टेंसर (आंतरिक परिभाषा): Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
[[विभेदक ज्यामिति]] में, आंतरिक ज्यामितीय कथन को [[ कई गुना |मैनिफोल्ड]] पर [[ टेन्सर |टेन्सर]] क्षेत्र द्वारा वर्णित किया जा सकता है, और फिर निर्देशांक का संदर्भ देने की निश्चित ही आवश्यकता नहीं होती है। भौतिक गुण का वर्णन करने वाले टेंसर क्षेत्र के [[सामान्य सापेक्षता]] में भी यही सत्य है। घटक-मुक्त दृष्टिकोण का उपयोग [[अमूर्त बीजगणित|संक्षेप बीजगणित]] और अनुरूप बीजगणित में भी बड़े पैमाने पर किया जाता है, जहां टेंसर स्वाभाविक रूप से उत्पन्न होते हैं। | [[विभेदक ज्यामिति]] में, आंतरिक ज्यामितीय कथन को [[ कई गुना |मैनिफोल्ड]] पर [[ टेन्सर |टेन्सर]] क्षेत्र द्वारा वर्णित किया जा सकता है, और फिर निर्देशांक का संदर्भ देने की निश्चित ही आवश्यकता नहीं होती है। भौतिक गुण का वर्णन करने वाले टेंसर क्षेत्र के [[सामान्य सापेक्षता]] में भी यही सत्य है। घटक-मुक्त दृष्टिकोण का उपयोग [[अमूर्त बीजगणित|संक्षेप बीजगणित]] और अनुरूप बीजगणित में भी बड़े पैमाने पर किया जाता है, जहां टेंसर स्वाभाविक रूप से उत्पन्न होते हैं। | ||
:''नोट: यह लेख चुने गए [[आधार (रैखिक बीजगणित)]] के बिना सदिश रिक्त समष्टि के [[टेंसर उत्पाद]] की समझ मानता है। विषय का अवलोकन मुख्य टेंसर लेख में पाया जा सकता है।'' | :''नोट: यह लेख चुने गए [[आधार (रैखिक बीजगणित)]] के बिना सदिश रिक्त समष्टि के [[टेंसर उत्पाद|टेंसर गुणनफल]] की समझ मानता है। विषय का अवलोकन मुख्य टेंसर लेख में पाया जा सकता है।'' | ||
==सदिश समष्टि के टेंसर | ==सदिश समष्टि के टेंसर गुणनफलों के माध्यम से परिभाषा== | ||
एक सामान्य [[फ़ील्ड (गणित)|क्षेत्र (गणित)]] F पर सदिश समष्टि के एक परिमित समुच्चय {{nowrap|{ ''V''<sub>1</sub>, ..., ''V''<sub>''n''</sub> }{{null}}}} को देखते हुए, कोई अपना टेंसर | एक सामान्य [[फ़ील्ड (गणित)|क्षेत्र (गणित)]] F पर सदिश समष्टि के एक परिमित समुच्चय {{nowrap|{ ''V''<sub>1</sub>, ..., ''V''<sub>''n''</sub> }{{null}}}} को देखते हुए, कोई अपना टेंसर गुणनफल {{nowrap|''V''<sub>1</sub> ⊗ ... ⊗ ''V''<sub>''n''</sub>}}, बना सकता है, जिसके एक अवयव को टेंसर कहा जाता है। | ||
सदिश समष्टि ''V'' पर एक टेंसर को तब रूप के सदिश समष्टि के एक अवयव (अर्थात, एक सदिश) के रूप में परिभाषित किया जाता है: | सदिश समष्टि ''V'' पर एक टेंसर को तब रूप के सदिश समष्टि के एक अवयव (अर्थात, एक सदिश) के रूप में परिभाषित किया जाता है: | ||
Line 14: | Line 14: | ||
जहां V<sup>∗</sup>V की दोहरी समष्टि है। | जहां V<sup>∗</sup>V की दोहरी समष्टि है। | ||
