकीय कक्षाओं का उपयोग कर गांगेय केंद्र ब्लैक होल के गुणों का परीक्षण|journal=Physical Review D|volume=81|issue=6|pages=062002|year=2010|bibcode=2010PhRvD..81f2002M|doi=10.1103/PhysRevD.81.062002|arxiv=0911.4718|s2cid=118646069}}</ref>
विशालकाय ब्लैक छिद्र के निकट परिक्रमा करने वाले सितारों के विषय में, आकार कर्षण से सितारों की ऑर्बिटल प्लेन को ब्लैक छिद्र घुमाव अक्ष के विषय में लेंस-थिरिंग पुरस्सरण का कारण बनना चाहिए। मिल्की वे [[आकाशगंगा]] के केंद्र में सितारों की [[ astrometry | एस्ट्रोमेट्रिक]] निरिक्षण के माध्यम से निकटतम कुछ वर्षों में इस प्रभाव की जानकारी प्राप्त करनी चाहिए।<ref>{{cite journal|last1=Merritt|first1=D.|last2=Alexander|first2=T.|last3=Mikkola|first3=S.|last4=Will|first4=C.|author-link=David Merritt|title=तारकीय कक्षाओं का उपयोग कर गांगेय केंद्र ब्लैक होल के गुणों का परीक्षण|journal=Physical Review D|volume=81|issue=6|pages=062002|year=2010|bibcode=2010PhRvD..81f2002M|doi=10.1103/PhysRevD.81.062002|arxiv=0911.4718|s2cid=118646069}}</ref> भिन्न-भिन्न कक्षाओं में दो तारों के कक्षीय पूर्वसरण की दर की तुलना करके, काले छिद्र के घुमाव को मापने के अतिरिक्त, सामान्य सापेक्षता के [[नो-हेयर प्रमेय]] का परीक्षण करना सिद्धांत रूप में संभव होता है।<ref>{{cite journal|last=Will|first=C.|author-link=Clifford Will|title=गांगेय केंद्र ब्लैक होल धनु A* का उपयोग करके सामान्य सापेक्षवादी "नो-हेयर" प्रमेयों का परीक्षण|journal=Astrophysical Journal Letters|volume=674|issue=1|pages=L25–L28|year=2008|doi=10.1086/528847|bibcode=2008ApJ...674L..25W|arxiv=0711.1677|s2cid=11685632}}</ref>
अलग-अलग कक्षाओं में दो तारों के कक्षीय पूर्वसरण की दर की तुलना करके, ब्लैक होल के स्पिन को मापने के अलावा, सामान्य सापेक्षता के [[नो-हेयर प्रमेय]] का परीक्षण करना सिद्धांत रूप में संभव है।<ref>{{cite journal|last=Will|first=C.|author-link=Clifford Will|title=गांगेय केंद्र ब्लैक होल धनु A* का उपयोग करके सामान्य सापेक्षवादी "नो-हेयर" प्रमेयों का परीक्षण|journal=Astrophysical Journal Letters|volume=674|issue=1|pages=L25–L28|year=2008|doi=10.1086/528847|bibcode=2008ApJ...674L..25W|arxiv=0711.1677|s2cid=11685632}}</ref>




Line 39: Line 27:




[[सापेक्षवादी जेट]] आकार-कर्षण की वास्तविकता के लिए साक्ष्य प्रदान कर सकते हैं। [[घूमता हुआ ब्लैक होल]] के [[एर्गोस्फीयर]] के भीतर लेंस-थिरिंग प्रीसेशन | लेंस-थिरिंग प्रभाव (आकार कर्षण) द्वारा उत्पन्न गुरुत्वाकर्षण बल<ref>{{Cite journal|last=Williams |first=R. K. |date=1995 |title=Extracting X rays, Ύ rays, and relativistic e<sup>−</sup>– e<sup>+</sup> pairs from supermassive Kerr black holes using the Penrose mechanism |journal=Physical Review D |volume=51 |issue=10 |pages=5387–5427 |doi=10.1103/PhysRevD.51.5387 |bibcode = 1995PhRvD..51.5387W |pmid=10018300}}</ref><ref>{{Cite journal|last=Williams |first=R. K. |date=2004 |title=Collimated escaping vortical polar e<sup>−</sup>–e<sup>+</sup> jets intrinsically produced by rotating black holes and Penrose processes |journal=The Astrophysical Journal |volume=611 |issue= 2|pages=952–963 |doi=10.1086/422304 |bibcode=2004ApJ...611..952W|arxiv = astro-ph/0404135 |s2cid=1350543 }}</ref> [[रोजर पेनरोज़]] द्वारा ऊर्जा निष्कर्षण तंत्र के साथ संयुक्त<ref>{{Cite journal|last=Penrose |first=R. |date=1969 |title=Gravitational collapse: The role of general relativity |journal=Nuovo Cimento Rivista |volume=1 |issue=Numero Speciale |pages=252–276 |bibcode=1969NCimR...1..252P }}</ref> आपेक्षिकीय जेट के देखे गए गुणों की व्याख्या करने के लिए उपयोग किया गया है। <!-- Those properties have not been adequately described by [[magnetohydrodynamics]].<ref>{{cite arxiv |last=Gariel |first=J. |last2=MacCallum |first2=M. A. H.|last3= Marcilhacy |first2= G. |last4= Santos |first2=N. O. |year=2007 |title=Kerr geodesics, the Penrose process and jet collimation by a black hole |arxiv=gr-qc/0702123v1}}</ref> -->[[रेवा के विलियम्स]] द्वारा विकसित ग्रेविटोमैग्नेटिक मॉडल [[कैसर]] एवं सक्रिय गैलेक्टिक नाभिक द्वारा उत्सर्जित उच्च ऊर्जा कणों (~GeV) की भविष्यवाणी करता है; एक्स-रे, γ-रे, एवं आपेक्षिकीय ई की निकासी<sup>−</sup>– एवं<sup>+</sup> जोड़े; ध्रुवीय अक्ष के बारे में संघटित जेट; एवं जेट्स का विषम गठन (कक्षीय तल के सापेक्ष)।


लेंस-थिरिंग प्रभाव एक द्विआधारी प्रणाली में देखा गया है जिसमें एक विशाल सफेद बौना एवं एक [[पलसर]] होता है।<ref>{{cite journal |author1=V. Venkatraman Krishnan |display-authors=etal |date=31 January 2020 |title=Lense–Thirring frame dragging induced by a fast-rotating white dwarf in a binary pulsar system |journal=[[Science (journal)|Science]] |volume=367 |issue=5 |pages=577–580 |arxiv=2001.11405 |doi=10.1126/science.aax7007|pmid=32001656 |bibcode=2020Sci...367..577V |s2cid=210966295 }}</ref>
[[सापेक्षवादी जेट]] फ्रेम-ड्रैगिंग की वास्तविकता के लिए साक्ष्य प्रदान कर सकते हैं। [[घूमता हुआ ब्लैक होल|घूमता हुआ ब्लैक छिद्र]] के [[एर्गोस्फीयर]] के अंदर लेंस-थिरिंग प्रभाव (आकार कर्षण) द्वारा उत्पन्न गुरुत्वाकर्षण बल<ref>{{Cite journal|last=Williams |first=R. K. |date=1995 |title=Extracting X rays, Ύ rays, and relativistic e<sup>−</sup>– e<sup>+</sup> pairs from supermassive Kerr black holes using the Penrose mechanism |journal=Physical Review D |volume=51 |issue=10 |pages=5387–5427 |doi=10.1103/PhysRevD.51.5387 |bibcode = 1995PhRvD..51.5387W |pmid=10018300}}</ref><ref>{{Cite journal|last=Williams |first=R. K. |date=2004 |title=Collimated escaping vortical polar e<sup>−</sup>–e<sup>+</sup> jets intrinsically produced by rotating black holes and Penrose processes |journal=The Astrophysical Journal |volume=611 |issue= 2|pages=952–963 |doi=10.1086/422304 |bibcode=2004ApJ...611..952W|arxiv = astro-ph/0404135 |s2cid=1350543 }}</ref> [[रोजर पेनरोज़]] द्वारा ऊर्जा निष्कर्षण तंत्र के साथ संयुक्त<ref>{{Cite journal|last=Penrose |first=R. |date=1969 |title=Gravitational collapse: The role of general relativity |journal=Nuovo Cimento Rivista |volume=1 |issue=Numero Speciale |pages=252–276 |bibcode=1969NCimR...1..252P }}</ref> आपेक्षिकीय जेट के देखे गए गुणों की व्याख्या करने के लिए उपयोग किया गया है। [[रेवा के विलियम्स]] द्वारा विकसित ग्रेविटोमैग्नेटिक प्रतिरूप [[कैसर]] एवं सक्रिय गैलेक्टिक नाभिक द्वारा उत्सर्जित उच्च ऊर्जा कणों (~GeV) की भविष्यवाणी करता है; X-rays, γ-rays, एवं आपेक्षिकीय की निकासी  e<sup>−</sup>– e<sup>+</sup> <sup>−</sup> एवं जोड़े ध्रुवीय अक्ष के विषय में संघटित जेट; एवं जेट्स का विषम गठन (कक्षीय तल के सापेक्ष) होता है।
 
