रिक्की वक्रता: Difference between revisions
No edit summary |
m (11 revisions imported from alpha:रिक्की_वक्रता) |
||
(4 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
[[विभेदक ज्यामिति]] में रिक्की वक्रता टेंसर को मुख्य रूप से जिसका नाम [[ग्रेगोरियो रिक्की-कर्बस्ट्रो]] के नाम पर रखा गया है, एक प्रकार से | [[विभेदक ज्यामिति]] में '''रिक्की वक्रता''' टेंसर को मुख्य रूप से जिसका नाम [[ग्रेगोरियो रिक्की-कर्बस्ट्रो]] के नाम पर रखा गया है, यह एक प्रकार से ज्यामितीय से जुड़ा ऐसा तत्व है, जो [[ कई गुना |कई गुना]] हो जाने पर [[रीमैनियन मैनिफोल्ड]] या [[छद्म-रीमैनियन मैनिफोल्ड|स्यूडो-रीमैनियन मैनिफोल्ड]] या स्यूडो-रीमैनियन मीट्रिक की आवश्यकता से निर्धारित होती है। मुख्य रूप से इसे उस डिग्री के माप के रूप में माना जाता है, जिस तक किसी दिए गए मीट्रिक टेंसर की ज्यामिति सामान्य [[स्यूडो-[[यूक्लिडियन स्थान]]]] या स्यूडो-यूक्लिडियन स्थान से स्थानीय रूप से भिन्न होती है। | ||
रिक्की टेंसर को इस माप से पहचाना जा सकता है कि स्थान में [[जियोडेसिक]] के साथ चलते समय आकृति कैसे विकृत हो जाती है। [[सामान्य सापेक्षता]] में, जिसमें स्यूडो-रिमानियन सेटिंग उपस्थित है, यह रायचौधुरी समीकरण में रिक्की टेंसर की उपस्थिति से परिलक्षित होता है। इसे आंशिक रूप से इसी कारण आइंस्टीन क्षेत्र के समीकरणों के प्रस्ताव पर आधारित किया गया है, क्योंकि स्पेसटाइम को स्यूडो-रीमैनियन मीट्रिक द्वारा वर्णित किया जा सकता है, जिसमें रिक्की टेंसर और ब्रह्मांड | रिक्की टेंसर को इस माप से पहचाना जा सकता है कि स्थान में [[जियोडेसिक]] के साथ चलते समय आकृति कैसे विकृत हो जाती है। [[सामान्य सापेक्षता]] में, जिसमें स्यूडो-रिमानियन सेटिंग उपस्थित है, यह रायचौधुरी समीकरण में रिक्की टेंसर की उपस्थिति से परिलक्षित होता है। इसे आंशिक रूप से इसी कारण आइंस्टीन क्षेत्र के समीकरणों के प्रस्ताव पर आधारित किया गया है, क्योंकि स्पेसटाइम को स्यूडो-रीमैनियन मीट्रिक द्वारा वर्णित किया जा सकता है, जिसमें रिक्की टेंसर और ब्रह्मांड के लिए पदार्थों के बीच आश्चर्यजनक सरल संबंध स्थापित हो जाता है। | ||
मीट्रिक टेंसर के समान, रिक्की टेंसर मैनिफ़ोल्ड के प्रत्येक [[स्पर्शरेखा स्थान]] को [[सममित द्विरेखीय रूप]] {{harv| | मीट्रिक टेंसर के समान, रिक्की टेंसर मैनिफ़ोल्ड के प्रत्येक [[स्पर्शरेखा स्थान]] को [[सममित द्विरेखीय रूप]] {{harv|बेसे|1987|p=43}} प्रदान करता है।<ref>Here it is assumed that the manifold carries its unique [[Levi-Civita connection]]. For a general [[affine connection]], the Ricci tensor need not be symmetric.</ref> मुख्य रूप से कोई रीमैनियन ज्यामिति में रिक्की वक्रता की भूमिका को कार्यों के विश्लेषण में [[लाप्लास ऑपरेटर]] की भूमिका के अनुरूप बनाता है, इस सादृश्य में [[रीमैन वक्रता टेंसर]], जिसमें से रिक्की वक्रता प्राकृतिक उप-उत्पाद है, फलन के दूसरे डेरिवेटिव के पूर्ण आव्यूह के अनुरूप होगा। चूंकि, समान सादृश्य निकालने के लिए लाप्लास-बेल्ट्रामी ऑपरेटर हैं। | ||
[[ निम्न-आयामी टोपोलॉजी |निम्न-आयामी टोपोलॉजी]] या थ्री-डायमेंशनल टोपोलॉजी में, रिक्की टेंसर में वह सारी जानकारी होती है जो उच्च आयामों में अधिक जटिल रीमैन वक्रता टेंसर द्वारा एन्कोड की जाती है। कुछ सीमा तक | [[ निम्न-आयामी टोपोलॉजी |निम्न-आयामी टोपोलॉजी]] या थ्री-डायमेंशनल टोपोलॉजी में, रिक्की टेंसर में वह सारी जानकारी होती है जो उच्च आयामों में अधिक जटिल रीमैन वक्रता टेंसर द्वारा एन्कोड की जाती है। इसकी कुछ सीमा तक यह स्थिति कई ज्यामितीय और विश्लेषणात्मक उपकरणों के अनुप्रयोग की अनुमति देती है, जिसके कारण रिचर्ड एस हैमिल्टन और [[ग्रिगोरी पेरेलमैन]] के काम के माध्यम से पोंकारे अनुमान का हल प्राप्त हुआ हैं। | ||
विभेदक ज्यामिति में, रीमैनियन मैनिफोल्ड पर रिक्की टेंसर पर निचली सीमाएं स्थिर वक्रता वाले [[अंतरिक्ष रूप|स्थान रूप]] की ज्यामिति के साथ तुलना करके वैश्विक ज्यामितीय और टोपोलॉजिकल जानकारी निकालने की अनुमति देती हैं। ऐसा इसलिए है क्योंकि रिक्की टेंसर पर निचली सीमाओं का उपयोग रीमानियन ज्यामिति में लंबाई कार्यात्मकता का अध्ययन करने में सफलतापूर्वक किया जा सकता है, जैसा कि पहली बार 1941 में मायर्स प्रमेय के माध्यम से दिखाया गया था। | विभेदक ज्यामिति में, रीमैनियन मैनिफोल्ड पर रिक्की टेंसर पर निचली सीमाएं स्थिर वक्रता वाले [[अंतरिक्ष रूप|स्थान रूप]] की ज्यामिति के साथ तुलना करके वैश्विक ज्यामितीय और टोपोलॉजिकल जानकारी निकालने की अनुमति देती हैं। ऐसा इसलिए है क्योंकि रिक्की टेंसर पर निचली सीमाओं का उपयोग रीमानियन ज्यामिति में लंबाई कार्यात्मकता का अध्ययन करने में सफलतापूर्वक किया जा सकता है, जैसा कि पहली बार 1941 में मायर्स प्रमेय के माध्यम से दिखाया गया था। | ||
रिक्की टेंसर का सामान्य स्रोत यह है कि यह तब उत्पन्न होता है जब कोई टेंसर लाप्लासियन के साथ सहसंयोजक व्युत्पन्न को स्थानांतरित करता है। उदाहरण के लिए, यह बोचनर के सूत्र में इसकी उपस्थिति की व्याख्या करता है, जिसका उपयोग रीमैनियन ज्यामिति में सर्वव्यापी रूप से किया जाता है। उदाहरण के लिए, यह सूत्र बताता है कि क्यों [[शिंग-तुंग याउ]] | रिक्की टेंसर का सामान्य स्रोत यह है कि यह तब उत्पन्न होता है जब कोई टेंसर लाप्लासियन के साथ सहसंयोजक व्युत्पन्न को स्थानांतरित करता है। उदाहरण के लिए, यह बोचनर के सूत्र में इसकी उपस्थिति की व्याख्या करता है, जिसका उपयोग रीमैनियन ज्यामिति में सर्वव्यापी रूप से किया जाता है। उदाहरण के लिए, यह सूत्र बताता है कि क्यों [[शिंग-तुंग याउ]] और चेंग-याउ और ली-याउ असमानताओं जैसे उनके विकास होने के कारण ग्रेडिएंट अनुमान लगभग सदैव रिक्की वक्रता के लिए निचली सीमा पर निर्भर करते हैं। | ||
2007 में, [[जॉन लोट (गणितज्ञ)]], [[कार्ल-थियोडोर स्टर्म]] और [[सेड्रिक विलानी]] ने निर्णायक रूप से प्रदर्शित किया कि रिक्की वक्रता पर निचली सीमा को पूर्ण रूप से रीमैनियन मैनिफोल्ड की मीट्रिक स्थान संरचना के साथ-साथ इसके | 2007 में, [[जॉन लोट (गणितज्ञ)]], [[कार्ल-थियोडोर स्टर्म]] और [[सेड्रिक विलानी]] ने निर्णायक रूप से प्रदर्शित किया कि रिक्की वक्रता पर निचली सीमा को पूर्ण रूप से रीमैनियन मैनिफोल्ड की मीट्रिक स्थान संरचना के साथ-साथ इसके आयतन प्रारूप के संदर्भ में समझा जा सकता है।<ref>{{cite arXiv|last1=Lott|first1=John|last2=Villani|first2=Cedric|date=2006-06-23|title=इष्टतम परिवहन के माध्यम से मीट्रिक-माप स्थानों के लिए रिक्की वक्रता|eprint=math/0412127}}</ref> इसने रिक्की वक्रता और [[वासेरस्टीन मीट्रिक]] और [[परिवहन सिद्धांत (गणित)]] के बीच गहरा संबंध स्थापित किया, जो वर्तमान समय में बहुत शोध का विषय है। | ||
==परिभाषा== | ==परिभाषा== | ||
इसके कारण लगता है कि <math>\left( M, g \right)</math> <math>n</math>आयामी रीमैनियन मैनिफोल्ड या स्यूडो-रीमैनियन मैनिफोल्ड से सुसज्जित होने के कारण [[लेवी-सिविटा कनेक्शन]] <math>\nabla</math> के साथ [[रीमैनियन वक्रता टेंसर]] <math>M</math> का नक्शा है, जो सहज | इसके कारण ऐसा लगता है कि <math>\left( M, g \right)</math> <math>n</math>आयामी रीमैनियन मैनिफोल्ड या स्यूडो-रीमैनियन मैनिफोल्ड से सुसज्जित होने के कारण [[लेवी-सिविटा कनेक्शन]] <math>\nabla</math> के साथ [[रीमैनियन वक्रता टेंसर]] <math>M</math> का ऐसा नक्शा है, जो सहज सदिश क्षेत्र <math>X</math>, <math>Y</math>, और <math>Z</math> को उपयोग करता है और इसी के आधार पर सदिश क्षेत्र लौटाता है।<math display="block">R(X,Y)Z := \nabla_X\nabla_Y Z - \nabla_Y\nabla_XZ - \nabla_{[X,Y]}Z</math>[[वेक्टर फ़ील्ड|सदिश क्षेत्र]] पर <math>X, Y, Z</math>. तब से <math>R</math> के लिए टेंसर क्षेत्र है, जिसे प्रत्येक बिंदु <math>p \in M</math>, यह (बहुरेखीय) मानचित्र को जन्म देता है:<math display="block">\operatorname{R}_p:T_pM\times T_pM\times T_pM\to T_pM.</math>प्रत्येक बिंदु के लिए परिभाषित करता हैं, इस प्रकार <math>p \in M</math> वो नक्शा <math>\operatorname{Ric}_p:T_pM\times T_pM\to\mathbb{R}</math> से प्रदर्शित होता हैं।<math display="block">\operatorname{Ric}_p(Y,Z) := \operatorname{tr}\big(X\mapsto \operatorname{R}_p(X,Y)Z\big).</math>अर्ताथ यहाँ पर तय किया जा सकता है कि <math>Y</math> और <math>Z</math> किसी भी आधार पर इस प्रकार प्रदर्शित होगा। | ||
यह | <math>v_1, \ldots, v_n</math> सदिश स्थान का <math>T_p M</math> के लिए इस प्रकार होगा।<math display="block">\operatorname{Ric}_p(Y,Z) = \sum_{i=1} \langle\operatorname{R}_p(v_i, Y) Z, v_i \rangle.</math> | ||
