बाइनरी टकराव सन्निकटन: Difference between revisions

From Vigyanwiki
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 7: Line 7:
==सिमुलेशन दृष्टिकोण==
==सिमुलेशन दृष्टिकोण==


बीसीए दृष्टिकोण में, आने वाले आयन और एक लक्ष्य परमाणु (नाभिक) के बीच एक एकल संघट्ट का इलाज दो संघट्टनी कणों के बीच चिरसम्मत प्रकीर्णन वाले अभिन्न अंग को हल करके किया जाता है।
बीसीए दृष्टिकोण में, आने वाले आयन और एक लक्ष्य परमाणु (नाभिक) के बीच एक एकल संघट्ट का उपचार दो संघट्टनी कणों के बीच चिरसम्मत प्रकीर्णन वाले अभिन्न अंग को हल करके किया जाता है।
आने वाले आयन का [[प्रभाव पैरामीटर]] समाकलन का समाधान प्रकीर्णन कोण देता है
आने वाले आयन का [[प्रभाव पैरामीटर]] समाकलन का समाधान प्रकीर्णन कोण देता है
आयन के साथ-साथ सैंपल परमाणुओं को इसकी ऊर्जा हानि, और इसलिए पहले की तुलना में संघट्ट के बाद ऊर्जा कितनी है।<ref name="Smith" />प्रकीर्णन अभिन्न को द्रव्यमान- केन्द्र समन्वय प्रणाली में परिभाषित किया गया है (दो कण एक अंतर-परमाणु क्षमता के साथ एक एकल कण में निम्न हो जाते हैं) और अंतर-परमाणु क्षमता के साथ प्रकीर्णन के कोण से संबंधित होते हैं।
आयन के साथ-साथ सैंपल परमाणुओं को इसकी ऊर्जा हानि, और इसलिए पहले की तुलना में संघट्ट के बाद ऊर्जा कितनी है।<ref name="Smith" />प्रकीर्णन अभिन्न को द्रव्यमान- केन्द्र समन्वय प्रणाली में परिभाषित किया गया है (दो कण एक अंतर-परमाणु क्षमता के साथ एक एकल कण में निम्न हो जाते हैं) और अंतर-परमाणु क्षमता के साथ प्रकीर्णन के कोण से संबंधित होते हैं।
Line 54: Line 54:
यदि कोड द्वितीयक टकरावों (रीकॉइल्स) को ध्यान में नहीं रखता है, तो दोषों की संख्या की गणना किन्चिन-पीज़ मॉडल के रॉबिन्सन एक्सटेंशन का उपयोग करके की जाती है।
यदि कोड द्वितीयक टकरावों (रीकॉइल्स) को ध्यान में नहीं रखता है, तो दोषों की संख्या की गणना किन्चिन-पीज़ मॉडल के रॉबिन्सन एक्सटेंशन का उपयोग करके की जाती है।


यदि प्रारंभिक रिकॉइल/आयन द्रव्यमान निम्न है, और जिस सामग्री में कैस्केड होता है उसका घनत्व निम्न है (यानी रिकॉइल-सामग्री संयोजन में कम रोकने की शक्ति (कण विकिरण) है), प्रारंभिक रिकॉइल और सैंपल परमाणुओं के बीच संघट्ट शायद ही कभी होता है , और परमाणुओं के बीच स्वतंत्र बाइनरी संघट्ट के अनुक्रम के रूप में अच्छी तरह से समझा जा सकता है। इस प्रकार के कैस्केड को बीसीए का उपयोग करके सैद्धांतिक रूप से अच्छी तरह से इलाज किया जा सकता है।
यदि प्रारंभिक रिकॉइल/आयन द्रव्यमान निम्न है, और जिस सामग्री में कैस्केड होता है उसका घनत्व निम्न है (यानी रिकॉइल-सामग्री संयोजन में कम रोकने की शक्ति (कण विकिरण) है), प्रारंभिक रिकॉइल और सैंपल परमाणुओं के बीच संघट्ट शायद ही कभी होता है , और परमाणुओं के बीच स्वतंत्र बाइनरी संघट्ट के अनुक्रम के रूप में अच्छी तरह से समझा जा सकता है। इस प्रकार के कैस्केड को बीसीए का उपयोग करके सैद्धांतिक रूप से अच्छी तरह से उपचार किया जा सकता है।


