परमाणु अनुनाद कंपन स्पेक्ट्रोस्कोपी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(5 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{redirect|NRVS|the advocacy group in New South Wales, Australia|Northern Rivers Vaccination Supporters}}
'''परमाणु अनुनाद कंपन स्पेक्ट्रोस्कोपी''' एक [[सिंक्रोटॉन]]-आधारित विधि है जो [[आणविक कंपन]] की जांच करती है। विधि , जिसे अधिकांशतः एनआरवीएस कहा जाता है, उन नमूनों के लिए विशिष्ट है जिनमें नाभिक होते हैं जो मोसबाउर स्पेक्ट्रोस्कोपी का उत्तर देते हैं, सबसे सामान्यतः लोहा। सिंक्रोट्रॉन विधि प्रकाश स्रोतों द्वारा प्रस्तुत किए गए उच्च रिज़ॉल्यूशन का शोषण करती है, जो कंपन ठीक संरचना के संकल्प को सक्षम करती है, विशेष रूप से उन कंपनों को जो Fe केंद्र (एस) की स्थिति से जुड़ी होती हैं।<ref>E. E. Alp, W. Sturhahn, T. S. Toellner, J. Zhoa, M.Hu, D. E. Brown. "Vibrational Dynamics Studies by Nuclear Resonant Inelastic X-Ray Scattering" Hyperfine Interactions 144/145: 3–20, 2002.</ref><ref>Alp, E. E.; Sturhahn, W.; Toellner, T. S.; Zhao, J.; Hu, M.; Brown, D. E., "Vibrational Dynamics Studies by Nuclear Resonant Inelastic X-Ray Scattering," in Mössbauer Spectroscopy, P. Gütlich, B. W. Fitzsimmons, R. Rüffer and H. Spiering, Eds. 2003, Springer Netherlands. {{doi|10.1007/978-94-010-0045-1_1}}</ref> लोकप्रिय रूप से [[जैव अकार्बनिक रसायन]] विज्ञान की समस्याओं पर प्रयुक्त होती है,<ref>W. R. Scheidt, S. M. Durbin, J. T. Sage, "Nuclear resonance vibrational spectroscopy – NRVS", J. Inorg. Biochem. 2005, vol. 99, 60-71. {{doi|10.1016/j.jinorgbio.2004.11.004}}</ref> सामग्री विज्ञान, और [[भूभौतिकी]]। विधि का उपन्यास पहलू कंपन मोड के अंदर लोहे के परमाणुओं के 3डी-प्रक्षेपवक्र को निर्धारित करने की क्षमता है, जो डीएफटी-भविष्यवाणी स्पष्टता का अनूठा मूल्यांकन प्रदान करता है।<ref>J. W. Pavlik, A. Barabanschikov, A. G. Oliver, E. E. Alp, W. Sturhahn, J. Zhao, J. T. Sage, W. R. Scheidt, "Probing Vibrational Anisotropy with Nuclear Resonance Vibrational Spectroscopy" , Angew. Chem. Int. Ed. 2010, volume 49, pp. 4400-4404.  {{doi|10.1002/anie.201000928}}</ref> इस पद्धति के अन्य नामों में परमाणु अप्रत्यास्थ प्रकीर्णन (एनआईएस ), नाभिकीय अप्रत्यास्थ अवशोषण (एनआईए), नाभिकीय गुंजयमान अप्रत्यास्थ एक्स-रे प्रकीर्णन (एनआरआईएक्सएस ), और फोनन असिस्टेड मोसबाउर प्रभाव सम्मिलित हैं।
परमाणु अनुनाद कंपन स्पेक्ट्रोस्कोपी एक [[सिंक्रोटॉन]]-आधारित तकनीक है जो [[आणविक कंपन]] की जांच करती है। तकनीक, जिसे अक्सर NRVS कहा जाता है, उन नमूनों के लिए विशिष्ट है जिनमें नाभिक होते हैं जो Mössbauer स्पेक्ट्रोस्कोपी का जवाब देते हैं, सबसे आम तौर पर लोहा। विधि सिंक्रोट्रॉन प्रकाश स्रोतों द्वारा पेश किए गए उच्च रिज़ॉल्यूशन का शोषण करती है, जो कंपन ठीक संरचना के संकल्प को सक्षम करती है, विशेष रूप से उन कंपनों को जो Fe केंद्र (ओं) की स्थिति से जुड़ी होती हैं।<ref>E. E. Alp, W. Sturhahn, T. S. Toellner, J. Zhoa, M.Hu, D. E. Brown. "Vibrational Dynamics Studies by Nuclear Resonant Inelastic X-Ray Scattering" Hyperfine Interactions 144/145: 3–20, 2002.</ref><ref>Alp, E. E.; Sturhahn, W.; Toellner, T. S.; Zhao, J.; Hu, M.; Brown, D. E., "Vibrational Dynamics Studies by Nuclear Resonant Inelastic X-Ray Scattering," in Mössbauer Spectroscopy, P. Gütlich, B. W. Fitzsimmons, R. Rüffer and H. Spiering, Eds. 2003, Springer Netherlands. {{doi|10.1007/978-94-010-0045-1_1}}</ref> विधि लोकप्रिय रूप से [[जैव अकार्बनिक रसायन]] विज्ञान की समस्याओं पर लागू होती है,<ref>W. R. Scheidt, S. M. Durbin, J. T. Sage, "Nuclear resonance vibrational spectroscopy – NRVS", J. Inorg. Biochem. 2005, vol. 99, 60-71. {{doi|10.1016/j.jinorgbio.2004.11.004}}</ref> सामग्री विज्ञान, और [[भूभौतिकी]]। विधि का उपन्यास पहलू कंपन मोड के भीतर लोहे के परमाणुओं के 3डी-प्रक्षेपवक्र को निर्धारित करने की क्षमता है, जो डीएफटी-भविष्यवाणी सटीकता का अनूठा मूल्यांकन प्रदान करता है।<ref>J. W. Pavlik, A. Barabanschikov, A. G. Oliver, E. E. Alp, W. Sturhahn, J. Zhao, J. T. Sage, W. R. Scheidt, "Probing Vibrational Anisotropy with Nuclear Resonance Vibrational Spectroscopy" , Angew. Chem. Int. Ed. 2010, volume 49, pp. 4400-4404.  {{doi|10.1002/anie.201000928}}</ref> इस पद्धति के s


