प्रकाशीय स्वसहसंबंध: Difference between revisions
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
== क्षेत्र स्वत: सहसंबंध == | == क्षेत्र स्वत: सहसंबंध == | ||
[[Image:optical-field-autocorrelation-setup.svg|thumb|upright=1.2|[[माइकलसन इंटरफेरोमीटर|माइकलसन व्यतिकरणमापी]] पर आधारित क्षेत्र स्वत: सहसंयोजक के लिए व्यवस्था। '''L''': मॉडलॉकिंग लेजर, '''BS''': [[ बीम फाड़नेवाला |बीम स्प्लिटर]], '''M1''': परिवर्तनीय प्रसार विलंब प्रदान करने वाला गतिशील दर्पण, '''M2''': स्थिर दर्पण, '''D''': [[ऊर्जा]] संसूचक।]]एक समष्टि विद्युत क्षेत्र <math>E(t)</math> के लिए, क्षेत्र स्वत: सहसंबंध कार्य | [[Image:optical-field-autocorrelation-setup.svg|thumb|upright=1.2|[[माइकलसन इंटरफेरोमीटर|माइकलसन व्यतिकरणमापी]] पर आधारित क्षेत्र स्वत: सहसंयोजक के लिए व्यवस्था। '''L''': मॉडलॉकिंग लेजर, '''BS''': [[ बीम फाड़नेवाला |बीम स्प्लिटर]], '''M1''': परिवर्तनीय प्रसार विलंब प्रदान करने वाला गतिशील दर्पण, '''M2''': स्थिर दर्पण, '''D''': [[ऊर्जा]] संसूचक।]]एक समष्टि विद्युत क्षेत्र <math>E(t)</math> के लिए, क्षेत्र स्वत: सहसंबंध कार्य निम्न प्रकार से परिभाषित किया गया है | ||
: <math>A(\tau) = \int_{-\infty}^{+\infty}E(t)E^*(t-\tau)dt</math> | : <math>A(\tau) = \int_{-\infty}^{+\infty}E(t)E^*(t-\tau)dt</math> | ||
वीनर-खिनचिन प्रमेय में कहा गया है कि क्षेत्र स्वत: सहसंबंध का [[फूरियर रूपांतरण]] <math>E(t)</math> का वर्णक्रम होता है, अर्थात्, <math>E(t)</math> फूरियर रूपांतरण के परिमाण का वर्ग होता है। परिणामस्वरूप, क्षेत्र स्वत: सहसंबंध वर्णक्रमीय चरण के प्रति संवेदनशील नहीं होता है। | वीनर-खिनचिन प्रमेय में कहा गया है कि क्षेत्र स्वत: सहसंबंध का [[फूरियर रूपांतरण]] <math>E(t)</math> का वर्णक्रम होता है, अर्थात्, <math>E(t)</math> फूरियर रूपांतरण के परिमाण का वर्ग होता है। परिणामस्वरूप, क्षेत्र स्वत: सहसंबंध वर्णक्रमीय चरण के प्रति संवेदनशील नहीं होता है। | ||
[[Image:optical-field-autocorrelation.png|thumb|upright=1.75|left|दो अल्ट्राशॉर्ट पल्स (a) और (b) अपने संबंधित क्षेत्र स्वत: सहसंबंध (c) और (d) के साथ। ध्यान दें कि स्वत:सहसंबंध सममित होता हैं और शून्य विलंब पर चरम पर होता हैं। पल्स (a) के विपरीत, पल्स (b) एक तात्कालिक आवृत्ति स्वीप प्रदर्शित करता है, जिसे [[कलरव]] कहा जाता है, और इसलिए इसमें पल्स (a) की तुलना में अधिक [[बैंडविड्थ (सिग्नल प्रोसेसिंग)|बैंडविड्थ (संकेत प्रोसेसिंग)]] होता है। इसलिए, क्षेत्र स्वत: सहसंबंध (d) (c) से छोटा होता है, चूँकि वर्णक्रम क्षेत्र स्वत: सहसंबंध (वीनर-खिनचिन प्रमेय) का फूरियर रूपांतरण होता है।]]