रिक्की वक्रता: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[विभेदक ज्यामिति]] में | [[विभेदक ज्यामिति]] में रिक्की वक्रता टेंसर को मुख्य रूप से जिसका नाम [[ग्रेगोरियो रिक्की-कर्बस्ट्रो]] के नाम पर रखा गया है, एक प्रकार से यह ज्यामितीय से जुड़ा तत्व है, जो [[ कई गुना |कई गुना]] हो जाने पर [[रीमैनियन मैनिफोल्ड]] या [[छद्म-रीमैनियन मैनिफोल्ड|स्यूडो-रीमैनियन मैनिफोल्ड]] या स्यूडो-रीमैनियन मीट्रिक की आवश्यकता से निर्धारित होती है। मुख्य रूप से, इसे उस डिग्री के माप के रूप में माना जाता है, जिस तक किसी दिए गए मीट्रिक टेंसर की ज्यामिति सामान्य [[स्यूडो-[[यूक्लिडियन स्थान]]]] या स्यूडो-यूक्लिडियन स्पेस से स्थानीय रूप से भिन्न होती है। | ||
रिक्की टेंसर को इस माप से पहचाना जा सकता है कि | रिक्की टेंसर को इस माप से पहचाना जा सकता है कि स्पेस में [[जियोडेसिक]] के साथ चलते समय आकृति कैसे विकृत हो जाती है। [[सामान्य सापेक्षता]] में, जिसमें स्यूडो-रिमानियन सेटिंग उपस्थित है, यह रायचौधुरी समीकरण में रिक्की टेंसर की उपस्थिति से परिलक्षित होता है। इसे आंशिक रूप से इसी कारण आइंस्टीन क्षेत्र के समीकरणों के प्रस्ताव पर आधारित किया गया है, क्योंकि स्पेसटाइम को स्यूडो-रीमैनियन मीट्रिक द्वारा वर्णित किया जा सकता है, जिसमें रिक्की टेंसर और ब्रह्मांड की पदार्थ सामग्री के बीच आश्चर्यजनक सरल संबंध है। | ||
मीट्रिक टेंसर | मीट्रिक टेंसर के समान, रिक्की टेंसर मैनिफ़ोल्ड के प्रत्येक [[स्पर्शरेखा स्थान]] को [[सममित द्विरेखीय रूप]] {{harv|Besse|1987|p=43}} प्रदान करता है।<ref>Here it is assumed that the manifold carries its unique [[Levi-Civita connection]]. For a general [[affine connection]], the Ricci tensor need not be symmetric.</ref> मुख्य रूप से कोई रीमैनियन ज्यामिति में रिक्की वक्रता की भूमिका को कार्यों के विश्लेषण में [[लाप्लास ऑपरेटर]] की भूमिका के अनुरूप बना सकता है, इस सादृश्य में, [[रीमैन वक्रता टेंसर]], जिसमें से रिक्की वक्रता प्राकृतिक उप-उत्पाद है, फ़ंक्शन के दूसरे डेरिवेटिव के पूर्ण आव्यूह के अनुरूप होगा। चूंकि, समान सादृश्य निकालने के लिए लाप्लास-बेल्ट्रामी ऑपरेटर हैं। | ||
[[ निम्न-आयामी टोपोलॉजी ]]|थ्री-डायमेंशनल टोपोलॉजी में, रिक्की टेंसर में वह सारी जानकारी होती है जो उच्च आयामों में अधिक जटिल रीमैन वक्रता टेंसर द्वारा एन्कोड की जाती है। कुछ हद तक, यह सादगी कई ज्यामितीय और विश्लेषणात्मक उपकरणों के अनुप्रयोग की अनुमति देती है, जिसके कारण रिचर्ड एस हैमिल्टन और [[ग्रिगोरी पेरेलमैन]] के काम के माध्यम से पोंकारे अनुमान का समाधान हुआ। | [[ निम्न-आयामी टोपोलॉजी ]]|थ्री-डायमेंशनल टोपोलॉजी में, रिक्की टेंसर में वह सारी जानकारी होती है जो उच्च आयामों में अधिक जटिल रीमैन वक्रता टेंसर द्वारा एन्कोड की जाती है। कुछ हद तक, यह सादगी कई ज्यामितीय और विश्लेषणात्मक उपकरणों के अनुप्रयोग की अनुमति देती है, जिसके कारण रिचर्ड एस हैमिल्टन और [[ग्रिगोरी पेरेलमैन]] के काम के माध्यम से पोंकारे अनुमान का समाधान हुआ। | ||
विभेदक ज्यामिति में, रीमैनियन मैनिफोल्ड पर रिक्की टेंसर पर निचली सीमाएं स्थिर वक्रता वाले [[अंतरिक्ष रूप]] की ज्यामिति के साथ तुलना करके वैश्विक ज्यामितीय और टोपोलॉजिकल जानकारी निकालने की अनुमति देती हैं। ऐसा इसलिए है क्योंकि रिक्की टेंसर पर निचली सीमाओं का उपयोग रीमानियन ज्यामिति में लंबाई कार्यात्मकता का अध्ययन करने में सफलतापूर्वक किया जा सकता है, जैसा कि पहली बार 1941 में मायर्स प्रमेय के माध्यम से दिखाया गया था। | विभेदक ज्यामिति में, रीमैनियन मैनिफोल्ड पर रिक्की टेंसर पर निचली सीमाएं स्थिर वक्रता वाले [[अंतरिक्ष रूप|स्पेस रूप]] की ज्यामिति के साथ तुलना करके वैश्विक ज्यामितीय और टोपोलॉजिकल जानकारी निकालने की अनुमति देती हैं। ऐसा इसलिए है क्योंकि रिक्की टेंसर पर निचली सीमाओं का उपयोग रीमानियन ज्यामिति में लंबाई कार्यात्मकता का अध्ययन करने में सफलतापूर्वक किया जा सकता है, जैसा कि पहली बार 1941 में मायर्स प्रमेय के माध्यम से दिखाया गया था। | ||
रिक्की टेंसर का सामान्य स्रोत यह है कि यह तब उत्पन्न होता है जब कोई टेंसर लाप्लासियन के साथ सहसंयोजक व्युत्पन्न को स्थानांतरित करता है। उदाहरण के लिए, यह बोचनर के सूत्र में इसकी उपस्थिति की व्याख्या करता है, जिसका उपयोग रीमैनियन ज्यामिति में सर्वव्यापी रूप से किया जाता है। उदाहरण के लिए, यह सूत्र बताता है कि क्यों [[शिंग-तुंग याउ]] (और चेंग-याउ और ली-याउ असमानताओं जैसे उनके विकास) के कारण ग्रेडिएंट अनुमान लगभग हमेशा रिक्की वक्रता के लिए निचली सीमा पर निर्भर करते हैं। | रिक्की टेंसर का सामान्य स्रोत यह है कि यह तब उत्पन्न होता है जब कोई टेंसर लाप्लासियन के साथ सहसंयोजक व्युत्पन्न को स्थानांतरित करता है। उदाहरण के लिए, यह बोचनर के सूत्र में इसकी उपस्थिति की व्याख्या करता है, जिसका उपयोग रीमैनियन ज्यामिति में सर्वव्यापी रूप से किया जाता है। उदाहरण के लिए, यह सूत्र बताता है कि क्यों [[शिंग-तुंग याउ]] (और चेंग-याउ और ली-याउ असमानताओं जैसे उनके विकास) के कारण ग्रेडिएंट अनुमान लगभग हमेशा रिक्की वक्रता के लिए निचली सीमा पर निर्भर करते हैं। | ||
2007 में, [[जॉन लोट (गणितज्ञ)]], [[कार्ल-थियोडोर स्टर्म]] और [[सेड्रिक विलानी]] ने निर्णायक रूप से प्रदर्शित किया कि रिक्की वक्रता पर निचली सीमा को पूरी तरह से रीमैनियन मैनिफोल्ड की मीट्रिक | 2007 में, [[जॉन लोट (गणितज्ञ)]], [[कार्ल-थियोडोर स्टर्म]] और [[सेड्रिक विलानी]] ने निर्णायक रूप से प्रदर्शित किया कि रिक्की वक्रता पर निचली सीमा को पूरी तरह से रीमैनियन मैनिफोल्ड की मीट्रिक स्पेस संरचना के साथ-साथ इसके वॉल्यूम फॉर्म के संदर्भ में समझा जा सकता है।<ref>{{cite arXiv|last1=Lott|first1=John|last2=Villani|first2=Cedric|date=2006-06-23|title=इष्टतम परिवहन के माध्यम से मीट्रिक-माप स्थानों के लिए रिक्की वक्रता|eprint=math/0412127}}</ref> इसने रिक्की वक्रता और [[वासेरस्टीन मीट्रिक]] और [[परिवहन सिद्धांत (गणित)]] के बीच गहरा संबंध स्थापित किया, जो वर्तमान में बहुत शोध का विषय है। | ||