[[File:linearcollisioncascade.png|right|thumb|एक रैखिक संघट्ट कैस्केड का योजनाबद्ध चित्रण। मोटी रेखा सतह की स्थिति को दर्शाती है, और पतली रेखाएं शुरुआत से लेकर सामग्री में रुकने तक परमाणुओं के बैलिस्टिक आंदोलन पथ को दर्शाती हैं। बैंगनी वृत्त आने वाला आयन है। लाल, नीले, हरे और पीले वृत्त क्रमशः प्राथमिक, द्वितीयक, तृतीयक और चतुर्धातुक पुनरावृत्तियों को दर्शाते हैं। बैलिस्टिक टकरावों के बीच आयन सीधे रास्ते में चलते हैं। बीसीए पूर्ण कैस्केड मोड में रैखिक संघट्ट कैस्केड का अच्छी तरह से वर्णन कर सकता है।]]
[[File:linearcollisioncascade.png|right|thumb|एक रैखिक संघट्ट कैस्केड का योजनाबद्ध चित्रण। मोटी रेखा सतह की स्थिति को दर्शाती है, और पतली रेखाएं शुरुआत से लेकर सामग्री में रुकने तक परमाणुओं के बैलिस्टिक आंदोलन पथ को दर्शाती हैं। बैंगनी वृत्त आने वाला आयन है। लाल, नीले, हरे और पीले वृत्त क्रमशः प्राथमिक, द्वितीयक, तृतीयक और चतुर्धातुक पुनरावृत्तियों को दर्शाते हैं। बैलिस्टिक टकरावों के बीच आयन सीधे रास्ते में चलते हैं। बीसीए पूर्ण कैस्केड मोड में रैखिक संघट्ट कैस्केड का अच्छी तरह से वर्णन कर सकता है।]]


==नुकसान उत्पादन अनुमान==
==क्षति उत्पादन अनुमान==


बीसीए सिमुलेशन स्वाभाविक रूप से अंतरिक्ष में आयन प्रवेश गहराई, पार्श्व प्रसार और परमाणु और इलेक्ट्रॉनिक जमाव ऊर्जा वितरण प्रदान करते हैं। उनका उपयोग सामग्री में उत्पन्न क्षति का अनुमान लगाने के लिए भी किया जा सकता है, इस धारणा का उपयोग करके कि कोई भी पुनरावृत्ति जो सामग्री की सीमा विस्थापन ऊर्जा से अधिक ऊर्जा प्राप्त करती है, एक स्थिर दोष उत्पन्न करेगी।
बीसीए सिमुलेशन स्वाभाविक रूप से अंतरिक्ष में आयन प्रवेश गहराई, पार्श्व प्रसार और परमाणु और इलेक्ट्रॉनिक जमाव ऊर्जा वितरण प्रदान करते हैं। उनका उपयोग सामग्री में उत्पन्न क्षति का अनुमान लगाने के लिए भी किया जा सकता है, इस धारणा का उपयोग करके कि कोई भी पुनरावृत्ति जो सामग्री की देहली विस्थापन ऊर्जा से अधिक ऊर्जा प्राप्त करती है, एक स्थिर दोष उत्पन्न करेगी।