यदि हमारे | यदि हमारे गुणनफल में V की m प्रतियां और V∗ की n प्रतियां हैं, तो टेंसर को {{nowrap|प्रकार (''m'', ''n'')}} और क्रम m के प्रतिपरिवर्ती और क्रम n के सहसंयोजक और कुल [[टेंसर ऑर्डर|टेंसर क्रम]] ''{{nowrap|''m'' + ''n''}}'' का कहा जाता है। क्रम शून्य के टेंसर मात्र अदिश (क्षेत्र F के अवयव) हैं, विपरीत क्रम 1 वाले टेंसर V में सदिश हैं, और सहसंवर्ती क्रम 1 वाले टेंसर ''V''<sup>∗</sup> में [[रैखिक कार्यात्मक]] हैं (इस कारण से, अंतिम दो स्थानों के अवयवों को प्रायः प्रतिपरिवर्ती और सहसंयोजक सदिश कहा जाता है)। प्रकार {{nowrap|(''m'', ''n'')}} के सभी टेंसरों की समष्टि | ||
:<math> T^m_n(V) = \underbrace{ V\otimes \dots \otimes V}_{m} \otimes \underbrace{ V^*\otimes \dots \otimes V^*}_{n}</math> दर्शाया गया है। | :<math> T^m_n(V) = \underbrace{ V\otimes \dots \otimes V}_{m} \otimes \underbrace{ V^*\otimes \dots \otimes V^*}_{n}</math> दर्शाया गया है। | ||
Line 24: | Line 24: | ||
{{Main|टेन्सर पद वियोजन}} | {{Main|टेन्सर पद वियोजन}} | ||
एक | एक '''सरल टेंसर''' (जिसे पद एक का टेंसर, प्राथमिक टेंसर या विश्लेषणीय टेंसर भी कहा जाता है {{harv|हैकबुश|2012|pp=4}}) एक टेंसर है जिसे रूप | ||
:<math>T=a\otimes b\otimes\cdots\otimes d</math> | :<math>T=a\otimes b\otimes\cdots\otimes d</math> | ||
जहां | के टेंसर के गुणनफल के रूप में लिखा जा सकता है, जहां a, b, ..., d अशून्य हैं और V या ''V''<sup>∗</sup> में - अर्थात, यदि टेंसर अशून्य है और पूर्ण रूप से [[गुणन|गुणनखंडनीय]] है। प्रत्येक टेंसर को सरल टेंसर के योग के रूप में व्यक्त किया जा सकता है। टेन्सर ''T'' के पद '''सरल टेन्सर''' की न्यूनतम संख्या है जिसका योग ''T {{harv|बोरबाकी|1989|loc=II, §7, no. 8}}'' है। | ||
[[शून्य टेंसर]] | [[शून्य टेंसर]] के पद शून्य होती है। गैर-शून्य क्रम 0 या 1 टेंसर के पद सदैव 1 होती है। गैर-शून्य क्रम 2 या उच्चतर टेंसर के पद (गुणनफलों का योग) में उच्चतम-आयाम वाले सदिश को छोड़कर सभी के आयामों के गुणनफल से कम या उसके बराबर है, जिसे टेंसर व्यक्त किया जा सकता है, जो d{{i sup|''n''−1}} जब प्रत्येक गुणनफल आयाम d के एक परिमित-आयामी सदिश समष्टि से n सदिश का होता है। | ||
टेंसर | टेंसर के पद शब्द रैखिक बीजगणित में आव्यूह के पद की धारणा को विस्तारित करता है, यद्यपि इस शब्द का उपयोग प्रायः टेंसर के क्रम (या डिग्री) के अर्थ के लिए भी किया जाता है। आव्यूह के पद पंक्ति और स्तम्भ रिक्त समष्टि को फैलाने के लिए आवश्यक स्तम्भ सदिश की न्यूनतम संख्या है। इस प्रकार [[एक मैट्रिक्स की रैंक|आव्यूह के पद]] होती है यदि इसे दो गैर-शून्य सदिशों के [[बाहरी उत्पाद|बाह्य गुणनफल]] के रूप में लिखा जा सकता है: | ||
:<math>A = v w^{\mathrm{T}}.</math> | :<math>A = v w^{\mathrm{T}}.</math> | ||
आव्यूह A के पद ऐसे बाह्य गुणनफलों की सबसे छोटी संख्या है जिसे इसे उत्पन्न करने के लिए जोड़ा जा सकता है: | |||
:<math>A = v_1w_1^\mathrm{T} + \cdots + v_k w_k^\mathrm{T}.</math> | :<math>A = v_1w_1^\mathrm{T} + \cdots + v_k w_k^\mathrm{T}.</math> | ||