==परिभाषा== | ==परिभाषा== | ||
लगता है कि <math>\left( M, g \right)</math> <math>n</math>आयामी | लगता है कि <math>\left( M, g \right)</math> <math>n</math>आयामी | ||
रीमैनियन मैनिफोल्ड या | रीमैनियन मैनिफोल्ड या स्यूडो-रीमैनियन मैनिफोल्ड, सुसज्जित | ||
इसके [[लेवी-सिविटा कनेक्शन]] के साथ <math>\nabla</math>. | इसके [[लेवी-सिविटा कनेक्शन]] के साथ <math>\nabla</math>. | ||
[[रीमैनियन वक्रता टेंसर]] <math>M</math> नक्शा है जो | [[रीमैनियन वक्रता टेंसर]] <math>M</math> नक्शा है जो | ||
Line 36: | Line 36: | ||
सम्मेलनों पर हस्ताक्षर करें. ध्यान दें कि कुछ स्रोत परिभाषित करते हैं <math>R(X,Y)Z</math> होना | सम्मेलनों पर हस्ताक्षर करें. ध्यान दें कि कुछ स्रोत परिभाषित करते हैं <math>R(X,Y)Z</math> होना | ||
यहां क्या कहा जाएगा <math>-R(X,Y)Z;</math> फिर वे परिभाषित करेंगे | यहां क्या कहा जाएगा <math>-R(X,Y)Z;</math> फिर वे परिभाषित करेंगे | ||
<math>\operatorname{Ric}_p</math> जैसा <math>-\operatorname{tr}(X\mapsto \operatorname{R}_p(X,Y)Z).</math> | <math>\operatorname{Ric}_p</math> जैसा <math>-\operatorname{tr}(X\mapsto \operatorname{R}_p(X,Y)Z).</math> चूंकि रीमैन टेंसर के बारे में संकेत परंपराएं भिन्न हैं, लेकिन वे इसके बारे में भिन्न नहीं हैं | ||
रिक्की टेंसर। | रिक्की टेंसर। | ||
===स्मूथ मैनिफोल्ड पर स्थानीय निर्देशांक के माध्यम से परिभाषा=== | ===स्मूथ मैनिफोल्ड पर स्थानीय निर्देशांक के माध्यम से परिभाषा=== | ||
होने देना <math>\left( M, g \right)</math> चिकनी रीमैनियन मैनिफोल्ड बनें | होने देना <math>\left( M, g \right)</math> चिकनी रीमैनियन मैनिफोल्ड बनें | ||
या | या स्यूडो-रिमानियन मैनिफोल्ड|स्यूडो-रिमानियन <math>n</math>-कई गुना. | ||
एक सहज चार्ट दिया गया <math>\left( U, \varphi \right)</math> के पास कार्य हैं | एक सहज चार्ट दिया गया <math>\left( U, \varphi \right)</math> के पास कार्य हैं | ||
<math>g_{ij}: \varphi(U) \rightarrow \mathbb{R}</math> और | <math>g_{ij}: \varphi(U) \rightarrow \mathbb{R}</math> और | ||
Line 51: | Line 51: | ||
</math> | </math> | ||
सभी के लिए <math>x \in \varphi(U)</math>. उत्तरार्द्ध दिखाता है कि, के रूप में व्यक्त किया गया | सभी के लिए <math>x \in \varphi(U)</math>. उत्तरार्द्ध दिखाता है कि, के रूप में व्यक्त किया गया | ||
आव्यूह, <math>g^{ij}(x) = (g^{-1})_{ij}(x)</math>. | |||
कार्य <math>g_{ij}</math> मूल्यांकन करके परिभाषित किया जाता है <math>g</math> पर | कार्य <math>g_{ij}</math> मूल्यांकन करके परिभाषित किया जाता है <math>g</math> पर | ||
सदिश क्षेत्रों का समन्वय करें, जबकि कार्य <math>g^{ij}</math> इस प्रकार परिभाषित किया गया है | सदिश क्षेत्रों का समन्वय करें, जबकि कार्य <math>g^{ij}</math> इस प्रकार परिभाषित किया गया है | ||
आव्यूह-वैल्यू फ़ंक्शन के रूप में, वे आव्यूह-वैल्यू का व्युत्क्रम प्रदान करते हैं | |||
समारोह <math>x \mapsto g_{ij}(x)</math>. | समारोह <math>x \mapsto g_{ij}(x)</math>. | ||
Line 115: | Line 115: | ||
}} | }} | ||
अंतिम पंक्ति में यह प्रदर्शन | अंतिम पंक्ति में यह प्रदर्शन उपस्थित है कि द्विरेखीय मानचित्र रिक अच्छी तरह से परिभाषित है, | ||
जिसे अनौपचारिक संकेतन के साथ लिखना बहुत आसान है। | जिसे अनौपचारिक संकेतन के साथ लिखना बहुत आसान है। | ||
Line 144: | Line 144: | ||
ऐसे 2-तलों का, और इसलिए केवल आयाम 2 और 3 में रिक्की टेंसर निर्धारित करता है | ऐसे 2-तलों का, और इसलिए केवल आयाम 2 और 3 में रिक्की टेंसर निर्धारित करता है | ||
पूर्ण वक्रता टेंसर. उल्लेखनीय अपवाद तब होता है जब मैनिफ़ोल्ड को a दिया जाता है | पूर्ण वक्रता टेंसर. उल्लेखनीय अपवाद तब होता है जब मैनिफ़ोल्ड को a दिया जाता है | ||
यूक्लिडियन | यूक्लिडियन स्पेस की हाइपरसतह के रूप में प्राथमिकता। दूसरा मौलिक रूप, | ||
जो गॉस-कोडाज़ी समीकरणों के माध्यम से पूर्ण वक्रता निर्धारित करता है|गॉस-कोडाज़ी समीकरण, | जो गॉस-कोडाज़ी समीकरणों के माध्यम से पूर्ण वक्रता निर्धारित करता है|गॉस-कोडाज़ी समीकरण, | ||
स्वयं रिक्की टेंसर और प्रिंसिपल वक्रता द्वारा निर्धारित होता है | स्वयं रिक्की टेंसर और प्रिंसिपल वक्रता द्वारा निर्धारित होता है | ||
Line 190: | Line 190: | ||
<math>\varepsilon</math> से निकलना <math>p</math>, अंदर प्रारंभिक वेग के साथ | <math>\varepsilon</math> से निकलना <math>p</math>, अंदर प्रारंभिक वेग के साथ | ||
के बारे में छोटा सा शंकु <math>\xi</math>, संगत की तुलना में छोटी मात्रा होगी | के बारे में छोटा सा शंकु <math>\xi</math>, संगत की तुलना में छोटी मात्रा होगी | ||
यूक्लिडियन | यूक्लिडियन स्पेस में शंक्वाकार क्षेत्र, कम से कम यह प्रदान किया गया <math>\varepsilon</math> पर्याप्त रूप से छोटा है. इसी प्रकार, यदि रिक्की वक्रता ऋणात्मक है | ||
किसी दिए गए वेक्टर की दिशा <math>\xi</math>, अनेक गुना में ऐसा शंक्वाकार क्षेत्र | किसी दिए गए वेक्टर की दिशा <math>\xi</math>, अनेक गुना में ऐसा शंक्वाकार क्षेत्र | ||
इसके बजाय यूक्लिडियन | इसके बजाय यूक्लिडियन स्पेस की तुलना में इसका आयतन बड़ा होगा। | ||
रिक्की वक्रता अनिवार्य रूप से विमानों में वक्रता का औसत है | रिक्की वक्रता अनिवार्य रूप से विमानों में वक्रता का औसत है | ||
Line 201: | Line 201: | ||
फिर वक्रता गायब हो जाएगी <math>\xi</math>. भौतिक अनुप्रयोगों में, | फिर वक्रता गायब हो जाएगी <math>\xi</math>. भौतिक अनुप्रयोगों में, | ||
