एहरनफेस्ट प्रमेय: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Theorem in quantum mechanics}} {{Quantum mechanics|cTopic=Fundamental concepts}} एहरनफेस्ट प्रमेय, जिसका नाम...")
 
 
(9 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{Short description|Theorem in quantum mechanics}}
{{Short description|Theorem in quantum mechanics}}
{{Quantum mechanics|cTopic=Fundamental concepts}}
{{Quantum mechanics|cTopic=Fundamental concepts}}
एहरनफेस्ट प्रमेय, जिसका नाम ऑस्ट्रियाई सैद्धांतिक भौतिक विज्ञानी [[पॉल एरेनफेस्ट]] के नाम पर रखा गया है, स्थिति और गति [[ऑपरेटर (भौतिकी)]] ''x'' और ''p'' के उम्मीद मूल्य (क्वांटम यांत्रिकी) के समय व्युत्पन्न को उम्मीद मूल्य से जोड़ता है। बल <math>F=-V'(x)</math> अदिश विभव में गतिमान एक विशाल कण पर <math>V(x)</math>,<ref>{{harvnb|Hall|2013}} Section 3.7.5</ref>
'''एहरनफेस्ट प्रमेय''', जिसका नाम ऑस्ट्रियाई सैद्धांतिक भौतिक विज्ञानी [[पॉल एरेनफेस्ट]] के नाम पर रखा गया है, स्थिति और गति [[ऑपरेटर (भौतिकी)|संचालकों]] ''x'' और ''p'' के अपेक्षा मानों के समय व्युत्पन्न को अपेक्षा मान से जोड़ता है। बल <math>F=-V'(x)</math> अदिश विभव में गतिमान विशाल कण पर <math>V(x)</math>है।<ref>{{harvnb|Hall|2013}} Section 3.7.5</ref>
{{Equation box 1
{{Equation box 1
|indent =:
|indent =:
Line 8: Line 8:
|border
|border
|border colour = #0073CF
|border colour = #0073CF
|bgcolor=#F9FFF7}}एरेनफेस्ट प्रमेय किसी भी [[क्वांटम यांत्रिकी]] ऑपरेटर (भौतिकी) की अपेक्षा और सिस्टम के [[हैमिल्टनियन (क्वांटम यांत्रिकी)]] के साथ उस ऑपरेटर के [[कम्यूटेटर]] की अपेक्षा के बीच अधिक सामान्य संबंध का एक विशेष मामला है <ref>{{Cite journal | last1 = Ehrenfest | first1 = P. | title = Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik | doi = 10.1007/BF01329203 | journal = Zeitschrift für Physik | volume = 45 | issue = 7–8 | pages = 455–457 | year = 1927 |bibcode = 1927ZPhy...45..455E | s2cid = 123011242 }}</ref><ref name="Smith">{{cite book | last=Smith | first=Henrik | year=1991 | title=क्वांटम यांत्रिकी का परिचय| publisher=World Scientific Pub Co Inc |isbn=978-9810204754| pages=108–109}}</ref>{{Equation box 1
|bgcolor=#F9FFF7}}एरेनफेस्ट प्रमेय किसी भी [[क्वांटम यांत्रिकी]] ऑपरेटर (भौतिकी) की अपेक्षा और सिस्टम के [[हैमिल्टनियन (क्वांटम यांत्रिकी)]] के साथ उस ऑपरेटर के [[कम्यूटेटर]] की अपेक्षा के मध्य अधिक सामान्य संबंध की विशेष स्थिति है <ref>{{Cite journal | last1 = Ehrenfest | first1 = P. | title = Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik | doi = 10.1007/BF01329203 | journal = Zeitschrift für Physik | volume = 45 | issue = 7–8 | pages = 455–457 | year = 1927 |bibcode = 1927ZPhy...45..455E | s2cid = 123011242 }}</ref><ref name="Smith">{{cite book | last=Smith | first=Henrik | year=1991 | title=क्वांटम यांत्रिकी का परिचय| publisher=World Scientific Pub Co Inc |isbn=978-9810204754| pages=108–109}}</ref>{{Equation box 1
|indent =:
|indent =:
|equation =<math>\frac{d}{dt}\langle A\rangle = \frac{1}{i\hbar}\langle [A,H] \rangle+ \left\langle \frac{\partial A}{\partial t}\right\rangle  ~,</math>
|equation =<math>\frac{d}{dt}\langle A\rangle = \frac{1}{i\hbar}\langle [A,H] \rangle+ \left\langle \frac{\partial A}{\partial t}\right\rangle  ~,</math>
Line 15: Line 15:
|border colour = #0073CF
|border colour = #0073CF
|bgcolor=#F9FFF7}}
|bgcolor=#F9FFF7}}
कहाँ {{mvar|A}} कुछ क्वांटम मैकेनिकल ऑपरेटर है और {{math|⟨''A''⟩}} इसका प्रत्याशा मूल्य है।
जहां {{mvar|A}} कुछ क्वांटम मैकेनिकल ऑपरेटर है और {{math|⟨''A''⟩}} इसका अपेक्षित मान है।


यह क्वांटम यांत्रिकी के [[हाइजेनबर्ग चित्र]] में सबसे अधिक स्पष्ट है, जहां यह गति के हाइजेनबर्ग समीकरण के अपेक्षित मूल्य के बराबर है। यह [[पत्राचार सिद्धांत]] को गणितीय समर्थन प्रदान करता है।
यह क्वांटम यांत्रिकी के [[हाइजेनबर्ग चित्र]] में सबसे अधिक स्पष्ट है, जहां यह गति के हाइजेनबर्ग समीकरण के अपेक्षित मान के समान है। यह [[पत्राचार सिद्धांत|समानता सिद्धांत]] को गणितीय समर्थन प्रदान करता है।


इसका कारण यह है कि एरेनफेस्ट का प्रमेय लिउविले के प्रमेय (हैमिल्टनियन) से निकटता से संबंधित है। लिउविले का [[हैमिल्टनियन यांत्रिकी]] का प्रमेय, जिसमें कम्यूटेटर के बजाय [[पॉइसन ब्रैकेट]] शामिल है। डिराक के अंगूठे के नियम से पता चलता है कि क्वांटम यांत्रिकी में बयान जिसमें एक कम्यूटेटर होता है, शास्त्रीय यांत्रिकी में बयानों के अनुरूप होता है जहां कम्यूटेटर को पॉइसन ब्रैकेट द्वारा गुणा करके प्रतिस्थापित किया जाता है {{math|''iħ''}}. यह ऑपरेटर अपेक्षा मूल्यों को गति के संबंधित शास्त्रीय समीकरणों का पालन करता है, बशर्ते कि हैमिल्टनियन निर्देशांक और संवेग में अधिकतम द्विघात हो। अन्यथा, विकास समीकरण अभी भी [[मोयल ब्रैकेट]] को धारण कर सकते हैं, बशर्ते उतार-चढ़ाव छोटा हो।
इसका कारण यह है कि एरेनफेस्ट का प्रमेय हैमिल्टनियन यांत्रिकी के लिउविले के प्रमेय से निकटता से संबंधित है। लिउविले का [[हैमिल्टनियन यांत्रिकी]] का प्रमेय, जिसमें कम्यूटेटर के अतिरिक्त [[पॉइसन ब्रैकेट]] सम्मिलित है। डिराक के अंगूठे के नियम से ज्ञात होता है कि क्वांटम यांत्रिकी में कथन जिसमें कम्यूटेटर होता है, शास्त्रीय यांत्रिकी में कथनों के अनुरूप होता है जहां कम्यूटेटर को {{math|''iħ''}} से गुणा किए गए पॉइसन ब्रैकेट द्वारा प्रतिस्थापित किया जाता है। यह ऑपरेटर अपेक्षा मानों को गति के संबंधित शास्त्रीय समीकरणों का पालन करता है, किन्तु हैमिल्टनियन निर्देशांक और संवेग में अधिकतम द्विघात हो। अन्यथा, क्रमागत समीकरण अभी भी [[मोयल ब्रैकेट]] को धारण कर सकते हैं, किन्तु उतार-चढ़ाव छोटा हो।