हालाँकि, इस दृष्टिकोण का उपयोग कई कारणों से बहुत सावधानी से किया जाना चाहिए। उदाहरण के लिए, यह क्षति के किसी भी तापीय रूप से सक्रिय पुनर्संयोजन के लिए जिम्मेदार नहीं है, न ही यह सर्वविदित तथ्य है कि धातुओं में क्षति का उत्पादन उच्च ऊर्जा के लिए होता है, जो किन्चिन-पीज़ भविष्यवाणी का केवल 20% है।<ref name="Ave98">R. S. Averback and T. Diaz de la Rubia, [https://books.google.com/books?id=WCipBsYgxr4C&pg=PA281 Displacement damage in irradiated metals and semiconductors], in ''Solid State Physics'', ed. H. Ehrenfest and F. Spaepen, volume 51, pp. 281–402, Academic Press, New York, 1998. {{ISBN|0-12-607751-7}}</ref> इसके अलावा, यह दृष्टिकोण केवल क्षति उत्पादन की भविष्यवाणी करता है जैसे कि सभी दोष अलग कर दिए गए हों
हालाँकि, इस दृष्टिकोण का उपयोग कई कारणों से बहुत सावधानी से किया जाना चाहिए। उदाहरण के लिए, यह क्षति के किसी भी तापीय रूप से सक्रिय पुनर्संयोजन के लिए जिम्मेदार नहीं है, न ही यह सर्वविदित तथ्य है कि धातुओं में क्षति का उत्पादन उच्च ऊर्जा के लिए होता है, जो किन्चिन-पीज़ भविष्यवाणी का केवल 20% है।<ref name="Ave98">R. S. Averback and T. Diaz de la Rubia, [https://books.google.com/books?id=WCipBsYgxr4C&pg=PA281 Displacement damage in irradiated metals and semiconductors], in ''Solid State Physics'', ed. H. Ehrenfest and F. Spaepen, volume 51, pp. 281–402, Academic Press, New York, 1998. {{ISBN|0-12-607751-7}}</ref> इसके अलावा, यह दृष्टिकोण केवल क्षति उत्पादन की भविष्यवाणी करता है जैसे कि सभी दोष अलग कर दिए गए हों
क्रिस्टलोग्राफिक दोष, जबकि वास्तव में कई मामलों में संघट्ट कैस्केड प्रारंभिक क्षति स्थिति के रूप में दोष समूहों या यहां तक ​​​​कि अव्यवस्थाओं का उत्पादन करते हैं।<ref name="Nor97f">{{cite journal|doi=10.1103/PhysRevB.57.7556|url=http://www.ua.es/personal/mj.caturla/papers/prb.kai.pdf|title=मौलिक अर्धचालकों और एफसीसी धातुओं में टकराव कैस्केड में दोष उत्पादन|year=1998|last1=Nordlund|first1=K.|last2=Ghaly|first2=M.|last3=Averback|first3=R.|last4=Caturla|first4=M.|last5=Diaz De La Rubia|first5=T.|last6=Tarus|first6=J.|journal=Physical Review B|volume=57|pages=7556|issue=13|bibcode=1998PhRvB..57.7556N|url-status=dead|archive-url=https://web.archive.org/web/20110716153839/http://www.ua.es/personal/mj.caturla/papers/prb.kai.pdf|archive-date=2011-07-16}}</ref><ref name="Nor99">{{cite journal|doi=10.1063/1.123948|title=टकराव कैस्केड में स्टैकिंग-फ़ॉल्ट टेट्राहेड्रा का गठन|year=1999|last1=Nordlund|first1=K.|last2=Gao|first2=F.|journal=Applied Physics Letters|volume=74|pages=2720|issue=18|bibcode=1999ApPhL..74.2720N}}</ref>
क्रिस्टलोग्राफिक दोष, जबकि वास्तव में कई परिस्थितियों में संघट्ट कैस्केड प्रारंभिक क्षति अवस्था के रूप में दोष समूहों या यहां तक ​​​​कि अव्यवस्थाओं का उत्पादन करते हैं।<ref name="Nor97f">{{cite journal|doi=10.1103/PhysRevB.57.7556|url=http://www.ua.es/personal/mj.caturla/papers/prb.kai.pdf|title=मौलिक अर्धचालकों और एफसीसी धातुओं में टकराव कैस्केड में दोष उत्पादन|year=1998|last1=Nordlund|first1=K.|last2=Ghaly|first2=M.|last3=Averback|first3=R.|last4=Caturla|first4=M.|last5=Diaz De La Rubia|first5=T.|last6=Tarus|first6=J.|journal=Physical Review B|volume=57|pages=7556|issue=13|bibcode=1998PhRvB..57.7556N|url-status=dead|archive-url=https://web.archive.org/web/20110716153839/http://www.ua.es/personal/mj.caturla/papers/prb.kai.pdf|archive-date=2011-07-16}}</ref><ref name="Nor99">{{cite journal|doi=10.1063/1.123948|title=टकराव कैस्केड में स्टैकिंग-फ़ॉल्ट टेट्राहेड्रा का गठन|year=1999|last1=Nordlund|first1=K.|last2=Gao|first2=F.|journal=Applied Physics Letters|volume=74|pages=2720|issue=18|bibcode=1999ApPhL..74.2720N}}</ref>
हालाँकि, बीसीए कोड को क्षति क्लस्टरिंग और पुनर्संयोजन मॉडल के साथ बढ़ाया जा सकता है जो इस संबंध में उनकी विश्वसनीयता में सुधार करते हैं।<ref name="Hei90">{{cite journal|doi=10.1080/10420159008213055 |title= उच्च ऊर्जा विस्थापन कैस्केड का कंप्यूटर सिमुलेशन|year=1990|last1=Heinisch|first1=H. L.|journal=Radiation Effects and Defects in Solids|volume=113|issue= 1–3|pages=53–73|url= https://zenodo.org/record/1234473}}</ref><ref name="Pug98">{{cite journal|doi=10.1016/S0168-583X(98)00139-6|title=बोरोन नाइट्राइड की उच्च खुराक प्रकाश आयन विकिरण द्वारा कैस्केड मिश्रण, स्पटरिंग और प्रसार के प्रभाव|year=1998|last1=Pugacheva|first1=T|last2=Djurabekova|first2=F|last3=Khvaliev|first3=S|journal=Nuclear Instruments and Methods in Physics Research Section B|volume=141|issue=1–4|pages=99–104|bibcode=1998NIMPB.141...99P}}</ref>
हालाँकि, बीसीए कोड को क्षति क्लस्टरिंग और पुनर्संयोजन मॉडल के साथ बढ़ाया जा सकता है जो इस संबंध में उनकी विश्वसनीयता में सुधार करते हैं।<ref name="Hei90">{{cite journal|doi=10.1080/10420159008213055 |title= उच्च ऊर्जा विस्थापन कैस्केड का कंप्यूटर सिमुलेशन|year=1990|last1=Heinisch|first1=H. L.|journal=Radiation Effects and Defects in Solids|volume=113|issue= 1–3|pages=53–73|url= https://zenodo.org/record/1234473}}</ref><ref name="Pug98">{{cite journal|doi=10.1016/S0168-583X(98)00139-6|title=बोरोन नाइट्राइड की उच्च खुराक प्रकाश आयन विकिरण द्वारा कैस्केड मिश्रण, स्पटरिंग और प्रसार के प्रभाव|year=1998|last1=Pugacheva|first1=T|last2=Djurabekova|first2=F|last3=Khvaliev|first3=S|journal=Nuclear Instruments and Methods in Physics Research Section B|volume=141|issue=1–4|pages=99–104|bibcode=1998NIMPB.141...99P}}</ref>
अंत में, अधिकांश सामग्रियों में औसत सीमा विस्थापन ऊर्जा बहुत सटीक रूप से ज्ञात नहीं है।
अंत में, अधिकांश सामग्रियों में औसत देहली विस्थापन ऊर्जा बहुत सटीक रूप से ज्ञात नहीं है।