यह विविध रैखिक का मानक अभ्यास है, यहाँ पर बीजगणित यह सत्यापित करने के लिए कि इस परिभाषा के आधार के रूप पर निर्भर नहीं करती है | |||
<math>v_1, \ldots, v_n</math>. | <math>v_1, \ldots, v_n</math>. | ||
स्यूडो सूचकांक संकेतन में,<math display="block">\mathrm{Ric}_{ab} = \mathrm{R}^{c}{}_{bca} = \mathrm{R}^{c}{}_{acb}. </math> | स्यूडो सूचकांक संकेतन में,<math display="block">\mathrm{Ric}_{ab} = \mathrm{R}^{c}{}_{bca} = \mathrm{R}^{c}{}_{acb}. </math> | ||
इसके आधार पर संयोजन के विषय में ध्यान दें कि कुछ स्रोत <math>R(X,Y)Z</math> द्वारा परिभाषित करते हैं, | |||
यहां हम यह कह सकते हैं कि <math>-R(X,Y)Z;</math> के समान हैं, जिसे फिर से परिभाषित करना पड़ता हैं। इस प्रकार <math>\operatorname{Ric}_p</math> के लिए जैसे <math>-\operatorname{tr}(X\mapsto \operatorname{R}_p(X,Y)Z).</math> रीमैन टेंसर के बारे में संकेत परंपराएं भिन्न हैं, अपितु वे इसके लिए भिन्न रूप में नहीं हैं। | |||
===समतल मैनिफोल्ड पर स्थानीय निर्देशांक के माध्यम से परिभाषा=== | |||
<math>\left( M, g \right)</math> समतल रीमैनियन मैनिफोल्ड बनें या स्यूडो-रिमानियन मैनिफोल्ड या स्यूडो-रिमानियन <math>n</math>-कई गुना होने के साथ एक सहज चार्ट <math>\left( U, \varphi \right)</math> दिया गया हैं, जिसके लिए फलन <math>g_{ij}: \varphi(U) \rightarrow \mathbb{R}</math> हैं। प्रत्येक <math>g^{ij}: \varphi(U) \rightarrow \mathbb{R}</math> के लिए <math>i, j = 1, \ldots, n</math> के यह मान संतुष्ट करता है।<math display="block"> | |||
=== | |||
<math>\left( M, g \right)</math> समतल रीमैनियन मैनिफोल्ड बनें या स्यूडो-रिमानियन मैनिफोल्ड या स्यूडो-रिमानियन <math>n</math>-कई गुना होने के साथ एक सहज चार्ट <math>\left( U, \varphi \right)</math> दिया गया जिसके लिए फलन <math>g_{ij}: \varphi(U) \rightarrow \mathbb{R}</math> हैं। | |||
<math display="block"> | |||
\sum_{k=1}^n g^{ik}(x)g_{kj}(x) = \delta^{i}_j = \begin{cases} 1 & i=j \\ 0 & i \neq j \end{cases} | \sum_{k=1}^n g^{ik}(x)g_{kj}(x) = \delta^{i}_j = \begin{cases} 1 & i=j \\ 0 & i \neq j \end{cases} | ||
</math> | </math> | ||
सभी | यहाँ पर सभी <math>x \in \varphi(U)</math> के लिए यह उत्तरार्द्ध मान दिखाता है कि इसे आव्यूह, <math>g^{ij}(x) = (g^{-1})_{ij}(x)</math> के रूप में व्यक्त किया गया हैं। इस प्रकार फलन <math>g_{ij}</math> के मूल्यांकन के लिए इसे <math>g</math> पर परिभाषित किया जाता है, सदिश क्षेत्रों का समन्वय करें, जबकि फलन <math>g^{ij}</math> इस प्रकार परिभाषित किया गया है, इस प्रकार आव्यूह के इसे मान के लिए फलन के रूप में वे आव्यूह-वैल्यू का व्युत्क्रम फलन <math>x \mapsto g_{ij}(x)</math> प्रदान करते हैं। | ||
फलन <math>x \mapsto g_{ij}(x)</math> | |||
अब प्रत्येक के लिए परिभाषित करें, <math>a</math>, <math>b</math>, <math>c</math>, <math>i</math> और <math>j</math> 1 और के बीच <math>n</math>, फलन इस प्रकार प्रदर्शित होता हैं। | अब प्रत्येक के लिए परिभाषित करें, <math>a</math>, <math>b</math>, <math>c</math>, <math>i</math> और <math>j</math> 1 और के बीच <math>n</math>, फलन इस प्रकार प्रदर्शित होता हैं। | ||
Line 43: | Line 37: | ||
R_{ij} &:= \sum_{a=1}^n\frac{\partial\Gamma_{ij}^a}{\partial x^a} - \sum_{a=1}^n\frac{\partial\Gamma_{ai}^a}{\partial x^j} + \sum_{a=1}^n\sum_{b=1}^n\left(\Gamma_{ab}^a\Gamma_{ij}^b - \Gamma_{ib}^a\Gamma_{aj}^b\right) | R_{ij} &:= \sum_{a=1}^n\frac{\partial\Gamma_{ij}^a}{\partial x^a} - \sum_{a=1}^n\frac{\partial\Gamma_{ai}^a}{\partial x^j} + \sum_{a=1}^n\sum_{b=1}^n\left(\Gamma_{ab}^a\Gamma_{ij}^b - \Gamma_{ib}^a\Gamma_{aj}^b\right) | ||
\end{align}</math> | \end{align}</math> | ||
मानचित्र के रूप में <math>\varphi: U \rightarrow \mathbb{R}</math>. | मानचित्र <math>\varphi: U \rightarrow \mathbb{R}</math> के रूप में <math>\left( U, \varphi \right)</math> और <math>\left( V, \psi \right)</math> के साथ दो सहज चार्ट <math>U \cap V \neq \emptyset</math> बनाये जाते हैं, माना कि <math>R_{ij}: \varphi(U) \rightarrow \mathbb{R}</math> चार्ट के माध्यम से उपरोक्त फलन <math>\left( U, \varphi \right)</math> की गणना करें, और <math>r_{ij}: \psi(V) \rightarrow \mathbb{R}</math> चार्ट के माध्यम से उपरोक्त फलन <math>\left( V, \psi \right)</math> की गणना करें। फिर कोई श्रृंखला नियम और उत्पाद नियम के साथ गणना करके जांच कर सकता है।<math display="block"> | ||
R_{ij}(x) = \sum_{k,l=1}^n r_{kl}\left(\psi\circ\varphi^{-1}(x)\right)D_i\Big|_x \left(\psi\circ\varphi^{-1}\right)^kD_j\Big|_x \left(\psi\circ\varphi^{-1}\right)^l. | |||
</math>जहाँ <math>D_{i}</math> के लिए पहला व्युत्पन्न <math>i</math> दिशा में है। जिसके कारण <math>\mathbb{R}^n</math>के मान से यह पता चलता है कि <math>\left( U, \varphi \right)</math> के लिए निम्नलिखित परिभाषा के उपयोग पर निर्भर नहीं करती है, इस कारण किसी <math>p \in U</math> के लिए , द्विरेखीय मानचित्र <math>\operatorname{Ric}_p : T_p M \times T_p M \rightarrow \mathbb{R}</math> को परिभाषित करते हैं। | |||
<math display="block"> | |||
(X, Y) \in T_p M \times T_p M \mapsto \operatorname{Ric}_p(X,Y) = \sum_{i,j=1}^n R_{ij}(\varphi(x))X^i(p)Y^j(p), | |||
</math> | </math> | ||
जहाँ <math>X^1, \ldots, X^n</math> और <math>Y^1, \ldots, Y^n</math> हैं, स्पर्शरेखा सदिशों के घटक <math>p</math> में <math>X</math> और <math>Y</math> के सापेक्ष समन्वय सदिश क्षेत्र <math>\left( U, \varphi \right)</math> है। | |||
उपरोक्त औपचारिक प्रस्तुति को निम्नलिखित शैली में संक्षिप्त करना साधारण बात है: | उपरोक्त औपचारिक प्रस्तुति को निम्नलिखित शैली में संक्षिप्त करना साधारण बात है: | ||
Line 96: | Line 85: | ||
<math display="block">\operatorname{Ric}(X ,Y) = \operatorname{Ric}(Y,X)</math> | <math display="block">\operatorname{Ric}(X ,Y) = \operatorname{Ric}(Y,X)</math> | ||
सभी के लिए <math>X,Y\in T_pM.</math> इस प्रकार यह रैखिक-बीजगणितीय रूप से अनुसरण करता है कि रिक्की टेंसर पूर्ण रूप से निर्धारित है, यह मात्रा जानकर <math>\operatorname{Ric}(X, X)</math> सभी वैक्टर के लिए इस प्रकार हैं। | सभी के लिए <math>X,Y\in T_pM.</math> | ||
इसे अधिकांशतः रिक्की वक्रता भी कहा जाता है, क्योंकि इसे जानना इसके बराबर है जैसे कि रिक्की वक्रता टेंसर को | इस प्रकार यह रैखिक-बीजगणितीय रूप से अनुसरण करता है कि रिक्की टेंसर पूर्ण रूप से निर्धारित है, यह मात्रा जानकर <math>\operatorname{Ric}(X, X)</math> सभी वैक्टर के लिए इस प्रकार हैं। <math>X</math> इकाई लंबाई का. इकाई स्पर्शरेखा सदिशों के सेट पर यह फलन इसे अधिकांशतः रिक्की वक्रता भी कहा जाता है, क्योंकि इसे जानना इसके बराबर है जैसे कि रिक्की वक्रता टेंसर को जानना इसका विषय हैं। | ||
रिक्की वक्रता रीमैनियन के [[अनुभागीय वक्रता]] द्वारा निर्धारित की जाती है, इसके लिए कई गुना होने के साथ अपितु सामान्य रूप से इसमें कम जानकारी होती है। वास्तव में यदि यह मान <math>\xi</math> है। रीमैनियन पर इकाई लंबाई का सदिश <math>n</math>-तो फिर कई गुना <math>\operatorname{Ric}(\xi, \xi)</math> बिल्कुल सही है <math>(n - 1)</math> सभी 2-तलों पर ली गई अनुभागीय वक्रता के औसत मान का युक्त <math>\xi</math> गुना हैं। जहाँ <math>(n - 2)</math>-आयामी परिवार है, इस कारण ऐसे 2-तलों का, और इसलिए केवल आयाम 2 और 3 में रिक्की टेंसर निर्धारित करता है, इस प्रकार पूर्णतयः वक्रता टेंसर उल्लेखनीय अपवाद तब होता है जब मैनिफ़ोल्ड को a दिया जाता है, इसके आधार पर यूक्लिडियन स्थान की हाइपर सतह के रूप में प्राथमिकता देती हैं। इसका दूसरा मौलिक रूप जो गॉस-कोडाज़ी समीकरणों के माध्यम से पूर्ण वक्रता निर्धारित करता है। इसके आधार पर गॉस-कोडाज़ी समीकरण के लिए स्वयं रिक्की टेंसर और प्रिंसिपल वक्रता द्वारा निर्धारित होता है। इस प्रकार [[ ऊनविम पृष्ठ |ऊनविम पृष्ठ]] की रिक्की टेंसर की ईजेनदिशाएं भी हैं। इसी कारण से रिक्की द्वारा टेंसर के प्रारंभ में की गई थी। | |||
जैसा कि दूसरी बियांची पहचान से देखा जा सकता है,<math display="block">\operatorname{div}\operatorname{Ric} = \frac{1}{2}dR,</math>जहाँ <math>R</math> [[अदिश वक्रता]] है, जिसे स्थानीय निर्देशांक <math>g^{ij}R_{ij}.</math> में परिभाषित किया गया है इसे अधिकांशतः अनुबंधित दूसरी बियांची पहचान कहा जाता है। | जैसा कि दूसरी बियांची पहचान से देखा जा सकता है,<math display="block">\operatorname{div}\operatorname{Ric} = \frac{1}{2}dR,</math>जहाँ <math>R</math> [[अदिश वक्रता]] है, जिसे स्थानीय निर्देशांक <math>g^{ij}R_{ij}.</math> में परिभाषित किया गया है इसे अधिकांशतः अनुबंधित दूसरी बियांची पहचान कहा जाता है। | ||