एक गैर-लुप्त अनुभागीय वक्रता की उपस्थिति आवश्यक रूप से इसका संकेत नहीं देती है | एक गैर-लुप्त अनुभागीय वक्रता की उपस्थिति आवश्यक रूप से इसका संकेत नहीं देती है | ||
स्थानीय स्तर पर किसी द्रव्यमान की उपस्थिति | स्थानीय स्तर पर किसी द्रव्यमान की उपस्थिति, यदि शंकु का आरंभिक वृत्ताकार अनुप्रस्थ काट है | ||
विश्व रेखाओं का आयतन बदले बिना बाद में अण्डाकार हो जाता है | विश्व रेखाओं का आयतन बदले बिना बाद में अण्डाकार हो जाता है | ||
यह किसी अन्य स्थान पर द्रव्यमान से उत्पन्न ज्वारीय प्रभाव के कारण है। | यह किसी अन्य स्थान पर द्रव्यमान से उत्पन्न ज्वारीय प्रभाव के कारण है। | ||
Line 217: | Line 217: | ||
किसी को कई गुना दिया गया है, तो रिक्की प्रवाह से 'संतुलन' उत्पन्न होने की उम्मीद की जा सकती है | किसी को कई गुना दिया गया है, तो रिक्की प्रवाह से 'संतुलन' उत्पन्न होने की उम्मीद की जा सकती है | ||
रीमैनियन मीट्रिक जो [[आइंस्टीन मीट्रिक]] या स्थिर वक्रता वाली है। | रीमैनियन मीट्रिक जो [[आइंस्टीन मीट्रिक]] या स्थिर वक्रता वाली है। | ||
चूंकि, इस तरह की स्वच्छ अभिसरण तस्वीर कई गुना से हासिल नहीं की जा सकती है | |||
ऐसे मेट्रिक्स का समर्थन नहीं कर सकते. के समाधानों की प्रकृति का विस्तृत अध्ययन | ऐसे मेट्रिक्स का समर्थन नहीं कर सकते. के समाधानों की प्रकृति का विस्तृत अध्ययन | ||
रिक्की प्रवाह, मुख्य रूप से हैमिल्टन और [[ त्वरित पेरेलमैन |त्वरित पेरेलमैन]] के कारण, दर्शाता है कि | रिक्की प्रवाह, मुख्य रूप से हैमिल्टन और [[ त्वरित पेरेलमैन |त्वरित पेरेलमैन]] के कारण, दर्शाता है कि | ||
Line 227: | Line 227: | ||
काहलर मैनिफोल्ड पर, रिक्की वक्रता प्रथम चेर्न वर्ग को निर्धारित करती है | काहलर मैनिफोल्ड पर, रिक्की वक्रता प्रथम चेर्न वर्ग को निर्धारित करती है | ||
मैनिफोल्ड का (मॉड टोरसन)। | मैनिफोल्ड का (मॉड टोरसन)। चूंकि, रिक्की वक्रता का कोई सादृश्य नहीं है | ||
जेनेरिक रीमैनियन मैनिफोल्ड पर टोपोलॉजिकल व्याख्या। | जेनेरिक रीमैनियन मैनिफोल्ड पर टोपोलॉजिकल व्याख्या। | ||
==वैश्विक ज्यामिति और टोपोलॉजी== | ==वैश्विक ज्यामिति और टोपोलॉजी== | ||
यहां सकारात्मक रिक्की वक्रता वाले मैनिफोल्ड्स से संबंधित वैश्विक परिणामों की छोटी सूची दी गई है | यहां सकारात्मक रिक्की वक्रता वाले मैनिफोल्ड्स से संबंधित वैश्विक परिणामों की छोटी सूची दी गई है, रीमैनियन ज्यामिति#स्थानीय से वैश्विक प्रमेय भी देखें। संक्षेप में, रीमैनियन मैनिफोल्ड के सकारात्मक रिक्की वक्रता के मजबूत टोपोलॉजिकल परिणाम होते हैं, जबकि (कम से कम 3 आयाम के लिए), नकारात्मक रिक्की वक्रता का कोई टोपोलॉजिकल निहितार्थ नहीं होता है। (यदि रिक्की वक्रता कार्य करती है तो रिक्की वक्रता को 'सकारात्मक' कहा जाता है <math>\operatorname{Ric}(\xi, \xi)</math> गैर-शून्य स्पर्शरेखा सदिशों के समुच्चय पर धनात्मक है <math>\xi</math>.) कुछ परिणाम स्यूडो-रीमैनियन मैनिफोल्ड्स के लिए भी जाने जाते हैं। | ||
#मायर्स प्रमेय|मायर्स प्रमेय (1941) में कहा गया है कि यदि रिक्की वक्रता नीचे से पूर्ण रीमैनियन एन-मैनिफोल्ड पर बंधी है <math>(n - 1)k > 0</math>, तो मैनिफोल्ड का व्यास होता है <math>\leq \pi / \sqrt{k}</math>. कवरिंग-स्पेस तर्क से, यह इस प्रकार है कि सकारात्मक रिक्की वक्रता के किसी भी कॉम्पैक्ट मैनिफोल्ड में सीमित [[मौलिक समूह]] होना चाहिए। [[शि यू-वाई यू एन चेंग]] (1975) ने दिखाया कि, इस सेटिंग में, व्यास असमानता में समानता तब होती है जब मैनिफोल्ड निरंतर वक्रता के क्षेत्र में [[आइसोमेट्री]] है <math>k</math>. | #मायर्स प्रमेय|मायर्स प्रमेय (1941) में कहा गया है कि यदि रिक्की वक्रता नीचे से पूर्ण रीमैनियन एन-मैनिफोल्ड पर बंधी है <math>(n - 1)k > 0</math>, तो मैनिफोल्ड का व्यास होता है <math>\leq \pi / \sqrt{k}</math>. कवरिंग-स्पेस तर्क से, यह इस प्रकार है कि सकारात्मक रिक्की वक्रता के किसी भी कॉम्पैक्ट मैनिफोल्ड में सीमित [[मौलिक समूह]] होना चाहिए। [[शि यू-वाई यू एन चेंग]] (1975) ने दिखाया कि, इस सेटिंग में, व्यास असमानता में समानता तब होती है जब मैनिफोल्ड निरंतर वक्रता के क्षेत्र में [[आइसोमेट्री]] है <math>k</math>. | ||
#बिशप-ग्रोमोव असमानता बताती है कि यदि पूर्ण <math>n</math>-आयामी रीमैनियन मैनिफोल्ड में गैर-नकारात्मक रिक्की वक्रता है, तो जियोडेसिक गेंद का आयतन यूक्लिडियन में समान त्रिज्या के जियोडेसिक गेंद के आयतन से कम या बराबर होता है <math>n</math>- | #बिशप-ग्रोमोव असमानता बताती है कि यदि पूर्ण <math>n</math>-आयामी रीमैनियन मैनिफोल्ड में गैर-नकारात्मक रिक्की वक्रता है, तो जियोडेसिक गेंद का आयतन यूक्लिडियन में समान त्रिज्या के जियोडेसिक गेंद के आयतन से कम या बराबर होता है <math>n</math>-स्पेस। इसके अलावा, यदि <math>v_p(R)</math> केंद्र के साथ गेंद के आयतन को दर्शाता है <math>p</math> और त्रिज्या <math>R</math> अनेक गुना में और <math>V(R) = c_n R^n</math> त्रिज्या की गेंद के आयतन को दर्शाता है <math>R</math> यूक्लिडियन में <math>n</math>-स्पेस फिर फ़ंक्शन <math>v_p(R) / V(R)</math> नहीं बढ़ रहा है. इसे रिक्की वक्रता (केवल गैर-नकारात्मकता नहीं) पर किसी भी निचली सीमा के लिए सामान्यीकृत किया जा सकता है, और यह ग्रोमोव की कॉम्पैक्टनेस प्रमेय (ज्यामिति) | ग्रोमोव की कॉम्पैक्टनेस प्रमेय के प्रमाण में मुख्य बिंदु है।) | ||