मिशेलसन व्यतिकरणमापी के आउटपुट पर एक धीमा संसूचक लगाकर क्षेत्र स्वत: सहसंबंध को प्रयोगात्मक रूप से सरलता से मापा जाता है। संसूचक इनपुट विद्युत क्षेत्र <math>E(t)</math> और दूसरी भुजा विलंबित प्रतिकृति <math>E(t-\tau)</math> द्वारा प्रकाशित होता है। यदि संसूचक की समय प्रतिक्रिया संकेत <math>E(t)</math> की समय अवधि से बहुत बड़ी है, या यदि लेख्यांकित किया गया संकेत एकीकृत है, विलंब <math>\tau</math> को स्कैन करते समय संसूचक तीव्रता <math>I_M</math> को मापता है: | [[Image:optical-field-autocorrelation.png|thumb|upright=1.75|left|दो अल्ट्राशॉर्ट पल्स (a) और (b) अपने संबंधित क्षेत्र स्वत: सहसंबंध (c) और (d) के साथ। ध्यान दें कि स्वत:सहसंबंध सममित होता हैं और शून्य विलंब पर चरम पर होता हैं। पल्स (a) के विपरीत, पल्स (b) एक तात्कालिक आवृत्ति स्वीप प्रदर्शित करता है, जिसे [[कलरव]] कहा जाता है, और इसलिए इसमें पल्स (a) की तुलना में अधिक [[बैंडविड्थ (सिग्नल प्रोसेसिंग)|बैंडविड्थ (संकेत प्रोसेसिंग)]] होता है। इसलिए, क्षेत्र स्वत: सहसंबंध (d) (c) से छोटा होता है, चूँकि वर्णक्रम क्षेत्र स्वत: सहसंबंध (वीनर-खिनचिन प्रमेय) का फूरियर रूपांतरण होता है।]]मिशेलसन व्यतिकरणमापी के आउटपुट पर एक धीमा संसूचक लगाकर क्षेत्र स्वत: सहसंबंध को प्रयोगात्मक रूप से सरलता से मापा जाता है। संसूचक इनपुट विद्युत क्षेत्र <math>E(t)</math> और दूसरी भुजा विलंबित प्रतिकृति <math>E(t-\tau)</math> द्वारा प्रकाशित होता है। यदि संसूचक की समय प्रतिक्रिया संकेत <math>E(t)</math> की समय अवधि से बहुत बड़ी है, या यदि लेख्यांकित किया गया संकेत एकीकृत है, तो यह विलंब <math>\tau</math> को स्कैन करते समय संसूचक तीव्रता <math>I_M</math> को मापता है: | ||
: <math>I_M(\tau) = \int_{-\infty}^{+\infty}|E(t)+E(t-\tau)|^2dt</math> | : <math>I_M(\tau) = \int_{-\infty}^{+\infty}|E(t)+E(t-\tau)|^2dt</math> | ||
<math>I_M(\tau)</math> का विस्तार करने से पता चलता है कि नियमों में से एक <math>A(\tau)</math> होता है, यह सिद्ध करते हुए कि माइकलसन व्यतिकरणमापी का उपयोग क्षेत्र स्वत: सहसंबंध, या <math>E(t)</math> के वर्णक्रम को मापने के लिए किया जा सकता है। यह सिद्धांत [[फूरियर रूपांतरण स्पेक्ट्रोस्कोपी]] का आधार होता है। | <math>I_M(\tau)</math> का विस्तार करने से पता चलता है कि कई नियमों में से एक नियम <math>A(\tau)</math> होता है, यह सिद्ध करते हुए कि माइकलसन व्यतिकरणमापी का उपयोग क्षेत्र स्वत: सहसंबंध, या <math>E(t)</math> के वर्णक्रम को मापने के लिए किया जा सकता है। यह सिद्धांत [[फूरियर रूपांतरण स्पेक्ट्रोस्कोपी]] का आधार होता है। | ||
Line 20: | Line 20: | ||
==तीव्रता स्वत: सहसंबंध== | ==तीव्रता स्वत: सहसंबंध== | ||
एक समष्टि विद्युत क्षेत्र <math>E(t)</math> के अनुरूप एक तीव्रता <math>I(t) = |E(t)|^2</math> होती है और एक तीव्रता स्वत: सहसंबंध कार्य द्वारा इस प्रकार परिभाषित है | एक समष्टि विद्युत क्षेत्र <math>E(t)</math> के अनुरूप एक तीव्रता <math>I(t) = |E(t)|^2</math> होती है और एक तीव्रता स्वत: सहसंबंध कार्य द्वारा इस प्रकार परिभाषित होती है | ||