===अनौपचारिक गुण=== | ===अनौपचारिक गुण=== | ||
रिक्की वक्रता को कभी-कभी (का | रिक्की वक्रता को कभी-कभी (का ऋणात्मक गुणज) माना जाता है, इसके आधार पर मीट्रिक टेंसर का [[लाप्लासियन]] {{harv|चाऊ|नाॅफ|2004|loc=लेमा 3.32}} हैं।<ref>{{Cite book |last=Chow |first=Bennett |url=https://www.worldcat.org/oclc/54692148 |title=The Ricci flow : an introduction |date=2004 |publisher=American Mathematical Society |others=Dan Knopf |isbn=0-8218-3515-7 |location=Providence, R.I. |oclc=54692148}}</ref> जिसे विशेष रूप से, [[हार्मोनिक निर्देशांक]] में स्थानीय निर्देशांक घटक संतुष्ट करते हैं। | ||
<math display="block">R_{ij} = -\frac{1}{2}\Delta \left(g_{ij}\right) + \text{lower-order terms},</math> | <math display="block">R_{ij} = -\frac{1}{2}\Delta \left(g_{ij}\right) + \text{lower-order terms},</math> | ||
Line 126: | Line 115: | ||
जो मीट्रिक के निर्धारक के वर्गमूल का विस्तार करके अनुसरण करता है। | जो मीट्रिक के निर्धारक के वर्गमूल का विस्तार करके अनुसरण करता है। | ||
इस प्रकार, यदि रिक्की वक्रता <math>\operatorname{Ric}(\xi, \xi)</math> धनात्मक है। | इस प्रकार, यदि रिक्की वक्रता <math>\operatorname{Ric}(\xi, \xi)</math> धनात्मक है। एक सदिश की दिशा में <math>\xi</math>, शंक्वाकार क्षेत्र में <math>M</math> लंबाई के जियोडेसिक खंडों के कसकर केंद्रित परिवार द्वारा बह गया हैं। <math>\varepsilon</math> से निकलना <math>p</math>, अंदर प्रारंभिक वेग के साथ जिसके बारे में छोटा सा <math>\xi</math> शंकु हैं, जिसके संगत की तुलना में छोटी मात्रा होगी। यूक्लिडियन स्थान में शंक्वाकार क्षेत्र, कम से कम यह प्रदान करता हैं कि <math>\varepsilon</math> को पर्याप्त रूप से छोटा माना जाता है, इसी प्रकार यदि रिक्की वक्रता ऋणात्मक है, जो किसी दिए गए सदिश की दिशा <math>\xi</math> के लिए अनेक गुना में ऐसा शंक्वाकार क्षेत्र हैं, इसके अतिरिक्त यूक्लिडियन स्थान की तुलना में इसका आयतन बड़ा होगा। | ||
रिक्की वक्रता अनिवार्य रूप से विमानों में वक्रता का औसत <math>\xi</math> है, इस प्रकार यदि शंकु प्रारंभ में गोलाकार (या गोलाकार) से उत्सर्जित होता है, क्रॉस-सेक्शन दीर्घवृत्त (दीर्घवृत्त) में विकृत हो जाता है, यह संभव है कि यदि विकृतियाँ साथ में हों तो आयतन विरूपण विलुप्त हो जाए। [[प्रधान अक्ष प्रमेय]] दूसरे का प्रतिकार करते हैं। रिक्की वक्रता <math>\xi</math> पुनः विलुप्त हो जाएगी। भौतिक अनुप्रयोगों में एक गैर-लुप्त अनुभागीय वक्रता की उपस्थिति आवश्यक रूप से इसका संकेत नहीं देती है, स्थानीय स्तर पर किसी द्रव्यमान की उपस्थिति, यदि शंकु का आरंभिक वृत्ताकार अनुप्रस्थ काट है, विश्व रेखाओं का आयतन बदले बिना बाद में अण्डाकार हो जाता है, यह किसी अन्य स्थान पर द्रव्यमान से उत्पन्न ज्वारीय प्रभाव के कारण है। | |||
== अनुप्रयोग == | |||
रिक्की वक्रता सामान्य सापेक्षता में महत्वपूर्ण भूमिका निभाती है, जहां यह है कि आइंस्टीन क्षेत्र समीकरणों में प्रमुख शब्द हैं। | |||
रिक्की वक्रता | रिक्की वक्रता रिक्की प्रवाह समीकरण में भी प्रकट होती है, जहां निश्चित है, रीमैनियन आव्यूह के एक-पैरामीटर परिवारों को समाधान के रूप में चुना गया है, इस प्रकार ज्यामितीय रूप से परिभाषित आंशिक अंतर समीकरण द्वारा प्रदर्शित होता हैं। इसके लिए समीकरणों की यह प्रणाली इसे ताप समीकरण के ज्यामितीय एनालॉग के रूप में सोचा जा सकता है, और यह सर्वप्रथम था। | ||
[[ | 1982 में रिचर्ड एस हैमिल्टन द्वारा प्रस्तुत किया गया हैं। चूंकि यह गर्मी में फैलती है, इस प्रकार ठोस स्थिति में जब तक शरीर स्थिर तापमान की संतुलन स्थिति तक नहीं पहुंच जाता, यदि किसी को कई गुना दिया गया है, तो रिक्की प्रवाह से 'संतुलन' उत्पन्न होने की उम्मीद की जा सकती है, रीमैनियन मीट्रिक जो [[आइंस्टीन मीट्रिक]] या स्थिर वक्रता वाली है। चूंकि, इस प्रकार की स्वच्छ अभिसरण तस्वीर कई गुना से प्राप्त नहीं की जा सकती है, ऐसे आव्यूह का समर्थन नहीं कर सकते है। जिसके समाधानों की प्रकृति का विस्तृत अध्ययन रिक्की प्रवाह द्वारा किया जाता हैं, मुख्य रूप से हैमिल्टन और [[ त्वरित पेरेलमैन |त्वरित पेरेलमैन]] के कारण, दर्शाता है कि रिक्की प्रवाह के अनुरूप होने वाली विलक्षणताओं के प्रकार | ||
अभिसरण की विफलता, 3-आयामी टोपोलॉजी के बारे में गहरी जानकारी को एन्कोड करती है। | |||
इस फलन की परिणति ज्यामितिकरण अनुमान का प्रमाण थी, इसे पहली बार 1970 के दशक में [[विलियम थर्स्टन]] द्वारा प्रस्तावित किया गया था, जिसे इस प्रकार माना जा सकता है, जो कि कॉम्पैक्ट 3-मैनिफोल्ड्स का वर्गीकरण हैं। | |||
इस फलन की परिणति ज्यामितिकरण अनुमान का प्रमाण थी | |||
पहली बार 1970 के दशक में [[विलियम थर्स्टन]] द्वारा प्रस्तावित किया गया था, जिसे इस प्रकार माना जा सकता है | |||
कॉम्पैक्ट 3-मैनिफोल्ड्स का | |||
काहलर मैनिफोल्ड पर, रिक्की वक्रता प्रथम चेर्न वर्ग को | काहलर मैनिफोल्ड पर, रिक्की वक्रता प्रथम चेर्न वर्ग को मैनिफोल्ड का (मॉड टोरसन) पर निर्धारित करती है। चूंकि रिक्की वक्रता का कोई सादृश्य नहीं है | ||
मैनिफोल्ड का (मॉड टोरसन) | जेनेरिक रीमैनियन मैनिफोल्ड पर टोपोलॉजिकल व्याख्या हैं। | ||
जेनेरिक रीमैनियन मैनिफोल्ड पर टोपोलॉजिकल | |||
==वैश्विक ज्यामिति और टोपोलॉजी== | ==वैश्विक ज्यामिति और टोपोलॉजी== | ||
यहां | यहां धनात्मक रिक्की वक्रता वाले मैनिफोल्ड्स से संबंधित वैश्विक परिणामों की छोटी सूची दी गई है, रीमैनियन ज्यामिति स्थानीय से वैश्विक प्रमेय भी देखें। संक्षेप में, रीमैनियन मैनिफोल्ड के धनात्मक रिक्की वक्रता के मजबूत टोपोलॉजिकल परिणाम होते हैं, जबकि (कम से कम 3 आयाम के लिए), ऋणात्मक रिक्की वक्रता का कोई टोपोलॉजिकल निहितार्थ नहीं होता है। (यदि रिक्की वक्रता फलन करती है तो रिक्की वक्रता को 'धनात्मक' कहा जाता है, इस प्रकार <math>\operatorname{Ric}(\xi, \xi)</math> गैर-शून्य स्पर्शरेखा सदिशों के समुच्चय <math>\xi</math> पर धनात्मक है) कुछ परिणाम स्यूडो-रीमैनियन मैनिफोल्ड्स के लिए भी जाने जाते हैं। | ||
#मायर्स प्रमेय|मायर्स प्रमेय (1941) में कहा गया है कि यदि रिक्की वक्रता नीचे से पूर्ण रीमैनियन एन-मैनिफोल्ड | #मायर्स प्रमेय|मायर्स प्रमेय (1941) में कहा गया है कि यदि रिक्की वक्रता नीचे से पूर्ण रीमैनियन एन-मैनिफोल्ड <math>(n - 1)k > 0</math> पर बंधी है, तो मैनिफोल्ड का व्यास <math>\leq \pi / \sqrt{k}</math> होता है, कवरिंग-स्थान तर्क से, यह इस प्रकार है कि धनात्मक रिक्की वक्रता के किसी भी कॉम्पैक्ट मैनिफोल्ड में सीमित [[मौलिक समूह]] होना चाहिए। [[शि यू-वाई यू एन चेंग]] (1975) ने दिखाया कि, इस सेटिंग में, व्यास असमानता में समानता तब होती है जब मैनिफोल्ड निरंतर वक्रता के क्षेत्र में [[आइसोमेट्री]] <math>k</math> है। | ||
#बिशप-ग्रोमोव असमानता बताती है कि यदि पूर्ण <math>n</math>-आयामी रीमैनियन मैनिफोल्ड में गैर- | #बिशप-ग्रोमोव असमानता बताती है कि यदि पूर्ण <math>n</math>-आयामी रीमैनियन मैनिफोल्ड में गैर-ऋणात्मक रिक्की वक्रता है, तो जियोडेसिक गेंद का आयतन यूक्लिडियन में समान त्रिज्या के जियोडेसिक गेंद के आयतन से कम या <math>n</math>-स्थान के बराबर होता है। इसके अतिरिक्त, यदि <math>v_p(R)</math> केंद्र के साथ गेंद के आयतन को दर्शाता है कि <math>p</math> और त्रिज्या <math>R</math> अनेक गुना में और <math>V(R) = c_n R^n</math> त्रिज्या की गेंद के आयतन को दर्शाता है <math>R</math> यूक्लिडियन में <math>n</math>-स्थान फिर फलन <math>v_p(R) / V(R)</math> नहीं बढ़ रहा है. इसे रिक्की वक्रता (केवल गैर-ऋणात्मकता नहीं) पर किसी भी निचली सीमा के लिए सामान्यीकृत किया जा सकता है, और यह ग्रोमोव की कॉम्पैक्टनेस प्रमेय (ज्यामिति) | ग्रोमोव की कॉम्पैक्टनेस प्रमेय के प्रमाण में मुख्य बिंदु है।) | ||