#चीगर-ग्रोमोल [[विभाजन प्रमेय]] में कहा गया है कि यदि पूर्ण रीमानियन मैनिफोल्ड है <math>\left( M, g \right)</math> साथ <math>\operatorname{Ric} \geq 0</math> इसमें पंक्ति है, जिसका अर्थ है जियोडेसिक <math>\gamma : \mathbb{R} \to M</math> ऐसा है कि <math>d(\gamma(u), \gamma(v)) = \left| u - v \right|</math> सभी के लिए <math>u, v \in \mathbb{R}</math>, तो यह उत्पाद स्थान के लिए सममितीय है <math>\mathbb{R} \times L</math>. नतीजतन, सकारात्मक रिक्की वक्रता की पूरी विविधता का अधिकतम टोपोलॉजिकल अंत हो सकता है। संपूर्ण [[लोरेंट्ज़ियन मैनिफोल्ड]] (मीट्रिक हस्ताक्षर के) के लिए कुछ अतिरिक्त परिकल्पनाओं के तहत भी प्रमेय सत्य है <math>\left( + - - \ldots \right)</math>) गैर-नकारात्मक रिक्की टेंसर के साथ ({{harvnb|Galloway|2000}}). | #चीगर-ग्रोमोल [[विभाजन प्रमेय]] में कहा गया है कि यदि पूर्ण रीमानियन मैनिफोल्ड है <math>\left( M, g \right)</math> साथ <math>\operatorname{Ric} \geq 0</math> इसमें पंक्ति है, जिसका अर्थ है जियोडेसिक <math>\gamma : \mathbb{R} \to M</math> ऐसा है कि <math>d(\gamma(u), \gamma(v)) = \left| u - v \right|</math> सभी के लिए <math>u, v \in \mathbb{R}</math>, तो यह उत्पाद स्थान के लिए सममितीय है <math>\mathbb{R} \times L</math>. नतीजतन, सकारात्मक रिक्की वक्रता की पूरी विविधता का अधिकतम टोपोलॉजिकल अंत हो सकता है। संपूर्ण [[लोरेंट्ज़ियन मैनिफोल्ड]] (मीट्रिक हस्ताक्षर के) के लिए कुछ अतिरिक्त परिकल्पनाओं के तहत भी प्रमेय सत्य है <math>\left( + - - \ldots \right)</math>) गैर-नकारात्मक रिक्की टेंसर के साथ ({{harvnb|Galloway|2000}}). | ||
रिक्की प्रवाह के लिए #हैमिल्टन के पहले रिक्की प्रवाह का परिणाम यह है कि एकमात्र कॉम्पैक्ट 3-मैनिफोल्ड्स जिसमें सकारात्मक रिक्की वक्रता के रीमैनियन मेट्रिक्स हैं, वे एसओ (4) के अलग-अलग उपसमूहों द्वारा 3-गोले के भागफल हैं जो उचित रूप से असंतत रूप से कार्य करते हैं। बाद में उन्होंने गैर-नकारात्मक रिक्की वक्रता की अनुमति देने के लिए इसे बढ़ाया। विशेष रूप से, एकमात्र सरल रूप से जुड़ी संभावना 3-गोला ही है। | रिक्की प्रवाह के लिए #हैमिल्टन के पहले रिक्की प्रवाह का परिणाम यह है कि एकमात्र कॉम्पैक्ट 3-मैनिफोल्ड्स जिसमें सकारात्मक रिक्की वक्रता के रीमैनियन मेट्रिक्स हैं, वे एसओ (4) के अलग-अलग उपसमूहों द्वारा 3-गोले के भागफल हैं जो उचित रूप से असंतत रूप से कार्य करते हैं। बाद में उन्होंने गैर-नकारात्मक रिक्की वक्रता की अनुमति देने के लिए इसे बढ़ाया। विशेष रूप से, एकमात्र सरल रूप से जुड़ी संभावना 3-गोला ही है। | ||
ये परिणाम, विशेष रूप से मायर्स और हैमिल्टन के, दर्शाते हैं कि सकारात्मक रिक्की वक्रता के मजबूत टोपोलॉजिकल परिणाम होते हैं। इसके विपरीत, सतहों के मामले को छोड़कर, नकारात्मक रिक्की वक्रता का अब कोई टोपोलॉजिकल प्रभाव नहीं है | ये परिणाम, विशेष रूप से मायर्स और हैमिल्टन के, दर्शाते हैं कि सकारात्मक रिक्की वक्रता के मजबूत टोपोलॉजिकल परिणाम होते हैं। इसके विपरीत, सतहों के मामले को छोड़कर, नकारात्मक रिक्की वक्रता का अब कोई टोपोलॉजिकल प्रभाव नहीं है, {{harvtxt|Lohkamp|1994}} ने दिखाया है कि दो से अधिक आयाम का कोई भी मैनिफोल्ड नकारात्मक रिक्की वक्रता के पूर्ण रीमैनियन मीट्रिक को स्वीकार करता है। द्वि-आयामी मैनिफ़ोल्ड के मामले में, रिक्की वक्रता की नकारात्मकता गॉसियन वक्रता की नकारात्मकता का पर्याय है, जिसमें बहुत स्पष्ट [[गॉस-बोनट प्रमेय]] है। ऐसे बहुत कम द्वि-आयामी मैनिफोल्ड हैं जो नकारात्मक गाऊसी वक्रता के रीमैनियन मेट्रिक्स को स्वीकार करने में विफल रहते हैं। | ||
== अनुरूप पुनर्स्केलिंग के तहत व्यवहार == | == अनुरूप पुनर्स्केलिंग के तहत व्यवहार == | ||
Line 248: | Line 248: | ||
खास तौर पर बात बताई गई है <math>p</math> रीमैनियन मैनिफोल्ड में, यह हमेशा होता है | खास तौर पर बात बताई गई है <math>p</math> रीमैनियन मैनिफोल्ड में, यह हमेशा होता है | ||
दिए गए मीट्रिक के अनुरूप मीट्रिक ढूंढना संभव है <math>g</math> जिसके लिए | दिए गए मीट्रिक के अनुरूप मीट्रिक ढूंढना संभव है <math>g</math> जिसके लिए | ||
रिक्की टेंसर गायब हो जाता है <math>p</math>. | रिक्की टेंसर गायब हो जाता है <math>p</math>. चूंकि, ध्यान दें कि यह केवल बिंदुवार है | ||
बल देकर कहना | बल देकर कहना, रिक्की वक्रता को समान रूप से गायब करना आमतौर पर असंभव है | ||
एक अनुरूप पुनर्स्केलिंग द्वारा संपूर्ण विविधता पर। | एक अनुरूप पुनर्स्केलिंग द्वारा संपूर्ण विविधता पर। | ||
द्वि-आयामी मैनिफोल्ड के लिए, उपरोक्त सूत्र दर्शाता है कि यदि <math>f</math> है | द्वि-आयामी मैनिफोल्ड के लिए, उपरोक्त सूत्र दर्शाता है कि यदि <math>f</math> है | ||
[[हार्मोनिक फ़ंक्शन]], फिर अनुरूप स्केलिंग <math>g \mapsto e^{2f}g</math> रिक्की टेंसर को नहीं बदलता है ( | [[हार्मोनिक फ़ंक्शन]], फिर अनुरूप स्केलिंग <math>g \mapsto e^{2f}g</math> रिक्की टेंसर को नहीं बदलता है (चूंकि यह अभी भी सम्मान के साथ अपना ट्रेस बदलता है | ||
मीट्रिक तक जब तक <math>f = 0</math>. | मीट्रिक तक जब तक <math>f = 0</math>. | ||
==ट्रेस-मुक्त रिक्की टेंसर== | ==ट्रेस-मुक्त रिक्की टेंसर== | ||
रीमानियन ज्यामिति और | रीमानियन ज्यामिति और स्यूडो-रीमानियन ज्यामिति में, | ||
ट्रेस-फ्री रिक्की टेंसर (जिसे ट्रेसलेस रिक्की टेंसर भी कहा जाता है)। | ट्रेस-फ्री रिक्की टेंसर (जिसे ट्रेसलेस रिक्की टेंसर भी कहा जाता है)। | ||
रीमानियन या | रीमानियन या स्यूडो-रिमानियन <math>n</math>-कई गुना <math>\left( M, g \right)</math> द्वारा परिभाषित टेंसर है | ||
<math display="block">Z = \operatorname{Ric} - \frac{1}{n}Rg ,</math> | <math display="block">Z = \operatorname{Ric} - \frac{1}{n}Rg ,</math> | ||
Line 265: | Line 265: | ||
और अदिश वक्रता <math>g</math>. इस वस्तु का नाम दर्शाता है | और अदिश वक्रता <math>g</math>. इस वस्तु का नाम दर्शाता है | ||
तथ्य यह है कि इसका [[ट्रेस (रैखिक बीजगणित)]] स्वचालित रूप से गायब हो जाता है: | तथ्य यह है कि इसका [[ट्रेस (रैखिक बीजगणित)]] स्वचालित रूप से गायब हो जाता है: | ||
<math>\operatorname{tr}_gZ\equiv g^{ab}Z_{ab} = 0.</math> | <math>\operatorname{tr}_gZ\equiv g^{ab}Z_{ab} = 0.</math> चूंकि, यह काफी है | ||