== प्रायोगिक सेट-अप ==
== प्रायोगिक सेट-अप ==
[[File:Schéma de principe du synchrotron.jpg|thumb|एक सिंक्रोट्रॉन का योजनाबद्ध, जो इस तकनीक के लिए घटना एक्स-रे बीम प्रदान करता है।]]प्रयोगात्मक सेटअप में, कण बीम से तरंगिका द्वारा एक्स-रे जारी किए जाते हैं; उच्च-रिज़ॉल्यूशन मोनोक्रोमेटर छोटे ऊर्जा फैलाव (आमतौर पर 1.0 meV) के साथ किरण उत्पन्न करता है। नमूना मोसबाउर आइसोटोप के अनुनाद के आसपास चुने गए फोटॉन के साथ विकिरणित होता है और विशिष्ट आइसोटोप के लिए और जानकारी प्रदान की जाती है। प्रायोगिक स्कैन के लिए विशिष्ट पैरामीटर -20 meV नीचे हटना-मुक्त अनुनाद ऊर्जा से +100 meV इसके ऊपर हैं। स्कैन की संख्या (अक्सर प्रत्येक 0.2 meV में 5 सेकंड के लिए रिकॉर्ड की जाती है) नमूने में Mössbauer effect|Mössbauer-सक्रिय नाभिक की मात्रा पर निर्भर करती है। किसी भी तरंग दैर्ध्य पर नमूने द्वारा अवशोषित फोटोन की संख्या को हिमस्खलन [[हिमस्खलन डायोड]] के साथ उत्तेजित परमाणु से उत्सर्जित प्रतिदीप्ति का पता लगाकर मापा जाता है। परिणामी कच्चे स्पेक्ट्रम में उच्च-तीव्रता प्रतिध्वनि होती है जो जांचे गए नाभिक के परमाणु उत्तेजित अवस्था से मेल खाती है। थोक नमूनों के लिए, तकनीक प्राकृतिक प्रचुरता का पता लगाती है <sup>57</sup>फे. कई तनु या जैविक नमूनों के लिए, नमूना अक्सर समृद्ध होता है <sup>57</sup>फे.
[[File:Schéma de principe du synchrotron.jpg|thumb|एक सिंक्रोट्रॉन का योजनाबद्ध, जो इस विधि के लिए घटना एक्स-रे बीम प्रदान करता है।]]प्रयोगात्मक सेटअप में, कण बीम से तरंगिका द्वारा एक्स-रे जारी किए जाते हैं; उच्च-रिज़ॉल्यूशन मोनोक्रोमेटर छोटे ऊर्जा फैलाव (सामान्यतः 1.0 एमईवी) के साथ किरण उत्पन्न करता है। नमूना मोसबाउर आइसोटोप के अनुनाद के आसपास चुने गए फोटॉन के साथ विकिरणित होता है और विशिष्ट आइसोटोप के लिए और जानकारी प्रदान की जाती है। प्रायोगिक स्कैन के लिए विशिष्ट पैरामीटर -20 एमईवी नीचे हटना-मुक्त अनुनाद ऊर्जा से +100 एमईवी इसके ऊपर हैं। स्कैन की संख्या (अधिकांशतः प्रत्येक 0.2 एमईवी में 5 सेकंड के लिए रिकॉर्ड की जाती है) नमूने में मोसबाउर-सक्रिय नाभिक की मात्रा पर निर्भर करती है। किसी भी तरंग दैर्ध्य पर नमूने द्वारा अवशोषित फोटोन की संख्या को हिमस्खलन [[हिमस्खलन डायोड]] के साथ उत्तेजित परमाणु से उत्सर्जित प्रतिदीप्ति का पता लगाकर मापा जाता है। परिणामी कच्चे स्पेक्ट्रम में उच्च-तीव्रता प्रतिध्वनि होती है जो जांचे गए नाभिक के परमाणु उत्तेजित अवस्था से मेल खाती है। थोक नमूनों के लिए, विधि प्राकृतिक प्रचुरता का पता लगाती है <sup>57</sup>Fe. कई तनु या जैविक नमूनों के लिए, नमूना अधिकांशतः समृद्ध होता है <sup>57</sup>Fe.