#चीगर-ग्रोमोल [[विभाजन प्रमेय]] में कहा गया है कि यदि पूर्ण रीमानियन मैनिफोल्ड है <math>\left( M, g \right)</math> साथ <math>\operatorname{Ric} \geq 0</math> इसमें पंक्ति है, जिसका अर्थ है जियोडेसिक <math>\gamma : \mathbb{R} \to M</math> | #चीगर-ग्रोमोल [[विभाजन प्रमेय]] में कहा गया है कि यदि पूर्ण रीमानियन मैनिफोल्ड है <math>\left( M, g \right)</math> साथ <math>\operatorname{Ric} \geq 0</math> इसमें पंक्ति है, जिसका अर्थ है जियोडेसिक <math>\gamma : \mathbb{R} \to M</math> इस प्रकार है कि <math>d(\gamma(u), \gamma(v)) = \left| u - v \right|</math> सभी के लिए <math>u, v \in \mathbb{R}</math>, तो यह उत्पाद स्थान के लिए सममितीय <math>\mathbb{R} \times L</math> है। परिणामस्वरूप, धनात्मक रिक्की वक्रता की पूरी विविधता का अधिकतम टोपोलॉजिकल अंत हो सकता है। संपूर्ण [[लोरेंट्ज़ियन मैनिफोल्ड]] (मीट्रिक हस्ताक्षर के) के लिए कुछ अतिरिक्त परिकल्पनाओं के कारण भी <math>\left( + - - \ldots \right)</math>) गैर-ऋणात्मक रिक्की टेंसर के साथ ({{harvnb|गैलोवे|2000}}) प्रमेय सत्य है। | ||
रिक्की प्रवाह के लिए | रिक्की प्रवाह के लिए हैमिल्टन के पहले रिक्की प्रवाह का परिणाम यह है कि एकमात्र कॉम्पैक्ट 3-मैनिफोल्ड्स जिसमें धनात्मक रिक्की वक्रता के रीमैनियन आव्यूह हैं, वे एसओ (4) के अलग-अलग उपसमूहों द्वारा 3-गोले के भागफल हैं जो उचित रूप से असंतत रूप से फलन करते हैं। जिसे बाद में उन्होंने गैर-ऋणात्मक रिक्की वक्रता की अनुमति देने के लिए इसे बढ़ाया जाता हैं। विशेष रूप से एकमात्र सरल रूप से जुड़ी संभावना 3-गोला ही है। ये परिणाम, विशेष रूप से मायर्स और हैमिल्टन द्वारा दर्शाते हैं कि धनात्मक रिक्की वक्रता के शक्तिशाली टोपोलॉजिकल परिणाम होते हैं। इसके विपरीत, सतहों की स्थिति को छोड़कर, ऋणात्मक रिक्की वक्रता का अब कोई टोपोलॉजिकल प्रभाव नहीं है, {{harvtxt|लोहकैम्प|1994}} ने दिखाया है कि दो से अधिक आयाम का कोई भी मैनिफोल्ड ऋणात्मक रिक्की वक्रता के पूर्ण रीमैनियन मीट्रिक को स्वीकार करता है। इस प्रकार द्वि-आयामी मैनिफ़ोल्ड के मामले में, रिक्की वक्रता की ऋणात्मकता गॉसियन वक्रता की ऋणात्मकता का पर्याय है, जिसमें बहुत स्पष्ट [[गॉस-बोनट प्रमेय]] है। ऐसे बहुत कम द्वि-आयामी मैनिफोल्ड हैं, जो ऋणात्मक गाऊसी वक्रता के रीमैनियन आव्यूह को स्वीकार करने में विफल रहते हैं। | ||
ये परिणाम, विशेष रूप से मायर्स और हैमिल्टन | |||
== अनुरूप पुनर्स्केलिंग के | == अनुरूप पुनर्स्केलिंग के कारण व्यवहार == | ||
यदि मीट्रिक <math>g</math> इसे अनुरूप कारक से गुणा करके | यदि मीट्रिक <math>g</math> इसे अनुरूप कारक से गुणा करके परिवर्तित किया जाता है, {{harv|बेस्से|1987|p=59}} द्वारा <math>e^{2f}</math> के लिए नए अनुरूप को इससे संबंधित मीट्रिक रिक्की टेंसर के रूप में <math>\tilde{g} = e^{2f} g</math> दिया हुआ है। <math display="block">\widetilde{\operatorname{Ric}}=\operatorname{Ric}+(2-n)\left[ \nabla df-df\otimes df\right]+\left[\Delta f -(n-2)\|df\|^2\right]g ,</math> | ||
जहाँ <math>\Delta = *d*d</math> (धनात्मक स्पेक्ट्रम) हॉज लाप्लासियन है, अर्थात, हेस्सियन के सामान्य निशान के विपरीत हैं। | |||
जहाँ <math>\Delta = *d*d</math> ( | |||
हेस्सियन के सामान्य निशान के | |||
मुख्य रूप से यह बात बताई गई है कि <math>p</math> रीमैनियन मैनिफोल्ड में यह सदैव होता है, जो दिए गए मीट्रिक के अनुरूप <math>g</math> मीट्रिक को ढूंढना संभव है, जिसके लिए रिक्की टेंसर <math>p</math> विलुप्त हो जाता है, चूंकि, ध्यान दें कि यह केवल बिंदुवार है, इस कारण यह बल देकर कहना कि रिक्की वक्रता को समान रूप से विलुप्त करना सामान्य रूप से असंभव है, इस प्रकार यह एक अनुरूप पुनर्स्केलिंग द्वारा संपूर्ण विविधता पर आधारित हैं। | |||
दिए गए मीट्रिक के अनुरूप | |||
रिक्की टेंसर | |||
बल देकर कहना | |||
एक अनुरूप पुनर्स्केलिंग द्वारा संपूर्ण विविधता | |||
द्वि-आयामी मैनिफोल्ड के लिए, उपरोक्त सूत्र दर्शाता है कि यदि <math>f</math> है | द्वि-आयामी मैनिफोल्ड के लिए, उपरोक्त सूत्र दर्शाता है कि यदि <math>f</math> है, [[हार्मोनिक फ़ंक्शन|हार्मोनिक फलन]], फिर अनुरूप स्केलिंग <math>g \mapsto e^{2f}g</math> रिक्की टेंसर को नहीं परिवर्तित करता है (चूंकि यह अभी भी सम्मान के साथ मीट्रिक तक जब तक <math>f = 0</math> अपना ट्रेस परिवर्तित करता है। | ||
[[हार्मोनिक फ़ंक्शन|हार्मोनिक फलन]], फिर अनुरूप स्केलिंग <math>g \mapsto e^{2f}g</math> रिक्की टेंसर को नहीं | |||
मीट्रिक तक जब तक <math>f = 0</math> | |||
==ट्रेस-मुक्त रिक्की टेंसर== | ==ट्रेस-मुक्त रिक्की टेंसर== | ||
रीमानियन ज्यामिति और स्यूडो-रीमानियन ज्यामिति में, | रीमानियन ज्यामिति और स्यूडो-रीमानियन ज्यामिति में, | ||
ट्रेस-फ्री रिक्की टेंसर (जिसे ट्रेसलेस रिक्की टेंसर भी कहा जाता है)। | ट्रेस-फ्री रिक्की टेंसर (जिसे ट्रेसलेस रिक्की टेंसर भी कहा जाता है)। | ||
रीमानियन या स्यूडो-रिमानियन <math>n</math>-कई गुना <math>\left( M, g \right)</math> द्वारा परिभाषित टेंसर | |||
रीमानियन या स्यूडो-रिमानियन <math>n</math>-कई गुना <math>\left( M, g \right)</math> द्वारा परिभाषित टेंसर है। | |||
<math display="block">Z = \operatorname{Ric} - \frac{1}{n}Rg ,</math> | <math display="block">Z = \operatorname{Ric} - \frac{1}{n}Rg ,</math> | ||
जहाँ <math>\operatorname{Ric}</math> और <math>R</math> रिक्की वक्रता को निरूपित करें | जहाँ <math>\operatorname{Ric}</math> और <math>R</math> रिक्की वक्रता को निरूपित करें, और अदिश वक्रता <math>g</math>. इस वस्तु का नाम दर्शाता है, इसका तथ्य यह है कि इसका [[ट्रेस (रैखिक बीजगणित)]] स्वचालित रूप <math>\operatorname{tr}_gZ\equiv g^{ab}Z_{ab} = 0.</math> से विलुप्त हो जाता है, चूंकि यह काफी है कि महत्वपूर्ण टेंसर के लिए यह रिक्की टेंसर के ऑर्थोगोनल अपघटन को दर्शाता है। | ||
और अदिश वक्रता <math>g</math>. इस वस्तु का नाम दर्शाता है | |||
तथ्य यह है कि इसका [[ट्रेस (रैखिक बीजगणित)]] स्वचालित रूप | |||
महत्वपूर्ण टेंसर | |||
=== रिक्की टेंसर का ऑर्थोगोनल अपघटन === | === रिक्की टेंसर का ऑर्थोगोनल अपघटन === | ||
निम्नलिखित, | निम्नलिखित, इतनी साधारण मान नहीं है।<math display="block">\operatorname{Ric} = Z + \frac{1}{n}Rg.</math>यह तुरंत कम स्पष्ट है कि दाहिनी ओर के दो शब्द में एक दूसरे से ऑर्थोगोनल हैं:<math display="block">\left\langle Z, \frac{1}{n}Rg\right\rangle_g \equiv g^{ab}\left(R_{ab} - \frac{1}{n}Rg_{ab}\right) = 0.</math> | ||
<math display="block">\operatorname{Ric} = Z + \frac{1}{n}Rg.</math> | |||
यह तुरंत कम स्पष्ट है कि दाहिनी ओर के दो शब्द | |||
एक दूसरे से: | |||
<math display="block">\left\langle Z, \frac{1}{n}Rg\right\rangle_g \equiv g^{ab}\left(R_{ab} - \frac{1}{n}Rg_{ab}\right) = 0.</math> | |||
एक पहचान जो इसके साथ गहराई से जुड़ी हुई है (अपितु जिसे सीधे साबित किया जा सकता है) जो यह है कि<math display="block">\left|\operatorname{Ric}\right|_g^2 = |Z|_g^2 + \frac{1}{n}R^2.</math> | |||
===ट्रेस-मुक्त रिक्की टेंसर और आइंस्टीन | ===ट्रेस-मुक्त रिक्की टेंसर और आइंस्टीन आव्यूह=== | ||
एक विचलन लेकर, और अनुबंधित बियांची पहचान का उपयोग करके, कोई उसे देख सकता है | एक विचलन लेकर, और अनुबंधित बियांची पहचान का उपयोग करके, कोई उसे देख सकता है | ||
<math>Z = 0</math> तात्पर्य <math display="inline">\frac{1}{2}dR - \frac{1}{n}dR = 0</math>. | <math>Z = 0</math> तात्पर्य <math display="inline">\frac{1}{2}dR - \frac{1}{n}dR = 0</math>. | ||
तो, बशर्ते कि {{math|''n'' ≥ 3}} और <math>M</math> जुड़ा हुआ है, लुप्त हो रहा है | तो, बशर्ते कि {{math|''n'' ≥ 3}} और <math>M</math> जुड़ा हुआ है, लुप्त हो रहा है, जिसका <math>Z</math> तात्पर्य यह है कि अदिश वक्रता स्थिर है। फिर कोई देख सकता है, इसके कारण यह निम्नलिखित प्रकार से समतुल्य हैं: | ||
* <math>Z = 0</math> | * <math>Z = 0</math> | ||
Line 227: | Line 172: | ||
रीमैनियन सेटिंग में, उपरोक्त ऑर्थोगोनल अपघटन यह दर्शाता है | रीमैनियन सेटिंग में, उपरोक्त ऑर्थोगोनल अपघटन यह दर्शाता है | ||
<math>R^2 = n|\operatorname{Ric}|^2</math> भी इन शर्तों के बराबर है. | <math>R^2 = n|\operatorname{Ric}|^2</math> भी इन शर्तों के बराबर है. | ||
इसके विपरीत, स्यूडो-रीमैनियन सेटिंग में, स्थिति <math>|Z|_g^2 = 0</math> आवश्यक रूप से इसका तात्पर्य नहीं है <math>Z = 0,</math> अत: अधिकतम यही कहा जा सकता है | इसके विपरीत, स्यूडो-रीमैनियन सेटिंग में, स्थिति <math>|Z|_g^2 = 0</math> आवश्यक रूप से इसका तात्पर्य नहीं है <math>Z = 0,</math> अत: अधिकतम यही कहा जा सकता है, ये स्थितियाँ <math>R^2 = n \left|\operatorname{Ric}\right|_g^2.</math> में निहित हैं, विशेष रूप से, ट्रेस-मुक्त रिक्की टेंसर का लुप्त होना इसकी विशेषता है, जो आइंस्टीन के कई गुना है, जैसा कि <math>\operatorname{Ric} = \lambda g</math> संख्या के लिए <math>\lambda.</math>स्थिति द्वारा परिभाषित किया गया है, सामान्य सापेक्षता में, यह समीकरण बताता है, वह <math>\left( M, g \right)</math> आइंस्टीन के निर्वात क्षेत्र का समाधान है, इस प्रकार [[ब्रह्माण्ड संबंधी स्थिरांक|वैश्विक स्थिरांक]] के साथ समीकरण को प्रदर्शित करती हैं। | ||