लेंस-थिरिंग प्रभाव द्विआधारी प्रणाली में देखा गया है जिसमें विशाल सफेद बौना एवं [[पलसर]] होता है।<ref>{{cite journal |author1=V. Venkatraman Krishnan |display-authors=etal |date=31 January 2020 |title=Lense–Thirring frame dragging induced by a fast-rotating white dwarf in a binary pulsar system |journal=[[Science (journal)|Science]] |volume=367 |issue=5 |pages=577–580 |arxiv=2001.11405 |doi=10.1126/science.aax7007|pmid=32001656 |bibcode=2020Sci...367..577V |s2cid=210966295 }}</ref>




== गणितीय व्युत्पत्ति ==
== गणितीय व्युत्पत्ति ==
[[ केर मीट्रिक ]] का उपयोग करके फ़्रेम-कर्षण को सबसे आसानी से चित्रित किया जा सकता है,<ref name="kerr_1963">{{Cite journal| last = Kerr | first = R. P. | author-link = Roy Kerr | date = 1963 | title = बीजीय रूप से विशेष मेट्रिक्स के उदाहरण के रूप में कताई द्रव्यमान का गुरुत्वाकर्षण क्षेत्र| journal = Physical Review Letters | volume = 11| issue = 5 | pages = 237–238 | doi = 10.1103/PhysRevLett.11.237 | bibcode=1963PhRvL..11..237K}}</ref><ref>{{Cite book| last1 = Landau | first1 = L. D. | author-link1 = Lev Landau |last2=Lifshitz |first2=E. M. | date = 1975 | title = The Classical Theory of Fields (Course of Theoretical Physics, Vol. 2) | edition = revised 4th English | publisher = Pergamon Press | location = New York | isbn = 978-0-08-018176-9 |pages = 321–330}}</ref> जो कोणीय गति J के साथ घूमने वाले द्रव्यमान M के आसपास के क्षेत्र में स्पेसटाइम की ज्यामिति का वर्णन करता है, एवं बॉयर-लिंडक्विस्ट निर्देशांक (परिवर्तन के लिए लिंक देखें):
[[ केर मीट्रिक | केर त्रिज्या]] का उपयोग करके फ़्रेम-कर्षण को सबसे सरलता से चित्रित किया जा सकता है,<ref name="kerr_1963">{{Cite journal| last = Kerr | first = R. P. | author-link = Roy Kerr | date = 1963 | title = बीजीय रूप से विशेष मेट्रिक्स के उदाहरण के रूप में कताई द्रव्यमान का गुरुत्वाकर्षण क्षेत्र| journal = Physical Review Letters | volume = 11| issue = 5 | pages = 237–238 | doi = 10.1103/PhysRevLett.11.237 | bibcode=1963PhRvL..11..237K}}</ref><ref>{{Cite book| last1 = Landau | first1 = L. D. | author-link1 = Lev Landau |last2=Lifshitz |first2=E. M. | date = 1975 | title = The Classical Theory of Fields (Course of Theoretical Physics, Vol. 2) | edition = revised 4th English | publisher = Pergamon Press | location = New York | isbn = 978-0-08-018176-9 |pages = 321–330}}</ref> जो कोणीय गति J के साथ घूमने वाले द्रव्यमान M के आसपास के क्षेत्र में अंतरिक्ष-समय की ज्यामिति का वर्णन एवं बॉयर-लिंडक्विस्ट निर्देशांक करता है,  (परिवर्तन के लिए लिंक देखें)


:<math>\begin{align}
:<math>\begin{align}
Line 55: Line 44:
+ \frac{2r_{s} r\alpha c \sin^{2} \theta }{\rho^{2}} d\phi dt
+ \frac{2r_{s} r\alpha c \sin^{2} \theta }{\rho^{2}} d\phi dt
\end{align}</math>
\end{align}</math>
जहां आर<sub>''s''</sub> [[श्वार्जस्चिल्ड मीट्रिक]] है
जहां ''r<sub>s</sub>'' [[श्वार्जस्चिल्ड मीट्रिक|श्वार्जस्चिल्ड त्रिज्या]] है


:<math>
:<math>
r_{s} = \frac{2GM}{c^{2}}
r_{s} = \frac{2GM}{c^{2}}
</math>
</math>
एवं जहां संक्षिप्तता के लिए निम्नलिखित आशुलिपि चर पेश किए गए हैं
एवं जहां संक्षिप्तता के लिए निम्नलिखित आशुलिपि चर प्रस्तुत किए गए हैं।


:<math>
:<math>
Line 71: Line 60:
\Lambda^{2} = r^{2} - r_{s} r + \alpha^{2}\,\!
\Lambda^{2} = r^{2} - r_{s} r + \alpha^{2}\,\!
</math>
</math>
गैर-सापेक्षतावादी सीमा में जहां M (या, समतुल्य, r<sub>''s''</sub>) शून्य पर जाता है, केर मीट्रिक तिरछी गोलाकार निर्देशांक के लिए ओर्थोगोनल मीट्रिक बन जाता है
गैर-सापेक्षतावादी सीमा में जहां M (या, समतुल्य, r<sub>''s''</sub>) शून्य पर जाता है, केर त्रिज्या तिरछी वृत्ताकार निर्देशांक के लिए ओर्थोगोनल त्रिज्या बन जाता है।


:<math>
:<math>
Line 80: Line 69:
- \left( r^{2} + \alpha^{2} \right) \sin^{2}\theta d\phi^{2}
- \left( r^{2} + \alpha^{2} \right) \sin^{2}\theta d\phi^{2}
</math>
</math>
हम निम्नलिखित रूप में केर मीट्रिक को फिर से लिख सकते हैं
हम निम्नलिखित रूप में केर त्रिज्या को तत्पश्चात से लिख सकते हैं।


:<math>
:<math>
Line 88: Line 77:
g_{\phi\phi} \left( d\phi + \frac{g_{t\phi}}{g_{\phi\phi}} dt \right)^{2}
g_{\phi\phi} \left( d\phi + \frac{g_{t\phi}}{g_{\phi\phi}} dt \right)^{2}
</math>
</math>
यह मीट्रिक सह-घूर्णन संदर्भ फ़्रेम के समतुल्य है जो कोणीय गति Ω के साथ घूम रहा है जो त्रिज्या r एवं [[colatitude]] θ दोनों पर निर्भर करता है
यह त्रिज्या सह-घूर्णन संदर्भ फ़्रेम के समतुल्य है, जो कोणीय गति Ω के साथ घूम रहा है जो त्रिज्या r एवं [[colatitude|कोलेटीट्यूड]] θ दोनों पर निर्भर करता है।


:<math>
:<math>
\Omega = -\frac{g_{t\phi}}{g_{\phi\phi}} = \frac{r_{s} \alpha r c}{\rho^{2} \left( r^{2} + \alpha^{2} \right) + r_{s} \alpha^{2} r \sin^{2}\theta}
\Omega = -\frac{g_{t\phi}}{g_{\phi\phi}} = \frac{r_{s} \alpha r c}{\rho^{2} \left( r^{2} + \alpha^{2} \right) + r_{s} \alpha^{2} r \sin^{2}\theta}
</math>
</math>
भूमध्य रेखा के तल में यह सरल करता है:<ref>{{Cite journal|last=Tartaglia |first=A. |date=2008 |title=ग्रेविटोमेट्रिक घड़ी प्रभाव का पता लगाना|journal= Classical and Quantum Gravity|volume= 17|issue= 4|pages= 783–792|arxiv=gr-qc/9909006|bibcode = 2000CQGra..17..783T |doi = 10.1088/0264-9381/17/4/304 |s2cid=9356721 }}</ref>
भूमध्य रेखा के तल में यह सरल करता है।<ref>{{Cite journal|last=Tartaglia |first=A. |date=2008 |title=ग्रेविटोमेट्रिक घड़ी प्रभाव का पता लगाना|journal= Classical and Quantum Gravity|volume= 17|issue= 4|pages= 783–792|arxiv=gr-qc/9909006|bibcode = 2000CQGra..17..783T |doi = 10.1088/0264-9381/17/4/304 |s2cid=9356721 }}</ref>
:<math>
:<math>
\Omega = \frac{r_{s} \alpha c}{r^{3} + \alpha^{2} r + r_{s} \alpha^{2}}
\Omega = \frac{r_{s} \alpha c}{r^{3} + \alpha^{2} r + r_{s} \alpha^{2}}
</math>
</math>
इस प्रकार, एक जड़त्वीय संदर्भ आकार बाद के घुमाव में भाग लेने के लिए घूर्णन केंद्रीय द्रव्यमान द्वारा प्रवेश किया जाता है; यह आकार-कर्षण है।
इस प्रकार, जड़त्वीय संदर्भ आकार पश्चात के घुमाव में भाग लेने के लिए घूर्णन केंद्रीय द्रव्यमान द्वारा प्रवेश किया जाता है; यह फ्रेम-ड्रैगिंग है।