सूचकांकों में, पद 1 का टेंसर | सूचकांकों में, पद 1 का टेंसर | ||
:<math>T_{ij\dots}^{k\ell\dots}=a_i b_j \cdots c^k d^\ell\cdots | :<math>T_{ij\dots}^{k\ell\dots}=a_i b_j \cdots c^k d^\ell\cdots</math> रूप का टेंसर होता है। | ||
क्रम 2 के टेंसर | क्रम 2 के टेंसर के पद पद से सहमत होती है जब टेंसर को [[मैट्रिक्स (गणित)|आव्यूह (गणित)]] {{harv|हेल्मोस|1974|loc=§51}} के रूप में माना जाता है , और उदाहरण के लिए गाऊसी उन्मूलन से निर्धारित किया जा सकता है। यद्यपि क्रम 3 या उच्चतर टेंसर के पद निर्धारित करना प्रायः बहुत जटिल होता है, और टेंसर के निम्न पद का अपघटन कभी-कभी बहुत व्यावहारिक रुचि का होता है {{harv|डी ग्रूट|1987}}। आव्यूह के दक्ष गुणन और [[बहुपद|बहुपदों]] के दक्ष मूल्यांकन जैसे कम्प्यूटेशनल कार्यों को दिए गए इनपुट के लिए x<sub>i</sub>और y<sub>j</sub> के लिए द्विरेखीय रूप | ||
:<math>z_k = \sum_{ij} T_{ijk}x_iy_j</math> | :<math>z_k = \sum_{ij} T_{ijk}x_iy_j</math> | ||
के एक समुच्चय का एक साथ मूल्यांकन करने की समस्या के रूप में पुनःनिर्माण किया जा सकता है। यदि टेंसर ''T'' श्रेणी का अपघटन ज्ञात है, तो एक दक्ष [[मूल्यांकन रणनीति|मूल्यांकन कार्यनीति]] ज्ञात होती है {{harv|नुथ|1998|pp=506–508}}। | |||
==सार्वभौमिक गुण== | ==सार्वभौमिक गुण== | ||
[[बहुरेखीय मानचित्र|बहुरेखीय प्रतिचित्रण]] के संदर्भ में समष्टि <math>T^m_n(V)</math> को एक [[सार्वभौमिक संपत्ति|सार्वभौमिक गुण]] द्वारा चित्रित किया जा सकता है। इस दृष्टिकोण के लाभों में से यह है कि यह यह दिखाने की विधि देती है कि कई रैखिक प्रतिचित्रण प्राकृतिक या ज्यामितीय हैं (दूसरे शब्दों में आधार की किसी भी चयन से स्वतंत्र हैं)। स्पष्ट कम्प्यूटेशनल सूचना को फिर आधारों का उपयोग करके लिखा जा सकता है, और प्राथमिकताओं का यह क्रम प्राकृतिक प्रतिचित्रण को जन्म देने वाले सूत्र को सिद्ध करने से अधिक सुविधाजनक हो सकता है। दूसरा गुण यह है कि टेंसर गुणनफलों का उपयोग मात्र [[मुफ़्त मॉड्यूल|मुक्त मॉड्यूल]] के लिए नहीं किया जाता है, और सार्वभौमिक दृष्टिकोण अधिक सामान्य स्थितियों में अधिक सरलता से लागू होता है। | |||
सदिश रिक्त समष्टि के | सदिश रिक्त समष्टि के कार्तीय गुणनफल (या [[मॉड्यूल का प्रत्यक्ष योग]]) पर स्केलर-मूल्यवान फ़ंक्शन | ||
:<math>f : V_1\times\cdots\times V_N \to F</math> | :<math>f : V_1\times\cdots\times V_N \to F</math> | ||
यदि यह प्रत्येक तर्क में रैखिक है तो बहुरेखीय है। से सभी बहुरेखीय प्रतिचित्रणों की समष्टि {{nowrap|''V''<sub>1</sub> × ... × ''V<sub>N</sub>''}} से W को L दर्शाया गया है<sup>एन</sup>(बी<sub>1</sub>, ..., में<sub>N</sub>; डब्ल्यू). जब N = 1, बहुरेखीय प्रतिचित्रण मात्र | यदि यह प्रत्येक तर्क में रैखिक है तो बहुरेखीय है। से सभी बहुरेखीय प्रतिचित्रणों की समष्टि {{nowrap|''V''<sub>1</sub> × ... × ''V<sub>N</sub>''}} से W को L दर्शाया गया है<sup>एन</sup>(बी<sub>1</sub>, ..., में<sub>N</sub>; डब्ल्यू). जब N = 1, बहुरेखीय प्रतिचित्रण मात्र सरल रैखिक प्रतिचित्रण होता है, और V से W तक सभी रैखिक प्रतिचित्रणों की समष्टि दर्शाया जाता है {{nowrap|''L''(''V''; ''W'')}}. | ||