ये स्थितियाँ | |||
विशेष रूप से, ट्रेस-मुक्त रिक्की टेंसर का लुप्त होना इसकी विशेषता है | |||
आइंस्टीन कई गुना है, जैसा कि | |||
वह <math>\left( M, g \right)</math> आइंस्टीन के निर्वात क्षेत्र का समाधान है | |||
[[ब्रह्माण्ड संबंधी स्थिरांक]] के साथ | |||
==काहलर मैनिफोल्ड्स== | ==काहलर मैनिफोल्ड्स== | ||
काहलर मैनिफोल्ड पर <math>X</math>, रिक्की वक्रता निर्धारित करती है | काहलर मैनिफोल्ड पर <math>X</math>, रिक्की वक्रता निर्धारित करती है, इस प्रकार [[विहित बंडल]] का [[वक्रता रूप]] हैं। {{harv|मोरोजानू|2007|loc=अध्याय 12}} के लिए कैनोनिकल लाइन बंडल शीर्ष पर है, होलोमोर्फिक काहलर डिफरेंशियल के बंडल की [[बाहरी शक्ति]] इस प्रकार होगी:<math display="block"> | ||
[[विहित बंडल]] का [[वक्रता रूप]] | |||
होलोमोर्फिक काहलर डिफरेंशियल के बंडल की [[बाहरी शक्ति]]: | |||
<math display="block"> | |||
\kappa = {\textstyle\bigwedge}^n ~ \Omega_X. | \kappa = {\textstyle\bigwedge}^n ~ \Omega_X. | ||
</math> | </math>लेवी-सिविटा कनेक्शन मीट्रिक के अनुरूप है <math>X</math> देता है, जिसके कारण इस संयोजन के लिए <math>\kappa</math>.को इस संबंध की वक्रता है, जिसके द्वारा परिभाषित 2-रूप का हैं। | ||
लेवी-सिविटा कनेक्शन मीट्रिक के अनुरूप है <math>X</math> देता है | |||
द्वारा परिभाषित 2-रूप | |||
<math display="block">\rho(X,Y) \;\stackrel{\text{def}}{=}\; \operatorname{Ric}(JX,Y)</math> | <math display="block">\rho(X,Y) \;\stackrel{\text{def}}{=}\; \operatorname{Ric}(JX,Y)</math> | ||
इसके विपरीत, रिक्की | |||
जहाँ <math>J</math> पर जटिल मैनिफोल्ड मानचित्र है, काहलर मैनिफोल्ड की संरचना द्वारा निर्धारित स्पर्शरेखा बंडल के रूप में प्रदर्शित होता हैं। रिक्की के कारण प्रारूप बंद और सटीक प्रारूप 2-प्रारूप है। इसका [[कोहोमोलोजी वर्ग]] है, एक वास्तविक स्थिर कारक तक, विहित बंडल का पहला चेर्न वर्ग, और इसलिए यह टोपोलॉजिकल इनवेरिएंट <math>X</math> (कॉम्पैक्ट के लिए <math>X</math>) है, इस अर्थ में कि यह केवल टोपोलॉजी पर निर्भर करता है, इस प्रकार <math>X</math> और यह जटिल संरचना का [[समरूप वर्ग]] हैं। | |||
इसके विपरीत, रिक्की प्रारूप रिक्की टेंसर को निर्धारित करता है | |||
<math display="block">\operatorname{Ric}(X, Y) = \rho(X, JY).</math> | <math display="block">\operatorname{Ric}(X, Y) = \rho(X, JY).</math> | ||
स्थानीय होलोमोर्फिक निर्देशांक में <math>z^\alpha</math>, रिक्की | स्थानीय होलोमोर्फिक निर्देशांक में <math>z^\alpha</math>, रिक्की प्रारूप द्वारा दिया गया है | ||
<math display="block">\rho = -i\partial\overline{\partial}\log\det\left(g_{\alpha\overline{\beta}}\right)</math> | <math display="block">\rho = -i\partial\overline{\partial}\log\det\left(g_{\alpha\overline{\beta}}\right)</math> | ||
जहाँ {{math|∂}} | जहाँ {{math|∂}} डाॅल्बियाॅल्ट ऑपरेटर है और | ||
<math display="block">g_{\alpha\overline{\beta}} = g\left(\frac{\partial}{\partial z^\alpha}, \frac{\partial}{\partial\overline{z}^\beta}\right).</math> | <math display="block">g_{\alpha\overline{\beta}} = g\left(\frac{\partial}{\partial z^\alpha}, \frac{\partial}{\partial\overline{z}^\beta}\right).</math> | ||
यदि रिक्की टेंसर विलुप्त हो जाता है, तो विहित बंडल सपाट होता है, इसलिए | यदि रिक्की टेंसर विलुप्त हो जाता है, तो विहित बंडल सपाट होता है, इसलिए [[जी-संरचना]] को स्थानीय रूप से उपसमूह में घटाया जा सकता है। | ||
[[जी-संरचना]] को स्थानीय रूप से उपसमूह में घटाया जा सकता | |||
विशेष रैखिक समूह <math>SL(n; \mathbb{C})</math>. चूंकि, काहलर कई गुना है | विशेष रैखिक समूह <math>SL(n; \mathbb{C})</math>. चूंकि, काहलर कई गुना है, जिसमें पहले से ही [[होलोनोमी]] <math>U(n)</math> है, और इसलिए (प्रतिबंधित) रिक्की-फ्लैट काहलर मैनिफोल्ड की होलोनॉमी <math>SU(n)</math> में निहित है, इसके विपरीत, यदि 2 की (प्रतिबंधित) होलोनॉमी<math>n</math>-आयामी रीमैनियन अनेक गुना समाहित है <math>SU(n)</math>, तो मैनिफोल्ड रिक्की-फ्लैट काहलर मैनिफोल्ड {{harv|कोबायाशी|नोमिज़ु|1996|loc=IX, §4}} है। | ||
रिक्की-फ्लैट काहलर मैनिफोल्ड की होलोनॉमी | |||
इसके विपरीत, यदि 2 की (प्रतिबंधित) होलोनॉमी<math>n</math>-आयामी रीमैनियन | |||
अनेक गुना समाहित है <math>SU(n)</math>, तो मैनिफोल्ड रिक्की-फ्लैट | |||
काहलर मैनिफोल्ड {{harv| | |||
==कनेक्शन जोड़ने का सामान्यीकरण== | ==कनेक्शन जोड़ने का सामान्यीकरण== | ||
रिक्की टेंसर को मनमाने [[एफ़िन कनेक्शन]] के लिए भी सामान्यीकृत किया जा सकता है, | रिक्की टेंसर को मनमाने [[एफ़िन कनेक्शन]] के लिए भी सामान्यीकृत किया जा सकता है, जहां यह अपरिवर्तनीय है जो अध्ययन में विशेष रूप से महत्वपूर्ण भूमिका निभाता है, जिसके लिए [[प्रक्षेप्य विभेदक ज्यामिति]] (ज्यामिति से संबंधित) अमानकीकृत भूगणित) {{harv|नोमिजू|सासाकी|1994}} के लिए यदि <math>\nabla</math> एफ़िन कनेक्शन को दर्शाता है, फिर वक्रता टेंसर को <math>R</math> है | ||
जहां यह अपरिवर्तनीय है जो अध्ययन में विशेष रूप से महत्वपूर्ण भूमिका निभाता है | (1,3)-टेंसर द्वारा परिभाषित किया जाता हैं। | ||
[[प्रक्षेप्य विभेदक ज्यामिति]] (ज्यामिति से संबंधित) | |||
अमानकीकृत भूगणित) {{harv| | |||
(1,3)-टेंसर द्वारा परिभाषित | |||
<math display="block">R(X,Y)Z = \nabla_X\nabla_Y Z - \nabla_Y\nabla_XZ - \nabla_{[X,Y]}Z</math> | <math display="block">R(X,Y)Z = \nabla_X\nabla_Y Z - \nabla_Y\nabla_XZ - \nabla_{[X,Y]}Z</math> | ||
किसी भी | किसी भी सदिश क्षेत्र के लिए <math>X, Y, Z</math>. रिक्की टेंसर को ट्रेस के रूप में परिभाषित किया गया है: | ||
<math display="block">\operatorname{ric}(X,Y) = \operatorname{tr}\big(Z\mapsto R(Z,X)Y\big).</math> | <math display="block">\operatorname{ric}(X,Y) = \operatorname{tr}\big(Z\mapsto R(Z,X)Y\big).</math> | ||
इस अधिक सामान्य स्थिति में, रिक्की टेंसर सममित है यदि और केवल यदि वहाँ | इस अधिक सामान्य स्थिति में, रिक्की टेंसर सममित है यदि और केवल यदि वहाँ कनेक्शन के लिए स्थानीय रूप से समानांतर [[वॉल्यूम फॉर्म|आयतन प्रारूप]] उपस्थित है। | ||
कनेक्शन के लिए स्थानीय रूप से समानांतर [[वॉल्यूम फॉर्म]] | |||
== असतत रिक्की वक्रता == | == असतत रिक्की वक्रता == | ||
असतत मैनिफोल्ड्स पर रिक्की वक्रता की धारणाओं को ग्राफ़ और पर परिभाषित किया गया है | असतत मैनिफोल्ड्स पर रिक्की वक्रता की धारणाओं को ग्राफ़ और पर परिभाषित किया गया है, इस प्रकार के नेटवर्क के लिए जहां वे किनारों के स्थानीय विचलन गुणों को मापते हैं। ओलिवियर का रिक्की वक्रता को इष्टतम परिवहन सिद्धांत का उपयोग करके परिभाषित किया गया है।<ref>{{Cite journal |last=Ollivier |first=Yann |date=2009-02-01 |title=मीट्रिक स्थानों पर मार्कोव श्रृंखलाओं की रिक्की वक्रता|journal=Journal of Functional Analysis |language=en |volume=256 |issue=3 |pages=810–864 |doi=10.1016/j.jfa.2008.11.001 |s2cid=14316364 |issn=0022-1236|doi-access=free }}</ref> इस प्रकार अलग (और पहले की) धारणा, फॉर्मन की रिक्की वक्रता पर टोपोलॉजिकल तर्क पर आधारित है।<ref>{{Cite journal |last=Forman |date=2003-02-01 |title=सेल कॉम्प्लेक्स और कॉम्बिनेटोरियल रिक्की वक्रता के लिए बोचनर की विधि|journal=Discrete & Computational Geometry |language=en |volume=29 |issue=3 |pages=323–374 |doi=10.1007/s00454-002-0743-x |s2cid=9584267 |issn=1432-0444|doi-access=free }}</ref> | ||
नेटवर्क | |||
रिक्की वक्रता को इष्टतम परिवहन सिद्धांत का उपयोग करके परिभाषित किया गया है।<ref>{{Cite journal |last=Ollivier |first=Yann |date=2009-02-01 |title=मीट्रिक स्थानों पर मार्कोव श्रृंखलाओं की रिक्की वक्रता|journal=Journal of Functional Analysis |language=en |volume=256 |issue=3 |pages=810–864 |doi=10.1016/j.jfa.2008.11.001 |s2cid=14316364 |issn=0022-1236|doi-access=free }}</ref> अलग (और पहले की) धारणा, फॉर्मन की रिक्की वक्रता पर | |||
टोपोलॉजिकल तर्क | |||
==यह भी देखें== | ==यह भी देखें== | ||
{{cols}} | {{cols}} | ||
*रिमानियन मैनिफोल्ड्स की वक्रता | *रिमानियन मैनिफोल्ड्स की वक्रता | ||
*अदिश वक्रता | *अदिश वक्रता | ||
*[[ | *[[कर्ली कलन]] | ||
*[[रिक्की अपघटन]] | *[[रिक्की अपघटन]] | ||
*[[रिक्की-फ्लैट मैनिफोल्ड]] | *[[रिक्की-फ्लैट मैनिफोल्ड]] | ||