[[File:Ergosphere_and_event_horizon_of_a_rotating_black_hole_(no_animation).gif|thumb|300px|वे दो सतहें जिन पर केर मीट्रिक में विलक्षणताएं दिखाई देती हैं; आंतरिक सतह तिरछी गोलाकार आकार की [[घटना क्षितिज]] है, जबकि बाहरी सतह कद्दू के आकार की है।<ref name=visser>{{Cite document |arxiv = 0706.0622v3|last1 = Visser|first1 = Matt|title = The Kerr spacetime: A brief introduction|year = 2007 |page=35}}</ref><ref name=blundell>Blundell, Katherine [https://books.google.com/books?id=72nLCgAAQBAJ&dq=ergosphere+pumpkin&pg=PA31 Black Holes: A Very Short Introduction] Google books, page 31</ref> एर्गोस्फीयर इन दो सतहों के बीच स्थित है; इस मात्रा के भीतर, विशुद्ध रूप से लौकिक घटक जी<sub>tt</sub>ऋणात्मक है, अर्थात, विशुद्ध रूप से स्थानिक मीट्रिक घटक की प्रकार कार्य करता है। नतीजतन, इस एर्गोस्फीयर के भीतर के कणों को आंतरिक द्रव्यमान के साथ सह-घूर्णन करना चाहिए, यदि वे अपने समय-समान चरित्र को बनाए रखना चाहते हैं।]]आकार कर्षण का एक चरम संस्करण घूर्णन [[ब्लैक होल]] के एर्गोस्फीयर के भीतर होता है। केर मेट्रिक की दो सतहें हैं जिन पर यह एकवचन प्रतीत होता है। आंतरिक सतह एक गोलाकार घटना क्षितिज से मेल खाती है जैसा कि श्वार्ज़स्चिल्ड मीट्रिक में देखा गया है; इस पर होता है
[[File:Ergosphere_and_event_horizon_of_a_rotating_black_hole_(no_animation).gif|thumb|300px|वे दो सतहें जिन पर केर त्रिज्या में विलक्षणताएं दिखाई देती हैं; आंतरिक सतह तिरछी वृत्ताकार आकार की [[घटना क्षितिज]] है, जबकि बाहरी सतह कद्दू के आकार की है।<ref name=visser>{{Cite document |arxiv = 0706.0622v3|last1 = Visser|first1 = Matt|title = The Kerr spacetime: A brief introduction|year = 2007 |page=35}}</ref><ref name=blundell>Blundell, Katherine [https://books.google.com/books?id=72nLCgAAQBAJ&dq=ergosphere+pumpkin&pg=PA31 Black Holes: A Very Short Introduction] Google books, page 31</ref> एर्गोस्फीयर इन दो सतहों के मध्य स्थित है; इस मात्रा के अंदर, विशुद्ध रूप से लौकिक घटक ''g<sub>tt</sub>'' ऋणात्मक है, अर्थात, विशुद्ध रूप से स्थानिक त्रिज्या घटक के प्रकार कार्य करता है। परिणाम स्वरुप, इस एर्गोस्फीयर के अंदर के कणों को आंतरिक द्रव्यमान के साथ सह-घूर्णन करना चाहिए, यदि वे स्वयं समय-समान चरित्र को बनाए रखना चाहते हैं।]]आकार कर्षण का चरम संस्करण घूर्णन [[ब्लैक होल|ब्लैक छिद्र]] के एर्गोस्फीयर के अंदर होता है। केर मेट्रिक की दो सतहें हैं जिन पर यह प्रतीत होता है। आंतरिक सतह वृत्ताकार घटना क्षितिज से से संक्युत होती है, जैसा कि श्वार्ज़स्चिल्ड त्रिज्या में देखा गया है, इस पर होता है।


:<math>
:<math>
r_\text{inner} = \frac{r_{s} + \sqrt{r_{s}^{2} - 4\alpha^{2}}}{2}
r_\text{inner} = \frac{r_{s} + \sqrt{r_{s}^{2} - 4\alpha^{2}}}{2}
</math>
</math>
जहां विशुद्ध रूप से रेडियल घटक जी<sub>rr</sub>मीट्रिक अनंत तक जाती है। बाहरी सतह को निचले स्पिन मापदंडों के साथ एक चपटे गोलाकार द्वारा अनुमानित किया जा सकता है, एवं एक कद्दू-आकार जैसा दिखता है<ref name=visser /><ref name=blundell />उच्च स्पिन मापदंडों के साथ। यह घूर्णन अक्ष के ध्रुवों पर आंतरिक सतह को छूता है, जहां समतलता θ 0 या π के बराबर होती है; बोयर-लिंडक्विस्ट निर्देशांक में इसकी त्रिज्या सूत्र द्वारा परिभाषित की गई है
जहां विशुद्ध रूप से रेडियल घटक ''g<sub>rr</sub>'' त्रिज्या अनंत तक जाती है। बाहरी सतह को निचले घुमाव मापदंडों के साथ चपटे वृत्ताकार द्वारा अनुमानित किया जा सकता है, एवं कद्दू-आकार जैसा उच्च घुमाव मापदंडों के साथ दिखता है।<ref name=visser /><ref name=blundell /> यह घूर्णन अक्ष के ध्रुवों पर आंतरिक सतह को स्पर्श करता है, जहां समतलता θ 0 या π के समान होती है; बोयर-लिंडक्विस्ट निर्देशांक में इसकी त्रिज्या सूत्र द्वारा परिभाषित की गई है।


:<math>
:<math>
r_\text{outer} = \frac{r_{s} + \sqrt{r_{s}^{2} - 4\alpha^{2} \cos^{2}\theta}}{2}
r_\text{outer} = \frac{r_{s} + \sqrt{r_{s}^{2} - 4\alpha^{2} \cos^{2}\theta}}{2}
</math>
</math>
जहां विशुद्ध रूप से लौकिक घटक जी<sub>tt</sub>मीट्रिक परिवर्तन का चिह्न धनात्मक से ऋणात्मक हो जाता है। इन दो सतहों के बीच के स्थान को एर्गोस्फीयर कहा जाता है। एक गतिमान कण अपनी विश्व रेखा के साथ एक सकारात्मक [[उचित समय]] का अनुभव करता है, स्पेसटाइम के माध्यम से इसका मार्ग। हालांकि, एर्गोस्फीयर के भीतर यह असंभव है, जहां जी<sub>tt</sub>ऋणात्मक है, जब तक कण कम से कम Ω की कोणीय गति के साथ आंतरिक द्रव्यमान M के साथ सह-घूर्णन नहीं कर रहा है। हालाँकि, जैसा कि ऊपर देखा गया है, फ़्रेम-कर्षण प्रत्येक घूर्णन द्रव्यमान के बारे में एवं प्रत्येक त्रिज्या r एवं समतलता θ पर होता है, न कि केवल एर्गोस्फीयर के भीतर।
जहां विशुद्ध रूप से लौकिक घटक ''g<sub>tt</sub>'' त्रिज्या परिवर्तन का चिह्न धनात्मक से ऋणात्मक हो जाता है। इन दो सतहों के मध्य के स्थान को एर्गोस्फीयर कहा जाता है। गतिमान कण स्वयं विश्व रेखा के साथ सकारात्मक [[उचित समय]] का अनुभव करता है, अंतरिक्ष समय के माध्यम से इसका मार्ग, चूंकि एर्गोस्फीयर के अंदर यह असंभव है। जहां ''g<sub>tt</sub>''  ऋणात्मक है, जब तक कण अर्घ्य से अर्घ्य Ω की कोणीय गति के साथ आंतरिक द्रव्यमान M के साथ सह-घूर्णन नहीं कर रहा है। चूंकि, जैसा कि ऊपर देखा गया है, फ़्रेम-कर्षण प्रत्येक घूर्णन द्रव्यमान के विषय में एवं प्रत्येक त्रिज्या r एवं समतलता θ पर होता है, न कि केवल एर्गोस्फीयर के अंदर होता है।