== शास्त्रीय भौतिकी से संबंध ==
== शास्त्रीय भौतिकी से संबंध ==
हालाँकि, पहली नज़र में, ऐसा लग सकता है कि एरेनफेस्ट प्रमेय कह रहा है कि क्वांटम यांत्रिक अपेक्षा मान न्यूटन की गति के शास्त्रीय समीकरणों का पालन करते हैं, वास्तव में ऐसा नहीं है।<ref name="Wheeler">{{cite web|last=Wheeler| first=Nicholas|title=एरेनफेस्ट के प्रमेय की स्थिति और कुछ प्रभावों से संबंधित टिप्पणियाँ|url=http://academic.reed.edu/physics/faculty/wheeler/documents/Quantum%20Mechanics/Miscellaneous%20Essays/Ehrenfest's%20Theorem.pdf}}</ref> यदि जोड़ी <math>(\langle x\rangle,\langle p\rangle)</math> न्यूटन के दूसरे नियम को संतुष्ट करने के लिए, दूसरे समीकरण का दाहिना भाग होना होगा
चूँकि, प्रथम बार में, ऐसा लग सकता है कि एरेनफेस्ट प्रमेय कह रहा है कि क्वांटम यांत्रिक अपेक्षा मान न्यूटन की गति के शास्त्रीय समीकरणों का पालन करते हैं, वास्तव में ऐसा नहीं है।<ref name="Wheeler">{{cite web|last=Wheeler| first=Nicholas|title=एरेनफेस्ट के प्रमेय की स्थिति और कुछ प्रभावों से संबंधित टिप्पणियाँ|url=http://academic.reed.edu/physics/faculty/wheeler/documents/Quantum%20Mechanics/Miscellaneous%20Essays/Ehrenfest's%20Theorem.pdf}}</ref> यदि युग्म <math>(\langle x\rangle,\langle p\rangle)</math> न्यूटन के दूसरे नियम को संतुष्ट करने के लिए, दूसरे समीकरण का दाहिना भाग होना चाहिए।<math display="block">-V'\left(\left\langle x\right\rangle\right),</math>जो सामान्यतः वैसा नहीं है;<math display="block">-\left\langle V'(x)\right\rangle.</math>यदि उदाहरण के लिए, क्षमता <math>V(x)</math> घन है, (अर्थात <math>x^3</math> के समानुपाती है), तब <math>V'</math> द्विघात <math>x^2</math> के (आनुपातिक) है)इसका तात्पर्य है, न्यूटन के दूसरे नियम की स्थिति में <math>\langle x\rangle^2</math> दाईं ओर का रूप होगा, जबकि एहरनफेस्ट प्रमेय में यह <math>\langle x^2\rangle</math> के रूप में है। इन दोनों मात्राओं के मध्य का अंतर अनिश्चितता का वर्ग है और <math>x</math> इसलिए शून्येतर है।
<math display="block">-V'\left(\left\langle x\right\rangle\right),</math>
जो आमतौर पर वैसा नहीं है
<math display="block">-\left\langle V'(x)\right\rangle.</math>
यदि उदाहरण के लिए, क्षमता <math>V(x)</math> घन है, (अर्थात आनुपातिक)। <math>x^3</math>), तब <math>V'</math> द्विघात (आनुपातिक) है <math>x^2</math>). इसका मतलब है, न्यूटन के दूसरे नियम के मामले में, दाईं ओर का रूप होगा <math>\langle x\rangle^2</math>, जबकि एहरनफेस्ट प्रमेय में यह के रूप में है <math>\langle x^2\rangle</math>. इन दोनों मात्राओं के बीच का अंतर अनिश्चितता का वर्ग है <math>x</math> और इसलिए शून्येतर है.


अपवाद उस स्थिति में होता है जब गति के शास्त्रीय समीकरण रैखिक होते हैं, अर्थात जब <math>V</math> द्विघात है और <math>V'</math> रैखिक है. उस विशेष मामले में, <math>V'\left(\left\langle x\right\rangle\right)</math> और <math>\left\langle V'(x)\right\rangle</math> सहमत हूँ. इस प्रकार, क्वांटम हार्मोनिक ऑसिलेटर के मामले में, अपेक्षित स्थिति और अपेक्षित गति बिल्कुल शास्त्रीय प्रक्षेपवक्र का पालन करती है।


सामान्य प्रणालियों के लिए, यदि तरंग फ़ंक्शन एक बिंदु के आसपास अत्यधिक केंद्रित है <math>x_0</math>, तब <math>V'\left(\left\langle x\right\rangle\right)</math> और <math>\left\langle V'(x)\right\rangle</math> लगभग समान होंगे, क्योंकि दोनों लगभग बराबर होंगे <math>V'(x_0)</math>. उस स्थिति में, अपेक्षित स्थिति और अपेक्षित गति लगभग शास्त्रीय प्रक्षेपवक्र का पालन करेगी, कम से कम तब तक जब तक तरंग फ़ंक्शन स्थिति में स्थानीयकृत रहता है।<ref>{{harvnb|Hall|2013}} p. 78</ref>
अपवाद उस स्थिति में होता है जब गति के शास्त्रीय समीकरण रैखिक होते हैं, अर्थात जब <math>V</math> द्विघात है और <math>V'</math> रैखिक है। उस विशेष स्थिति में, <math>V'\left(\left\langle x\right\rangle\right)</math> और <math>\left\langle V'(x)\right\rangle</math> सहमत है। इस प्रकार, क्वांटम हार्मोनिक ऑसिलेटर की स्थिति में, अपेक्षित स्थिति और अपेक्षित गति शास्त्रीय प्रक्षेपवक्र का पालन करती है।


सामान्य प्रणालियों के लिए, यदि तरंग फलन बिंदु <math>x_0</math> के आसपास अत्यधिक केंद्रित है, तब <math>V'\left(\left\langle x\right\rangle\right)</math> और <math>\left\langle V'(x)\right\rangle</math> लगभग समान होंगे, क्योंकि <math>V'(x_0)</math> दोनों लगभग समान होंगे। उस स्थिति में, अपेक्षित स्थिति और अपेक्षित गति लगभग शास्त्रीय प्रक्षेपवक्र का पालन करेगी, कम से कम तब तक जब तक तरंग फलन स्थिति में स्थानीयकृत रहता है।<ref>{{harvnb|Hall|2013}} p. 78</ref>