==बीसीए कोड==
==बीसीए कोड==
* पदार्थ में आयनों का रुकना और सीमा<ref>[http://www.srim.org SRIM web site]</ref> एक ग्राफिकल यूजर इंटरफ़ेस प्रदान करता है और संभवतः अब यह सबसे अधिक उपयोग किया जाने वाला BCA कोड है। इसका उपयोग 1 [[GeV]] की आयन ऊर्जा तक सभी सामग्रियों में सभी आयनों के लिए अनाकार सामग्रियों में रैखिक संघट्ट कैस्केड का अनुकरण करने के लिए किया जा सकता है। ध्यान दें, हालांकि, एसआरआईएम चैनलिंग (भौतिकी), इलेक्ट्रॉनिक ऊर्जा जमाव के कारण क्षति (उदाहरण के लिए, सामग्रियों में तेज भारी आयन क्षति का वर्णन करने के लिए आवश्यक) या उत्तेजित इलेक्ट्रॉनों द्वारा उत्पन्न क्षति जैसे प्रभावों का इलाज नहीं करता है। गणना की गई स्पटर पैदावार अन्य कोड की तुलना में कम सटीक हो सकती है।<ref name="Hofsaess14">{{cite journal|doi=10.1016/j.apsusc.2014.03.152|title=SDTrimSP, TRIDYN और SRIM के साथ आयन बीम स्पटरिंग का अनुकरण|year=2014|journal=Applied Surface Science|volume=314|pages=134–141|bibcode = 2014ApSS..310..134H |last1=Hofsäss|first1=H.|last2=Zhang|first2=K.|last3=Mutzke|first3=A.|hdl=11858/00-001M-0000-0023-C776-9|hdl-access=free}}</ref>
* पदार्थ में आयनों का रुकना और सीमा<ref>[http://www.srim.org SRIM web site]</ref> एक ग्राफिकल यूजर इंटरफ़ेस प्रदान करता है और संभवतः अब यह सबसे अधिक उपयोग किया जाने वाला बीसीए कोड है। इसका उपयोग 1 [[GeV]] की आयन ऊर्जा तक सभी सामग्रियों में सभी आयनों के लिए अनाकार सामग्रियों में रैखिक संघट्ट कैस्केड का अनुकरण करने के लिए किया जा सकता है। ध्यान दें, हालांकि, एसआरआईएम चैनलिंग (भौतिकी), इलेक्ट्रॉनिक ऊर्जा जमाव के कारण क्षति (उदाहरण के लिए, सामग्रियों में तेज भारी आयन क्षति का वर्णन करने के लिए आवश्यक) या उत्तेजित इलेक्ट्रॉनों द्वारा उत्पन्न क्षति जैसे प्रभावों का उपचार नहीं करता है। गणना की गई स्पटर पैदावार अन्य कोड की तुलना में कम सटीक हो सकती है।<ref name="Hofsaess14">{{cite journal|doi=10.1016/j.apsusc.2014.03.152|title=SDTrimSP, TRIDYN और SRIM के साथ आयन बीम स्पटरिंग का अनुकरण|year=2014|journal=Applied Surface Science|volume=314|pages=134–141|bibcode = 2014ApSS..310..134H |last1=Hofsäss|first1=H.|last2=Zhang|first2=K.|last3=Mutzke|first3=A.|hdl=11858/00-001M-0000-0023-C776-9|hdl-access=free}}</ref>
* मार्लो <ref name="Rob92" /><ref name="Rob74" />एक बड़ा कोड है जो क्रिस्टलीय सामग्रियों को संभाल सकता है और कई अलग-अलग भौतिकी मॉडल का समर्थन कर सकता है।
* मार्लो <ref name="Rob92" /><ref name="Rob74" />एक बड़ा कोड है जो क्रिस्टलीय सामग्रियों को संभाल सकता है और कई अलग-अलग भौतिकी मॉडल का समर्थन कर सकता है।
* ट्रिडिन,<ref name="Mol84" />नए संस्करण जिन्हें [http://edoc.mpg.de/287291 SDTrimSP] के नाम से जाना जाता है, एक बीसीए कोड है जो गतिशील संरचना परिवर्तनों को संभालने में सक्षम है।
* ट्रिडिन,<ref name="Mol84" />नए संस्करण जिन्हें [http://edoc.mpg.de/287291 SDTrimSP] के नाम से जाना जाता है, एक बीसीए कोड है जो गतिशील संरचना परिवर्तनों को संभालने में सक्षम है।
* डार्ट, सैकले में सीईए (कमिसरीएट ए एल'एनर्जी एटोमिक) द्वारा विकसित फ्रांसीसी कोड। एसआरआईएम से इसकी इलेक्ट्रॉनिक रोक शक्ति और बिखरने वाले अभिन्न अंग के विश्लेषणात्मक संकल्प में भिन्न होता है (उत्पादित दोषों की मात्रा प्रत्यास्थ क्रॉस सेक्शन और परमाणुओं की परमाणु सांद्रता से निर्धारित होती है)। परमाणु रोकने की शक्ति सार्वभौमिक अंतर-परमाणु क्षमता (जेडबीएल क्षमता) से आती है, जबकि इलेक्ट्रॉनिक रोकने की शक्ति प्रोटॉन के लिए बेथे के समीकरण और आयनों के लिए लिंडहार्ड-शार्फ से प्राप्त होती है।
* डार्ट, सैकले में सीईए (कमिसरीएट ए एल'एनर्जी एटोमिक) द्वारा विकसित फ्रांसीसी कोड है। एसआरआईएम से इसकी इलेक्ट्रॉनिक स्तंभनशक्ति और प्रकीर्णन वाले अभिन्न अंग के विश्लेषणात्मक संकल्प में भिन्न होता है (उत्पादित दोषों की मात्रा प्रत्यास्थ क्रॉस सेक्शन और परमाणुओं की परमाणु सांद्रता से निर्धारित होती है)। परमाणु स्तंभनशक्ति सार्वभौमिक अंतर-परमाणु क्षमता (जेडबीएल क्षमता) से आती है, जबकि इलेक्ट्रॉनिक रोकने की शक्ति प्रोटॉन के लिए बेथे के समीकरण और आयनों के लिए लिंडहार्ड-शार्फ से प्राप्त होती है।