==संदर्भ==
==संदर्भ==
Line 9: Line 8:


{{BranchesofSpectroscopy}}
{{BranchesofSpectroscopy}}
[[Category: कंपन स्पेक्ट्रोस्कोपी]] [[Category: वैज्ञानिक तकनीकें]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category:Chemistry navigational boxes]]
[[Category: Machine Translated Page]]
[[Category:Collapse templates]]
[[Category:Created On 14/02/2023]]
[[Category:Created On 14/02/2023]]
[[Category:Machine Translated Page]]
[[Category:Missing redirects]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:कंपन स्पेक्ट्रोस्कोपी]]
[[Category:वैज्ञानिक तकनीकें]]

Latest revision as of 15:49, 2 November 2023

परमाणु अनुनाद कंपन स्पेक्ट्रोस्कोपी एक सिंक्रोटॉन-आधारित विधि है जो आणविक कंपन की जांच करती है। विधि , जिसे अधिकांशतः एनआरवीएस कहा जाता है, उन नमूनों के लिए विशिष्ट है जिनमें नाभिक होते हैं जो मोसबाउर स्पेक्ट्रोस्कोपी का उत्तर देते हैं, सबसे सामान्यतः लोहा। सिंक्रोट्रॉन विधि प्रकाश स्रोतों द्वारा प्रस्तुत किए गए उच्च रिज़ॉल्यूशन का शोषण करती है, जो कंपन ठीक संरचना के संकल्प को सक्षम करती है, विशेष रूप से उन कंपनों को जो Fe केंद्र (एस) की स्थिति से जुड़ी होती हैं।[1][2] लोकप्रिय रूप से जैव अकार्बनिक रसायन विज्ञान की समस्याओं पर प्रयुक्त होती है,[3] सामग्री विज्ञान, और भूभौतिकी। विधि का उपन्यास पहलू कंपन मोड के अंदर लोहे के परमाणुओं के 3डी-प्रक्षेपवक्र को निर्धारित करने की क्षमता है, जो डीएफटी-भविष्यवाणी स्पष्टता का अनूठा मूल्यांकन प्रदान करता है।[4] इस पद्धति के अन्य नामों में परमाणु अप्रत्यास्थ प्रकीर्णन (एनआईएस ), नाभिकीय अप्रत्यास्थ अवशोषण (एनआईए), नाभिकीय गुंजयमान अप्रत्यास्थ एक्स-रे प्रकीर्णन (एनआरआईएक्सएस ), और फोनन असिस्टेड मोसबाउर प्रभाव सम्मिलित हैं।