== श्रोडिंगर चित्र में व्युत्पत्ति ==
== श्रोडिंगर चित्र में व्युत्पत्ति ==
मान लीजिए कि कोई प्रणाली वर्तमान में [[कितना राज्य]] में है {{math|Φ}}. यदि हम अपेक्षा मूल्य का तात्कालिक समय व्युत्पन्न जानना चाहते हैं {{mvar|A}}, अर्थात्, परिभाषा के अनुसार
मान लीजिए कि कोई प्रणाली वर्तमान में [[कितना राज्य|क्वांटम अवस्था]] {{math|Φ}} में है। यदि हम {{mvar|A}}, के अपेक्षा मान का तात्कालिक समय व्युत्पन्न जानना चाहते हैं, अर्थात्, परिभाषा के अनुसार इस प्रकार है;
<math display="block">\begin{align}
<math display="block">\begin{align}
\frac{d}{dt}\langle A\rangle &= \frac{d}{dt}\int \Phi^* A \Phi \, d^3x \\
\frac{d}{dt}\langle A\rangle &= \frac{d}{dt}\int \Phi^* A \Phi \, d^3x \\
&= \int \left( \frac{\partial \Phi^*}{\partial t} \right) A\Phi\,d^3x + \int \Phi^* \left( \frac{\partial A}{\partial t}\right) \Phi \, d^3x +\int \Phi^* A \left( \frac{\partial \Phi}{\partial t} \right) \, d^3x \\
&= \int \left( \frac{\partial \Phi^*}{\partial t} \right) A\Phi\,d^3x + \int \Phi^* \left( \frac{\partial A}{\partial t}\right) \Phi \, d^3x +\int \Phi^* A \left( \frac{\partial \Phi}{\partial t} \right) \, d^3x \\
&= \int \left( \frac{\partial \Phi^*}{\partial t} \right) A\Phi\,d^3x + \left\langle \frac{\partial A}{\partial t}\right\rangle + \int \Phi^* A \left( \frac{\partial \Phi}{\partial t} \right) \, d^3x
&= \int \left( \frac{\partial \Phi^*}{\partial t} \right) A\Phi\,d^3x + \left\langle \frac{\partial A}{\partial t}\right\rangle + \int \Phi^* A \left( \frac{\partial \Phi}{\partial t} \right) \, d^3x
\end{align}</math>
\end{align}</math>जहां हम संपूर्ण स्थान पर एकीकरण कर रहे हैं। यदि हम श्रोडिंगर समीकरण प्रस्तावित करते हैं, तो हम पाते हैं;<math display="block">\frac{\partial \Phi}{\partial t} = \frac{1}{i\hbar}H\Phi</math>जटिल संयुग्म को लेने पर हम पाते हैं; <ref>In [[bra–ket notation]] <math>\phi^*=\langle \phi, x \rangle</math>, so<math> \frac{\partial}{\partial t}\langle \phi |x\rangle =\frac{-1}{i\hbar}\langle \phi |\hat{H}|x\rangle =\frac{-1}{i\hbar}\langle \phi |x \rangle H=\frac{-1}{i\hbar}\Phi^*H,</math>
जहां हम संपूर्ण स्थान पर एकीकरण कर रहे हैं। यदि हम श्रोडिंगर समीकरण लागू करते हैं, तो हम पाते हैं
<math display="block">\frac{\partial \Phi}{\partial t} = \frac{1}{i\hbar}H\Phi</math>
जटिल संयुग्म को लेने से हम पाते हैं <ref>In [[bra–ket notation]] <math>\phi^*=\langle \phi, x \rangle</math>, so<math> \frac{\partial}{\partial t}\langle \phi |x\rangle =\frac{-1}{i\hbar}\langle \phi |\hat{H}|x\rangle =\frac{-1}{i\hbar}\langle \phi |x \rangle H=\frac{-1}{i\hbar}\Phi^*H,</math>
 
where <math>\hat{H}</math> is the Hamiltonian operator, and {{mvar|H}} is the Hamiltonian represented in coordinate space (as is the case in the derivation above). In other words, we applied the adjoint operation to the entire Schrödinger equation, which flipped the order of operations for {{mvar|H}} and {{math|Φ}}.</ref>
<math display="block">\frac{\partial \Phi^*}{\partial t} = -\frac{1}{i\hbar}\Phi^*H^* = -\frac{1}{i\hbar}\Phi^*H.</math>
टिप्पणी {{math|1=''H'' = ''H''&thinsp;<sup>∗</sup>}}, क्योंकि हैमिल्टनियन (क्वांटम यांत्रिकी) [[हर्मिटियन ऑपरेटर]] है। इसे उपरोक्त समीकरण में रखने पर हमें प्राप्त होता है
 
<math display="block">\frac{d}{dt}\langle A\rangle = \frac{1}{i\hbar}\int \Phi^* (AH-HA) \Phi~d^3x + \left\langle \frac{\partial A}{\partial t}\right\rangle = \frac{1}{i\hbar}\langle [A,H]\rangle + \left\langle \frac{\partial A}{\partial t}\right\rangle.</math>
अक्सर (लेकिन हमेशा नहीं) ऑपरेटर {{mvar|A}} समय-स्वतंत्र है ताकि इसका व्युत्पन्न शून्य हो और हम अंतिम पद को अनदेखा कर सकें।


where <math>\hat{H}</math> is the Hamiltonian operator, and {{mvar|H}} is the Hamiltonian represented in coordinate space (as is the case in the derivation above). In other words, we applied the adjoint operation to the entire Schrödinger equation, which flipped the order of operations for {{mvar|H}} and {{math|Φ}}.</ref><math display="block">\frac{\partial \Phi^*}{\partial t} = -\frac{1}{i\hbar}\Phi^*H^* = -\frac{1}{i\hbar}\Phi^*H.</math>टिप्पणी {{math|1=''H'' = ''H''&thinsp;<sup>∗</sup>}}, क्योंकि हैमिल्टनियन [[हर्मिटियन ऑपरेटर|हर्मिटियन]] है। इसे उपरोक्त समीकरण में रखने पर हमें प्राप्त होता है;<math display="block">\frac{d}{dt}\langle A\rangle = \frac{1}{i\hbar}\int \Phi^* (AH-HA) \Phi~d^3x + \left\langle \frac{\partial A}{\partial t}\right\rangle = \frac{1}{i\hbar}\langle [A,H]\rangle + \left\langle \frac{\partial A}{\partial t}\right\rangle.</math>प्रायः (किन्तु सदैव नहीं) ऑपरेटर {{mvar|A}} समय-स्वतंत्र है जिससे कि इसका व्युत्पन्न शून्य हो और हम अंतिम पद को अनदेखा कर सकें।
== हाइजेनबर्ग चित्र में व्युत्पत्ति ==
== हाइजेनबर्ग चित्र में व्युत्पत्ति ==
हाइजेनबर्ग चित्र में, व्युत्पत्ति सीधी है। हाइजेनबर्ग चित्र सिस्टम की समय निर्भरता को राज्य वैक्टर के बजाय ऑपरेटरों पर ले जाता है। गति के हाइजेनबर्ग समीकरण से प्रारंभ करते हुए,
हाइजेनबर्ग चित्र में, व्युत्पत्ति सीधी है। हाइजेनबर्ग चित्र सिस्टम की समय निर्भरता को अवस्था सदिश के अतिरिक्त गति के हाइजेनबर्ग समीकरण से प्रारंभ करते हुए ऑपरेटरों पर ले जाता है। <math display="block">\frac{d}{dt}A(t) = \frac{\partial A(t)}{\partial t} + \frac{1}{i \hbar}[A(t),H],</math>एरेनफेस्ट का प्रमेय केवल हाइजेनबर्ग समीकरण को प्रक्षेपित करने पर आधारित है <math> |\Psi\rangle </math> दाईं ओर से और <math> \langle\Psi| </math> बाएँ से, या अपेक्षा मान ले रहे हैं, इसलिए;<math display="block">\left\langle\Psi\left|\frac{d}{dt}A(t)\right|\Psi\right\rangle = \left\langle\Psi\left|\frac{\partial A(t)}{\partial t}\right|\Psi\right\rangle + \left\langle\Psi\left|\frac{1}{i \hbar}[A(t),H]\right|\Psi\right\rangle,</math>कोई खींच सकता है {{math|{{sfrac|''d''|''dt''}}}} प्रथम पद से बाहर, चूँकि हाइजेनबर्ग चित्र में अवस्था सदिश अब समय पर निर्भर नहीं हैं। इसलिए,<math display="block">\frac{d}{dt}\langle A(t)\rangle = \left\langle\frac{\partial A(t)}{\partial t}\right\rangle + \frac{1}{i \hbar}\left\langle[A(t),H]\right\rangle .</math>
<math display="block">\frac{d}{dt}A(t) = \frac{\partial A(t)}{\partial t} + \frac{1}{i \hbar}[A(t),H],</math>
एरेनफेस्ट का प्रमेय केवल हाइजेनबर्ग समीकरण को प्रक्षेपित करने पर आधारित है <math> |\Psi\rangle </math> दाईं ओर से और <math> \langle\Psi| </math> बाएँ से, या अपेक्षा मान ले रहे हैं, इसलिए
<math display="block">\left\langle\Psi\left|\frac{d}{dt}A(t)\right|\Psi\right\rangle = \left\langle\Psi\left|\frac{\partial A(t)}{\partial t}\right|\Psi\right\rangle + \left\langle\Psi\left|\frac{1}{i \hbar}[A(t),H]\right|\Psi\right\rangle,</math>
कोई खींच सकता है {{math|{{sfrac|''d''|''dt''}}}} पहले पद से बाहर, चूँकि हेइज़ेनबर्ग चित्र में राज्य सदिश अब समय पर निर्भर नहीं हैं। इसलिए,
<math display="block">\frac{d}{dt}\langle A(t)\rangle = \left\langle\frac{\partial A(t)}{\partial t}\right\rangle + \frac{1}{i \hbar}\left\langle[A(t),H]\right\rangle .</math>
 