==यह भी देखें==
==यह भी देखें==
Line 92: Line 92:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 28/11/2023]]
[[Category:Created On 28/11/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 10:05, 11 December 2023

संघनित-पदार्थ भौतिकी में, द्विआधारी संघट्ट सन्निकटन (बाइनरीकॉलिसिओं अप्प्रोक्सिमेशन) (बीसीए) एक अनुमान है जिसका उपयोग ठोस पदार्थों में ऊर्जावान आयन (किलो-इलेक्ट्रॉनवोल्ट keV (इलेक्ट्रॉनवोल्ट) रेंज या उच्चतर में गतिज ऊर्जा के साथ) द्वारा प्रवेश की गहराई और क्रिस्टलोग्राफिक दोष उत्पादन को अधिक कुशलता से कंप्यूटर सिमुलेशन के लिए किया जाता है। विधि में, आयन को सैंपल परमाणुओं (परमाणु नाभिक) के साथ स्वतंत्र बाइनरी संघट्ट के अनुक्रम का अनुभव करके एक सामग्री के माध्यम से यात्रा करने का अनुमान लगाया जाता है। टकरावों के बीच, आयन को इलेक्ट्रॉनिक स्तंभनशक्ति (कण विकिरण) का अनुभव करते हुए, सीधे रास्ते में यात्रा करने के लिए माना जाता है, लेकिन नाभिक के साथ संघट्ट में प्रत्यास्थ संघट्ट होता है।[1][2][3]

परमाणुओं के बीच स्वतंत्र द्विआधारी संघट्ट का योजनाबद्ध चित्रण

सिमुलेशन दृष्टिकोण

बीसीए दृष्टिकोण में, आने वाले आयन और एक लक्ष्य परमाणु (नाभिक) के बीच एक एकल संघट्ट का उपचार दो संघट्टनी कणों के बीच चिरसम्मत प्रकीर्णन वाले अभिन्न अंग को हल करके किया जाता है। आने वाले आयन का प्रभाव पैरामीटर समाकलन का समाधान प्रकीर्णन कोण देता है आयन के साथ-साथ सैंपल परमाणुओं को इसकी ऊर्जा हानि, और इसलिए पहले की तुलना में संघट्ट के बाद ऊर्जा कितनी है।[1]प्रकीर्णन अभिन्न को द्रव्यमान- केन्द्र समन्वय प्रणाली में परिभाषित किया गया है (दो कण एक अंतर-परमाणु क्षमता के साथ एक एकल कण में निम्न हो जाते हैं) और अंतर-परमाणु क्षमता के साथ प्रकीर्णन के कोण से संबंधित होते हैं।