: <math>A(\tau) = \int_{-\infty}^{+\infty}I(t)I(t-\tau)dt</math> | : <math>A(\tau) = \int_{-\infty}^{+\infty}I(t)I(t-\tau)dt</math> | ||
तीव्रता स्वत: सहसंबंध का प्रकाशीय कार्यान्वयन क्षेत्र स्वत: सहसंबंध जितना स्पष्ट नहीं होता है। पूर्व व्यवस्था के समान, एक परिवर्तनीय विलंब के साथ दो समानांतर बीम उत्पन्न होते हैं, फिर <math>(E(t)+E(t-\tau))^2</math> के आनुपातिक संकेत प्राप्त करने के लिए दूसरे-हार्मोनिक-पीढ़ी के क्रिस्टल ([[ अरेखीय प्रकाशिकी |अरेखीय प्रकाशिकी]] देखें) में केंद्रित होते हैं। मात्र प्रकाशीय अक्ष पर प्रसारित होने वाली किरण, क्रॉस-उत्पाद <math>E(t)E(t-\tau)</math> के आनुपातिक है, को स्थिर रखा जाता है। फिर इस संकेत को एक धीमे संसूचक द्वारा लेख्यांकित किया जाता है, जो मापता है | तीव्रता स्वत: सहसंबंध का प्रकाशीय कार्यान्वयन क्षेत्र स्वत: सहसंबंध जितना स्पष्ट नहीं होता है। पूर्व व्यवस्था के समान, एक परिवर्तनीय विलंब के साथ दो समानांतर बीम उत्पन्न होते हैं, फिर <math>(E(t)+E(t-\tau))^2</math> के आनुपातिक संकेत प्राप्त करने के लिए दूसरे-हार्मोनिक-पीढ़ी के क्रिस्टल ([[ अरेखीय प्रकाशिकी |अरेखीय प्रकाशिकी]] देखें) में केंद्रित होते हैं। मात्र प्रकाशीय अक्ष पर प्रसारित होने वाली किरण, क्रॉस-उत्पाद <math>E(t)E(t-\tau)</math> के आनुपातिक होती है, को स्थिर रखा जाता है। फिर इस संकेत को एक धीमे संसूचक द्वारा लेख्यांकित किया जाता है, जो मापता है | ||
: <math>I_M(\tau) = \int_{-\infty}^{+\infty}|E(t)E(t-\tau)|^2dt = \int_{-\infty}^{+\infty}I(t)I(t-\tau)dt</math> | : <math>I_M(\tau) = \int_{-\infty}^{+\infty}|E(t)E(t-\tau)|^2dt = \int_{-\infty}^{+\infty}I(t)I(t-\tau)dt</math> | ||
Line 38: | Line 38: | ||
==व्यतिकरण स्वत: सहसंबंध== | ==व्यतिकरण स्वत: सहसंबंध== | ||
[[Image:optical-interferometric-autocorrelation-setup.png|thumb|upright=1.2|एक व्यतिकरण स्वत: सहसंयोजक के लिए व्यवस्था, उपरोक्त क्षेत्र स्वत: सहसंयोजक के समान, निम्नलिखित प्रकाशिकी के साथ जोड़ा | [[Image:optical-interferometric-autocorrelation-setup.png|thumb|upright=1.2|एक व्यतिकरण स्वत: सहसंयोजक के लिए व्यवस्था, उपरोक्त क्षेत्र स्वत: सहसंयोजक के समान, निम्नलिखित प्रकाशिकी के साथ जोड़ा जाता है: '''L''': अभिसारी [[ लेंस (प्रकाशिकी) |लेंस (प्रकाशिकी)]], '''SHG''': दूसरी-हार्मोनिक पीढ़ी का [[क्रिस्टल]], '''F''': वर्णक्रमीय [[ फ़िल्टर (प्रकाशिकी) |निस्पंदन (प्रकाशिकी)]] मौलिक तरंग दैर्ध्य को अवरुद्ध करने के लिए।]]पूर्व दोनों स्थितियों के संयोजन के रूप में, एक अरेखीय क्रिस्टल का उपयोग एक कोलिनियर ज्यामिति में माइकलसन व्यतिकरणमापी के आउटपुट पर दूसरा हार्मोनिक उत्पन्न करने के लिए किया जा सकता है। इस स्थिति में, संकेत को धीमी गति से संसूचक द्वारा लेख्यांकित किया जाता है | ||
: <math>I_M(\tau) = \int_{-\infty}^{+\infty}|(E(t)+E(t-\tau))^2|^2dt</math> | : <math>I_M(\tau) = \int_{-\infty}^{+\infty}|(E(t)+E(t-\tau))^2|^2dt</math> |