== सामान्य उदाहरण ==
== सामान्य उदाहरण ==
किसी विभव में गतिमान एक विशाल [[प्राथमिक कण]] के बहुत सामान्य उदाहरण के लिए, हैमिल्टनियन बस है
किसी विभव में गतिमान विशाल [[प्राथमिक कण|कण]] के अधिक सामान्य उदाहरण के लिए, हैमिल्टनियन बस है;<math display="block"> H(x,p,t) = \frac{p^2}{2m} + V(x,t) </math>जहाँ {{mvar|x}} कण की स्थिति है।
<math display="block"> H(x,p,t) = \frac{p^2}{2m} + V(x,t) </math>
कहाँ {{mvar|x}} कण की स्थिति है.


मान लीजिए हम संवेग की अपेक्षा में तात्कालिक परिवर्तन जानना चाहते हैं {{mvar|p}}. एरेनफेस्ट के प्रमेय का उपयोग करते हुए, हमारे पास है
मान लीजिए कि हम संवेग {{mvar|p}} की अपेक्षा में तात्कालिक परिवर्तन जानना चाहते हैं। एरेनफेस्ट के प्रमेय का उपयोग करते हुए, हमें प्राप्त होता है;<math display="block"> \frac{d}{dt}\langle p\rangle = \frac{1}{i\hbar}\langle [p,H]\rangle + \left\langle \frac{\partial p}{\partial t}\right\rangle = \frac{1}{i\hbar}\langle [p,V(x,t)]\rangle,</math>चूंकि ऑपरेटर {{mvar|p}} स्वयं  के साथ आवागमन करता है और समय पर उसकी कोई निर्भरता नहीं है।<ref>Although the expectation value of the momentum {{math|⟨''p''⟩}}, which is a [[Real number|real-number]]-valued function of time, will have time dependence, the momentum operator itself, {{mvar|p}} does not, in this picture: Rather, the momentum operator is a constant [[linear operator]] on the [[Hilbert space]] of the system. The time dependence of the expectation value, in this picture, is due to the [[time evolution]] of the wavefunction for which the expectation value is calculated. An [[Ad hoc]] example of an operator which does have time dependence is {{math|⟨''xt''<sup>2</sup>⟩}}, where {{mvar|x}} is the ordinary position operator and {{mvar|t}} is just the (non-operator) time, a parameter.</ref> दायीं ओर का विस्तार करके, {{mvar|p}} को {{math|−''iħ''∇}} से प्रतिस्थापित करने पर, हमें प्राप्त होता है;<math display="block">\frac{d}{dt}\langle p\rangle = \int \Phi^* V(x,t)\frac{\partial}{\partial x}\Phi~dx - \int \Phi^* \frac{\partial}{\partial x} (V(x,t)\Phi)~dx ~.</math>दूसरे पद पर प्रोडक्ट नियम प्रस्तावित करने के पश्चात, हमें प्राप्त होता है;<math display="block"> \begin{align}
<math display="block"> \frac{d}{dt}\langle p\rangle = \frac{1}{i\hbar}\langle [p,H]\rangle + \left\langle \frac{\partial p}{\partial t}\right\rangle = \frac{1}{i\hbar}\langle [p,V(x,t)]\rangle,</math>
ऑपरेटर के बाद से {{mvar|p}} अपने आप से यात्रा करता है और समय पर उसकी कोई निर्भरता नहीं है।<ref>Although the expectation value of the momentum {{math|⟨''p''⟩}}, which is a [[Real number|real-number]]-valued function of time, will have time dependence, the momentum operator itself, {{mvar|p}} does not, in this picture: Rather, the momentum operator is a constant [[linear operator]] on the [[Hilbert space]] of the system. The time dependence of the expectation value, in this picture, is due to the [[time evolution]] of the wavefunction for which the expectation value is calculated. An [[Ad hoc]] example of an operator which does have time dependence is {{math|⟨''xt''<sup>2</sup>⟩}}, where {{mvar|x}} is the ordinary position operator and {{mvar|t}} is just the (non-operator) time, a parameter.</ref> दायीं ओर का विस्तार करके, प्रतिस्थापित करना {{mvar|p}} द्वारा  {{math|−''iħ''∇}}, हम पाते हैं
<math display="block">\frac{d}{dt}\langle p\rangle = \int \Phi^* V(x,t)\frac{\partial}{\partial x}\Phi~dx - \int \Phi^* \frac{\partial}{\partial x} (V(x,t)\Phi)~dx ~.</math>
दूसरे पद पर उत्पाद नियम लागू करने के बाद, हमारे पास है
<math display="block"> \begin{align}
\frac{d}{dt}\langle p\rangle &= \int \Phi^* V(x,t) \frac{\partial}{\partial x}\Phi~dx - \int \Phi^* \left(\frac{\partial}{\partial x} V(x,t)\right)\Phi ~dx - \int \Phi^* V(x,t) \frac{\partial}{\partial x}\Phi~dx \\
\frac{d}{dt}\langle p\rangle &= \int \Phi^* V(x,t) \frac{\partial}{\partial x}\Phi~dx - \int \Phi^* \left(\frac{\partial}{\partial x} V(x,t)\right)\Phi ~dx - \int \Phi^* V(x,t) \frac{\partial}{\partial x}\Phi~dx \\
&= - \int \Phi^* \left(\frac{\partial}{\partial x} V(x,t)\right)\Phi ~dx \\
&= - \int \Phi^* \left(\frac{\partial}{\partial x} V(x,t)\right)\Phi ~dx \\
&= \left\langle - \frac{\partial}{\partial x} V(x,t)\right\rangle = \langle F \rangle.
&= \left\langle - \frac{\partial}{\partial x} V(x,t)\right\rangle = \langle F \rangle.
\end{align}</math>
\end{align}</math>जैसा कि परिचय में बताया गया है, यह परिणाम यह नहीं कहता कि युग्म <math>(\langle X\rangle,\langle P\rangle)</math> न्यूटन के दूसरे नियम को संतुष्ट करता है, क्योंकि <math>\langle F(x,t)\rangle,</math> सूत्र का दाहिना भाग है, इसके अतिरिक्त <math>F(\langle X\rangle,t)</math> है। फिर भी, जैसा कि परिचय में बताया गया है, उन अवस्थाओं के लिए जो स्पेस में अत्यधिक स्थानीयकृत हैं, अपेक्षित स्थिति और गति लगभग शास्त्रीय प्रक्षेपवक्र का पालन करेगी, जिसे समानता सिद्धांत के उदाहरण के रूप में समझा जा सकता है।
जैसा कि परिचय में बताया गया है, यह परिणाम यह नहीं कहता कि युग्म <math>(\langle X\rangle,\langle P\rangle)</math> न्यूटन के दूसरे नियम को संतुष्ट करता है, क्योंकि सूत्र का दाहिना भाग है <math>\langle F(x,t)\rangle,</math> इसके बजाय <math>F(\langle X\rangle,t)</math>. फिर भी, जैसा कि परिचय में बताया गया है, उन राज्यों के लिए जो अंतरिक्ष में अत्यधिक स्थानीयकृत हैं, अपेक्षित स्थिति और गति लगभग शास्त्रीय प्रक्षेपवक्र का पालन करेगी, जिसे पत्राचार सिद्धांत के एक उदाहरण के रूप में समझा जा सकता है।


