डेल्टा विभव: Difference between revisions
No edit summary |
No edit summary |
||
Line 45: | Line 45: | ||
=== बाउंड अवस्था (E < 0) === | === बाउंड अवस्था (E < 0) === | ||
[[File:DeltaF-WaveSolution 2.png|right|thumb|350px|डेल्टा फलन क्षमता के लिए बाध्य | [[File:DeltaF-WaveSolution 2.png|right|thumb|350px|डेल्टा फलन क्षमता के लिए बाध्य स्थिति तरंग फलन समाधान का आरेख प्रत्येक समष्टि निरंतर है, किन्तु इसके व्युत्पन्न को परिभाषित नहीं किया गया है {{math|1=''x'' = 0}}.]]किसी भी एक आयामी आकर्षक क्षमता में एक बाउंड अवस्था होगी। इसकी ऊर्जा ज्ञात करने के लिए, ध्यान दें कि {{math|''E'' < 0}} के लिए, {{math|1=''k'' = ''i''{{radic|2''m''{{!}}''E''{{!}}}}/''ħ'' = ''iκ''}} काल्पनिक है, और तरंग फलन जो उपरोक्त गणना में धनात्मक ऊर्जा के लिए दोलन कर रहे थे, अब x के कार्यों में तेजी से वृद्धि या कमी हो रही है। (ऊपर देखें)। यह आवश्यक है कि तरंग फलन अनंत पर विचलन न करें, {{math|1=''A''<sub>r</sub> = ''B''<sub>l</sub> = 0}} के अर्ध शब्द समाप्त हो जाते हैं तरंग फलन तब होता है | ||
<math display="block">\psi(x) = \begin{cases} | <math display="block">\psi(x) = \begin{cases} | ||
\psi_\text{L}(x) = A_\text{l} e^{\kappa x}, & \text{ if } x \le 0, \\ | \psi_\text{L}(x) = A_\text{l} e^{\kappa x}, & \text{ if } x \le 0, \\ |
Revision as of 22:09, 28 November 2023
के बारे में लेखों की एक श्रृंखला का हिस्सा |
क्वांटम यांत्रिकी |
---|
क्वांटम यांत्रिकी में डेल्टा क्षमता विभव अच्छी तरह से गणितीय रूप से डिराक डेल्टा फलन द्वारा वर्णित है - सामान्यीकृत फलन गुणात्मक रूप से, यह ऐसी क्षमता से मेल खाता है जो प्रत्येक समष्टि शून्य है, जहां यह अनंत मान लेता है। इसका उपयोग उन स्थितियों का अनुकरण करने के लिए किया जा सकता है जहां कण अंतरिक्ष के दो क्षेत्रों में दो क्षेत्रों के मध्य बाधा के साथ घूमने के लिए स्वतंत्र है। उदाहरण के लिए, इलेक्ट्रॉन संवाहक पदार्थ में लगभग स्वतंत्र रूप से घूम सकता है, किन्तु यदि दो संवाहक सतहों को साथ निकट रखा जाता है, तो उनके मध्य का इंटरफ़ेस इलेक्ट्रॉन के लिए बाधा के रूप में कार्य करता है जिसे डेल्टा क्षमता द्वारा अनुमानित किया जा सकता है।
इस प्रकार डेल्टा विभव परिमित क्षमता वाले विभव का सीमित स्थिति (गणित) है, जो विभव की चौड़ाई कम करने और क्षमता बढ़ाने के समय विभव की चौड़ाई और विभव स्थिरांक के उत्पाद को बनाए रखने पर प्राप्त होता है।
यह आलेख, सरलता के लिए, केवल एक-आयामी क्षमता पर ही विचार करता है, किन्तु विश्लेषण को और अधिक आयामों तक विस्तारित किया जा सकता है।
एकल डेल्टा क्षमता
इस प्रकार तरंग फलन के लिए समय-स्वतंत्र श्रोडिंगर समीकरण ψ(x) अदिश विभव में आयाम में कण का V(x) है
डेल्टा क्षमता क्षमता है
यदि λ ऋणात्मक है तो इसे डेल्टा विभव परिमित कहा जाता है, और यदि λ धनात्मक है तो इसे डेल्टा विभव बाधा कहा जाता है। सरलता के लिए डेल्टा को मूल स्थान पर घटित होने के रूप में परिभाषित किया गया है; डेल्टा फलन के तर्क में परिवर्तन से निम्नलिखित में से कोई भी परिणाम नहीं परिवर्तन है।
श्रोडिंगर समीकरण को हल करना [1]
इस प्रकार विभव अंतरिक्ष को दो भागों (x < 0 और x > 0) में विभाजित करता है। इनमें से प्रत्येक भाग में विभव शून्य है, और श्रोडिंगर समीकरण कम हो जाता है