Line 332: | Line 248: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 14/08/2023]] | [[Category:Created On 14/08/2023]] | ||
[[Category:Vigyan Ready]] |
Latest revision as of 22:42, 5 December 2023
विभेदक ज्यामिति में रिक्की वक्रता टेंसर को मुख्य रूप से जिसका नाम ग्रेगोरियो रिक्की-कर्बस्ट्रो के नाम पर रखा गया है, यह एक प्रकार से ज्यामितीय से जुड़ा ऐसा तत्व है, जो कई गुना हो जाने पर रीमैनियन मैनिफोल्ड या स्यूडो-रीमैनियन मैनिफोल्ड या स्यूडो-रीमैनियन मीट्रिक की आवश्यकता से निर्धारित होती है। मुख्य रूप से इसे उस डिग्री के माप के रूप में माना जाता है, जिस तक किसी दिए गए मीट्रिक टेंसर की ज्यामिति सामान्य [[स्यूडो-यूक्लिडियन स्थान]] या स्यूडो-यूक्लिडियन स्थान से स्थानीय रूप से भिन्न होती है।
रिक्की टेंसर को इस माप से पहचाना जा सकता है कि स्थान में जियोडेसिक के साथ चलते समय आकृति कैसे विकृत हो जाती है। सामान्य सापेक्षता में, जिसमें स्यूडो-रिमानियन सेटिंग उपस्थित है, यह रायचौधुरी समीकरण में रिक्की टेंसर की उपस्थिति से परिलक्षित होता है। इसे आंशिक रूप से इसी कारण आइंस्टीन क्षेत्र के समीकरणों के प्रस्ताव पर आधारित किया गया है, क्योंकि स्पेसटाइम को स्यूडो-रीमैनियन मीट्रिक द्वारा वर्णित किया जा सकता है, जिसमें रिक्की टेंसर और ब्रह्मांड के लिए पदार्थों के बीच आश्चर्यजनक सरल संबंध स्थापित हो जाता है।
मीट्रिक टेंसर के समान, रिक्की टेंसर मैनिफ़ोल्ड के प्रत्येक स्पर्शरेखा स्थान को सममित द्विरेखीय रूप (बेसे 1987, p. 43) प्रदान करता है।[1] मुख्य रूप से कोई रीमैनियन ज्यामिति में रिक्की वक्रता की भूमिका को कार्यों के विश्लेषण में लाप्लास ऑपरेटर की भूमिका के अनुरूप बनाता है, इस सादृश्य में रीमैन वक्रता टेंसर, जिसमें से रिक्की वक्रता प्राकृतिक उप-उत्पाद है, फलन के दूसरे डेरिवेटिव के पूर्ण आव्यूह के अनुरूप होगा। चूंकि, समान सादृश्य निकालने के लिए लाप्लास-बेल्ट्रामी ऑपरेटर हैं।
निम्न-आयामी टोपोलॉजी या थ्री-डायमेंशनल टोपोलॉजी में, रिक्की टेंसर में वह सारी जानकारी होती है जो उच्च आयामों में अधिक जटिल रीमैन वक्रता टेंसर द्वारा एन्कोड की जाती है। इसकी कुछ सीमा तक यह स्थिति कई ज्यामितीय और विश्लेषणात्मक उपकरणों के अनुप्रयोग की अनुमति देती है, जिसके कारण रिचर्ड एस हैमिल्टन और ग्रिगोरी पेरेलमैन के काम के माध्यम से पोंकारे अनुमान का हल प्राप्त हुआ हैं।
विभेदक ज्यामिति में, रीमैनियन मैनिफोल्ड पर रिक्की टेंसर पर निचली सीमाएं स्थिर वक्रता वाले स्थान रूप की ज्यामिति के साथ तुलना करके वैश्विक ज्यामितीय और टोपोलॉजिकल जानकारी निकालने की अनुमति देती हैं। ऐसा इसलिए है क्योंकि रिक्की टेंसर पर निचली सीमाओं का उपयोग रीमानियन ज्यामिति में लंबाई कार्यात्मकता का अध्ययन करने में सफलतापूर्वक किया जा सकता है, जैसा कि पहली बार 1941 में मायर्स प्रमेय के माध्यम से दिखाया गया था।
रिक्की टेंसर का सामान्य स्रोत यह है कि यह तब उत्पन्न होता है जब कोई टेंसर लाप्लासियन के साथ सहसंयोजक व्युत्पन्न को स्थानांतरित करता है। उदाहरण के लिए, यह बोचनर के सूत्र में इसकी उपस्थिति की व्याख्या करता है, जिसका उपयोग रीमैनियन ज्यामिति में सर्वव्यापी रूप से किया जाता है। उदाहरण के लिए, यह सूत्र बताता है कि क्यों शिंग-तुंग याउ और चेंग-याउ और ली-याउ असमानताओं जैसे उनके विकास होने के कारण ग्रेडिएंट अनुमान लगभग सदैव रिक्की वक्रता के लिए निचली सीमा पर निर्भर करते हैं।
2007 में, जॉन लोट (गणितज्ञ), कार्ल-थियोडोर स्टर्म और सेड्रिक विलानी ने निर्णायक रूप से प्रदर्शित किया कि रिक्की वक्रता पर निचली सीमा को पूर्ण रूप से रीमैनियन मैनिफोल्ड की मीट्रिक स्थान संरचना के साथ-साथ इसके आयतन प्रारूप के संदर्भ में समझा जा सकता है।[2] इसने रिक्की वक्रता और वासेरस्टीन मीट्रिक और परिवहन सिद्धांत (गणित) के बीच गहरा संबंध स्थापित किया, जो वर्तमान समय में बहुत शोध का विषय है।
परिभाषा
इसके कारण ऐसा लगता है कि आयामी रीमैनियन मैनिफोल्ड या स्यूडो-रीमैनियन मैनिफोल्ड से सुसज्जित होने के कारण लेवी-सिविटा कनेक्शन के साथ रीमैनियन वक्रता टेंसर का ऐसा नक्शा है, जो सहज सदिश क्षेत्र , , और को उपयोग करता है और इसी के आधार पर सदिश क्षेत्र लौटाता है।
सदिश स्थान का के लिए इस प्रकार होगा।
.
स्यूडो सूचकांक संकेतन में,
इसके आधार पर संयोजन के विषय में ध्यान दें कि कुछ स्रोत द्वारा परिभाषित करते हैं,
यहां हम यह कह सकते हैं कि के समान हैं, जिसे फिर से परिभाषित करना पड़ता हैं। इस प्रकार के लिए जैसे रीमैन टेंसर के बारे में संकेत परंपराएं भिन्न हैं, अपितु वे इसके लिए भिन्न रूप में नहीं हैं।
समतल मैनिफोल्ड पर स्थानीय निर्देशांक के माध्यम से परिभाषा
समतल रीमैनियन मैनिफोल्ड बनें या स्यूडो-रिमानियन मैनिफोल्ड या स्यूडो-रिमानियन -कई गुना होने के साथ एक सहज चार्ट दिया गया हैं, जिसके लिए फलन हैं। प्रत्येक के लिए के यह मान संतुष्ट करता है।
अब प्रत्येक के लिए परिभाषित करें, , , , और 1 और के बीच , फलन इस प्रकार प्रदर्शित होता हैं।
जहाँ और हैं, स्पर्शरेखा सदिशों के घटक में और के सापेक्ष समन्वय सदिश क्षेत्र है।
उपरोक्त औपचारिक प्रस्तुति को निम्नलिखित शैली में संक्षिप्त करना साधारण बात है:
इसे सीधे तौर पर चेक किया जा सकता है।
जिसे इस प्रकार पर (0,2)-टेंसर फ़ील्ड को परिभाषित करता हैं। विशेष रूप से, यदि और वेक्टर पर सदिश क्षेत्र हैं, फिर किसी भी सहज निर्देशांक के सापेक्ष
अंतिम पंक्ति में यह प्रदर्शन उपस्थित है कि द्विरेखीय मानचित्र रिक अच्छी तरह से परिभाषित है, जिसे अनौपचारिक संकेतन के साथ लिखना बहुत साधारण है।
परिभाषाओं की तुलना
उपरोक्त दोनों परिभाषाएँ समान हैं। परिभाषित करने वाले सूत्र और समन्वय दृष्टिकोण में लेवी-सिविटा कनेक्शन और लेवी-सिविटा संयोग के माध्यम से रीमैन वक्रता को परिभाषित करने वाले सूत्रों में सटीक समानता है। तर्कसंगत रूप से, सीधे स्थानीय निर्देशांक का उपयोग करने वाली परिभाषाएँ उत्तम हैं, क्योंकि ऊपर उल्लिखित रीमैन टेंसर की महत्वपूर्ण संपत्ति की आवश्यकता है धारण करने के लिए हॉसडॉर्फ रहता हैं। इसके विपरीत, स्थानीय समन्वय दृष्टिकोण के लिए केवल सहज एटलस की आवश्यकता होती है। स्थानीय दृष्टिकोण में अंतर्निहित अपरिवर्तनवादी दर्शन को स्पिनर क्षेत्र जैसे अधिक विदेशी ज्यामितीय वस्तुओं के निर्माण की विधियों से जोड़ना भी कुछ सीमा तक साधारण है।
परिभाषित करने वाला जटिल सूत्र परिचयात्मक अनुभाग में निम्नलिखित अनुभाग के समान ही है। इस प्रकार इसका अंतर केवल इतना है कि शब्दों को समूहीकृत किया गया है, जिससे कि से इसे देखना साधारण हो सके।
गुण
जैसा कि बियांची पहचान से देखा जा सकता है, रीमैनियन का रिक्की टेंसर मैनिफ़ोल्ड सममित टेंसर है, इस अर्थ में
इस प्रकार यह रैखिक-बीजगणितीय रूप से अनुसरण करता है कि रिक्की टेंसर पूर्ण रूप से निर्धारित है, यह मात्रा जानकर सभी वैक्टर के लिए इस प्रकार हैं। इकाई लंबाई का. इकाई स्पर्शरेखा सदिशों के सेट पर यह फलन इसे अधिकांशतः रिक्की वक्रता भी कहा जाता है, क्योंकि इसे जानना इसके बराबर है जैसे कि रिक्की वक्रता टेंसर को जानना इसका विषय हैं।
रिक्की वक्रता रीमैनियन के अनुभागीय वक्रता द्वारा निर्धारित की जाती है, इसके लिए कई गुना होने के साथ अपितु सामान्य रूप से इसमें कम जानकारी होती है। वास्तव में यदि यह मान है। रीमैनियन पर इकाई लंबाई का सदिश -तो फिर कई गुना बिल्कुल सही है सभी 2-तलों पर ली गई अनुभागीय वक्रता के औसत मान का युक्त गुना हैं। जहाँ -आयामी परिवार है, इस कारण ऐसे 2-तलों का, और इसलिए केवल आयाम 2 और 3 में रिक्की टेंसर निर्धारित करता है, इस प्रकार पूर्णतयः वक्रता टेंसर उल्लेखनीय अपवाद तब होता है जब मैनिफ़ोल्ड को a दिया जाता है, इसके आधार पर यूक्लिडियन स्थान की हाइपर सतह के रूप में प्राथमिकता देती हैं। इसका दूसरा मौलिक रूप जो गॉस-कोडाज़ी समीकरणों के माध्यम से पूर्ण वक्रता निर्धारित करता है। इसके आधार पर गॉस-कोडाज़ी समीकरण के लिए स्वयं रिक्की टेंसर और प्रिंसिपल वक्रता द्वारा निर्धारित होता है। इस प्रकार ऊनविम पृष्ठ की रिक्की टेंसर की ईजेनदिशाएं भी हैं। इसी कारण से रिक्की द्वारा टेंसर के प्रारंभ में की गई थी।
जैसा कि दूसरी बियांची पहचान से देखा जा सकता है,
अनौपचारिक गुण
रिक्की वक्रता को कभी-कभी (का ऋणात्मक गुणज) माना जाता है, इसके आधार पर मीट्रिक टेंसर का लाप्लासियन (चाऊ & नाॅफ 2004, लेमा 3.32) हैं।[3] जिसे विशेष रूप से, हार्मोनिक निर्देशांक में स्थानीय निर्देशांक घटक संतुष्ट करते हैं।
प्रत्यक्ष ज्यामितीय अर्थ
किसी भी बिंदु के निकट रीमैनियन मैनिफोल्ड में , जिसके लिए इसका उपयोगी मान स्थानीय निर्देशांक परिभाषित कर सकता है, जिसे जियोडेसिक सामान्य निर्देशांक कहा जाता है।