इसी प्रकार, हम स्थिति अपेक्षा मूल्य में तात्कालिक परिवर्तन प्राप्त कर सकते हैं।
इसी प्रकार, हम स्थिति अपेक्षा मान में तात्कालिक परिवर्तन प्राप्त कर सकते हैं।<math display="block">\begin{align}
<math display="block">\begin{align}
\frac{d}{dt}\langle x\rangle &= \frac{1}{i\hbar}\langle [x,H]\rangle + \left\langle \frac{\partial x}{\partial t}\right\rangle \\[5pt]
\frac{d}{dt}\langle x\rangle &= \frac{1}{i\hbar}\langle [x,H]\rangle + \left\langle \frac{\partial x}{\partial t}\right\rangle \\[5pt]
&= \frac{1}{i\hbar} \left \langle \left [x,\frac{p^2}{2m} + V(x,t) \right ] \right \rangle + 0 \\[5pt]
&= \frac{1}{i\hbar} \left \langle \left [x,\frac{p^2}{2m} + V(x,t) \right ] \right \rangle + 0 \\[5pt]
Line 85: Line 57:
&= \frac{1}{i\hbar 2 m}\langle i \hbar 2 p\rangle \\[5pt]
&= \frac{1}{i\hbar 2 m}\langle i \hbar 2 p\rangle \\[5pt]
&= \frac{1}{m}\langle p\rangle
&= \frac{1}{m}\langle p\rangle
\end{align}</math>
\end{align}</math>यह परिणाम वास्तव में शास्त्रीय समीकरण के अनुरूप है।
यह परिणाम वास्तव में शास्त्रीय समीकरण के बिल्कुल अनुरूप है।