===लेंस-घूमने वाले खोल के अंदर थिरिंग प्रभाव ===
===लेंस-घूमने वाले खोल के अंदर थिरिंग प्रभाव ===
रोटेटिंग शेल के अंदर लेंस-थिरिंग प्रभाव अल्बर्ट आइंस्टीन द्वारा न केवल समर्थन के रूप में लिया गया था, बल्कि मैक के सिद्धांत का एक प्रमाण है, एक पत्र में उन्होंने 1913 में [[अर्नस्ट मच]] को लिखा था (लेंस एवं थिरिंग के काम से पांच साल पहले, एवं दो साल पहले) उन्होंने सामान्य सापेक्षता का अंतिम रूप प्राप्त कर लिया था)। अक्षर का पुनरुत्पादन ग्रेविटेशन (पुस्तक)|मिसनर, थॉर्न, व्हीलर में पाया जा सकता है।<ref name=mtw>Misner, Thorne, Wheeler, ''Gravitation'', Figure 21.5, page 544</ref> ब्रह्माण्ड संबंधी दूरियों तक बढ़ाया गया सामान्य प्रभाव अभी भी मच के सिद्धांत के समर्थन के रूप में उपयोग किया जाता है।<ref name=mtw/>
घूमते शेल के अंदर लेंस-थिरिंग प्रभाव अल्बर्ट आइंस्टीन द्वारा न केवल समर्थन के रूप में लिया गया था, अन्यथा मैक के सिद्धांत का प्रमाण है, पत्र में उन्होंने 1913 में [[अर्नस्ट मच]] को लिखा था (लेंस एवं थिरिंग के कार्य से पांच वर्ष पूर्व, एवं दो वर्ष पूर्व) उन्होंने सामान्य सापेक्षता का अंतिम रूप प्राप्त कर लिया था)। अक्षर का पुनरुत्पादन ग्रेविटेशन (पुस्तक) |मिसनर, थॉर्न, व्हीलर में पाया जा सकता है।<ref name=mtw>Misner, Thorne, Wheeler, ''Gravitation'', Figure 21.5, page 544</ref> ब्रह्माण्ड संबंधी दूरियों तक बढ़ाया गया सामान्य प्रभाव अभी भी मच के सिद्धांत के समर्थन के रूप में उपयोग किया जाता है।<ref name=mtw/>


एक घूमते हुए गोलाकार खोल के अंदर लेंस-थिरिंग प्रभाव के कारण त्वरण होगा<ref name=phister>{{Cite journal|last=Pfister |first=Herbert |date=2005 |title=On the history of the so-called Lense–Thirring effect |journal=General Relativity and Gravitation |volume=39 |issue=11 |pages=1735–1748 |doi=10.1007/s10714-007-0521-4 |url=http://philsci-archive.pitt.edu/archive/00002681/ |bibcode = 2007GReGr..39.1735P |citeseerx=10.1.1.693.4061 |s2cid=22593373 }}</ref>
एक घूमते हुए वृत्ताकार खोल के अंदर लेंस-थिरिंग प्रभाव के कारण त्वरण होगा।<ref name=phister>{{Cite journal|last=Pfister |first=Herbert |date=2005 |title=On the history of the so-called Lense–Thirring effect |journal=General Relativity and Gravitation |volume=39 |issue=11 |pages=1735–1748 |doi=10.1007/s10714-007-0521-4 |url=http://philsci-archive.pitt.edu/archive/00002681/ |bibcode = 2007GReGr..39.1735P |citeseerx=10.1.1.693.4061 |s2cid=22593373 }}</ref>
: <math>
: <math>
\bar{a} = -2d_1 \left( \bar{ \omega} \times \bar v \right) - d_2 \left[ \bar{ \omega} \times \left( \bar{ \omega} \times \bar{r} \right) + 2\left( \bar{ \omega}\bar{r} \right) \bar{ \omega} \right]
\bar{a} = -2d_1 \left( \bar{ \omega} \times \bar v \right) - d_2 \left[ \bar{ \omega} \times \left( \bar{ \omega} \times \bar{r} \right) + 2\left( \bar{ \omega}\bar{r} \right) \bar{ \omega} \right]
Line 124: Line 113:
d_2 &= \frac{4MG}{15Rc^2}
d_2 &= \frac{4MG}{15Rc^2}
\end{align}</math>
\end{align}</math>
एमजी आरसी के लिए<sup>2</sup> या अधिक सटीक,
''MG'' ''Rc''<sup>2</sup> के लिए या अधिक स्थिर,


: <math>
: <math>
d_1 = \frac{4 \alpha(2 - \alpha)}{(1 + \alpha)(3- \alpha)}, \qquad \alpha=\frac{MG}{2Rc^2}
d_1 = \frac{4 \alpha(2 - \alpha)}{(1 + \alpha)(3- \alpha)}, \qquad \alpha=\frac{MG}{2Rc^2}
</math>
</math>
घूमते हुए गोलाकार खोल के अंदर का स्पेसटाइम समतल नहीं होगा। घूर्णन द्रव्यमान खोल के अंदर एक फ्लैट स्पेसटाइम संभव है यदि खोल को सटीक गोलाकार आकार से विचलित करने की अनुमति दी जाती है एवं खोल के अंदर द्रव्यमान घनत्व भिन्न हो सकता है।<ref>{{Cite journal|last=Pfister |first=H. |date=1985 |title=घूर्णन द्रव्यमान खोल में सही केन्द्रापसारक बल का प्रेरण|journal= Classical and Quantum Gravity|volume=2 |issue=6 |pages=909–918 |doi=10.1088/0264-9381/2/6/015 |bibcode = 1985CQGra...2..909P |s2cid=250883114 |display-authors=etal}}</ref>
घूमते हुए वृत्ताकार खोल के अंदर का अंतरिक्ष समय समतल नहीं होगा। घूर्णन द्रव्यमान खोल के अंदर समतल अंतरिक्ष समय संभव है यदि खोल को स्थिर वृत्ताकार आकार से विचलित करने की अनुमति दी जाती है एवं खोल के अंदर द्रव्यमान घनत्व भिन्न हो सकता है।<ref>{{Cite journal|last=Pfister |first=H. |date=1985 |title=घूर्णन द्रव्यमान खोल में सही केन्द्रापसारक बल का प्रेरण|journal= Classical and Quantum Gravity|volume=2 |issue=6 |pages=909–918 |doi=10.1088/0264-9381/2/6/015 |bibcode = 1985CQGra...2..909P |s2cid=250883114 |display-authors=etal}}</ref>




== यह भी देखें ==
== यह भी देखें ==
{{Portal|Physics}}
{{Portal|Physics}}
* केर मीट्रिक
* केर त्रिज्या
* [[जियोडेटिक प्रभाव]]
* [[जियोडेटिक प्रभाव]]
* [[ग्रेविटी रिकवरी और क्लाइमेट एक्सपेरिमेंट|ग्रेविटी रिकवरी एवं क्लाइमेट एक्सपेरिमेंट]]
* [[ग्रेविटी रिकवरी और क्लाइमेट एक्सपेरिमेंट|ग्रेविटी रिकवरी एवं जलवायु प्रयोग]]
* [[गुरुत्वाकर्षण चुंबकत्व]]
* [[गुरुत्वाकर्षण चुंबकत्व]]
* मच का सिद्धांत
* मच का सिद्धांत
Line 155: Line 144:
* [http://www.nasa.gov/home/hqnews/2004/oct/HQ_04351_time_drags.html NASA RELEASE: 04-351 As The World Turns, It Drags Space And Time]
* [http://www.nasa.gov/home/hqnews/2004/oct/HQ_04351_time_drags.html NASA RELEASE: 04-351 As The World Turns, It Drags Space And Time]


{{Relativity}}
{{interwiki extra|qid=Q11083519}}
{{DEFAULTSORT:Frame-Dragging}}[[Category: सामान्य सापेक्षता के परीक्षण]] [[Category: गुरुत्वाकर्षण का प्रभाव]] [[Category: संदर्भ के फ्रेम]] [[Category: भौतिकी में अवधारणाएँ]]




{{DEFAULTSORT:Frame-Dragging}}


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Frame-Dragging]]
[[Category:Created On 29/03/2023]]
[[Category:CS1 errors]]
[[Category:Collapse templates|Frame-Dragging]]
[[Category:Created On 29/03/2023|Frame-Dragging]]
[[Category:Lua-based templates|Frame-Dragging]]
[[Category:Machine Translated Page|Frame-Dragging]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists|Frame-Dragging]]
[[Category:Pages with empty portal template|Frame-Dragging]]
[[Category:Pages with script errors|Frame-Dragging]]
[[Category:Portal-inline template with redlinked portals|Frame-Dragging]]
[[Category:Portal templates with redlinked portals|Frame-Dragging]]
[[Category:Sidebars with styles needing conversion|Frame-Dragging]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Translated in Hindi|Frame-Dragging]]
[[Category:Templates Vigyan Ready|Frame-Dragging]]
[[Category:Templates generating microformats|Frame-Dragging]]
[[Category:Templates that add a tracking category|Frame-Dragging]]
[[Category:Templates that are not mobile friendly|Frame-Dragging]]
[[Category:Templates that generate short descriptions|Frame-Dragging]]
[[Category:Templates using TemplateData|Frame-Dragging]]
[[Category:Wikipedia metatemplates|Frame-Dragging]]
[[Category:गुरुत्वाकर्षण का प्रभाव|Frame-Dragging]]
[[Category:भौतिकी में अवधारणाएँ|Frame-Dragging]]
[[Category:संदर्भ के फ्रेम|Frame-Dragging]]
[[Category:सामान्य सापेक्षता के परीक्षण|Frame-Dragging]]

Latest revision as of 13:20, 30 October 2023

फ्रेम-ड्रैगिंग अंतरिक्ष समय का प्रभाव है, जिसकी भविष्यवाणी अल्बर्ट आइंस्टीन की सामान्य सापेक्षता द्वारा की गई है, जो द्रव्यमान-ऊर्जा के गैर-स्थैतिक स्थिर वितरण के कारण है। स्थिर क्षेत्र (भौतिकी) वह है जो स्थिर स्थिति में है, किन्तु उस क्षेत्र का कारण बनने वाले द्रव्यमान गैर-स्थैतिक ⁠  घूर्णन हो सकते हैं, उदाहरण के लिए सामान्यतः वह विषय जो द्रव्यमान-ऊर्जा धाराओं के कारण होने वाले प्रभावों से संबंधित है, गुरुत्वाकर्षण विद्युत चुंबकत्व के रूप में जाना जाता है, जो शास्त्रीय विद्युत चुंबकत्व के अनुरूप है।