यह जानने के लिए कि संघट्ट के दौरान कितना समय बीता है, संघट्ट के समय अभिन्न को हल करना भी संभव है। यह कम से कम तब आवश्यक है जब बीसीए का उपयोग ''पूर्ण कैस्केड'' मोड में किया जाता है, नीचे देखें।

इलेक्ट्रॉनों को ऊर्जा हानि, यानी इलेक्ट्रॉनिक स्तंभनशक्ति (कण विकिरण), इसका उपचार या तो प्रभाव-पैरामीटर पर निर्भर इलेक्ट्रॉनिक स्टॉपिंग मॉडल के साथ किया जा सकता है ,[4] केवल टकरावों के बीच आयन वेग पर निर्भर रोक शक्ति को घटाकर,[5] या दो दृष्टिकोणों का संयोजन है।

प्रभाव पैरामीटर के लिए चयन विधि ने बीसीए कोड को दो मुख्य में विभाजित किया है किस्में: ''मोंटे कार्लो'' बीसीए और क्रिस्टल-बीसीए कोड।

तथाकथित मोंटे कार्लो बीसीए में अगले संघट्टनी वाले परमाणु की दूरी और प्रभाव पैरामीटर को यादृच्छिक रूप से चुना जाता है संभाव्यता वितरण से जो केवल सामग्री के परमाणु घनत्व पर निर्भर करता है। यह दृष्टिकोण अनिवार्य रूप से पूरी तरह से अनाकार सामग्री में आयन मार्ग का अनुकरण करता है। (ध्यान दें कि कुछ स्रोत बीसीए की इस किस्म को केवल मोंटे कार्लो कहते हैं, जो कि है भ्रामक है क्योंकि नाम को किसी अन्य पूर्णतः भिन्न नाम के साथ भ्रमित किया जा सकता है मोंटे कार्लो सिमुलेशन किस्में)। एसआरआईएम और एसडीट्रिमएसपी मोंटे-कार्लो बीसीए कोड हैं।

बीसीए तरीकों को लागू करना भी संभव है (यद्यपि अधिक कठिन)। क्रिस्टलीय सामग्री, जैसे कि गतिशील आयन की क्रिस्टल में एक परिभाषित स्थिति होती है, और अगले संघट्टनी वाले परमाणु की दूरी और प्रभाव पैरामीटर निर्धारित किया जाता है क्रिस्टल में एक परमाणु के अनुरूप होना। इस दृष्टिकोण में बीसीए का उपयोग किया जा सकता है चैनलिंग (भौतिकी) के दौरान परमाणु गति का अनुकरण करने के लिए। मार्लो जैसे कोड इसी दृष्टिकोण से काम करते हैं।

अनुकरण करने के लिए बाइनरी संघट्ट सन्निकटन को भी बढ़ाया जा सकता है लंबे समय तक किसी सामग्री की गतिशील संरचना में परिवर्तन होता है आयन विकिरण, यानी आयन आरोपण और स्पंदन के कारण।[6]

निम्न आयन ऊर्जा पर, परमाणुओं के बीच स्वतंत्र संघट्ट का अनुमान टूटने लगता है। एक साथ कई टकरावों के लिए संघट्ट अभिन्न को हल करके इस समस्या को कुछ हद तक बढ़ाया जा सकता है।[3][7] हालाँकि, बहुत निम्न ऊर्जा पर (~1 केवी से नीचे, अधिक सटीक अनुमान के लिए देखें)। [8]) बीसीए सन्निकटन हमेशा टूट जाता है, और किसी को आणविक गतिशीलता का उपयोग करना चाहिए आयन विकिरण सिमुलेशन दृष्टिकोण क्योंकि ये, प्रति डिज़ाइन, स्वेच्छाचारी से कई परमाणुओं के कई- पिण्ड संघट्ट को संभाल सकते हैं। एमडी सिमुलेशन या तो केवल आने वाले आयन (रीकॉइल इंटरेक्शन सन्निकटन या आरआईए) का अनुसरण कर सकते हैं [9]) या संघट्ट कैस्केड में सम्मिलित सभी परमाणुओं का अनुकरण करें .[10]