महत्वपूर्ण टेंसर क्योंकि यह रिक्की टेंसर के ऑर्थोगोनल अपघटन को दर्शाता है। | महत्वपूर्ण टेंसर क्योंकि यह रिक्की टेंसर के ऑर्थोगोनल अपघटन को दर्शाता है। | ||
Line 294: | Line 294: | ||
रीमैनियन सेटिंग में, उपरोक्त ऑर्थोगोनल अपघटन यह दर्शाता है | रीमैनियन सेटिंग में, उपरोक्त ऑर्थोगोनल अपघटन यह दर्शाता है | ||
<math>R^2 = n|\operatorname{Ric}|^2</math> भी इन शर्तों के बराबर है. | <math>R^2 = n|\operatorname{Ric}|^2</math> भी इन शर्तों के बराबर है. | ||
इसके विपरीत, | इसके विपरीत, स्यूडो-रीमैनियन सेटिंग में, स्थिति <math>|Z|_g^2 = 0</math> आवश्यक रूप से इसका तात्पर्य नहीं है <math>Z = 0,</math> अत: अधिकतम यही कहा जा सकता है | ||
ये स्थितियाँ निहित हैं <math>R^2 = n \left|\operatorname{Ric}\right|_g^2.</math> | ये स्थितियाँ निहित हैं <math>R^2 = n \left|\operatorname{Ric}\right|_g^2.</math> | ||
विशेष रूप से, ट्रेस-मुक्त रिक्की टेंसर का लुप्त होना इसकी विशेषता है | विशेष रूप से, ट्रेस-मुक्त रिक्की टेंसर का लुप्त होना इसकी विशेषता है | ||
Line 334: | Line 334: | ||
यदि रिक्की टेंसर गायब हो जाता है, तो विहित बंडल सपाट होता है, इसलिए | यदि रिक्की टेंसर गायब हो जाता है, तो विहित बंडल सपाट होता है, इसलिए | ||
[[जी-संरचना]] को स्थानीय रूप से उपसमूह में घटाया जा सकता है | [[जी-संरचना]] को स्थानीय रूप से उपसमूह में घटाया जा सकता है | ||
विशेष रैखिक समूह <math>SL(n; \mathbb{C})</math>. | विशेष रैखिक समूह <math>SL(n; \mathbb{C})</math>. चूंकि, काहलर कई गुना है | ||
में पहले से ही [[होलोनोमी]] है <math>U(n)</math>, और इसलिए (प्रतिबंधित) | में पहले से ही [[होलोनोमी]] है <math>U(n)</math>, और इसलिए (प्रतिबंधित) | ||
रिक्की-फ्लैट काहलर मैनिफोल्ड की होलोनॉमी इसमें निहित है <math>SU(n)</math>. | रिक्की-फ्लैट काहलर मैनिफोल्ड की होलोनॉमी इसमें निहित है <math>SU(n)</math>. |
Revision as of 22:02, 22 November 2023
विभेदक ज्यामिति में रिक्की वक्रता टेंसर को मुख्य रूप से जिसका नाम ग्रेगोरियो रिक्की-कर्बस्ट्रो के नाम पर रखा गया है, एक प्रकार से यह ज्यामितीय से जुड़ा तत्व है, जो कई गुना हो जाने पर रीमैनियन मैनिफोल्ड या स्यूडो-रीमैनियन मैनिफोल्ड या स्यूडो-रीमैनियन मीट्रिक की आवश्यकता से निर्धारित होती है। मुख्य रूप से, इसे उस डिग्री के माप के रूप में माना जाता है, जिस तक किसी दिए गए मीट्रिक टेंसर की ज्यामिति सामान्य [[स्यूडो-यूक्लिडियन स्थान]] या स्यूडो-यूक्लिडियन स्पेस से स्थानीय रूप से भिन्न होती है।
रिक्की टेंसर को इस माप से पहचाना जा सकता है कि स्पेस में जियोडेसिक के साथ चलते समय आकृति कैसे विकृत हो जाती है। सामान्य सापेक्षता में, जिसमें स्यूडो-रिमानियन सेटिंग उपस्थित है, यह रायचौधुरी समीकरण में रिक्की टेंसर की उपस्थिति से परिलक्षित होता है। इसे आंशिक रूप से इसी कारण आइंस्टीन क्षेत्र के समीकरणों के प्रस्ताव पर आधारित किया गया है, क्योंकि स्पेसटाइम को स्यूडो-रीमैनियन मीट्रिक द्वारा वर्णित किया जा सकता है, जिसमें रिक्की टेंसर और ब्रह्मांड की पदार्थ सामग्री के बीच आश्चर्यजनक सरल संबंध है।
मीट्रिक टेंसर के समान, रिक्की टेंसर मैनिफ़ोल्ड के प्रत्येक स्पर्शरेखा स्थान को सममित द्विरेखीय रूप (Besse 1987, p. 43) प्रदान करता है।[1] मुख्य रूप से कोई रीमैनियन ज्यामिति में रिक्की वक्रता की भूमिका को कार्यों के विश्लेषण में लाप्लास ऑपरेटर की भूमिका के अनुरूप बना सकता है, इस सादृश्य में, रीमैन वक्रता टेंसर, जिसमें से रिक्की वक्रता प्राकृतिक उप-उत्पाद है, फ़ंक्शन के दूसरे डेरिवेटिव के पूर्ण आव्यूह के अनुरूप होगा। चूंकि, समान सादृश्य निकालने के लिए लाप्लास-बेल्ट्रामी ऑपरेटर हैं।
निम्न-आयामी टोपोलॉजी |थ्री-डायमेंशनल टोपोलॉजी में, रिक्की टेंसर में वह सारी जानकारी होती है जो उच्च आयामों में अधिक जटिल रीमैन वक्रता टेंसर द्वारा एन्कोड की जाती है। कुछ हद तक, यह सादगी कई ज्यामितीय और विश्लेषणात्मक उपकरणों के अनुप्रयोग की अनुमति देती है, जिसके कारण रिचर्ड एस हैमिल्टन और ग्रिगोरी पेरेलमैन के काम के माध्यम से पोंकारे अनुमान का समाधान हुआ।
विभेदक ज्यामिति में, रीमैनियन मैनिफोल्ड पर रिक्की टेंसर पर निचली सीमाएं स्थिर वक्रता वाले स्पेस रूप की ज्यामिति के साथ तुलना करके वैश्विक ज्यामितीय और टोपोलॉजिकल जानकारी निकालने की अनुमति देती हैं। ऐसा इसलिए है क्योंकि रिक्की टेंसर पर निचली सीमाओं का उपयोग रीमानियन ज्यामिति में लंबाई कार्यात्मकता का अध्ययन करने में सफलतापूर्वक किया जा सकता है, जैसा कि पहली बार 1941 में मायर्स प्रमेय के माध्यम से दिखाया गया था।
रिक्की टेंसर का सामान्य स्रोत यह है कि यह तब उत्पन्न होता है जब कोई टेंसर लाप्लासियन के साथ सहसंयोजक व्युत्पन्न को स्थानांतरित करता है। उदाहरण के लिए, यह बोचनर के सूत्र में इसकी उपस्थिति की व्याख्या करता है, जिसका उपयोग रीमैनियन ज्यामिति में सर्वव्यापी रूप से किया जाता है। उदाहरण के लिए, यह सूत्र बताता है कि क्यों शिंग-तुंग याउ (और चेंग-याउ और ली-याउ असमानताओं जैसे उनके विकास) के कारण ग्रेडिएंट अनुमान लगभग हमेशा रिक्की वक्रता के लिए निचली सीमा पर निर्भर करते हैं।
2007 में, जॉन लोट (गणितज्ञ), कार्ल-थियोडोर स्टर्म और सेड्रिक विलानी ने निर्णायक रूप से प्रदर्शित किया कि रिक्की वक्रता पर निचली सीमा को पूरी तरह से रीमैनियन मैनिफोल्ड की मीट्रिक स्पेस संरचना के साथ-साथ इसके वॉल्यूम फॉर्म के संदर्भ में समझा जा सकता है।[2] इसने रिक्की वक्रता और वासेरस्टीन मीट्रिक और परिवहन सिद्धांत (गणित) के बीच गहरा संबंध स्थापित किया, जो वर्तमान में बहुत शोध का विषय है।
परिभाषा
लगता है कि आयामी रीमैनियन मैनिफोल्ड या स्यूडो-रीमैनियन मैनिफोल्ड, सुसज्जित इसके लेवी-सिविटा कनेक्शन के साथ . रीमैनियन वक्रता टेंसर नक्शा है जो सहज वेक्टर फ़ील्ड लेता है , , और , और वेक्टर फ़ील्ड लौटाता है
यानी तय कर लिया है और , फिर किसी भी आधार के लिए
सदिश स्थान का , किसी के पास
.