प्रथम फ्रेम-ड्रैगिंग प्रभाव 1918 में ऑस्ट्रियाई भौतिकविदों जोसेफ लेंस एवं हंस थिरिंग द्वारा सामान्य सापेक्षता के आकार में प्राप्त किया गया था, एवं इसे लेंस-थिरिंग प्रभाव के रूप में भी जाना जाता है।[1][2][3] उन्होंने भविष्यवाणी की, कि विशाल वस्तु का घूर्णन सामान्य सापेक्षता को विकृत कर देगा, जिससे पास के परीक्षण कण की कक्षा बन जाएगी। न्यूटोनियन यांत्रिकी में ऐसा नहीं होता है जिसके लिए किसी पिंड का गुरुत्वाकर्षण क्षेत्र केवल उसके द्रव्यमान पर निर्भर करता है, उसके घूर्णन पर नहीं करता है। लेंस-थिरिंग प्रभाव अधिक अल्प है, कुछ ट्रिलियन में लगभग भाग इसकी जानकारी प्राप्त करने के लिए किसी अधिक भारी वस्तु का परिक्षण करना या कोई ऐसा यंत्र बनाना आवश्यक होता है, जो अधिक ही संवेदनशील होता है।

2015 में, न्यूटोनियन वर्तन कानूनों के नए सामान्य-सापेक्षवादी विस्तार को आकार के ज्यामितीय कर्षण का वर्णन करने के लिए प्रस्तुत किया गया था, जिसमें नए शोध किये गए एंटीकर्षण प्रभाव को सम्मिलित किया गया था।[4]


प्रभाव

घूर्णी फ्रेम-ड्रैगिंग (लेंस-थिरिंग प्रभाव) सापेक्षता के सामान्य सिद्धांत एवं बड़े स्तर पर वस्तुओं को घुमाने के आसपास समान सिद्धांतों में प्रकट होता है। लेंस-थिरिंग प्रभाव के अनुसार, संदर्भ का आकार जिसमें घड़ी सबसे तीव्रता से टिकती है वह दूर के पर्यवेक्षक द्वारा देखी गई वस्तु के चारों ओर घूम रहा है। इसका अर्थ यह भी है कि वस्तु के घूर्णन की दिशा में यात्रा करने वाला प्रकाश, घूर्णन के विरुद्ध चलने वाले प्रकाश की तुलना में बड़े स्तर पर वस्तु को तीव्रता से ज्ञात करेगा, जैसा कि दूर के पर्यवेक्षक द्वारा देखा गया है। यह अब सबसे उचित ज्ञात फ्रेम-ड्रैगिंग प्रभाव है। आंशिक रूप से ग्रेविटी प्रोब बी प्रयोग के लिए गुणात्मक रूप से, फ्रेम-ड्रैगिंग को विद्युत चुम्बकीय प्रेरण के गुरुत्वाकर्षण अनुरूप के रूप में देखा जा सकता है।

साथ ही, आंतरिक क्षेत्र को बाहरी क्षेत्र की तुलना में अधिक खींचा जाता है। यह रुचिकर स्थानीय रूप से घूमने वाले आकार का उत्पादन करता है। उदाहरण के लिए, कल्पना करें कि उत्तर-दक्षिण-उन्मुख आइस स्केटर, घूमते हुए ब्लैक छिद्र के भूमध्य रेखा पर कक्षा में एवं तारों के संबंध में घूर्णी रूप से विश्राम कर रही है। गुरुत्वाकर्षण चुंबकीय प्रेरण के कारण ब्लैक छिद्र की ओर बढ़ाए गए हाथ को स्पिनवर्ड में घुमा दिया जाएगा (टोर्क्ड उद्धरणों में है क्योंकि गुरुत्वाकर्षण प्रभाव को सामान्य सापेक्षता के अनुसार बल नहीं माना जाता है)। इसी प्रकार ब्लैक छिद्र से दूर विस्तृत हुई शाखा को स्पिनवर्ड के विपरीत मोड़ दिया जाएगा। इसलिए वह ब्लैक छिद्र के प्रति-घूर्णन अर्थ में घूर्णी रूप से तीव्र हो जाएगी। यह रोजमर्रा के अनुभव के विपरीत है। विशेष घुमाव दर उपस्थित है, क्या उसे प्रारम्भ में उस दर पर घूमना चाहिए, जब वह अपनी शाखा को फैलाती है, जड़त्वीय प्रभाव एवं फ्रेम-ड्रैगिंग प्रभाव संतुलित होंगे एवं उसकी घुमाव की दर नहीं बदलेगी। तुल्यता सिद्धांत के कारण, गुरुत्वाकर्षण प्रभाव जड़त्वीय प्रभावों से स्थानीय रूप से अप्रभेद्य हैं, इसलिए यह घुमाव दर, जिस पर जब वह अपनी शाखा को विस्तृत करती है, कुछ भी नहीं होता है, गैर-घूर्णन के लिए उसका स्थानीय संदर्भ है। यह आकार स्थिर तारों के संबंध में घूम रहा है एवं ब्लैक छिद्र के संबंध में प्रति-घूर्णन कर रहा है। यह प्रभाव परमाणु घुमाव के कारण परमाणु विस्तार में अतिसूक्ष्म संरचना के अनुरूप है। उपयोगी रूपक ग्रहीय गियर प्रणाली है जिसमें ब्लैक छिद्र सन गियर है, आइस स्केटर ग्रहीय गियर है एवं बाहरी ब्रह्मांड रिंग गियर है।

भूमध्यरेखीय कक्षा में विवश वस्तु के लिए, किन्तु निर्बाध गिरावट में नहीं, इसका भार अधिक होता है यदि स्पिनवर्ड की परिक्रमा करते हैं, उदाहरण के लिए, निलंबित भूमध्यरेखीय गेंदबाजी गली में, बॉलिंग बॉल जो एंटी-स्पिनवर्ड रोल की जाती है, उसी बॉल को घुमाव की दिशा में रोल करने से अधिक भार होता है। ध्यान दें, आकार कर्षण किसी भी दिशा में गेंदबाजी गेंद को न तो गति देगा एवं न ही मंद करता है। यह चिपचिपाहट नहीं है। इसी प्रकार, घूर्णन वस्तु पर निलंबित स्थिरसीधा लटकना सूचीबद्ध नहीं होगा। यह लंबवत लटका होगा। यदि यह गिरना प्रारम्भ हो जाता है, तो प्रवर्तन इसे घुमाव की दिशा में निर्वाह कर देता है।

रैखिक आकार कर्षण समान रूप से सापेक्षता के सामान्य सिद्धांत का अपरिहार्य परिणाम है, जो रैखिक गति पर लागू होता है। यद्यपि इसमें यकीनन घूर्णी प्रभाव के समान सैद्धांतिक वैधता है, प्रभाव के प्रायोगिक सत्यापन को प्राप्त करने में कठिनाई का अर्थ है कि इसे अधिक कम चर्चा प्राप्त होती है एवं अक्सर फ्रेम-ड्रैगिंग पर लेखों से हटा दिया जाता है ( किन्तु आइंस्टीन, 1921 देखें)।[5] स्टेटिक मास वृद्धि एक ही पेपर में आइंस्टीन द्वारा नोट किया गया तीसरा प्रभाव है।[6] प्रभाव एक पिंड की जड़ता में वृद्धि होती है, जब अन्य पिंडों को पास में रखा जाता है। जबकि सख्ती से आकार कर्षण प्रभाव नहीं है (आइंस्टीन द्वारा शब्द आकार कर्षण का उपयोग नहीं किया जाता है), यह आइंस्टीन द्वारा प्रदर्शित किया जाता है, कि यह सामान्य सापेक्षता के समान समीकरण से निकला है। यह एक छोटा सा प्रभाव भी है जिसकी प्रयोगात्मक रूप से पुष्टि करना कठिन होता है।

प्रायोगिक परीक्षण

1976 में वैन पैटन एवं एवरिट[7][8] कर्षण-मुक्त उपकरण के साथ स्थलीय ध्रुवीय कक्षाओं में रखे जाने वाले प्रति-परिक्रमा अंतरिक्ष यान की जोड़ी के लेंस-थिरिंग नोड पुरस्सरण को मापने के उद्देश्य से समर्पित मिशन को प्रारम्भ करने का प्रस्ताव है। इस प्रकार के विचार का कुछ समतुल्य, अल्पमूल्य संस्करण 1986 में सिउफोलिनी द्वारा प्रस्तुत किया गया था[9] जिन्होंने 1976 में प्रसारित किए गए। (LAGEOS) लाजोस उपग्रह के समान कक्षा में निष्क्रिय, भू गणितीय उपग्रह प्रसारित करने का प्रस्ताव रखा, इसके अतिरिक्त कक्षीय विमानों को 180 डिग्री से भिन्न किया जाना चाहिए। तथाकथित तितली विन्यास मापने योग्य मात्रा, इस विषय में, लाजियोस के नोड्स एवं नए अंतरिक्ष यान का योग था, जिसे पश्चात में लाजियोस III, उपग्रह वेबर-सैट नाम दिया गया।