इस प्रकार गुणांकों के मध्य संबंध यह स्थापित करके प्राप्त किया जाता है कि मूल बिंदु पर तरंग फलन निरंतर होते है:
इस अभिव्यक्ति में ψ की परिभाषा को प्रतिस्थापित करने से परिणाम मिलता है
बाउंड अवस्था (E < 0)
किसी भी एक आयामी आकर्षक क्षमता में एक बाउंड अवस्था होगी। इसकी ऊर्जा ज्ञात करने के लिए, ध्यान दें कि E < 0 के लिए, k = i√2m|E|/ħ = iκ काल्पनिक है, और तरंग फलन जो उपरोक्त गणना में धनात्मक ऊर्जा के लिए दोलन कर रहे थे, अब x के कार्यों में तेजी से वृद्धि या कमी हो रही है। (ऊपर देखें)। यह आवश्यक है कि तरंग फलन अनंत पर विचलन न करें, Ar = Bl = 0 के अर्ध शब्द समाप्त हो जाते हैं तरंग फलन तब होता है
बाउंड अवस्था की ऊर्जा तब होती है
प्रकीर्णन (E > 0)
धनात्मक ऊर्जाओं के लिए, कण अर्ध-अंतरिक्ष x < 0 या x > 0 में स्थानांतरित होने के लिए स्वतंत्र है। यह डेल्टा-फलन क्षमता पर विस्तृत हुआ हो सकता है।
इस प्रकार क्वांटम स्थिति का अध्ययन निम्नलिखित स्थिति में किया जा सकता है: बाईं ओर से बाधा पर एक कण घटना (Ar) यह प्रतिबिंबित ((Al)) या संचरित ((Br)) हो सकता है। बाईं ओर से आपतन के लिए परावर्तन और संचरण के आयाम ज्ञात करने के लिए, हम उपरोक्त समीकरण Ar = 1 (आने वाले कण), Al = r (प्रतिबिंब), Bl = 0 (दाहिनी ओर से कोई आने वाला कण नहीं) और Br = t रखते हैं। (ट्रांसमिशन), और r और t के लिए हल करें, संभवतः हमारे निकट t में कोई समीकरण न हो परिणाम है
संचरण की संभावना है
टिप्पणियाँ और अनुप्रयोग
ऊपर प्रस्तुत गणना पहली बार में अवास्तविक और संभवतः ही उपयोगी लग सकती है। चूंकि, यह विभिन्न वास्तविक जीवन प्रणालियों के लिए उपयुक्त मॉडल सिद्ध हुआ है।
ऐसा उदाहरण दो विद्युत चालकता पदार्थो के मध्य इंटरफेस से संबंधित है। अधिकांश पदार्थो में, इलेक्ट्रॉनों की गति अर्ध-मुक्त होती है और इसे प्रभावी द्रव्यमान (ठोस-अवस्था भौतिकी) के साथ उपरोक्त हैमिल्टनियन में गतिज शब्द m द्वारा वर्णित किया जा सकता है। अधिकांशतः, ऐसी पदार्थो की सतहें ऑक्साइड परतों से आवरण होती हैं या अन्य कारणों से आदर्श नहीं होती हैं। इस पतली, गैर-संवाहक परत को ऊपर बताए अनुसार समष्टि डेल्टा-फलन क्षमता द्वारा मॉडल किया जा सकता है। पुनः इलेक्ट्रॉन पदार्थ से दूसरे पदार्थ तक सुरंग बना सकते हैं, जिससे धारा उत्पन्न होता है।
इस प्रकार स्कैनिंग टनलिंग माइक्रोस्कोप (एसटीएम) का संचालन इस टनलिंग प्रभाव पर निर्भर करता है। उस स्थिति में, बाधा एसटीएम की नोक और अंतर्निहित वस्तु के मध्य वायु के कारण होती है। अवरोध की शक्ति भिन्नता से संबंधित है, दोनों जितना अधिक दूर होंगे, उतना ही सशक्त होगा। इस स्थिति के अधिक सामान्य मॉडल के लिए, परिमित विभव अवरोध (क्यूएम) देखें। डेल्टा फलन विभव बाधा बहुत उच्च और संकीर्ण बाधाओं के लिए वहां माने जाने वाले मॉडल का सीमित स्थिति है।
उपरोक्त मॉडल एक-आयामी है जबकि हमारे निकट का समष्टि त्रि-आयामी है। तो, वास्तव में, किसी को श्रोडिंगर समीकरण को तीन आयामों में हल करना चाहिए। दूसरी ओर, विभिन्न प्रणालियाँ केवल समन्वय दिशा में परिवर्तित होती हैं और दूसरों के साथ अनुवादात्मक रूप से अपरिवर्तनीय होती हैं। श्रोडिंगर समीकरण को तब इस प्रकार के तरंग फलन के लिए एन्सैट्ज़ द्वारा यहां विचार किए गए स्थिति में कम किया जा सकता है।
.