== एरेनफेस्ट प्रमेय से श्रोडिंगर समीकरण की व्युत्पत्ति ==
== एरेनफेस्ट प्रमेय से श्रोडिंगर समीकरण की व्युत्पत्ति ==
यह ऊपर स्थापित किया गया था कि एरेनफेस्ट प्रमेय श्रोडिंगर समीकरण के परिणाम हैं। हालाँकि, इसका विपरीत भी सत्य है: श्रोडिंगर समीकरण का अनुमान एरेनफेस्ट प्रमेयों से लगाया जा सकता है।<ref name=Bondar2012>{{Cite journal | last1 = Bondar | first1 = D. | last2 = Cabrera | first2 = R. | last3 = Lompay | first3 = R. | last4 = Ivanov | first4 = M. | last5 = Rabitz | first5 = H. | title = क्वांटम और शास्त्रीय यांत्रिकी को पार करते हुए ऑपरेशनल डायनेमिक मॉडलिंग| doi = 10.1103/PhysRevLett.109.190403 | journal = Physical Review Letters | volume = 109 | issue = 19 | pages = 190403 | year = 2012 | pmid =  23215365|arxiv = 1105.4014 |bibcode = 2012PhRvL.109s0403B | s2cid = 19605000 }}</ref> हम से शुरू करते हैं
यह ऊपर स्थापित किया गया था कि एरेनफेस्ट प्रमेय श्रोडिंगर समीकरण के परिणाम हैं। चूँकि, इसका विपरीत भी सत्य है: श्रोडिंगर समीकरण का अनुमान एरेनफेस्ट प्रमेयों से लगाया जा सकता है।<ref name=Bondar2012>{{Cite journal | last1 = Bondar | first1 = D. | last2 = Cabrera | first2 = R. | last3 = Lompay | first3 = R. | last4 = Ivanov | first4 = M. | last5 = Rabitz | first5 = H. | title = क्वांटम और शास्त्रीय यांत्रिकी को पार करते हुए ऑपरेशनल डायनेमिक मॉडलिंग| doi = 10.1103/PhysRevLett.109.190403 | journal = Physical Review Letters | volume = 109 | issue = 19 | pages = 190403 | year = 2012 | pmid =  23215365|arxiv = 1105.4014 |bibcode = 2012PhRvL.109s0403B | s2cid = 19605000 }}</ref> इस प्रकार प्रारम्भ करते हैं;<math display="block">\begin{align}
<math display="block">\begin{align}
m\frac{d}{dt} \left \langle \Psi(t) \right | \hat{x} \left | \Psi(t) \right \rangle &= \left \langle \Psi(t) \right | \hat{p} \left | \Psi(t) \right \rangle, \\[5pt]
m\frac{d}{dt} \left \langle \Psi(t) \right | \hat{x} \left | \Psi(t) \right \rangle &= \left \langle \Psi(t) \right | \hat{p} \left | \Psi(t) \right \rangle, \\[5pt]
\frac{d}{dt} \left \langle \Psi(t) \right | \hat{p} \left | \Psi(t) \right \rangle &= \left \langle \Psi(t) \right | -V'(\hat{x}) \left | \Psi(t) \right \rangle.
\frac{d}{dt} \left \langle \Psi(t) \right | \hat{p} \left | \Psi(t) \right \rangle &= \left \langle \Psi(t) \right | -V'(\hat{x}) \left | \Psi(t) \right \rangle.
\end{align}</math>
\end{align}</math>प्रोडक्ट नियम का अनुप्रयोग होता है;<math display="block">\begin{align}
उत्पाद नियम का अनुप्रयोग होता है
<math display="block">\begin{align}
\left \langle \frac{d\Psi}{dt} \Big | \hat{x} \Big | \Psi \right \rangle + \left \langle \Psi \Big | \hat{x} \Big | \frac{d\Psi}{dt} \right \rangle &= \left \langle \Psi \Big | \frac{\hat{p}}{m} \Big | \Psi \right \rangle, \\[5pt]
\left \langle \frac{d\Psi}{dt} \Big | \hat{x} \Big | \Psi \right \rangle + \left \langle \Psi \Big | \hat{x} \Big | \frac{d\Psi}{dt} \right \rangle &= \left \langle \Psi \Big | \frac{\hat{p}}{m} \Big | \Psi \right \rangle, \\[5pt]
\left \langle \frac{d\Psi}{dt} \Big | \hat{p} \Big | \Psi \right \rangle + \left \langle \Psi \Big | \hat{p} \Big | \frac{d\Psi}{dt} \right \rangle &= \langle \Psi | -V'(\hat{x}) | \Psi \rangle,
\left \langle \frac{d\Psi}{dt} \Big | \hat{p} \Big | \Psi \right \rangle + \left \langle \Psi \Big | \hat{p} \Big | \frac{d\Psi}{dt} \right \rangle &= \langle \Psi | -V'(\hat{x}) | \Psi \rangle,
\end{align} </math>
\end{align} </math>यहां, स्टोन के प्रमेय समय अनुवाद के क्वांटम जनरेटर को दर्शाने के लिए {{mvar|Ĥ}} का उपयोग करते हुए स्टोन के प्रमेय को प्रस्तावित करें। अगला स्टेप यह दिखाना है कि यह क्वांटम यांत्रिकी में उपयोग किए जाने वाले हैमिल्टनियन ऑपरेटर के समान है। स्टोन के प्रमेय का इस प्रकार तात्पर्य है;
यहां, स्टोन के प्रमेय को एक-पैरामीटर एकात्मक समूहों पर लागू करें|स्टोन के प्रमेय का उपयोग करते हुए {{mvar|Ĥ}} समय अनुवाद के क्वांटम जनरेटर को दर्शाने के लिए। अगला कदम यह दिखाना है कि यह क्वांटम यांत्रिकी में उपयोग किए जाने वाले हैमिल्टनियन ऑपरेटर के समान है। स्टोन के प्रमेय का तात्पर्य है
<math display="block">i\hbar \left | \frac{d\Psi}{dt} \right \rangle = \hat{H} | \Psi(t) \rangle ~,</math>जहां {{mvar|ħ}} को संतुलन आयाम के लिए सामान्यीकरण स्थिरांक के रूप में प्रस्तुत किया गया था। चूँकि ये पहचान किसी भी प्रारंभिक अवस्था के लिए मान्य होनी चाहिए, औसत को विस्थापित किया जा सकता है और {{mvar|Ĥ}} के लिए कम्यूटेटर समीकरणों की प्रणाली प्राप्त की जा सकती है:<math display="block">im [\hat{H}, \hat{x}] = \hbar \hat{p}, \qquad i [\hat{H}, \hat{p}] = -\hbar V'(\hat{x}).</math>यह मानते हुए कि निर्देशांक और संवेग के अवलोकन [[विहित रूपान्तरण संबंध]] {{math|1=[''x̂'', ''p̂''] = ''iħ''}} का पालन करते हैं। सेटिंग <math>\hat{H} = H(\hat{x}, \hat{p})</math>, कम्यूटेटर समीकरणों को विभेदक समीकरणों में परिवर्तित किया जा सकता है;<ref name="Bondar2012" /><ref name="Transtrum2005">{{Cite journal | last1 = Transtrum | first1 = M. K. | last2 = Van Huele | first2 = J. F. O. S. | doi = 10.1063/1.1924703 | title = ऑपरेटरों के कार्यों के लिए कम्यूटेशन संबंध| journal = Journal of Mathematical Physics | volume = 46 | issue = 6 | pages = 063510 | year = 2005 |bibcode = 2005JMP....46f3510T | url = http://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1371&context=facpub }}</ref><math display="block">m \frac{\partial H (x,p)}{\partial p} = p, \qquad \frac{\partial H(x,p)}{\partial x} = V'(x),</math>जिसका समाधान परिचित हैमिल्टनियन है;<math display="block">\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x}).</math>जहां से, श्रोडिंगर समीकरण को समन्वय और गति के मध्य विहित कम्यूटेशन संबंध मानकर एरेनफेस्ट प्रमेय से प्राप्त किया गया था। यदि कोई मानता है कि समन्वय और संवेग का आवागमन होता है, तो वही कम्प्यूटेशनल विधि कूपमैन-वॉन न्यूमैन [[शास्त्रीय यांत्रिकी]] की ओर ले जाती है, जो शास्त्रीय यांत्रिकी का [[ हिल्बर्ट स्थान | हिल्बर्ट स्पेस]] फॉर्मूलेशन है।<ref name="Bondar2012" /> इसलिए, इस व्युत्पत्ति के साथ-साथ कूपमैन-वॉन न्यूमैन की व्युत्पत्ति से ज्ञात होता है कि क्वांटम और शास्त्रीय यांत्रिकी के मध्य आवश्यक अंतर कम्यूटेटर {{math|[''x̂'', ''p̂'']}} के मान तक कम हो जाता है।
<math display="block">i\hbar \left | \frac{d\Psi}{dt} \right \rangle = \hat{H} | \Psi(t) \rangle ~,</math>
शास्त्रीय रूप से अराजक गतिशीलता वाले सिस्टम के लिए एहरनफेस्ट प्रमेय के निहितार्थ पर स्कॉलरपीडिया लेख [http://www.scholarpedia.org/article/Ehrenfest_time_and_chaos Ehrenfest समय और अराजकता] पर वर्णन किया गया है। शास्त्रीय प्रक्षेपवक्र की घातीय अस्थिरता के कारण एरेनफेस्ट समय, जिस पर क्वांटम और शास्त्रीय विकास के मध्य पूर्ण समानता होती है, को विशिष्ट क्वांटम संख्या के लघुगणक के आनुपातिक होने के कारण लघुगणकीय रूप से छोटा दिखाया गया है। इंटीग्रेबल डायनेमिक्स की स्थिति में यह समय स्तर क्वांटम संख्या की निश्चित शक्ति के आनुपातिक होने के कारण अधिक बड़ा है।
कहाँ {{mvar|ħ}} को संतुलन आयाम के लिए सामान्यीकरण स्थिरांक के रूप में पेश किया गया था। चूँकि ये पहचान किसी भी प्रारंभिक अवस्था के लिए मान्य होनी चाहिए, औसत को हटाया जा सकता है और कम्यूटेटर समीकरणों की प्रणाली के लिए {{mvar|Ĥ}} निकाली गई है:
<math display="block">im [\hat{H}, \hat{x}] = \hbar \hat{p}, \qquad i [\hat{H}, \hat{p}] = -\hbar V'(\hat{x}).</math>
यह मानते हुए कि निर्देशांक और संवेग के अवलोकन [[विहित रूपान्तरण संबंध]] का पालन करते हैं  {{math|1=[''x̂'', ''p̂''] = ''iħ''}}. सेटिंग <math>\hat{H} = H(\hat{x}, \hat{p})</math>, कम्यूटेटर समीकरणों को विभेदक समीकरणों में परिवर्तित किया जा सकता है<ref name=Bondar2012 /><ref name=Transtrum2005>{{Cite journal | last1 = Transtrum | first1 = M. K. | last2 = Van Huele | first2 = J. F. O. S. | doi = 10.1063/1.1924703 | title = ऑपरेटरों के कार्यों के लिए कम्यूटेशन संबंध| journal = Journal of Mathematical Physics | volume = 46 | issue = 6 | pages = 063510 | year = 2005 |bibcode = 2005JMP....46f3510T | url = http://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1371&context=facpub }}</ref>
<math display="block">m \frac{\partial H (x,p)}{\partial p} = p, \qquad \frac{\partial H(x,p)}{\partial x} = V'(x),</math>
जिसका समाधान परिचित हैमिल्टनियन (क्वांटम यांत्रिकी) है
<math display="block">\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x}).</math>
जहां से, श्रोडिंगर समीकरण को समन्वय और गति के बीच विहित कम्यूटेशन संबंध मानकर एरेनफेस्ट प्रमेय से प्राप्त किया गया था। यदि कोई मानता है कि समन्वय और संवेग का आवागमन होता है, तो वही कम्प्यूटेशनल विधि कूपमैन-वॉन न्यूमैन [[शास्त्रीय यांत्रिकी]] की ओर ले जाती है, जो शास्त्रीय यांत्रिकी का [[ हिल्बर्ट स्थान ]] फॉर्मूलेशन है।<ref name=Bondar2012 />इसलिए, इस व्युत्पत्ति के साथ-साथ कूपमैन-वॉन न्यूमैन शास्त्रीय यांत्रिकी#ऑपरेटर स्वयंसिद्धों से शुरू होने वाली व्युत्पत्ति|कूपमैन-वॉन न्यूमैन यांत्रिकी की व्युत्पत्ति से पता चलता है कि क्वांटम और शास्त्रीय यांत्रिकी के बीच आवश्यक अंतर कम्यूटेटर के मूल्य तक कम हो जाता है {{math|[''x̂'', ''p̂'']}}.
 