Revision as of 10:00, 29 November 2023
प्रकाशिकी में, विभिन्न स्वत: सहसंबंध कार्यों को प्रयोगात्मक रूप से अनुभूत किया जा सकता है। क्षेत्र स्वत: सहसंबंध का उपयोग प्रकाश के स्रोत के वर्णक्रम की गणना करने के लिए किया जा सकता है, जबकि तीव्रता स्वत: सहसंबंध और व्यतिकरण स्वत: सहसंबंध का उपयोग सामान्यतः मॉडलॉक्ड लेज़र द्वारा उत्पादित अल्ट्राशॉर्ट पल्स की अवधि का प्राक्कलन लगाने के लिए किया जाता है। लेजर पल्स अवधि को ऑप्टोइलेक्ट्रॉनिक विधियों से सरलता से नहीं मापा जा सकता है, चूँकि फोटोडायोड और ऑसिलोस्कोप का प्रतिक्रिया समय 200 फेमटोसेकंड के क्रम में सबसे उत्तम होता है, फिर भी लेजर पल्स को कुछ फेमटोसेकंड जितना छोटा बनाया जा सकता है।
निम्नलिखित उदाहरणों में, स्वत: सहसंबंध संकेत दूसरी-हार्मोनिक पीढ़ी (एसएचजी) की गैर-रेखीय प्रक्रिया द्वारा उत्पन्न होता है। दो-फोटॉन अवशोषण पर आधारित अन्य तकनीकों का उपयोग स्वत: सहसंबंध माप में भी किया जा सकता है,[1] साथ ही तृतीय-हार्मोनिक पीढ़ी जैसी उच्च-क्रम की अरेखीय प्रकाशीय प्रक्रियाएं, इस स्थिति में संकेत की गणितीय अभिव्यक्ति को थोड़ा संशोधित किया जाएगा, परन्तु एक स्वत: सहसंबंध ट्रेस की मूल व्याख्या वही रहती है। कई प्रसिद्ध पाठ्यपुस्तकों में व्यतिकरण स्वत: सहसंबंध पर विस्तृत चर्चा दी गई है।[2][3]
क्षेत्र स्वत: सहसंबंध
एक समष्टि विद्युत क्षेत्र के लिए, क्षेत्र स्वत: सहसंबंध कार्य निम्न प्रकार से परिभाषित किया गया है
वीनर-खिनचिन प्रमेय में कहा गया है कि क्षेत्र स्वत: सहसंबंध का फूरियर रूपांतरण का वर्णक्रम होता है, अर्थात्, फूरियर रूपांतरण के परिमाण का वर्ग होता है। परिणामस्वरूप, क्षेत्र स्वत: सहसंबंध वर्णक्रमीय चरण के प्रति संवेदनशील नहीं होता है।
मिशेलसन व्यतिकरणमापी के आउटपुट पर एक धीमा संसूचक लगाकर क्षेत्र स्वत: सहसंबंध को प्रयोगात्मक रूप से सरलता से मापा जाता है। संसूचक इनपुट विद्युत क्षेत्र और दूसरी भुजा विलंबित प्रतिकृति द्वारा प्रकाशित होता है। यदि संसूचक की समय प्रतिक्रिया संकेत की समय अवधि से बहुत बड़ी है, या यदि लेख्यांकित किया गया संकेत एकीकृत है, तो यह विलंब को स्कैन करते समय संसूचक तीव्रता को मापता है:
का विस्तार करने से पता चलता है कि कई नियमों में से एक नियम होता है, यह सिद्ध करते हुए कि माइकलसन व्यतिकरणमापी का उपयोग क्षेत्र स्वत: सहसंबंध, या के वर्णक्रम को मापने के लिए किया जा सकता है। यह सिद्धांत फूरियर रूपांतरण स्पेक्ट्रोस्कोपी का आधार होता है।
तीव्रता स्वत: सहसंबंध
एक समष्टि विद्युत क्षेत्र के अनुरूप एक तीव्रता होती है और एक तीव्रता स्वत: सहसंबंध कार्य द्वारा इस प्रकार परिभाषित होती है