अमूर्त सूचकांक संकेतन में,
सम्मेलनों पर हस्ताक्षर करें. ध्यान दें कि कुछ स्रोत परिभाषित करते हैं होना यहां क्या कहा जाएगा फिर वे परिभाषित करेंगे
जैसा चूंकि रीमैन टेंसर के बारे में संकेत परंपराएं भिन्न हैं, लेकिन वे इसके बारे में भिन्न नहीं हैं
रिक्की टेंसर।
स्मूथ मैनिफोल्ड पर स्थानीय निर्देशांक के माध्यम से परिभाषा
होने देना चिकनी रीमैनियन मैनिफोल्ड बनें या स्यूडो-रिमानियन मैनिफोल्ड|स्यूडो-रिमानियन -कई गुना. एक सहज चार्ट दिया गया के पास कार्य हैं और
प्रत्येक के लिए जो संतुष्ट करता है
अब प्रत्येक के लिए परिभाषित करें , , , , और 1 और के बीच , कार्य
अब चलो और के साथ दो सहज चार्ट बनें . होने देना चार्ट के माध्यम से उपरोक्त कार्यों की गणना करें और जाने चार्ट के माध्यम से उपरोक्त कार्यों की गणना करें . फिर कोई श्रृंखला नियम और उत्पाद नियम के साथ गणना करके जांच कर सकता है
.
किसी के लिए , द्विरेखीय मानचित्र को परिभाषित करें
द्वारा
उपरोक्त औपचारिक प्रस्तुति को निम्नलिखित शैली में संक्षिप्त करना आम बात है:
It can be directly checked that
so that define a (0,2)-tensor field on . In particular, if and are vector fields on , then relative to any smooth coordinates one has
अंतिम पंक्ति में यह प्रदर्शन उपस्थित है कि द्विरेखीय मानचित्र रिक अच्छी तरह से परिभाषित है, जिसे अनौपचारिक संकेतन के साथ लिखना बहुत आसान है।
परिभाषाओं की तुलना
उपरोक्त दोनों परिभाषाएँ समान हैं। परिभाषित करने वाले सूत्र और समन्वय दृष्टिकोण में लेवी-सिविटा कनेक्शन और लेवी-सिविटा कनेक्शन के माध्यम से रीमैन वक्रता को परिभाषित करने वाले सूत्रों में सटीक समानता है। तर्कसंगत रूप से, सीधे स्थानीय निर्देशांक का उपयोग करने वाली परिभाषाएँ बेहतर हैं, क्योंकि ऊपर उल्लिखित रीमैन टेंसर की महत्वपूर्ण संपत्ति की आवश्यकता है धारण करने के लिए हॉसडॉर्फ होना। इसके विपरीत, स्थानीय समन्वय दृष्टिकोण के लिए केवल सहज एटलस की आवश्यकता होती है। स्थानीय दृष्टिकोण में अंतर्निहित अपरिवर्तनवादी दर्शन को स्पिनर क्षेत्र जैसे अधिक विदेशी ज्यामितीय वस्तुओं के निर्माण के तरीकों से जोड़ना भी कुछ हद तक आसान है।
परिभाषित करने वाला जटिल सूत्र परिचयात्मक अनुभाग में निम्नलिखित अनुभाग के समान ही है। अंतर केवल इतना है कि शब्दों को समूहीकृत किया गया है ताकि इसे देखना आसान हो
गुण
जैसा कि बियांची पहचान से देखा जा सकता है, रीमैनियन का रिक्की टेंसर मैनिफ़ोल्ड सममित टेंसर है, इस अर्थ में
इकाई लंबाई का. इकाई स्पर्शरेखा सदिशों के सेट पर यह फ़ंक्शन
इसे अक्सर रिक्की वक्रता भी कहा जाता है, क्योंकि इसे जानना इसके बराबर है रिक्की वक्रता टेंसर को जानना।
रिक्की वक्रता रीमैनियन के अनुभागीय वक्रता द्वारा निर्धारित की जाती है कई गुना, लेकिन आम तौर पर इसमें कम जानकारी होती है। वास्तव में, यदि है रीमैनियन पर इकाई लंबाई का वेक्टर -तो फिर कई गुना
बिल्कुल सही है
सभी 2-तलों पर ली गई अनुभागीय वक्रता के औसत मान का गुना युक्त . वहाँ है -आयामी परिवार ऐसे 2-तलों का, और इसलिए केवल आयाम 2 और 3 में रिक्की टेंसर निर्धारित करता है पूर्ण वक्रता टेंसर. उल्लेखनीय अपवाद तब होता है जब मैनिफ़ोल्ड को a दिया जाता है यूक्लिडियन स्पेस की हाइपरसतह के रूप में प्राथमिकता। दूसरा मौलिक रूप, जो गॉस-कोडाज़ी समीकरणों के माध्यम से पूर्ण वक्रता निर्धारित करता है|गॉस-कोडाज़ी समीकरण, स्वयं रिक्की टेंसर और प्रिंसिपल वक्रता द्वारा निर्धारित होता है ऊनविम पृष्ठ की रिक्की टेंसर की ईजेनदिशाएं भी हैं। इसी कारण से रिक्की द्वारा टेंसर की शुरुआत की गई थी।
जैसा कि दूसरी बियांची पहचान से देखा जा सकता है, के पास है
अनौपचारिक गुण
रिक्की वक्रता को कभी-कभी (का नकारात्मक गुणज) माना जाता है मीट्रिक टेंसर का लाप्लासियन (Chow & Knopf 2004, Lemma 3.32).[3] विशेष रूप से, हार्मोनिक निर्देशांक में स्थानीय निर्देशांक घटक संतुष्ट करते हैं
प्रत्यक्ष ज्यामितीय अर्थ
किसी भी बिंदु के निकट रीमैनियन मैनिफोल्ड में , कोई पसंदीदा स्थानीय निर्देशांक परिभाषित कर सकता है, जिसे जियोडेसिक सामान्य निर्देशांक कहा जाता है। इन्हें मीट्रिक के अनुसार अनुकूलित किया गया है ताकि जियोडेसिक्स के माध्यम से अनुरूप मूल के माध्यम से सीधी रेखाओं को इस तरह से कि जियोडेसिक दूरी से मूल से यूक्लिडियन दूरी के अनुरूप है। इन निर्देशांकों में, मीट्रिक टेंसर यूक्लिडियन द्वारा अच्छी तरह से अनुमानित है मीट्रिक, सटीक अर्थ में
इस प्रकार, यदि रिक्की वक्रता सकारात्मक है एक वेक्टर की दिशा में , शंक्वाकार क्षेत्र में लंबाई के जियोडेसिक खंडों के कसकर केंद्रित परिवार द्वारा बह गया
से निकलना , अंदर प्रारंभिक वेग के साथ
के बारे में छोटा सा शंकु , संगत की तुलना में छोटी मात्रा होगी यूक्लिडियन स्पेस में शंक्वाकार क्षेत्र, कम से कम यह प्रदान किया गया पर्याप्त रूप से छोटा है. इसी प्रकार, यदि रिक्की वक्रता ऋणात्मक है किसी दिए गए वेक्टर की दिशा , अनेक गुना में ऐसा शंक्वाकार क्षेत्र इसके बजाय यूक्लिडियन स्पेस की तुलना में इसका आयतन बड़ा होगा।
रिक्की वक्रता अनिवार्य रूप से विमानों में वक्रता का औसत है . इस प्रकार यदि शंकु प्रारंभ में गोलाकार (या गोलाकार) से उत्सर्जित होता है क्रॉस-सेक्शन दीर्घवृत्त (दीर्घवृत्त) में विकृत हो जाता है, यह संभव है यदि विकृतियाँ साथ में हों तो वॉल्यूम विरूपण गायब हो जाए प्रधान अक्ष प्रमेय दूसरे का प्रतिकार करते हैं। रिक्की फिर वक्रता गायब हो जाएगी . भौतिक अनुप्रयोगों में, एक गैर-लुप्त अनुभागीय वक्रता की उपस्थिति आवश्यक रूप से इसका संकेत नहीं देती है स्थानीय स्तर पर किसी द्रव्यमान की उपस्थिति, यदि शंकु का आरंभिक वृत्ताकार अनुप्रस्थ काट है विश्व रेखाओं का आयतन बदले बिना बाद में अण्डाकार हो जाता है यह किसी अन्य स्थान पर द्रव्यमान से उत्पन्न ज्वारीय प्रभाव के कारण है।
अनुप्रयोग
रिक्की वक्रता सामान्य सापेक्षता में महत्वपूर्ण भूमिका निभाती है, जहां यह है आइंस्टीन क्षेत्र समीकरणों में प्रमुख शब्द।