इन्हें मीट्रिक के अनुसार अनुकूलित किया गया है, जिससे कि जियोडेसिक्स के माध्यम से अनुरूप मूल के माध्यम से सीधी रेखाओं को इस प्रकार जियोडेसिक दूरी से मूल से यूक्लिडियन दूरी के अनुरूप है। इन निर्देशांकों में, मीट्रिक टेंसर यूक्लिडियन द्वारा अच्छी तरह से अनुमानित है, इसके आधार पर मीट्रिक आधार पर इसका अर्थ है-
इस प्रकार, यदि रिक्की वक्रता धनात्मक है। एक सदिश की दिशा में , शंक्वाकार क्षेत्र में लंबाई के जियोडेसिक खंडों के कसकर केंद्रित परिवार द्वारा बह गया हैं। से निकलना , अंदर प्रारंभिक वेग के साथ जिसके बारे में छोटा सा शंकु हैं, जिसके संगत की तुलना में छोटी मात्रा होगी। यूक्लिडियन स्थान में शंक्वाकार क्षेत्र, कम से कम यह प्रदान करता हैं कि को पर्याप्त रूप से छोटा माना जाता है, इसी प्रकार यदि रिक्की वक्रता ऋणात्मक है, जो किसी दिए गए सदिश की दिशा के लिए अनेक गुना में ऐसा शंक्वाकार क्षेत्र हैं, इसके अतिरिक्त यूक्लिडियन स्थान की तुलना में इसका आयतन बड़ा होगा।
रिक्की वक्रता अनिवार्य रूप से विमानों में वक्रता का औसत है, इस प्रकार यदि शंकु प्रारंभ में गोलाकार (या गोलाकार) से उत्सर्जित होता है, क्रॉस-सेक्शन दीर्घवृत्त (दीर्घवृत्त) में विकृत हो जाता है, यह संभव है कि यदि विकृतियाँ साथ में हों तो आयतन विरूपण विलुप्त हो जाए। प्रधान अक्ष प्रमेय दूसरे का प्रतिकार करते हैं। रिक्की वक्रता पुनः विलुप्त हो जाएगी। भौतिक अनुप्रयोगों में एक गैर-लुप्त अनुभागीय वक्रता की उपस्थिति आवश्यक रूप से इसका संकेत नहीं देती है, स्थानीय स्तर पर किसी द्रव्यमान की उपस्थिति, यदि शंकु का आरंभिक वृत्ताकार अनुप्रस्थ काट है, विश्व रेखाओं का आयतन बदले बिना बाद में अण्डाकार हो जाता है, यह किसी अन्य स्थान पर द्रव्यमान से उत्पन्न ज्वारीय प्रभाव के कारण है।
अनुप्रयोग
रिक्की वक्रता सामान्य सापेक्षता में महत्वपूर्ण भूमिका निभाती है, जहां यह है कि आइंस्टीन क्षेत्र समीकरणों में प्रमुख शब्द हैं।
रिक्की वक्रता रिक्की प्रवाह समीकरण में भी प्रकट होती है, जहां निश्चित है, रीमैनियन आव्यूह के एक-पैरामीटर परिवारों को समाधान के रूप में चुना गया है, इस प्रकार ज्यामितीय रूप से परिभाषित आंशिक अंतर समीकरण द्वारा प्रदर्शित होता हैं। इसके लिए समीकरणों की यह प्रणाली इसे ताप समीकरण के ज्यामितीय एनालॉग के रूप में सोचा जा सकता है, और यह सर्वप्रथम था।
1982 में रिचर्ड एस हैमिल्टन द्वारा प्रस्तुत किया गया हैं। चूंकि यह गर्मी में फैलती है, इस प्रकार ठोस स्थिति में जब तक शरीर स्थिर तापमान की संतुलन स्थिति तक नहीं पहुंच जाता, यदि किसी को कई गुना दिया गया है, तो रिक्की प्रवाह से 'संतुलन' उत्पन्न होने की उम्मीद की जा सकती है, रीमैनियन मीट्रिक जो आइंस्टीन मीट्रिक या स्थिर वक्रता वाली है। चूंकि, इस प्रकार की स्वच्छ अभिसरण तस्वीर कई गुना से प्राप्त नहीं की जा सकती है, ऐसे आव्यूह का समर्थन नहीं कर सकते है। जिसके समाधानों की प्रकृति का विस्तृत अध्ययन रिक्की प्रवाह द्वारा किया जाता हैं, मुख्य रूप से हैमिल्टन और त्वरित पेरेलमैन के कारण, दर्शाता है कि रिक्की प्रवाह के अनुरूप होने वाली विलक्षणताओं के प्रकार अभिसरण की विफलता, 3-आयामी टोपोलॉजी के बारे में गहरी जानकारी को एन्कोड करती है।
इस फलन की परिणति ज्यामितिकरण अनुमान का प्रमाण थी, इसे पहली बार 1970 के दशक में विलियम थर्स्टन द्वारा प्रस्तावित किया गया था, जिसे इस प्रकार माना जा सकता है, जो कि कॉम्पैक्ट 3-मैनिफोल्ड्स का वर्गीकरण हैं।
काहलर मैनिफोल्ड पर, रिक्की वक्रता प्रथम चेर्न वर्ग को मैनिफोल्ड का (मॉड टोरसन) पर निर्धारित करती है। चूंकि रिक्की वक्रता का कोई सादृश्य नहीं है जेनेरिक रीमैनियन मैनिफोल्ड पर टोपोलॉजिकल व्याख्या हैं।
वैश्विक ज्यामिति और टोपोलॉजी
यहां धनात्मक रिक्की वक्रता वाले मैनिफोल्ड्स से संबंधित वैश्विक परिणामों की छोटी सूची दी गई है, रीमैनियन ज्यामिति स्थानीय से वैश्विक प्रमेय भी देखें। संक्षेप में, रीमैनियन मैनिफोल्ड के धनात्मक रिक्की वक्रता के मजबूत टोपोलॉजिकल परिणाम होते हैं, जबकि (कम से कम 3 आयाम के लिए), ऋणात्मक रिक्की वक्रता का कोई टोपोलॉजिकल निहितार्थ नहीं होता है। (यदि रिक्की वक्रता फलन करती है तो रिक्की वक्रता को 'धनात्मक' कहा जाता है, इस प्रकार गैर-शून्य स्पर्शरेखा सदिशों के समुच्चय पर धनात्मक है) कुछ परिणाम स्यूडो-रीमैनियन मैनिफोल्ड्स के लिए भी जाने जाते हैं।
- मायर्स प्रमेय|मायर्स प्रमेय (1941) में कहा गया है कि यदि रिक्की वक्रता नीचे से पूर्ण रीमैनियन एन-मैनिफोल्ड पर बंधी है, तो मैनिफोल्ड का व्यास होता है, कवरिंग-स्थान तर्क से, यह इस प्रकार है कि धनात्मक रिक्की वक्रता के किसी भी कॉम्पैक्ट मैनिफोल्ड में सीमित मौलिक समूह होना चाहिए। शि यू-वाई यू एन चेंग (1975) ने दिखाया कि, इस सेटिंग में, व्यास असमानता में समानता तब होती है जब मैनिफोल्ड निरंतर वक्रता के क्षेत्र में आइसोमेट्री है।
- बिशप-ग्रोमोव असमानता बताती है कि यदि पूर्ण -आयामी रीमैनियन मैनिफोल्ड में गैर-ऋणात्मक रिक्की वक्रता है, तो जियोडेसिक गेंद का आयतन यूक्लिडियन में समान त्रिज्या के जियोडेसिक गेंद के आयतन से कम या -स्थान के बराबर होता है। इसके अतिरिक्त, यदि केंद्र के साथ गेंद के आयतन को दर्शाता है कि और त्रिज्या अनेक गुना में और त्रिज्या की गेंद के आयतन को दर्शाता है यूक्लिडियन में -स्थान फिर फलन नहीं बढ़ रहा है. इसे रिक्की वक्रता (केवल गैर-ऋणात्मकता नहीं) पर किसी भी निचली सीमा के लिए सामान्यीकृत किया जा सकता है, और यह ग्रोमोव की कॉम्पैक्टनेस प्रमेय (ज्यामिति) | ग्रोमोव की कॉम्पैक्टनेस प्रमेय के प्रमाण में मुख्य बिंदु है।)
- चीगर-ग्रोमोल विभाजन प्रमेय में कहा गया है कि यदि पूर्ण रीमानियन मैनिफोल्ड है साथ इसमें पंक्ति है, जिसका अर्थ है जियोडेसिक इस प्रकार है कि सभी के लिए , तो यह उत्पाद स्थान के लिए सममितीय है। परिणामस्वरूप, धनात्मक रिक्की वक्रता की पूरी विविधता का अधिकतम टोपोलॉजिकल अंत हो सकता है। संपूर्ण लोरेंट्ज़ियन मैनिफोल्ड (मीट्रिक हस्ताक्षर के) के लिए कुछ अतिरिक्त परिकल्पनाओं के कारण भी ) गैर-ऋणात्मक रिक्की टेंसर के साथ (गैलोवे 2000 ) प्रमेय सत्य है।
रिक्की प्रवाह के लिए हैमिल्टन के पहले रिक्की प्रवाह का परिणाम यह है कि एकमात्र कॉम्पैक्ट 3-मैनिफोल्ड्स जिसमें धनात्मक रिक्की वक्रता के रीमैनियन आव्यूह हैं, वे एसओ (4) के अलग-अलग उपसमूहों द्वारा 3-गोले के भागफल हैं जो उचित रूप से असंतत रूप से फलन करते हैं। जिसे बाद में उन्होंने गैर-ऋणात्मक रिक्की वक्रता की अनुमति देने के लिए इसे बढ़ाया जाता हैं। विशेष रूप से एकमात्र सरल रूप से जुड़ी संभावना 3-गोला ही है। ये परिणाम, विशेष रूप से मायर्स और हैमिल्टन द्वारा दर्शाते हैं कि धनात्मक रिक्की वक्रता के शक्तिशाली टोपोलॉजिकल परिणाम होते हैं। इसके विपरीत, सतहों की स्थिति को छोड़कर, ऋणात्मक रिक्की वक्रता का अब कोई टोपोलॉजिकल प्रभाव नहीं है, लोहकैम्प (1994) ने दिखाया है कि दो से अधिक आयाम का कोई भी मैनिफोल्ड ऋणात्मक रिक्की वक्रता के पूर्ण रीमैनियन मीट्रिक को स्वीकार करता है। इस प्रकार द्वि-आयामी मैनिफ़ोल्ड के मामले में, रिक्की वक्रता की ऋणात्मकता गॉसियन वक्रता की ऋणात्मकता का पर्याय है, जिसमें बहुत स्पष्ट गॉस-बोनट प्रमेय है। ऐसे बहुत कम द्वि-आयामी मैनिफोल्ड हैं, जो ऋणात्मक गाऊसी वक्रता के रीमैनियन आव्यूह को स्वीकार करने में विफल रहते हैं।
अनुरूप पुनर्स्केलिंग के कारण व्यवहार
यदि मीट्रिक इसे अनुरूप कारक से गुणा करके परिवर्तित किया जाता है, (बेस्से 1987, p. 59) द्वारा के लिए नए अनुरूप को इससे संबंधित मीट्रिक रिक्की टेंसर के रूप में दिया हुआ है।
मुख्य रूप से यह बात बताई गई है कि रीमैनियन मैनिफोल्ड में यह सदैव होता है, जो दिए गए मीट्रिक के अनुरूप मीट्रिक को ढूंढना संभव है, जिसके लिए रिक्की टेंसर विलुप्त हो जाता है, चूंकि, ध्यान दें कि यह केवल बिंदुवार है, इस कारण यह बल देकर कहना कि रिक्की वक्रता को समान रूप से विलुप्त करना सामान्य रूप से असंभव है, इस प्रकार यह एक अनुरूप पुनर्स्केलिंग द्वारा संपूर्ण विविधता पर आधारित हैं।
द्वि-आयामी मैनिफोल्ड के लिए, उपरोक्त सूत्र दर्शाता है कि यदि है, हार्मोनिक फलन, फिर अनुरूप स्केलिंग रिक्की टेंसर को नहीं परिवर्तित करता है (चूंकि यह अभी भी सम्मान के साथ मीट्रिक तक जब तक अपना ट्रेस परिवर्तित करता है।
ट्रेस-मुक्त रिक्की टेंसर
रीमानियन ज्यामिति और स्यूडो-रीमानियन ज्यामिति में, ट्रेस-फ्री रिक्की टेंसर (जिसे ट्रेसलेस रिक्की टेंसर भी कहा जाता है)।
रीमानियन या स्यूडो-रिमानियन -कई गुना द्वारा परिभाषित टेंसर है।
रिक्की टेंसर का ऑर्थोगोनल अपघटन
निम्नलिखित, इतनी साधारण मान नहीं है।
एक पहचान जो इसके साथ गहराई से जुड़ी हुई है (अपितु जिसे सीधे साबित किया जा सकता है) जो यह है कि
ट्रेस-मुक्त रिक्की टेंसर और आइंस्टीन आव्यूह
एक विचलन लेकर, और अनुबंधित बियांची पहचान का उपयोग करके, कोई उसे देख सकता है
तात्पर्य .