तीव्रता स्वत: सहसंबंध का प्रकाशीय कार्यान्वयन क्षेत्र स्वत: सहसंबंध जितना स्पष्ट नहीं होता है। पूर्व व्यवस्था के समान, एक परिवर्तनीय विलंब के साथ दो समानांतर बीम उत्पन्न होते हैं, फिर के आनुपातिक संकेत प्राप्त करने के लिए दूसरे-हार्मोनिक-पीढ़ी के क्रिस्टल (अरेखीय प्रकाशिकी देखें) में केंद्रित होते हैं। मात्र प्रकाशीय अक्ष पर प्रसारित होने वाली किरण, क्रॉस-उत्पाद के आनुपातिक होती है, को स्थिर रखा जाता है। फिर इस संकेत को एक धीमे संसूचक द्वारा लेख्यांकित किया जाता है, जो मापता है
वास्तव में तीव्रता स्वत: सहसंबंध होता है।
क्रिस्टल में दूसरे हार्मोनिक की पीढ़ी एक गैर-रैखिक प्रक्रिया होती है जिसके लिए पूर्व व्यवस्था के विपरीत, उच्च शिखर शक्ति (भौतिकी) की आवश्यकता होती है। यद्यपि, ऐसी उच्च शिखर शक्ति को अल्ट्राशॉर्ट पल्स द्वारा सीमित मात्रा में ऊर्जा से प्राप्त किया जा सकता है, और परिणामस्वरूप उनकी तीव्रता के स्वत: सहसंबंध को अधिकांशतः प्रयोगात्मक रूप से मापा जाता है। इस व्यवस्था के साथ एक और कठिनाई यह है कि दोनों बीमों को क्रिस्टल के अंदर एक ही बिंदु पर केंद्रित किया जाना चाहिए चूँकि दूसरे हार्मोनिक उत्पन्न होने के लिए विलंब को स्कैन किया जाता है।
यह दिखाया जा सकता है कि पल्स की तीव्रता स्वत:सहसंबंध चौड़ाई तीव्रता चौड़ाई से संबंधित होती है। गॉसियन समय प्रोफ़ाइल के लिए, स्वत: सहसंबंध की चौड़ाई तीव्रता की चौड़ाई से अधिक लंबी होती है, और अतिशयोक्तिपूर्ण सेकेंट वर्ग (sech2) पल्स की स्थिति में यह 1.54 से अधिक लंबी होती है। यह संख्यात्मक कारक, जो पल्स के आकार पर निर्भर करता है, कभी-कभी इसको विखंडन कारक कहा जाता है। यदि यह कारक ज्ञात है, या मान लिया गया है, तो तीव्रता स्वत: सहसंबंध का उपयोग करके पल्स की समय अवधि (तीव्रता चौड़ाई) को मापा जा सकता है। यद्यपि, चरण को मापा नहीं जा सकता।
व्यतिकरण स्वत: सहसंबंध
पूर्व दोनों स्थितियों के संयोजन के रूप में, एक अरेखीय क्रिस्टल का उपयोग एक कोलिनियर ज्यामिति में माइकलसन व्यतिकरणमापी के आउटपुट पर दूसरा हार्मोनिक उत्पन्न करने के लिए किया जा सकता है। इस स्थिति में, संकेत को धीमी गति से संसूचक द्वारा लेख्यांकित किया जाता है
को व्यतिकरण स्वत: सहसंबंध कहा जाता है। इसमें पल्स के चरण के बारे में कुछ जानकारी सम्मिलित होती है: जैसे-जैसे वर्णक्रमीय चरण अधिक समष्टि होता जाता है, स्वत: सहसंबंध ट्रेस में फ्रिंज धुल जाते हैं।
प्यूपिल कार्य स्वत:सहसंबंध
किसी प्रकाशीय प्रणाली का प्रकाशीय रूपांतरण कार्य T(w) उसके प्यूपिल कार्य f(x,y) के स्वत: सहसंबंध द्वारा दिया जाता है:
यह भी देखें
- स्वत:सहसंबंधक
- कन्वोल्यूशन
- सुसंगतता की डिग्री
- आवृत्ति-समाधान प्रकाशीय गेटिंग
- मल्टीफोटोन इंट्रापल्स इंटरफेरेंस चरण स्कैन
- प्रत्यक्ष विद्युत-क्षेत्र पुनर्निर्माण के लिए वर्णक्रमीय चरण व्यतिकरणमिति
संदर्भ
- ↑ Roth, J. M., Murphy, T. E. & Xu, C. Ultrasensitive and high-dynamic-range two-photon absorption in a GaAs photomultiplier tube, Opt. Lett. 27, 2076–2078 (2002).
- ↑ J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, 2nd Ed. (Academic, 2006).
- ↑ W. Demtröder, Laserspektroskopie: Grundlagen und Techniken, 5th Ed. (Springer, 2007).