रिक्की वक्रता रिक्की प्रवाह समीकरण में भी प्रकट होती है, जहां निश्चित है रीमैनियन मेट्रिक्स के एक-पैरामीटर परिवारों को समाधान के रूप में चुना गया है ज्यामितीय रूप से परिभाषित आंशिक अंतर समीकरण। समीकरणों की यह प्रणाली इसे ताप समीकरण के ज्यामितीय एनालॉग के रूप में सोचा जा सकता है, और यह पहला था 1982 में रिचर्ड एस हैमिल्टन द्वारा पेश किया गया। चूंकि गर्मी फैलती है एक ठोस जब तक शरीर स्थिर तापमान की संतुलन स्थिति तक नहीं पहुंच जाता, यदि किसी को कई गुना दिया गया है, तो रिक्की प्रवाह से 'संतुलन' उत्पन्न होने की उम्मीद की जा सकती है रीमैनियन मीट्रिक जो आइंस्टीन मीट्रिक या स्थिर वक्रता वाली है। चूंकि, इस तरह की स्वच्छ अभिसरण तस्वीर कई गुना से हासिल नहीं की जा सकती है ऐसे मेट्रिक्स का समर्थन नहीं कर सकते. के समाधानों की प्रकृति का विस्तृत अध्ययन रिक्की प्रवाह, मुख्य रूप से हैमिल्टन और त्वरित पेरेलमैन के कारण, दर्शाता है कि रिक्की प्रवाह के अनुरूप होने वाली विलक्षणताओं के प्रकार अभिसरण की विफलता, 3-आयामी टोपोलॉजी के बारे में गहरी जानकारी को एन्कोड करती है। इस कार्य की परिणति ज्यामितिकरण अनुमान का प्रमाण थी पहली बार 1970 के दशक में विलियम थर्स्टन द्वारा प्रस्तावित किया गया था, जिसे इस प्रकार माना जा सकता है कॉम्पैक्ट 3-मैनिफोल्ड्स का वर्गीकरण।
काहलर मैनिफोल्ड पर, रिक्की वक्रता प्रथम चेर्न वर्ग को निर्धारित करती है मैनिफोल्ड का (मॉड टोरसन)। चूंकि, रिक्की वक्रता का कोई सादृश्य नहीं है जेनेरिक रीमैनियन मैनिफोल्ड पर टोपोलॉजिकल व्याख्या।
वैश्विक ज्यामिति और टोपोलॉजी
यहां सकारात्मक रिक्की वक्रता वाले मैनिफोल्ड्स से संबंधित वैश्विक परिणामों की छोटी सूची दी गई है, रीमैनियन ज्यामिति#स्थानीय से वैश्विक प्रमेय भी देखें। संक्षेप में, रीमैनियन मैनिफोल्ड के सकारात्मक रिक्की वक्रता के मजबूत टोपोलॉजिकल परिणाम होते हैं, जबकि (कम से कम 3 आयाम के लिए), नकारात्मक रिक्की वक्रता का कोई टोपोलॉजिकल निहितार्थ नहीं होता है। (यदि रिक्की वक्रता कार्य करती है तो रिक्की वक्रता को 'सकारात्मक' कहा जाता है गैर-शून्य स्पर्शरेखा सदिशों के समुच्चय पर धनात्मक है .) कुछ परिणाम स्यूडो-रीमैनियन मैनिफोल्ड्स के लिए भी जाने जाते हैं।
- मायर्स प्रमेय|मायर्स प्रमेय (1941) में कहा गया है कि यदि रिक्की वक्रता नीचे से पूर्ण रीमैनियन एन-मैनिफोल्ड पर बंधी है , तो मैनिफोल्ड का व्यास होता है . कवरिंग-स्पेस तर्क से, यह इस प्रकार है कि सकारात्मक रिक्की वक्रता के किसी भी कॉम्पैक्ट मैनिफोल्ड में सीमित मौलिक समूह होना चाहिए। शि यू-वाई यू एन चेंग (1975) ने दिखाया कि, इस सेटिंग में, व्यास असमानता में समानता तब होती है जब मैनिफोल्ड निरंतर वक्रता के क्षेत्र में आइसोमेट्री है .
- बिशप-ग्रोमोव असमानता बताती है कि यदि पूर्ण -आयामी रीमैनियन मैनिफोल्ड में गैर-नकारात्मक रिक्की वक्रता है, तो जियोडेसिक गेंद का आयतन यूक्लिडियन में समान त्रिज्या के जियोडेसिक गेंद के आयतन से कम या बराबर होता है -स्पेस। इसके अलावा, यदि केंद्र के साथ गेंद के आयतन को दर्शाता है और त्रिज्या अनेक गुना में और त्रिज्या की गेंद के आयतन को दर्शाता है यूक्लिडियन में -स्पेस फिर फ़ंक्शन नहीं बढ़ रहा है. इसे रिक्की वक्रता (केवल गैर-नकारात्मकता नहीं) पर किसी भी निचली सीमा के लिए सामान्यीकृत किया जा सकता है, और यह ग्रोमोव की कॉम्पैक्टनेस प्रमेय (ज्यामिति) | ग्रोमोव की कॉम्पैक्टनेस प्रमेय के प्रमाण में मुख्य बिंदु है।)
- चीगर-ग्रोमोल विभाजन प्रमेय में कहा गया है कि यदि पूर्ण रीमानियन मैनिफोल्ड है साथ इसमें पंक्ति है, जिसका अर्थ है जियोडेसिक ऐसा है कि सभी के लिए , तो यह उत्पाद स्थान के लिए सममितीय है . नतीजतन, सकारात्मक रिक्की वक्रता की पूरी विविधता का अधिकतम टोपोलॉजिकल अंत हो सकता है। संपूर्ण लोरेंट्ज़ियन मैनिफोल्ड (मीट्रिक हस्ताक्षर के) के लिए कुछ अतिरिक्त परिकल्पनाओं के तहत भी प्रमेय सत्य है ) गैर-नकारात्मक रिक्की टेंसर के साथ (Galloway 2000).
रिक्की प्रवाह के लिए #हैमिल्टन के पहले रिक्की प्रवाह का परिणाम यह है कि एकमात्र कॉम्पैक्ट 3-मैनिफोल्ड्स जिसमें सकारात्मक रिक्की वक्रता के रीमैनियन मेट्रिक्स हैं, वे एसओ (4) के अलग-अलग उपसमूहों द्वारा 3-गोले के भागफल हैं जो उचित रूप से असंतत रूप से कार्य करते हैं। बाद में उन्होंने गैर-नकारात्मक रिक्की वक्रता की अनुमति देने के लिए इसे बढ़ाया। विशेष रूप से, एकमात्र सरल रूप से जुड़ी संभावना 3-गोला ही है। ये परिणाम, विशेष रूप से मायर्स और हैमिल्टन के, दर्शाते हैं कि सकारात्मक रिक्की वक्रता के मजबूत टोपोलॉजिकल परिणाम होते हैं। इसके विपरीत, सतहों के मामले को छोड़कर, नकारात्मक रिक्की वक्रता का अब कोई टोपोलॉजिकल प्रभाव नहीं है, Lohkamp (1994) ने दिखाया है कि दो से अधिक आयाम का कोई भी मैनिफोल्ड नकारात्मक रिक्की वक्रता के पूर्ण रीमैनियन मीट्रिक को स्वीकार करता है। द्वि-आयामी मैनिफ़ोल्ड के मामले में, रिक्की वक्रता की नकारात्मकता गॉसियन वक्रता की नकारात्मकता का पर्याय है, जिसमें बहुत स्पष्ट गॉस-बोनट प्रमेय है। ऐसे बहुत कम द्वि-आयामी मैनिफोल्ड हैं जो नकारात्मक गाऊसी वक्रता के रीमैनियन मेट्रिक्स को स्वीकार करने में विफल रहते हैं।
अनुरूप पुनर्स्केलिंग के तहत व्यवहार
यदि मीट्रिक इसे अनुरूप कारक से गुणा करके बदला जाता है
, नए, अनुरूप-संबंधित मीट्रिक का रिक्की टेंसर दिया हुआ है (Besse 1987, p. 59) द्वारा
कहाँ (सकारात्मक स्पेक्ट्रम) हॉज लाप्लासियन है, अर्थात, हेस्सियन के सामान्य निशान के विपरीत।
खास तौर पर बात बताई गई है रीमैनियन मैनिफोल्ड में, यह हमेशा होता है दिए गए मीट्रिक के अनुरूप मीट्रिक ढूंढना संभव है जिसके लिए रिक्की टेंसर गायब हो जाता है . चूंकि, ध्यान दें कि यह केवल बिंदुवार है बल देकर कहना, रिक्की वक्रता को समान रूप से गायब करना आमतौर पर असंभव है एक अनुरूप पुनर्स्केलिंग द्वारा संपूर्ण विविधता पर।
द्वि-आयामी मैनिफोल्ड के लिए, उपरोक्त सूत्र दर्शाता है कि यदि है हार्मोनिक फ़ंक्शन, फिर अनुरूप स्केलिंग रिक्की टेंसर को नहीं बदलता है (चूंकि यह अभी भी सम्मान के साथ अपना ट्रेस बदलता है मीट्रिक तक जब तक .