शास्त्रीय रूप से अराजक गतिशीलता वाले सिस्टम के लिए एहरनफेस्ट प्रमेय के निहितार्थ पर स्कॉलरपीडिया लेख [http://www.scholarpedia.org/article/Ehrenfest_time_and_chaos Ehrenfest समय और अराजकता] पर चर्चा की गई है। शास्त्रीय प्रक्षेपवक्र की घातीय अस्थिरता के कारण एरेनफेस्ट समय, जिस पर क्वांटम और शास्त्रीय विकास के बीच पूर्ण पत्राचार होता है, को विशिष्ट क्वांटम संख्या के लघुगणक के आनुपातिक होने के कारण लघुगणकीय रूप से छोटा दिखाया गया है। इंटीग्रेबल डायनेमिक्स के मामले में यह समय पैमाना क्वांटम संख्या की एक निश्चित शक्ति के आनुपातिक होने के कारण बहुत बड़ा है।


== टिप्पणियाँ ==
== टिप्पणियाँ ==
{{Reflist}}
{{Reflist}}


 
== संदर्भ ==
==संदर्भ==
{{Commons category}}
{{Commons category}}
*{{citation|first=Brian C.|last=Hall|title=Quantum Theory for Mathematicians|series=Graduate Texts in Mathematics|volume=267 |publisher=Springer|year=2013| isbn=978-1461471158}}
*{{citation|first=Brian C.|last=Hall|title=Quantum Theory for Mathematicians|series=Graduate Texts in Mathematics|volume=267 |publisher=Springer|year=2013| isbn=978-1461471158}}
Line 124: Line 82:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 17/11/2023]]
[[Category:Created On 17/11/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 09:51, 1 December 2023

एहरनफेस्ट प्रमेय, जिसका नाम ऑस्ट्रियाई सैद्धांतिक भौतिक विज्ञानी पॉल एरेनफेस्ट के नाम पर रखा गया है, स्थिति और गति संचालकों x और p के अपेक्षा मानों के समय व्युत्पन्न को अपेक्षा मान से जोड़ता है। बल अदिश विभव में गतिमान विशाल कण पर है।[1]

एरेनफेस्ट प्रमेय किसी भी क्वांटम यांत्रिकी ऑपरेटर (भौतिकी) की अपेक्षा और सिस्टम के हैमिल्टनियन (क्वांटम यांत्रिकी) के साथ उस ऑपरेटर के कम्यूटेटर की अपेक्षा के मध्य अधिक सामान्य संबंध की विशेष स्थिति है [2][3]

जहां A कुछ क्वांटम मैकेनिकल ऑपरेटर है और A इसका अपेक्षित मान है।

यह क्वांटम यांत्रिकी के हाइजेनबर्ग चित्र में सबसे अधिक स्पष्ट है, जहां यह गति के हाइजेनबर्ग समीकरण के अपेक्षित मान के समान है। यह समानता सिद्धांत को गणितीय समर्थन प्रदान करता है।

इसका कारण यह है कि एरेनफेस्ट का प्रमेय हैमिल्टनियन यांत्रिकी के लिउविले के प्रमेय से निकटता से संबंधित है। लिउविले का हैमिल्टनियन यांत्रिकी का प्रमेय, जिसमें कम्यूटेटर के अतिरिक्त पॉइसन ब्रैकेट सम्मिलित है। डिराक के अंगूठे के नियम से ज्ञात होता है कि क्वांटम यांत्रिकी में कथन जिसमें कम्यूटेटर होता है, शास्त्रीय यांत्रिकी में कथनों के अनुरूप होता है जहां कम्यूटेटर को से गुणा किए गए पॉइसन ब्रैकेट द्वारा प्रतिस्थापित किया जाता है। यह ऑपरेटर अपेक्षा मानों को गति के संबंधित शास्त्रीय समीकरणों का पालन करता है, किन्तु हैमिल्टनियन निर्देशांक और संवेग में अधिकतम द्विघात हो। अन्यथा, क्रमागत समीकरण अभी भी मोयल ब्रैकेट को धारण कर सकते हैं, किन्तु उतार-चढ़ाव छोटा हो।

शास्त्रीय भौतिकी से संबंध

चूँकि, प्रथम बार में, ऐसा लग सकता है कि एरेनफेस्ट प्रमेय कह रहा है कि क्वांटम यांत्रिक अपेक्षा मान न्यूटन की गति के शास्त्रीय समीकरणों का पालन करते हैं, वास्तव में ऐसा नहीं है।[4] यदि युग्म न्यूटन के दूसरे नियम को संतुष्ट करने के लिए, दूसरे समीकरण का दाहिना भाग होना चाहिए।

जो सामान्यतः वैसा नहीं है;
यदि उदाहरण के लिए, क्षमता घन है, (अर्थात के समानुपाती है), तब द्विघात के (आनुपातिक) है)। इसका तात्पर्य है, न्यूटन के दूसरे नियम की स्थिति में दाईं ओर का रूप होगा, जबकि एहरनफेस्ट प्रमेय में यह के रूप में है। इन दोनों मात्राओं के मध्य का अंतर अनिश्चितता का वर्ग है और इसलिए शून्येतर है।


अपवाद उस स्थिति में होता है जब गति के शास्त्रीय समीकरण रैखिक होते हैं, अर्थात जब द्विघात है और रैखिक है। उस विशेष स्थिति में, और सहमत है। इस प्रकार, क्वांटम हार्मोनिक ऑसिलेटर की स्थिति में, अपेक्षित स्थिति और अपेक्षित गति शास्त्रीय प्रक्षेपवक्र का पालन करती है।

सामान्य प्रणालियों के लिए, यदि तरंग फलन बिंदु के आसपास अत्यधिक केंद्रित है, तब और लगभग समान होंगे, क्योंकि दोनों लगभग समान होंगे। उस स्थिति में, अपेक्षित स्थिति और अपेक्षित गति लगभग शास्त्रीय प्रक्षेपवक्र का पालन करेगी, कम से कम तब तक जब तक तरंग फलन स्थिति में स्थानीयकृत रहता है।[5]

श्रोडिंगर चित्र में व्युत्पत्ति

मान लीजिए कि कोई प्रणाली वर्तमान में क्वांटम अवस्था Φ में है। यदि हम A, के अपेक्षा मान का तात्कालिक समय व्युत्पन्न जानना चाहते हैं, अर्थात्, परिभाषा के अनुसार इस प्रकार है;

जहां हम संपूर्ण स्थान पर एकीकरण कर रहे हैं। यदि हम श्रोडिंगर समीकरण प्रस्तावित करते हैं, तो हम पाते हैं;
जटिल संयुग्म को लेने पर हम पाते हैं; [6]
टिप्पणी H = H, क्योंकि हैमिल्टनियन हर्मिटियन है। इसे उपरोक्त समीकरण में रखने पर हमें प्राप्त होता है;
प्रायः (किन्तु सदैव नहीं) ऑपरेटर A समय-स्वतंत्र है जिससे कि इसका व्युत्पन्न शून्य हो और हम अंतिम पद को अनदेखा कर सकें।

हाइजेनबर्ग चित्र में व्युत्पत्ति

हाइजेनबर्ग चित्र में, व्युत्पत्ति सीधी है। हाइजेनबर्ग चित्र सिस्टम की समय निर्भरता को अवस्था सदिश के अतिरिक्त गति के हाइजेनबर्ग समीकरण से प्रारंभ करते हुए ऑपरेटरों पर ले जाता है।

एरेनफेस्ट का प्रमेय केवल हाइजेनबर्ग समीकरण को प्रक्षेपित करने पर आधारित है दाईं ओर से और बाएँ से, या अपेक्षा मान ले रहे हैं, इसलिए;
कोई खींच सकता है d/dt प्रथम पद से बाहर, चूँकि हाइजेनबर्ग चित्र में अवस्था सदिश अब समय पर निर्भर नहीं हैं। इसलिए,