बीसीए संघट्ट कैस्केड सिमुलेशन

बीसीए सिमुलेशन को उनके प्रकार के आधार पर आगे उप-विभाजित किया जा सकता है केवल आने वाले आयन का अनुसरण करें, या आयन द्वारा उत्पादित रिकॉइल्स का भी अनुसरण करें (पूर्ण कैस्केड मोड, उदाहरण के लिए, लोकप्रिय बीसीए कोड स्टॉपिंग और मैटर में आयनों की रेंज में)। यदि कोड द्वितीयक टकरावों (रीकॉइल्स) को ध्यान में नहीं रखता है, तो दोषों की संख्या की गणना किन्चिन-पीज़ मॉडल के रॉबिन्सन एक्सटेंशन का उपयोग करके की जाती है।

यदि प्रारंभिक रिकॉइल/आयन द्रव्यमान निम्न है, और जिस सामग्री में कैस्केड होता है उसका घनत्व निम्न है (यानी रिकॉइल-सामग्री संयोजन में कम रोकने की शक्ति (कण विकिरण) है), प्रारंभिक रिकॉइल और सैंपल परमाणुओं के बीच संघट्ट शायद ही कभी होता है , और परमाणुओं के बीच स्वतंत्र बाइनरी संघट्ट के अनुक्रम के रूप में अच्छी तरह से समझा जा सकता है। इस प्रकार के कैस्केड को बीसीए का उपयोग करके सैद्धांतिक रूप से अच्छी तरह से उपचार किया जा सकता है।

एक रैखिक संघट्ट कैस्केड का योजनाबद्ध चित्रण। मोटी रेखा सतह की स्थिति को दर्शाती है, और पतली रेखाएं शुरुआत से लेकर सामग्री में रुकने तक परमाणुओं के बैलिस्टिक आंदोलन पथ को दर्शाती हैं। बैंगनी वृत्त आने वाला आयन है। लाल, नीले, हरे और पीले वृत्त क्रमशः प्राथमिक, द्वितीयक, तृतीयक और चतुर्धातुक पुनरावृत्तियों को दर्शाते हैं। बैलिस्टिक टकरावों के बीच आयन सीधे रास्ते में चलते हैं। बीसीए पूर्ण कैस्केड मोड में रैखिक संघट्ट कैस्केड का अच्छी तरह से वर्णन कर सकता है।

क्षति उत्पादन अनुमान

बीसीए सिमुलेशन स्वाभाविक रूप से अंतरिक्ष में आयन प्रवेश गहराई, पार्श्व प्रसार और परमाणु और इलेक्ट्रॉनिक जमाव ऊर्जा वितरण प्रदान करते हैं। उनका उपयोग सामग्री में उत्पन्न क्षति का अनुमान लगाने के लिए भी किया जा सकता है, इस धारणा का उपयोग करके कि कोई भी पुनरावृत्ति जो सामग्री की देहली विस्थापन ऊर्जा से अधिक ऊर्जा प्राप्त करती है, एक स्थिर दोष उत्पन्न करेगी।

हालाँकि, इस दृष्टिकोण का उपयोग कई कारणों से बहुत सावधानी से किया जाना चाहिए। उदाहरण के लिए, यह क्षति के किसी भी तापीय रूप से सक्रिय पुनर्संयोजन के लिए जिम्मेदार नहीं है, न ही यह सर्वविदित तथ्य है कि धातुओं में क्षति का उत्पादन उच्च ऊर्जा के लिए होता है, जो किन्चिन-पीज़ भविष्यवाणी का केवल 20% है।[11] इसके अलावा, यह दृष्टिकोण केवल क्षति उत्पादन की भविष्यवाणी करता है जैसे कि सभी दोष अलग कर दिए गए हों क्रिस्टलोग्राफिक दोष, जबकि वास्तव में कई परिस्थितियों में संघट्ट कैस्केड प्रारंभिक क्षति अवस्था के रूप में दोष समूहों या यहां तक ​​​​कि अव्यवस्थाओं का उत्पादन करते हैं।[12][13] हालाँकि, बीसीए कोड को क्षति क्लस्टरिंग और पुनर्संयोजन मॉडल के साथ बढ़ाया जा सकता है जो इस संबंध में उनकी विश्वसनीयता में सुधार करते हैं।[14][15] अंत में, अधिकांश सामग्रियों में औसत देहली विस्थापन ऊर्जा बहुत सटीक रूप से ज्ञात नहीं है।