ट्रेस-मुक्त रिक्की टेंसर
रीमानियन ज्यामिति और स्यूडो-रीमानियन ज्यामिति में, ट्रेस-फ्री रिक्की टेंसर (जिसे ट्रेसलेस रिक्की टेंसर भी कहा जाता है)। रीमानियन या स्यूडो-रिमानियन -कई गुना द्वारा परिभाषित टेंसर है
चूंकि, यह काफी है
महत्वपूर्ण टेंसर क्योंकि यह रिक्की टेंसर के ऑर्थोगोनल अपघटन को दर्शाता है।
रिक्की टेंसर का ऑर्थोगोनल अपघटन
निम्नलिखित, इतना मामूली नहीं, संपत्ति है
ट्रेस-मुक्त रिक्की टेंसर और आइंस्टीन मेट्रिक्स
एक विचलन लेकर, और अनुबंधित बियांची पहचान का उपयोग करके, कोई उसे देख सकता है
तात्पर्य .
तो, बशर्ते कि n ≥ 3 और जुड़ा हुआ है, लुप्त हो रहा है का तात्पर्य यह है कि अदिश वक्रता स्थिर है। फिर कोई देख सकता है कि निम्नलिखित समतुल्य हैं:
- कुछ संख्या के लिए
रीमैनियन सेटिंग में, उपरोक्त ऑर्थोगोनल अपघटन यह दर्शाता है
भी इन शर्तों के बराबर है.
इसके विपरीत, स्यूडो-रीमैनियन सेटिंग में, स्थिति आवश्यक रूप से इसका तात्पर्य नहीं है अत: अधिकतम यही कहा जा सकता है ये स्थितियाँ निहित हैं विशेष रूप से, ट्रेस-मुक्त रिक्की टेंसर का लुप्त होना इसकी विशेषता है आइंस्टीन कई गुना है, जैसा कि स्थिति द्वारा परिभाषित किया गया है संख्या के लिए सामान्य सापेक्षता में, यह समीकरण बताता है वह आइंस्टीन के निर्वात क्षेत्र का समाधान है ब्रह्माण्ड संबंधी स्थिरांक के साथ समीकरण।
काहलर मैनिफोल्ड्स
काहलर मैनिफोल्ड पर , रिक्की वक्रता निर्धारित करती है विहित बंडल का वक्रता रूप
(Moroianu 2007, Chapter 12). कैनोनिकल लाइन बंडल शीर्ष पर है
होलोमोर्फिक काहलर डिफरेंशियल के बंडल की बाहरी शक्ति:
इसके विपरीत, रिक्की फॉर्म रिक्की टेंसर को निर्धारित करता है
कनेक्शन जोड़ने का सामान्यीकरण
रिक्की टेंसर को मनमाने एफ़िन कनेक्शन के लिए भी सामान्यीकृत किया जा सकता है, जहां यह अपरिवर्तनीय है जो अध्ययन में विशेष रूप से महत्वपूर्ण भूमिका निभाता है प्रक्षेप्य विभेदक ज्यामिति (ज्यामिति से संबंधित) अमानकीकृत भूगणित) (Nomizu & Sasaki 1994). अगर एफ़िन कनेक्शन को दर्शाता है, फिर वक्रता टेंसर को है (1,3)-टेंसर द्वारा परिभाषित
असतत रिक्की वक्रता
असतत मैनिफोल्ड्स पर रिक्की वक्रता की धारणाओं को ग्राफ़ और पर परिभाषित किया गया है नेटवर्क, जहां वे किनारों के स्थानीय विचलन गुणों को मापते हैं। ओलिवियर का रिक्की वक्रता को इष्टतम परिवहन सिद्धांत का उपयोग करके परिभाषित किया गया है।[4] अलग (और पहले की) धारणा, फॉर्मन की रिक्की वक्रता पर आधारित है टोपोलॉजिकल तर्क.[5]
यह भी देखें
- रिमानियन मैनिफोल्ड्स की वक्रता
- अदिश वक्रता
- घुंघराले कलन
- रिक्की अपघटन
- रिक्की-फ्लैट मैनिफोल्ड
- क्रिस्टोफ़ेल प्रतीक
- सामान्य सापेक्षता के गणित का परिचय
फ़ुटनोट
- ↑ Here it is assumed that the manifold carries its unique Levi-Civita connection. For a general affine connection, the Ricci tensor need not be symmetric.
- ↑ Lott, John; Villani, Cedric (2006-06-23). "इष्टतम परिवहन के माध्यम से मीट्रिक-माप स्थानों के लिए रिक्की वक्रता". arXiv:math/0412127.
- ↑ Chow, Bennett (2004). The Ricci flow : an introduction. Dan Knopf. Providence, R.I.: American Mathematical Society. ISBN 0-8218-3515-7. OCLC 54692148.
- ↑ Ollivier, Yann (2009-02-01). "मीट्रिक स्थानों पर मार्कोव श्रृंखलाओं की रिक्की वक्रता". Journal of Functional Analysis (in English). 256 (3): 810–864. doi:10.1016/j.jfa.2008.11.001. ISSN 0022-1236. S2CID 14316364.
- ↑ Forman (2003-02-01). "सेल कॉम्प्लेक्स और कॉम्बिनेटोरियल रिक्की वक्रता के लिए बोचनर की विधि". Discrete & Computational Geometry (in English). 29 (3): 323–374. doi:10.1007/s00454-002-0743-x. ISSN 1432-0444. S2CID 9584267.
संदर्भ
- Besse, A.L. (1987), Einstein manifolds, Springer, ISBN 978-3-540-15279-8.
- Chow, Bennet & Knopf, Dan (2004), The Ricci Flow: an introduction, American Mathematical Society, ISBN 0-8218-3515-7.
- Eisenhart, L.P. (1949), Riemannian geometry, Princeton Univ. Press.
- Forman (2003), "Bochner's Method for Cell Complexes and Combinatorial Ricci Curvature", Discrete & Computational Geometry, 29 (3): 323–374. doi:10.1007/s00454-002-0743-x. ISSN 1432-0444
- Galloway, Gregory (2000), "Maximum Principles for Null Hypersurfaces and Null Splitting Theorems", Annales de l'Institut Henri Poincaré A, 1 (3): 543–567, arXiv:math/9909158, Bibcode:2000AnHP....1..543G, doi:10.1007/s000230050006, S2CID 9619157.
- Kobayashi, S.; Nomizu, K. (1963), Foundations of Differential Geometry, Volume 1, Interscience.
- Kobayashi, Shoshichi; Nomizu, Katsumi (1996), Foundations of Differential Geometry, Vol. 2, Wiley-Interscience, ISBN 978-0-471-15732-8.
- Lohkamp, Joachim (1994), "Metrics of negative Ricci curvature", Annals of Mathematics, Second Series, Annals of Mathematics, 140 (3): 655–683, doi:10.2307/2118620, ISSN 0003-486X, JSTOR 2118620, MR 1307899.
- Moroianu, Andrei (2007), Lectures on Kähler geometry, London Mathematical Society Student Texts, vol. 69, Cambridge University Press, arXiv:math/0402223, doi:10.1017/CBO9780511618666, ISBN 978-0-521-68897-0, MR 2325093
- Nomizu, Katsumi; Sasaki, Takeshi (1994), Affine differential geometry, Cambridge University Press, ISBN 978-0-521-44177-3.
- Ollivier, Yann (2009), "Ricci curvature of Markov chains on metric spaces", Journal of Functional Analysis 256 (3): 810–864. doi:10.1016/j.jfa.2008.11.001. ISSN 0022-1236
- Ricci, G. (1903–1904), "Direzioni e invarianti principali in una varietà qualunque", Atti R. Inst. Veneto, 63 (2): 1233–1239.
- L.A. Sidorov (2001) [1994], "Ricci tensor", Encyclopedia of Mathematics, EMS Press
- L.A. Sidorov (2001) [1994], "Ricci curvature", Encyclopedia of Mathematics, EMS Press
- Najman, Laurent and Romon, Pascal (2017): Modern approaches to discrete curvature, Springer (Cham), Lecture notes in mathematics
बाहरी संबंध
- Z. Shen, C. Sormani "The Topology of Open Manifolds with Nonnegative Ricci Curvature" (a survey)
- G. Wei, "Manifolds with A Lower Ricci Curvature Bound" (a survey)