टेंसर | टेंसर गुणनफल#यूनिवर्सल प्रॉपर्टी का तात्पर्य यह है कि, प्रत्येक बहुरेखीय फ़ंक्शन के लिए | ||
:<math>f\in L^{m+n}(\underbrace{V^*,\ldots,V^*}_m,\underbrace{V,\ldots,V}_n;W)</math> | :<math>f\in L^{m+n}(\underbrace{V^*,\ldots,V^*}_m,\underbrace{V,\ldots,V}_n;W)</math> |
Revision as of 10:14, 1 December 2023
गणित में, टेन्सर के सिद्धांत का आधुनिक घटक-मुक्त दृष्टिकोण टेन्सर को एक ऐसे संक्षेप वस्तु के रूप में देखता है, जो कुछ निश्चित प्रकार की बहुरेखीय प्रतिचित्रण अवधारणा को व्यक्त करता है। उनके गुण उनकी परिभाषाओं से प्राप्त किए जा सकते हैं, जैसे रैखिक प्रतिचित्र या अधिक सामान्यतः; और टेंसर के अन्तःक्षेप के नियम रैखिक बीजगणित से बहुरेखीय बीजगणित के विस्तार के रूप में उत्पन्न होते हैं।
विभेदक ज्यामिति में, आंतरिक ज्यामितीय कथन को मैनिफोल्ड पर टेन्सर क्षेत्र द्वारा वर्णित किया जा सकता है, और फिर निर्देशांक का संदर्भ देने की निश्चित ही आवश्यकता नहीं होती है। भौतिक गुण का वर्णन करने वाले टेंसर क्षेत्र के सामान्य सापेक्षता में भी यही सत्य है। घटक-मुक्त दृष्टिकोण का उपयोग संक्षेप बीजगणित और अनुरूप बीजगणित में भी बड़े पैमाने पर किया जाता है, जहां टेंसर स्वाभाविक रूप से उत्पन्न होते हैं।
- नोट: यह लेख चुने गए आधार (रैखिक बीजगणित) के बिना सदिश रिक्त समष्टि के टेंसर गुणनफल की समझ मानता है। विषय का अवलोकन मुख्य टेंसर लेख में पाया जा सकता है।
सदिश समष्टि के टेंसर गुणनफलों के माध्यम से परिभाषा
एक सामान्य क्षेत्र (गणित) F पर सदिश समष्टि के एक परिमित समुच्चय { V1, ..., Vn } को देखते हुए, कोई अपना टेंसर गुणनफल V1 ⊗ ... ⊗ Vn, बना सकता है, जिसके एक अवयव को टेंसर कहा जाता है।
सदिश समष्टि V पर एक टेंसर को तब रूप के सदिश समष्टि के एक अवयव (अर्थात, एक सदिश) के रूप में परिभाषित किया जाता है:
जहां V∗V की दोहरी समष्टि है।
यदि हमारे गुणनफल में V की m प्रतियां और V∗ की n प्रतियां हैं, तो टेंसर को प्रकार (m, n) और क्रम m के प्रतिपरिवर्ती और क्रम n के सहसंयोजक और कुल टेंसर क्रम m + n का कहा जाता है। क्रम शून्य के टेंसर मात्र अदिश (क्षेत्र F के अवयव) हैं, विपरीत क्रम 1 वाले टेंसर V में सदिश हैं, और सहसंवर्ती क्रम 1 वाले टेंसर V∗ में रैखिक कार्यात्मक हैं (इस कारण से, अंतिम दो स्थानों के अवयवों को प्रायः प्रतिपरिवर्ती और सहसंयोजक सदिश कहा जाता है)। प्रकार (m, n) के सभी टेंसरों की समष्टि
- दर्शाया गया है।
उदाहरण 1. प्रकार (1, 1) टेंसर, की समष्टि, V से V तक रैखिक परिवर्तनों के समष्टि के लिए प्राकृतिक विधि से समरूपी है।