तो, बशर्ते कि n ≥ 3 और जुड़ा हुआ है, लुप्त हो रहा है, जिसका तात्पर्य यह है कि अदिश वक्रता स्थिर है। फिर कोई देख सकता है, इसके कारण यह निम्नलिखित प्रकार से समतुल्य हैं:
- कुछ संख्या के लिए
रीमैनियन सेटिंग में, उपरोक्त ऑर्थोगोनल अपघटन यह दर्शाता है
भी इन शर्तों के बराबर है.
इसके विपरीत, स्यूडो-रीमैनियन सेटिंग में, स्थिति आवश्यक रूप से इसका तात्पर्य नहीं है अत: अधिकतम यही कहा जा सकता है, ये स्थितियाँ में निहित हैं, विशेष रूप से, ट्रेस-मुक्त रिक्की टेंसर का लुप्त होना इसकी विशेषता है, जो आइंस्टीन के कई गुना है, जैसा कि संख्या के लिए स्थिति द्वारा परिभाषित किया गया है, सामान्य सापेक्षता में, यह समीकरण बताता है, वह आइंस्टीन के निर्वात क्षेत्र का समाधान है, इस प्रकार वैश्विक स्थिरांक के साथ समीकरण को प्रदर्शित करती हैं।
काहलर मैनिफोल्ड्स
काहलर मैनिफोल्ड पर , रिक्की वक्रता निर्धारित करती है, इस प्रकार विहित बंडल का वक्रता रूप हैं। (मोरोजानू 2007, अध्याय 12) के लिए कैनोनिकल लाइन बंडल शीर्ष पर है, होलोमोर्फिक काहलर डिफरेंशियल के बंडल की बाहरी शक्ति इस प्रकार होगी:
जहाँ पर जटिल मैनिफोल्ड मानचित्र है, काहलर मैनिफोल्ड की संरचना द्वारा निर्धारित स्पर्शरेखा बंडल के रूप में प्रदर्शित होता हैं। रिक्की के कारण प्रारूप बंद और सटीक प्रारूप 2-प्रारूप है। इसका कोहोमोलोजी वर्ग है, एक वास्तविक स्थिर कारक तक, विहित बंडल का पहला चेर्न वर्ग, और इसलिए यह टोपोलॉजिकल इनवेरिएंट (कॉम्पैक्ट के लिए ) है, इस अर्थ में कि यह केवल टोपोलॉजी पर निर्भर करता है, इस प्रकार और यह जटिल संरचना का समरूप वर्ग हैं।
इसके विपरीत, रिक्की प्रारूप रिक्की टेंसर को निर्धारित करता है
विशेष रैखिक समूह . चूंकि, काहलर कई गुना है, जिसमें पहले से ही होलोनोमी है, और इसलिए (प्रतिबंधित) रिक्की-फ्लैट काहलर मैनिफोल्ड की होलोनॉमी में निहित है, इसके विपरीत, यदि 2 की (प्रतिबंधित) होलोनॉमी-आयामी रीमैनियन अनेक गुना समाहित है , तो मैनिफोल्ड रिक्की-फ्लैट काहलर मैनिफोल्ड (कोबायाशी & नोमिज़ु 1996, IX, §4) है।
कनेक्शन जोड़ने का सामान्यीकरण
रिक्की टेंसर को मनमाने एफ़िन कनेक्शन के लिए भी सामान्यीकृत किया जा सकता है, जहां यह अपरिवर्तनीय है जो अध्ययन में विशेष रूप से महत्वपूर्ण भूमिका निभाता है, जिसके लिए प्रक्षेप्य विभेदक ज्यामिति (ज्यामिति से संबंधित) अमानकीकृत भूगणित) (नोमिजू & सासाकी 1994) के लिए यदि एफ़िन कनेक्शन को दर्शाता है, फिर वक्रता टेंसर को है (1,3)-टेंसर द्वारा परिभाषित किया जाता हैं।
असतत रिक्की वक्रता
असतत मैनिफोल्ड्स पर रिक्की वक्रता की धारणाओं को ग्राफ़ और पर परिभाषित किया गया है, इस प्रकार के नेटवर्क के लिए जहां वे किनारों के स्थानीय विचलन गुणों को मापते हैं। ओलिवियर का रिक्की वक्रता को इष्टतम परिवहन सिद्धांत का उपयोग करके परिभाषित किया गया है।[4] इस प्रकार अलग (और पहले की) धारणा, फॉर्मन की रिक्की वक्रता पर टोपोलॉजिकल तर्क पर आधारित है।[5]
यह भी देखें
- रिमानियन मैनिफोल्ड्स की वक्रता
- अदिश वक्रता
- कर्ली कलन
- रिक्की अपघटन
- रिक्की-फ्लैट मैनिफोल्ड
- क्रिस्टोफ़ेल प्रतीक
- सामान्य सापेक्षता के गणित का परिचय
फ़ुटनोट
- ↑ Here it is assumed that the manifold carries its unique Levi-Civita connection. For a general affine connection, the Ricci tensor need not be symmetric.
- ↑ Lott, John; Villani, Cedric (2006-06-23). "इष्टतम परिवहन के माध्यम से मीट्रिक-माप स्थानों के लिए रिक्की वक्रता". arXiv:math/0412127.
- ↑ Chow, Bennett (2004). The Ricci flow : an introduction. Dan Knopf. Providence, R.I.: American Mathematical Society. ISBN 0-8218-3515-7. OCLC 54692148.
- ↑ Ollivier, Yann (2009-02-01). "मीट्रिक स्थानों पर मार्कोव श्रृंखलाओं की रिक्की वक्रता". Journal of Functional Analysis (in English). 256 (3): 810–864. doi:10.1016/j.jfa.2008.11.001. ISSN 0022-1236. S2CID 14316364.
- ↑ Forman (2003-02-01). "सेल कॉम्प्लेक्स और कॉम्बिनेटोरियल रिक्की वक्रता के लिए बोचनर की विधि". Discrete & Computational Geometry (in English). 29 (3): 323–374. doi:10.1007/s00454-002-0743-x. ISSN 1432-0444. S2CID 9584267.
संदर्भ
- Besse, A.L. (1987), Einstein manifolds, Springer, ISBN 978-3-540-15279-8.
- Chow, Bennet & Knopf, Dan (2004), The Ricci Flow: an introduction, American Mathematical Society, ISBN 0-8218-3515-7.
- Eisenhart, L.P. (1949), Riemannian geometry, Princeton Univ. Press.
- Forman (2003), "Bochner's Method for Cell Complexes and Combinatorial Ricci Curvature", Discrete & Computational Geometry, 29 (3): 323–374. doi:10.1007/s00454-002-0743-x. ISSN 1432-0444
- Galloway, Gregory (2000), "Maximum Principles for Null Hypersurfaces and Null Splitting Theorems", Annales de l'Institut Henri Poincaré A, 1 (3): 543–567, arXiv:math/9909158, Bibcode:2000AnHP....1..543G, doi:10.1007/s000230050006, S2CID 9619157.
- Kobayashi, S.; Nomizu, K. (1963), Foundations of Differential Geometry, Volume 1, Interscience.
- Kobayashi, Shoshichi; Nomizu, Katsumi (1996), Foundations of Differential Geometry, Vol. 2, Wiley-Interscience, ISBN 978-0-471-15732-8.
- Lohkamp, Joachim (1994), "Metrics of negative Ricci curvature", Annals of Mathematics, Second Series, Annals of Mathematics, 140 (3): 655–683, doi:10.2307/2118620, ISSN 0003-486X, JSTOR 2118620, MR 1307899.
- Moroianu, Andrei (2007), Lectures on Kähler geometry, London Mathematical Society Student Texts, vol. 69, Cambridge University Press, arXiv:math/0402223, doi:10.1017/CBO9780511618666, ISBN 978-0-521-68897-0, MR 2325093
- Nomizu, Katsumi; Sasaki, Takeshi (1994), Affine differential geometry, Cambridge University Press, ISBN 978-0-521-44177-3.
- Ollivier, Yann (2009), "Ricci curvature of Markov chains on metric spaces", Journal of Functional Analysis 256 (3): 810–864. doi:10.1016/j.jfa.2008.11.001. ISSN 0022-1236
- Ricci, G. (1903–1904), "Direzioni e invarianti principali in una varietà qualunque", Atti R. Inst. Veneto, 63 (2): 1233–1239.
- L.A. Sidorov (2001) [1994], "Ricci tensor", Encyclopedia of Mathematics, EMS Press
- L.A. Sidorov (2001) [1994], "Ricci curvature", Encyclopedia of Mathematics, EMS Press
- Najman, Laurent and Romon, Pascal (2017): Modern approaches to discrete curvature, Springer (Cham), Lecture notes in mathematics
बाहरी संबंध
- Z. Shen, C. Sormani "The Topology of Open Manifolds with Nonnegative Ricci Curvature" (a survey)
- G. Wei, "Manifolds with A Lower Ricci Curvature Bound" (a survey)