उपस्थिता कक्षीय पिंडों से जुड़े परिदृश्यों के वृत को सीमित करते हुए, लेंस-थिरिंग प्रभाव को मापने के लिए लाजियोस उपग्रह लार्स (उपग्रह) लेजर रेंजिंग (उपग्रह लेजर रेंजिंग) प्रविधि का उपयोग करने का प्रथम प्रस्ताव 1977-1978 का है।[10] 1996 में लाजियोस एवं लाजियोस II उपग्रहों का उपयोग करके परीक्षण प्रभावी रूप से किए जाने लगे हैं।[11] रणनीति के अनुसार[12] दोनों उपग्रहों के नोड्स एवं लाजियोस II के उपयुक्त संयोजन का उपयोग सम्मिलित है। लाजियोस उपग्रहों के साथ नवीनतम परीक्षण 2004-2006 में किए गए हैं।[13][14] लाजियोस II की पेरिजी को हटाकर एवं रैखिक संयोजन का उपयोग करके[15] शीघ्र ही, साहित्य में कृत्रिम उपग्रहों के साथ लेंस-थिरिंग प्रभाव को मापने के प्रयासों का व्यापक अवलोकन प्रकाशित किया गया था।[16] लाजियोस उपग्रहों के साथ परीक्षणों में पहुंची समग्र स्थिरता कुछ विवाद का विषय है।[17][18][19] ग्रेविटी प्रोब बी प्रयोग[20][21] स्टैनफोर्ड समूह एवं नासा द्वारा उपग्रह-आधारित मिशन था, जिसका उपयोग प्रयोगात्मक रूप से एक अन्य ग्रेविटोमैग्नेटिक प्रभाव को मापने के लिए किया जाता था। जाइरोस्कोप का शिफ पुरस्सरण ,[22][23][24] अपेक्षित 1% स्थिरता दुर्भाग्य से ऐसी स्थिरता प्राप्त नहीं हुई थी। अप्रैल 2007 में निर्धारित किए गए प्रथम प्रारंभिक परिणामों ने स्थिरता की ओर संकेत दिया। [25] 256–128%, दिसंबर 2007 में लगभग 13% तक पहुँचने की आशा के साथ [26]2008 में नासा खगोल भौतिकी प्रभाग संचालन मिशन की वरिष्ठ समीक्षा विवरण में कहा गया था, कि यह संभावना नहीं थी कि ग्रेविटी प्रोब बी टीम सामान्य सापेक्षता (आकार सहित) के वर्तमान में अप्रयुक्त दृष्टिकोण के ठोस परीक्षण का निर्माण करने के लिए आवश्यक स्तर तक त्रुटियों को अर्घ्य करने में सक्षम होगी।[27][28] 4 मई, 2011 को स्टैनफोर्ड स्थित विश्लेषण समूह एवं नासा ने अंतिम प्रतिवेदन की घोषणा की,[29] एवं इसमें जीपी-बी के डेटा ने लगभग 19 प्रतिशत की त्रुटि के साथ फ्रेम-ड्रैगिंग प्रभाव का प्रदर्शन किया, एवं आइंस्टीन का अनुमानित मूल्य विश्वास अंतराल के केंद्र में था।[30][31] नासा ने उपग्रह के लिए आकार कर्षण के सत्यापन में सफलता के प्रभुत्व को प्रकाशित किया[32] एवं ग्रेविटी प्रोब बी,[33] जिनमें से दोनों प्रभुत्व अभी भी सार्वजनिक दृश्य में हैं। इटली में शोध समूह,[34] यूएसए, एवं यूके ने पीयर रिव्यू जर्नल में प्रकाशित ग्रेस ग्रेविटी प्रतिरूप के साथ आकार कर्षण के सत्यापन में सफलता का प्रभुत्व किया। सभी प्रभुत्व में अधिक स्थिरता एवं अन्य गुरुत्वाकर्षण प्रतिरूप पर आगे के शोध के लिए अनुरोध सम्मिलित हैं।

विशालकाय ब्लैक छिद्र के निकट परिक्रमा करने वाले सितारों के विषय में, आकार कर्षण से सितारों की ऑर्बिटल प्लेन को ब्लैक छिद्र घुमाव अक्ष के विषय में लेंस-थिरिंग पुरस्सरण का कारण बनना चाहिए। मिल्की वे आकाशगंगा के केंद्र में सितारों की एस्ट्रोमेट्रिक निरिक्षण के माध्यम से निकटतम कुछ वर्षों में इस प्रभाव की जानकारी प्राप्त करनी चाहिए।[35] भिन्न-भिन्न कक्षाओं में दो तारों के कक्षीय पूर्वसरण की दर की तुलना करके, काले छिद्र के घुमाव को मापने के अतिरिक्त, सामान्य सापेक्षता के नो-हेयर प्रमेय का परीक्षण करना सिद्धांत रूप में संभव होता है।[36]


खगोलीय साक्ष्य

सापेक्षवादी जेट फ्रेम-ड्रैगिंग की वास्तविकता के लिए साक्ष्य प्रदान कर सकते हैं। घूमता हुआ ब्लैक छिद्र के एर्गोस्फीयर के अंदर लेंस-थिरिंग प्रभाव (आकार कर्षण) द्वारा उत्पन्न गुरुत्वाकर्षण बल[37][38] रोजर पेनरोज़ द्वारा ऊर्जा निष्कर्षण तंत्र के साथ संयुक्त[39] आपेक्षिकीय जेट के देखे गए गुणों की व्याख्या करने के लिए उपयोग किया गया है। रेवा के विलियम्स द्वारा विकसित ग्रेविटोमैग्नेटिक प्रतिरूप कैसर एवं सक्रिय गैलेक्टिक नाभिक द्वारा उत्सर्जित उच्च ऊर्जा कणों (~GeV) की भविष्यवाणी करता है; X-rays, γ-rays, एवं आपेक्षिकीय की निकासी e– e+ एवं जोड़े ध्रुवीय अक्ष के विषय में संघटित जेट; एवं जेट्स का विषम गठन (कक्षीय तल के सापेक्ष) होता है।

लेंस-थिरिंग प्रभाव द्विआधारी प्रणाली में देखा गया है जिसमें विशाल सफेद बौना एवं पलसर होता है।[40]


गणितीय व्युत्पत्ति

केर त्रिज्या का उपयोग करके फ़्रेम-कर्षण को सबसे सरलता से चित्रित किया जा सकता है,[41][42] जो कोणीय गति J के साथ घूमने वाले द्रव्यमान M के आसपास के क्षेत्र में अंतरिक्ष-समय की ज्यामिति का वर्णन एवं बॉयर-लिंडक्विस्ट निर्देशांक करता है, (परिवर्तन के लिए लिंक देखें)।

जहां rs श्वार्जस्चिल्ड त्रिज्या है

एवं जहां संक्षिप्तता के लिए निम्नलिखित आशुलिपि चर प्रस्तुत किए गए हैं।

गैर-सापेक्षतावादी सीमा में जहां M (या, समतुल्य, rs) शून्य पर जाता है, केर त्रिज्या तिरछी वृत्ताकार निर्देशांक के लिए ओर्थोगोनल त्रिज्या बन जाता है।

हम निम्नलिखित रूप में केर त्रिज्या को तत्पश्चात से लिख सकते हैं।

यह त्रिज्या सह-घूर्णन संदर्भ फ़्रेम के समतुल्य है, जो कोणीय गति Ω के साथ घूम रहा है जो त्रिज्या r एवं कोलेटीट्यूड θ दोनों पर निर्भर करता है।

भूमध्य रेखा के तल में यह सरल करता है।[43]

इस प्रकार, जड़त्वीय संदर्भ आकार पश्चात के घुमाव में भाग लेने के लिए घूर्णन केंद्रीय द्रव्यमान द्वारा प्रवेश किया जाता है; यह फ्रेम-ड्रैगिंग है।

वे दो सतहें जिन पर केर त्रिज्या में विलक्षणताएं दिखाई देती हैं; आंतरिक सतह तिरछी वृत्ताकार आकार की घटना क्षितिज है, जबकि बाहरी सतह कद्दू के आकार की है।[44][45] एर्गोस्फीयर इन दो सतहों के मध्य स्थित है; इस मात्रा के अंदर, विशुद्ध रूप से लौकिक घटक gtt ऋणात्मक है, अर्थात, विशुद्ध रूप से स्थानिक त्रिज्या घटक के प्रकार कार्य करता है। परिणाम स्वरुप, इस एर्गोस्फीयर के अंदर के कणों को आंतरिक द्रव्यमान के साथ सह-घूर्णन करना चाहिए, यदि वे स्वयं समय-समान चरित्र को बनाए रखना चाहते हैं।