'उदाहरण 2.' वास्तविक सदिश समष्टि V, पर एक द्विरेखीय रूप, में एक प्रकार (0, 2) टेंसर से प्राकृतिक विधि से मेल खाता है। ऐसे द्विरेखीय रूप का एक उदाहरण परिभाषित किया जा सकता है, जिसे संबंधित मापीय टेंसर कहा जाता है, और सामान्यतः इसे g से दर्शाया जाता है।
टेंसर पद
एक सरल टेंसर (जिसे पद एक का टेंसर, प्राथमिक टेंसर या विश्लेषणीय टेंसर भी कहा जाता है (हैकबुश 2012, pp. 4) ) एक टेंसर है जिसे रूप
के टेंसर के गुणनफल के रूप में लिखा जा सकता है, जहां a, b, ..., d अशून्य हैं और V या V∗ में - अर्थात, यदि टेंसर अशून्य है और पूर्ण रूप से गुणनखंडनीय है। प्रत्येक टेंसर को सरल टेंसर के योग के रूप में व्यक्त किया जा सकता है। टेन्सर T के पद सरल टेन्सर की न्यूनतम संख्या है जिसका योग T (बोरबाकी 1989, II, §7, no. 8) है।
शून्य टेंसर के पद शून्य होती है। गैर-शून्य क्रम 0 या 1 टेंसर के पद सदैव 1 होती है। गैर-शून्य क्रम 2 या उच्चतर टेंसर के पद (गुणनफलों का योग) में उच्चतम-आयाम वाले सदिश को छोड़कर सभी के आयामों के गुणनफल से कम या उसके बराबर है, जिसे टेंसर व्यक्त किया जा सकता है, जो dn−1 जब प्रत्येक गुणनफल आयाम d के एक परिमित-आयामी सदिश समष्टि से n सदिश का होता है।
टेंसर के पद शब्द रैखिक बीजगणित में आव्यूह के पद की धारणा को विस्तारित करता है, यद्यपि इस शब्द का उपयोग प्रायः टेंसर के क्रम (या डिग्री) के अर्थ के लिए भी किया जाता है। आव्यूह के पद पंक्ति और स्तम्भ रिक्त समष्टि को फैलाने के लिए आवश्यक स्तम्भ सदिश की न्यूनतम संख्या है। इस प्रकार आव्यूह के पद होती है यदि इसे दो गैर-शून्य सदिशों के बाह्य गुणनफल के रूप में लिखा जा सकता है:
आव्यूह A के पद ऐसे बाह्य गुणनफलों की सबसे छोटी संख्या है जिसे इसे उत्पन्न करने के लिए जोड़ा जा सकता है:
सूचकांकों में, पद 1 का टेंसर
- रूप का टेंसर होता है।
क्रम 2 के टेंसर के पद पद से सहमत होती है जब टेंसर को आव्यूह (गणित) (हेल्मोस 1974, §51) के रूप में माना जाता है , और उदाहरण के लिए गाऊसी उन्मूलन से निर्धारित किया जा सकता है। यद्यपि क्रम 3 या उच्चतर टेंसर के पद निर्धारित करना प्रायः बहुत जटिल होता है, और टेंसर के निम्न पद का अपघटन कभी-कभी बहुत व्यावहारिक रुचि का होता है (डी ग्रूट 1987) । आव्यूह के दक्ष गुणन और बहुपदों के दक्ष मूल्यांकन जैसे कम्प्यूटेशनल कार्यों को दिए गए इनपुट के लिए xiऔर yj के लिए द्विरेखीय रूप
के एक समुच्चय का एक साथ मूल्यांकन करने की समस्या के रूप में पुनःनिर्माण किया जा सकता है। यदि टेंसर T श्रेणी का अपघटन ज्ञात है, तो एक दक्ष मूल्यांकन कार्यनीति ज्ञात होती है (नुथ 1998, pp. 506–508) ।
सार्वभौमिक गुण