सामान्य उदाहरण

किसी विभव में गतिमान विशाल कण के अधिक सामान्य उदाहरण के लिए, हैमिल्टनियन बस है;

जहाँ x कण की स्थिति है।

मान लीजिए कि हम संवेग p की अपेक्षा में तात्कालिक परिवर्तन जानना चाहते हैं। एरेनफेस्ट के प्रमेय का उपयोग करते हुए, हमें प्राप्त होता है;

चूंकि ऑपरेटर p स्वयं के साथ आवागमन करता है और समय पर उसकी कोई निर्भरता नहीं है।[7] दायीं ओर का विस्तार करके, p को से प्रतिस्थापित करने पर, हमें प्राप्त होता है;
दूसरे पद पर प्रोडक्ट नियम प्रस्तावित करने के पश्चात, हमें प्राप्त होता है;
जैसा कि परिचय में बताया गया है, यह परिणाम यह नहीं कहता कि युग्म न्यूटन के दूसरे नियम को संतुष्ट करता है, क्योंकि सूत्र का दाहिना भाग है, इसके अतिरिक्त है। फिर भी, जैसा कि परिचय में बताया गया है, उन अवस्थाओं के लिए जो स्पेस में अत्यधिक स्थानीयकृत हैं, अपेक्षित स्थिति और गति लगभग शास्त्रीय प्रक्षेपवक्र का पालन करेगी, जिसे समानता सिद्धांत के उदाहरण के रूप में समझा जा सकता है।

इसी प्रकार, हम स्थिति अपेक्षा मान में तात्कालिक परिवर्तन प्राप्त कर सकते हैं।

यह परिणाम वास्तव में शास्त्रीय समीकरण के अनुरूप है।

एरेनफेस्ट प्रमेय से श्रोडिंगर समीकरण की व्युत्पत्ति

यह ऊपर स्थापित किया गया था कि एरेनफेस्ट प्रमेय श्रोडिंगर समीकरण के परिणाम हैं। चूँकि, इसका विपरीत भी सत्य है: श्रोडिंगर समीकरण का अनुमान एरेनफेस्ट प्रमेयों से लगाया जा सकता है।[8] इस प्रकार प्रारम्भ करते हैं;

प्रोडक्ट नियम का अनुप्रयोग होता है;
यहां, स्टोन के प्रमेय समय अनुवाद के क्वांटम जनरेटर को दर्शाने के लिए Ĥ का उपयोग करते हुए स्टोन के प्रमेय को प्रस्तावित करें। अगला स्टेप यह दिखाना है कि यह क्वांटम यांत्रिकी में उपयोग किए जाने वाले हैमिल्टनियन ऑपरेटर के समान है। स्टोन के प्रमेय का इस प्रकार तात्पर्य है;
जहां ħ को संतुलन आयाम के लिए सामान्यीकरण स्थिरांक के रूप में प्रस्तुत किया गया था। चूँकि ये पहचान किसी भी प्रारंभिक अवस्था के लिए मान्य होनी चाहिए, औसत को विस्थापित किया जा सकता है और Ĥ के लिए कम्यूटेटर समीकरणों की प्रणाली प्राप्त की जा सकती है:
यह मानते हुए कि निर्देशांक और संवेग के अवलोकन विहित रूपान्तरण संबंध [, ] = का पालन करते हैं। सेटिंग , कम्यूटेटर समीकरणों को विभेदक समीकरणों में परिवर्तित किया जा सकता है;[8][9]
जिसका समाधान परिचित हैमिल्टनियन है;
जहां से, श्रोडिंगर समीकरण को समन्वय और गति के मध्य विहित कम्यूटेशन संबंध मानकर एरेनफेस्ट प्रमेय से प्राप्त किया गया था। यदि कोई मानता है कि समन्वय और संवेग का आवागमन होता है, तो वही कम्प्यूटेशनल विधि कूपमैन-वॉन न्यूमैन शास्त्रीय यांत्रिकी की ओर ले जाती है, जो शास्त्रीय यांत्रिकी का हिल्बर्ट स्पेस फॉर्मूलेशन है।[8] इसलिए, इस व्युत्पत्ति के साथ-साथ कूपमैन-वॉन न्यूमैन की व्युत्पत्ति से ज्ञात होता है कि क्वांटम और शास्त्रीय यांत्रिकी के मध्य आवश्यक अंतर कम्यूटेटर [, ] के मान तक कम हो जाता है। शास्त्रीय रूप से अराजक गतिशीलता वाले सिस्टम के लिए एहरनफेस्ट प्रमेय के निहितार्थ पर स्कॉलरपीडिया लेख Ehrenfest समय और अराजकता पर वर्णन किया गया है। शास्त्रीय प्रक्षेपवक्र की घातीय अस्थिरता के कारण एरेनफेस्ट समय, जिस पर क्वांटम और शास्त्रीय विकास के मध्य पूर्ण समानता होती है, को विशिष्ट क्वांटम संख्या के लघुगणक के आनुपातिक होने के कारण लघुगणकीय रूप से छोटा दिखाया गया है। इंटीग्रेबल डायनेमिक्स की स्थिति में यह समय स्तर क्वांटम संख्या की निश्चित शक्ति के आनुपातिक होने के कारण अधिक बड़ा है।

टिप्पणियाँ

  1. Hall 2013 Section 3.7.5
  2. Ehrenfest, P. (1927). "Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik". Zeitschrift für Physik. 45 (7–8): 455–457. Bibcode:1927ZPhy...45..455E. doi:10.1007/BF01329203. S2CID 123011242.
  3. Smith, Henrik (1991). क्वांटम यांत्रिकी का परिचय. World Scientific Pub Co Inc. pp. 108–109. ISBN 978-9810204754.
  4. Wheeler, Nicholas. "एरेनफेस्ट के प्रमेय की स्थिति और कुछ प्रभावों से संबंधित टिप्पणियाँ" (PDF).
  5. Hall 2013 p. 78
  6. In bra–ket notation , so where is the Hamiltonian operator, and H is the Hamiltonian represented in coordinate space (as is the case in the derivation above). In other words, we applied the adjoint operation to the entire Schrödinger equation, which flipped the order of operations for H and Φ.
  7. Although the expectation value of the momentum p, which is a real-number-valued function of time, will have time dependence, the momentum operator itself, p does not, in this picture: Rather, the momentum operator is a constant linear operator on the Hilbert space of the system. The time dependence of the expectation value, in this picture, is due to the time evolution of the wavefunction for which the expectation value is calculated. An Ad hoc example of an operator which does have time dependence is xt2, where x is the ordinary position operator and t is just the (non-operator) time, a parameter.
  8. 8.0 8.1 8.2 Bondar, D.; Cabrera, R.; Lompay, R.; Ivanov, M.; Rabitz, H. (2012). "क्वांटम और शास्त्रीय यांत्रिकी को पार करते हुए ऑपरेशनल डायनेमिक मॉडलिंग". Physical Review Letters. 109 (19): 190403. arXiv:1105.4014. Bibcode:2012PhRvL.109s0403B. doi:10.1103/PhysRevLett.109.190403. PMID 23215365. S2CID 19605000.
  9. Transtrum, M. K.; Van Huele, J. F. O. S. (2005). "ऑपरेटरों के कार्यों के लिए कम्यूटेशन संबंध". Journal of Mathematical Physics. 46 (6): 063510. Bibcode:2005JMP....46f3510T. doi:10.1063/1.1924703.

संदर्भ

  • Hall, Brian C. (2013), Quantum Theory for Mathematicians, Graduate Texts in Mathematics, vol. 267, Springer, ISBN 978-1461471158