प्रायोगिक सेट-अप

एक सिंक्रोट्रॉन का योजनाबद्ध, जो इस विधि के लिए घटना एक्स-रे बीम प्रदान करता है।

प्रयोगात्मक सेटअप में, कण बीम से तरंगिका द्वारा एक्स-रे जारी किए जाते हैं; उच्च-रिज़ॉल्यूशन मोनोक्रोमेटर छोटे ऊर्जा फैलाव (सामान्यतः 1.0 एमईवी) के साथ किरण उत्पन्न करता है। नमूना मोसबाउर आइसोटोप के अनुनाद के आसपास चुने गए फोटॉन के साथ विकिरणित होता है और विशिष्ट आइसोटोप के लिए और जानकारी प्रदान की जाती है। प्रायोगिक स्कैन के लिए विशिष्ट पैरामीटर -20 एमईवी नीचे हटना-मुक्त अनुनाद ऊर्जा से +100 एमईवी इसके ऊपर हैं। स्कैन की संख्या (अधिकांशतः प्रत्येक 0.2 एमईवी में 5 सेकंड के लिए रिकॉर्ड की जाती है) नमूने में मोसबाउर-सक्रिय नाभिक की मात्रा पर निर्भर करती है। किसी भी तरंग दैर्ध्य पर नमूने द्वारा अवशोषित फोटोन की संख्या को हिमस्खलन हिमस्खलन डायोड के साथ उत्तेजित परमाणु से उत्सर्जित प्रतिदीप्ति का पता लगाकर मापा जाता है। परिणामी कच्चे स्पेक्ट्रम में उच्च-तीव्रता प्रतिध्वनि होती है जो जांचे गए नाभिक के परमाणु उत्तेजित अवस्था से मेल खाती है। थोक नमूनों के लिए, विधि प्राकृतिक प्रचुरता का पता लगाती है 57Fe. कई तनु या जैविक नमूनों के लिए, नमूना अधिकांशतः समृद्ध होता है 57Fe.

संदर्भ

  1. E. E. Alp, W. Sturhahn, T. S. Toellner, J. Zhoa, M.Hu, D. E. Brown. "Vibrational Dynamics Studies by Nuclear Resonant Inelastic X-Ray Scattering" Hyperfine Interactions 144/145: 3–20, 2002.
  2. Alp, E. E.; Sturhahn, W.; Toellner, T. S.; Zhao, J.; Hu, M.; Brown, D. E., "Vibrational Dynamics Studies by Nuclear Resonant Inelastic X-Ray Scattering," in Mössbauer Spectroscopy, P. Gütlich, B. W. Fitzsimmons, R. Rüffer and H. Spiering, Eds. 2003, Springer Netherlands. doi:10.1007/978-94-010-0045-1_1
  3. W. R. Scheidt, S. M. Durbin, J. T. Sage, "Nuclear resonance vibrational spectroscopy – NRVS", J. Inorg. Biochem. 2005, vol. 99, 60-71. doi:10.1016/j.jinorgbio.2004.11.004
  4. J. W. Pavlik, A. Barabanschikov, A. G. Oliver, E. E. Alp, W. Sturhahn, J. Zhao, J. T. Sage, W. R. Scheidt, "Probing Vibrational Anisotropy with Nuclear Resonance Vibrational Spectroscopy" , Angew. Chem. Int. Ed. 2010, volume 49, pp. 4400-4404. doi:10.1002/anie.201000928