बहुरेखीय प्रतिचित्रण के संदर्भ में समष्टि को एक सार्वभौमिक गुण द्वारा चित्रित किया जा सकता है। इस दृष्टिकोण के लाभों में से यह है कि यह यह दिखाने की विधि देती है कि कई रैखिक प्रतिचित्रण प्राकृतिक या ज्यामितीय हैं (दूसरे शब्दों में आधार की किसी भी चयन से स्वतंत्र हैं)। स्पष्ट कम्प्यूटेशनल सूचना को फिर आधारों का उपयोग करके लिखा जा सकता है, और प्राथमिकताओं का यह क्रम प्राकृतिक प्रतिचित्रण को जन्म देने वाले सूत्र को सिद्ध करने से अधिक सुविधाजनक हो सकता है। दूसरा गुण यह है कि टेंसर गुणनफलों का उपयोग मात्र मुक्त मॉड्यूल के लिए नहीं किया जाता है, और सार्वभौमिक दृष्टिकोण अधिक सामान्य स्थितियों में अधिक सरलता से लागू होता है।
सदिश रिक्त समष्टि के कार्तीय गुणनफल (या मॉड्यूल का प्रत्यक्ष योग) पर स्केलर-मूल्यवान फ़ंक्शन
यदि यह प्रत्येक तर्क में रैखिक है तो बहुरेखीय है। से सभी बहुरेखीय प्रतिचित्रणों की समष्टि V1 × ... × VN से W को L दर्शाया गया हैएन(बी1, ..., मेंN; डब्ल्यू). जब N = 1, बहुरेखीय प्रतिचित्रण मात्र सरल रैखिक प्रतिचित्रण होता है, और V से W तक सभी रैखिक प्रतिचित्रणों की समष्टि दर्शाया जाता है L(V; W).
टेंसर गुणनफल#यूनिवर्सल प्रॉपर्टी का तात्पर्य यह है कि, प्रत्येक बहुरेखीय फ़ंक्शन के लिए
(कहाँ अदिश क्षेत्र, सदिश समष्टि, या टेंसर समष्टि का प्रतिनिधित्व कर सकता है) अद्वितीय रैखिक फ़ंक्शन मौजूद है
ऐसा है कि
सभी के लिए और सार्वभौमिक गुण का उपयोग करते हुए, यह निम्नानुसार है कि (m,n)-टेंसर्स की समष्टि प्राकृतिक समरूपता को स्वीकार करता है
टेंसर की परिभाषा में प्रत्येक V V से मेल खाता है*रेखीय प्रतिचित्रों के तर्क के अंदर, और इसके विपरीत। (ध्यान दें कि पहले मामले में, V की m प्रतियां और V की n प्रतियां हैं*, और बाद वाले मामले में इसके विपरीत)। विशेष रूप से, के पास है
टेन्सर क्षेत्र
डिफरेंशियल ज्योमेट्री, भौतिक विज्ञान और अभियांत्रिकी को प्रायः चिकनी मैनिफोल्ड ्स पर टेंसर फील्ड से निपटना चाहिए। टेन्सर शब्द का प्रयोग कभी-कभी टेन्सर क्षेत्र के लिए आशुलिपि के रूप में किया जाता है। टेंसर क्षेत्र टेंसर की अवधारणा को व्यक्त करता है जो मैनिफोल्ड पर बिंदु से दूसरे बिंदु पर भिन्न होता है।
संदर्भ
- Abraham, Ralph; Marsden, Jerrold E. (1985), Foundations of Mechanics (2 ed.), Reading, Mass.: Addison-Wesley, ISBN 0-201-40840-6.
- Bourbaki, Nicolas (1989), Elements of Mathematics, Algebra I, Springer-Verlag, ISBN 3-540-64243-9.
- de Groote, H. F. (1987), Lectures on the Complexity of Bilinear Problems, Lecture Notes in Computer Science, vol. 245, Springer, ISBN 3-540-17205-X.
- Halmos, Paul (1974), Finite-dimensional Vector Spaces, Springer, ISBN 0-387-90093-4.
- Jeevanjee, Nadir (2011), "An Introduction to Tensors and Group Theory for Physicists", Physics Today, 65 (4): 64, Bibcode:2012PhT....65d..64P, doi:10.1063/PT.3.1523, ISBN 978-0-8176-4714-8
- Knuth, Donald E. (1998) [1969], The Art of Computer Programming vol. 2 (3rd ed.), pp. 145–146, ISBN 978-0-201-89684-8.
- Hackbusch, Wolfgang (2012), Tensor Spaces and Numerical Tensor Calculus, Springer, p. 4, ISBN 978-3-642-28027-6.