आकार कर्षण का चरम संस्करण घूर्णन ब्लैक छिद्र के एर्गोस्फीयर के अंदर होता है। केर मेट्रिक की दो सतहें हैं जिन पर यह प्रतीत होता है। आंतरिक सतह वृत्ताकार घटना क्षितिज से से संक्युत होती है, जैसा कि श्वार्ज़स्चिल्ड त्रिज्या में देखा गया है, इस पर होता है।

जहां विशुद्ध रूप से रेडियल घटक grr त्रिज्या अनंत तक जाती है। बाहरी सतह को निचले घुमाव मापदंडों के साथ चपटे वृत्ताकार द्वारा अनुमानित किया जा सकता है, एवं कद्दू-आकार जैसा उच्च घुमाव मापदंडों के साथ दिखता है।[44][45] यह घूर्णन अक्ष के ध्रुवों पर आंतरिक सतह को स्पर्श करता है, जहां समतलता θ 0 या π के समान होती है; बोयर-लिंडक्विस्ट निर्देशांक में इसकी त्रिज्या सूत्र द्वारा परिभाषित की गई है।

जहां विशुद्ध रूप से लौकिक घटक gtt त्रिज्या परिवर्तन का चिह्न धनात्मक से ऋणात्मक हो जाता है। इन दो सतहों के मध्य के स्थान को एर्गोस्फीयर कहा जाता है। गतिमान कण स्वयं विश्व रेखा के साथ सकारात्मक उचित समय का अनुभव करता है, अंतरिक्ष समय के माध्यम से इसका मार्ग, चूंकि एर्गोस्फीयर के अंदर यह असंभव है। जहां gtt ऋणात्मक है, जब तक कण अर्घ्य से अर्घ्य Ω की कोणीय गति के साथ आंतरिक द्रव्यमान M के साथ सह-घूर्णन नहीं कर रहा है। चूंकि, जैसा कि ऊपर देखा गया है, फ़्रेम-कर्षण प्रत्येक घूर्णन द्रव्यमान के विषय में एवं प्रत्येक त्रिज्या r एवं समतलता θ पर होता है, न कि केवल एर्गोस्फीयर के अंदर होता है।

लेंस-घूमने वाले खोल के अंदर थिरिंग प्रभाव

घूमते शेल के अंदर लेंस-थिरिंग प्रभाव अल्बर्ट आइंस्टीन द्वारा न केवल समर्थन के रूप में लिया गया था, अन्यथा मैक के सिद्धांत का प्रमाण है, पत्र में उन्होंने 1913 में अर्नस्ट मच को लिखा था (लेंस एवं थिरिंग के कार्य से पांच वर्ष पूर्व, एवं दो वर्ष पूर्व) उन्होंने सामान्य सापेक्षता का अंतिम रूप प्राप्त कर लिया था)। अक्षर का पुनरुत्पादन ग्रेविटेशन (पुस्तक) |मिसनर, थॉर्न, व्हीलर में पाया जा सकता है।[46] ब्रह्माण्ड संबंधी दूरियों तक बढ़ाया गया सामान्य प्रभाव अभी भी मच के सिद्धांत के समर्थन के रूप में उपयोग किया जाता है।[46]

एक घूमते हुए वृत्ताकार खोल के अंदर लेंस-थिरिंग प्रभाव के कारण त्वरण होगा।[47]

जहां गुणांक हैं

MGRc2 के लिए या अधिक स्थिर,

घूमते हुए वृत्ताकार खोल के अंदर का अंतरिक्ष समय समतल नहीं होगा। घूर्णन द्रव्यमान खोल के अंदर समतल अंतरिक्ष समय संभव है यदि खोल को स्थिर वृत्ताकार आकार से विचलित करने की अनुमति दी जाती है एवं खोल के अंदर द्रव्यमान घनत्व भिन्न हो सकता है।[48]