वैकल्पिक रूप से, कुछ डोमेन डी की सतह पर उपस्थित डेल्टा फलन को सामान्य बनाना संभव है (संकेतक का लाप्लासियन देखें)।[2]
इस प्रकार डेल्टा फलन मॉडल वास्तव में डुडले आर. हर्शबैक के समूह द्वारा विकसित आयामी स्केलिंग विधि के अनुसार हाइड्रोजन परमाणु का आयामी संस्करण है।[3] डेल्टा फलन मॉडल डबल-परिमित डिराक डेल्टा फलन मॉडल के साथ विशेष रूप से उपयोगी हो जाता है जो हाइड्रोजन अणु आयन के एक-आयामी संस्करण का प्रतिनिधित्व करता है, जैसा कि निम्नलिखित अनुभाग में दिखाया गया है।
डबल डेल्टा क्षमता
डबल-परिमित डिराक डेल्टा फलन संबंधित श्रोडिंगर समीकरण द्वारा डायटोमिक हाइड्रोजन अणु को मॉडल करता है:
सबसे रोचक स्थितियों में से एक तब होता है जब qR ≤ 1 होता है, जिसके परिणामस्वरूप होता है, इस प्रकार, किसी के निकट E = 0 के साथ एक गैर-सामान्य बाध्य स्थिति समाधान होता है। इन विशिष्ट मापदंडों के लिए, विभिन्न रोचक गुण हैं जो घटित होते हैं, उनमें से एक असामान्य प्रभाव यह है कि संचरण गुणांक शून्य ऊर्जा पर एकता है।[5]
यह भी देखें
- मुक्त कण
- डिब्बे में कण
- फाईनिट पोटेंसिअल वेल
- वलय में कण
- वृत्ताकार सममित विभव में कण
- क्वांटम हार्मोनिक ऑसिलेटर
- हाइड्रोजन परमाणु या हाइड्रोजन जैसा परमाणु
- रिंग वेव गाइड
- आयामी जालक में कण (आवधिक क्षमता)
- हाइड्रोजन आणविक आयन
- होल्स्टीन-हेरिंग विधि
- सूचक का लाप्लासियन
- विश्लेषणात्मक समाधानों के साथ क्वांटम-मैकेनिकल प्रणालियों की सूची
संदर्भ
- ↑ "क्वांटम यांत्रिकी - डेल्टा क्षमता के साथ तरंग फ़ंक्शन". Physics Stack Exchange. Retrieved 2021-03-29.
- ↑ Lange, Rutger-Jan (2012), "Potential theory, path integrals and the Laplacian of the indicator", Journal of High Energy Physics, 2012 (11): 1–49, arXiv:1302.0864, Bibcode:2012JHEP...11..032L, doi:10.1007/JHEP11(2012)032, S2CID 56188533
- ↑ D.R. Herschbach, J.S. Avery, and O. Goscinski (eds.), Dimensional Scaling in Chemical Physics, Springer, (1992). [1]
- ↑ T. C. Scott, J. F. Babb, A. Dalgarno and John D. Morgan III, "The Calculation of Exchange Forces: General Results and Specific Models", J. Chem. Phys., 99, pp. 2841–2854, (1993).
- ↑ van Dijk, W.; Kiers, K. A. (1992). "Time delay in simple one‐dimensional systems". American Journal of Physics. American Association of Physics Teachers (AAPT). 60 (6): 520–527. Bibcode:1992AmJPh..60..520V. doi:10.1119/1.16866. ISSN 0002-9505.
- Griffiths, David J. (2005). Introduction to Quantum Mechanics (2nd ed.). Prentice Hall. pp. 68–78. ISBN 978-0-13-111892-8.
- For the 3-dimensional case look for the "delta shell potential"; further see K. Gottfried (1966), Quantum Mechanics Volume I: Fundamentals, ch. III, sec. 15.
बाहरी संबंध
- Media related to डेल्टा विभव at Wikimedia Commons