यह भी देखें

संदर्भ

  1. Thirring, H. (1918). "Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie". Physikalische Zeitschrift. 19: 33. Bibcode:1918PhyZ...19...33T. [On the Effect of Rotating Distant Masses in Einstein's Theory of Gravitation]
  2. Thirring, H. (1921). "Berichtigung zu meiner Arbeit: 'Über die Wirkung rotierender Massen in der Einsteinschen Gravitationstheorie'". Physikalische Zeitschrift. 22: 29. Bibcode:1921PhyZ...22...29T. [Correction to my paper "On the Effect of Rotating Distant Masses in Einstein's Theory of Gravitation"]
  3. Lense, J.; Thirring, H. (1918). "Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie". Physikalische Zeitschrift. 19: 156–163. Bibcode:1918PhyZ...19..156L. [On the Influence of the Proper Rotation of Central Bodies on the Motions of Planets and Moons According to Einstein's Theory of Gravitation]
  4. Mach, Patryk; Malec, Edward (2015). "द्रव निकायों को घुमाने में सामान्य-सापेक्षतावादी रोटेशन कानून". Physical Review D. 91 (12): 124053. arXiv:1501.04539. Bibcode:2015PhRvD..91l4053M. doi:10.1103/PhysRevD.91.124053. S2CID 118605334.
  5. Einstein, A The Meaning of Relativity (contains transcripts of his 1921 Princeton lectures).
  6. Einstein, A. (1987). सापेक्षता का अर्थ. London: Chapman and Hall. pp. 95–96.
  7. Van Patten, R. A.; Everitt, C. W. F. (1976). "आइंस्टीन के सापेक्षता के सामान्य सिद्धांत और जियोडेसी में बेहतर मापन का एक नया परीक्षण प्राप्त करने के लिए दो काउंटर-ऑर्बिटिंग ड्रैग-फ्री उपग्रहों के साथ संभावित प्रयोग". Physical Review Letters. 36 (12): 629–632. Bibcode:1976PhRvL..36..629V. doi:10.1103/PhysRevLett.36.629. S2CID 120984879.
  8. Van Patten, R. A.; Everitt, C. W. F. (1976). "आइंस्टीन के सापेक्षता के सामान्य सिद्धांत और जियोडेसी में बेहतर माप का एक नया परीक्षण प्राप्त करने के लिए दो काउंटर-रोटेटिंग ड्रैग-फ्री उपग्रहों के साथ एक संभावित प्रयोग". Celestial Mechanics. 13 (4): 429–447. Bibcode:1976CeMec..13..429V. doi:10.1007/BF01229096. S2CID 121577510.
  9. Ciufolini, I. (1986). "Measurement of Lense–Thirring Drag on High-Altitude Laser-Ranged Artificial Satellites". Physical Review Letters. 56 (4): 278–281. Bibcode:1986PhRvL..56..278C. doi:10.1103/PhysRevLett.56.278. PMID 10033146.
  10. Cugusi, L.; Proverbio, E. (1978). "पृथ्वी के कृत्रिम उपग्रहों की गति पर सापेक्ष प्रभाव". Astronomy and Astrophysics. 69: 321. Bibcode:1978A&A....69..321C.
  11. Ciufolini, I.; Lucchesi, D.; Vespe, F.; Mandiello, A. (1996). "लेजर-रेंज वाले उपग्रहों का उपयोग करके जड़त्वीय फ्रेम और गुरुत्वाकर्षण चुंबकीय क्षेत्र को खींचने का मापन". Il Nuovo Cimento A. 109 (5): 575–590. Bibcode:1996NCimA.109..575C. doi:10.1007/BF02731140. S2CID 124860519.
  12. Ciufolini, I. (1996). "दो कक्षीय उपग्रहों का उपयोग करके गुरुत्वाकर्षण क्षेत्र को मापने की एक नई विधि पर". Il Nuovo Cimento A. 109 (12): 1709–1720. Bibcode:1996NCimA.109.1709C. doi:10.1007/BF02773551. S2CID 120415056.
  13. Ciufolini, I.; Pavlis, E. C. (2004). "A confirmation of the general relativistic prediction of the Lense–Thirring effect". Nature. 431 (7011): 958–960. Bibcode:2004Natur.431..958C. doi:10.1038/nature03007. PMID 15496915. S2CID 4423434.
  14. Ciufolini, I.; Pavlis, E.C.; Peron, R. (2006). "CHAMP और GRACE से अर्थ ग्रेविटी मॉडल का उपयोग करके फ्रेम-ड्रैगिंग का निर्धारण". New Astronomy. 11 (8): 527–550. Bibcode:2006NewA...11..527C. doi:10.1016/j.newast.2006.02.001.
  15. Iorio, L.; Morea, A. (2004). "लेंस-थिरिंग प्रभाव के मापन पर नई पृथ्वी गुरुत्वाकर्षण मॉडल का प्रभाव". General Relativity and Gravitation. 36 (6): 1321–1333. arXiv:gr-qc/0304011. Bibcode:2004GReGr..36.1321I. doi:10.1023/B:GERG.0000022390.05674.99. S2CID 119098428.
  16. Renzetti, G. (2013). "कृत्रिम उपग्रहों के साथ कक्षीय फ्रेम-ड्रैगिंग को मापने के प्रयासों का इतिहास". Central European Journal of Physics. 11 (5): 531–544. Bibcode:2013CEJPh..11..531R. doi:10.2478/s11534-013-0189-1.
  17. Renzetti, G. (2014). "हाल के डेटा विश्लेषणों के मद्देनजर लाजोस फ्रेम-ड्रैगिंग प्रयोग पर कुछ विचार". New Astronomy. 29: 25–27. Bibcode:2014NewA...29...25R. doi:10.1016/j.newast.2013.10.008.
  18. Iorio, L.; Lichtenegger, H. I. M.; Ruggiero, M. L.; Corda, C. (2011). "सौर मंडल में लेंस-थिरिंग प्रभाव की घटना". Astrophysics and Space Science. 331 (2): 351–395. arXiv:1009.3225. Bibcode:2011Ap&SS.331..351I. doi:10.1007/s10509-010-0489-5. S2CID 119206212.
  19. Ciufolini, I.; Paolozzi, A.; Pavlis, E. C.; Ries, J.; Koenig, R.; Matzner, R.; Sindoni, G.; Neumeyer, H. (2011). "उपग्रह लेज़र रेंजिंग के साथ गुरुत्वीय भौतिकी का परीक्षण". The European Physical Journal Plus. 126 (8): 72. Bibcode:2011EPJP..126...72C. doi:10.1140/epjp/i2011-11072-2. S2CID 122205903.
  20. Everitt, C. W. F, The Gyroscope Experiment I. General Description and Analysis of Gyroscope Performance. In: Bertotti, B. (Ed.), Proc. Int. School Phys. "Enrico Fermi" Course LVI. New Academic Press, New York, pp. 331–360, 1974. Reprinted in: Ruffini, R. J., Sigismondi, C. (Eds.), Nonlinear Gravitodynamics. The Lense–Thirring Effect. World Scientific, Singapore, pp. 439–468, 2003.
  21. Everitt, C. W. F., et al., Gravity Probe B: Countdown to Launch. In: Laemmerzahl, C., Everitt, C. W. F., Hehl, F. W. (Eds.), Gyros, Clocks, Interferometers...: Testing Relativistic Gravity in Space. Springer, Berlin, pp. 52–82, 2001.
  22. Pugh, G. E., Proposal for a Satellite Test of the Coriolis Prediction of General Relativity, WSEG, Research Memorandum No. 11, 1959. Reprinted in: Ruffini, R. J., Sigismondi, C. (Eds.), Nonlinear Gravitodynamics. The Lense–Thirring Effect. World Scientific, Singapore, pp. 414–426, 2003.
  23. Schiff, L., On Experimental Tests of the General Theory of Relativity, Am. J. Phys., 28, 340–343, 1960.
  24. Ries, J. C.; Eanes, R. J.; Tapley, B. D.; Peterson, G. E. (2003). "एसएलआर और ग्रेस ग्रेविटी मिशन के साथ एक बेहतर लेंस-थिरिंग परीक्षण की संभावनाएँ" (PDF). Proc. 13th Int. Laser Ranging Workshop NASA CP 2003.
  25. Muhlfelder, B., Mac Keiser, G., and Turneaure, J., Gravity Probe B Experiment Error, poster L1.00027 presented at the American Physical Society (APS) meeting in Jacksonville, Florida, on 14–17 April 2007, 2007.
  26. "StanfordNews 4/14/07" (PDF). einstein.stanford.edu. Retrieved 2019-09-27.
  27. "Report of the 2008 Senior Review of the Astrophysics Division Operating Missions". Archived from the original (PDF) on 2008-09-21. Retrieved 2009-03-20. Report of the 2008 Senior Review of the Astrophysics Division Operating Missions, NASA
  28. Gravity Probe B scores 'F' in NASA review, Jeff Hecht, New Scientist – Space, May 20, 2008
  29. "Gravity Probe B - MISSION STATUS".
  30. "गुरुत्वाकर्षण जांच बी अंत में भुगतान करता है". 2013-09-23.
  31. "Gravity Probe B: Final results of a space experiment to test general relativity". Physical Review Letters. 2011-05-01. Retrieved 2011-05-06.
  32. Ramanujan, Krishna. "जैसे-जैसे दुनिया बदलती है यह समय और स्थान को खींचती है". NASA. Goddard Space Flight Center. Retrieved 23 August 2019.
  33. Perrotto, Trent J. "ग्रेविटी प्रोब बी". NASA. Headquarters, Washington. Retrieved 23 August 2019.
  34. Ciufolini, I.; Paolozzi, A.; Pavlis, E. C.; Koenig, R.; Ries, J.; Gurzadyan, V.; Matzner, R.; Penrose, R.; Sindoni, G.; Paris, C.; Khachatryan, H.; Mirzoyan, S. (2016). "A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model: Measurement of Earth's dragging of inertial frames". The European Physical Journal C. 76 (3): 120. arXiv:1603.09674. Bibcode:2016EPJC...76..120C. doi:10.1140/epjc/s10052-016-3961-8. PMC 4946852. PMID 27471430.
  35. Merritt, D.; Alexander, T.; Mikkola, S.; Will, C. (2010). "तारकीय कक्षाओं का उपयोग कर गांगेय केंद्र ब्लैक होल के गुणों का परीक्षण". Physical Review D. 81 (6): 062002. arXiv:0911.4718. Bibcode:2010PhRvD..81f2002M. doi:10.1103/PhysRevD.81.062002. S2CID 118646069.
  36. Will, C. (2008). "गांगेय केंद्र ब्लैक होल धनु A* का उपयोग करके सामान्य सापेक्षवादी "नो-हेयर" प्रमेयों का परीक्षण". Astrophysical Journal Letters. 674 (1): L25–L28. arXiv:0711.1677. Bibcode:2008ApJ...674L..25W. doi:10.1086/528847. S2CID 11685632.
  37. Williams, R. K. (1995). "Extracting X rays, Ύ rays, and relativistic e– e+ pairs from supermassive Kerr black holes using the Penrose mechanism". Physical Review D. 51 (10): 5387–5427. Bibcode:1995PhRvD..51.5387W. doi:10.1103/PhysRevD.51.5387. PMID 10018300.
  38. Williams, R. K. (2004). "Collimated escaping vortical polar e–e+ jets intrinsically produced by rotating black holes and Penrose processes". The Astrophysical Journal. 611 (2): 952–963. arXiv:astro-ph/0404135. Bibcode:2004ApJ...611..952W. doi:10.1086/422304. S2CID 1350543.
  39. Penrose, R. (1969). "Gravitational collapse: The role of general relativity". Nuovo Cimento Rivista. 1 (Numero Speciale): 252–276. Bibcode:1969NCimR...1..252P.
  40. V. Venkatraman Krishnan; et al. (31 January 2020). "Lense–Thirring frame dragging induced by a fast-rotating white dwarf in a binary pulsar system". Science. 367 (5): 577–580. arXiv:2001.11405. Bibcode:2020Sci...367..577V. doi:10.1126/science.aax7007. PMID 32001656. S2CID 210966295.
  41. Kerr, R. P. (1963). "बीजीय रूप से विशेष मेट्रिक्स के उदाहरण के रूप में कताई द्रव्यमान का गुरुत्वाकर्षण क्षेत्र". Physical Review Letters. 11 (5): 237–238. Bibcode:1963PhRvL..11..237K. doi:10.1103/PhysRevLett.11.237.
  42. Landau, L. D.; Lifshitz, E. M. (1975). The Classical Theory of Fields (Course of Theoretical Physics, Vol. 2) (revised 4th English ed.). New York: Pergamon Press. pp. 321–330. ISBN 978-0-08-018176-9.
  43. Tartaglia, A. (2008). "ग्रेविटोमेट्रिक घड़ी प्रभाव का पता लगाना". Classical and Quantum Gravity. 17 (4): 783–792. arXiv:gr-qc/9909006. Bibcode:2000CQGra..17..783T. doi:10.1088/0264-9381/17/4/304. S2CID 9356721.
  44. 44.0 44.1 Visser, Matt (2007). "The Kerr spacetime: A brief introduction": 35. arXiv:0706.0622v3. {{cite journal}}: Cite journal requires |journal= (help)
  45. 45.0 45.1 Blundell, Katherine Black Holes: A Very Short Introduction Google books, page 31
  46. 46.0 46.1 Misner, Thorne, Wheeler, Gravitation, Figure 21.5, page 544
  47. Pfister, Herbert (2005). "On the history of the so-called Lense–Thirring effect". General Relativity and Gravitation. 39 (11): 1735–1748. Bibcode:2007GReGr..39.1735P. CiteSeerX 10.1.1.693.4061. doi:10.1007/s10714-007-0521-4. S2CID 22593373.
  48. Pfister, H.; et al. (1985). "घूर्णन द्रव्यमान खोल में सही केन्द्रापसारक बल का प्रेरण". Classical and Quantum Gravity. 2 (6): 909–918. Bibcode:1985CQGra...2..909P. doi:10.1088/0264-9381/2/6/015. S2CID 250883114.


अग्रिम पठन


बाहरी संबंध