बीसीए कोड

  • पदार्थ में आयनों का रुकना और सीमा[16] एक ग्राफिकल यूजर इंटरफ़ेस प्रदान करता है और संभवतः अब यह सबसे अधिक उपयोग किया जाने वाला बीसीए कोड है। इसका उपयोग 1 GeV की आयन ऊर्जा तक सभी सामग्रियों में सभी आयनों के लिए अनाकार सामग्रियों में रैखिक संघट्ट कैस्केड का अनुकरण करने के लिए किया जा सकता है। ध्यान दें, हालांकि, एसआरआईएम चैनलिंग (भौतिकी), इलेक्ट्रॉनिक ऊर्जा जमाव के कारण क्षति (उदाहरण के लिए, सामग्रियों में तेज भारी आयन क्षति का वर्णन करने के लिए आवश्यक) या उत्तेजित इलेक्ट्रॉनों द्वारा उत्पन्न क्षति जैसे प्रभावों का उपचार नहीं करता है। गणना की गई स्पटर पैदावार अन्य कोड की तुलना में कम सटीक हो सकती है।[17]
  • मार्लो [2][3]एक बड़ा कोड है जो क्रिस्टलीय सामग्रियों को संभाल सकता है और कई अलग-अलग भौतिकी मॉडल का समर्थन कर सकता है।
  • ट्रिडिन,[6]नए संस्करण जिन्हें SDTrimSP के नाम से जाना जाता है, एक बीसीए कोड है जो गतिशील संरचना परिवर्तनों को संभालने में सक्षम है।
  • डार्ट, सैकले में सीईए (कमिसरीएट ए एल'एनर्जी एटोमिक) द्वारा विकसित फ्रांसीसी कोड है। एसआरआईएम से इसकी इलेक्ट्रॉनिक स्तंभनशक्ति और प्रकीर्णन वाले अभिन्न अंग के विश्लेषणात्मक संकल्प में भिन्न होता है (उत्पादित दोषों की मात्रा प्रत्यास्थ क्रॉस सेक्शन और परमाणुओं की परमाणु सांद्रता से निर्धारित होती है)। परमाणु स्तंभनशक्ति सार्वभौमिक अंतर-परमाणु क्षमता (जेडबीएल क्षमता) से आती है, जबकि इलेक्ट्रॉनिक रोकने की शक्ति प्रोटॉन के लिए बेथे के समीकरण और आयनों के लिए लिंडहार्ड-शार्फ से प्राप्त होती है।

यह भी देखें

संदर्भ

  1. 1.0 1.1 R. Smith (ed.), Atomic & ion collisions in solids and at surfaces: theory, simulation and applications, Cambridge University Press, Cambridge, UK, 1997 ISBN 0-521-44022-X
  2. 2.0 2.1 Robinson, M (1992). "उच्च-ऊर्जा टकराव कैस्केड1 का कंप्यूटर सिमुलेशन अध्ययन". Nuclear Instruments and Methods in Physics Research Section B. 67 (1–4): 396–400. Bibcode:1992NIMPB..67..396R. doi:10.1016/0168-583X(92)95839-J.
  3. 3.0 3.1 3.2 Robinson, Mark; Torrens, Ian (1974). "बाइनरी-टकराव सन्निकटन में ठोस पदार्थों में परमाणु-विस्थापन कैस्केड का कंप्यूटर सिमुलेशन". Physical Review B. 9 (12): 5008. Bibcode:1974PhRvB...9.5008R. doi:10.1103/PhysRevB.9.5008.
  4. L. M. Kishinevskii, Cross sections for inelastic atomic collisions, Bull. Acad. Sci. USSR, Phys. Ser. 26, 1433 (1962)
  5. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Matter, 1985 ISBN 0-08-022053-3 and references therein.
  6. 6.0 6.1 Moller, W; Eckstein, W (1984). "Tridyn — A TRIM simulation code including dynamic composition changes". Nuclear Instruments and Methods in Physics Research Section B. 2 (1–3): 814–818. Bibcode:1984NIMPB...2..814M. doi:10.1016/0168-583X(84)90321-5.
  7. Gartner, K (1995). "क्रिस्टलीय परतों के माध्यम से आयन संचरण का राउंड रॉबिन कंप्यूटर सिमुलेशन". Nuclear Instruments and Methods in Physics Research Section B. 102 (1–4): 183–197. Bibcode:1995NIMPB.102..183G. doi:10.1016/0168-583X(95)80139-D.
  8. Hobler, G (2001). "रिकॉइल इंटरेक्शन सन्निकटन में आणविक गतिशीलता सिमुलेशन के अनुप्रयोग की उपयोगी सीमा पर". Nuclear Instruments and Methods in Physics Research Section B. 180 (1–4): 203–208. Bibcode:2001NIMPB.180..203H. doi:10.1016/S0168-583X(01)00418-9.
  9. Nordlund, K (1995). "Molecular dynamics simulation of ion ranges in the 1–100 keV energy range". Computational Materials Science. 3 (4): 448–456. doi:10.1016/0927-0256(94)00085-Q.
  10. De La Rubia, T.; Averback, R.; Benedek, R.; King, W. (1987). "ऊर्जावान विस्थापन कैस्केड में थर्मल स्पाइक्स की भूमिका". Physical Review Letters. 59 (17): 1930–1933. Bibcode:1987PhRvL..59.1930D. doi:10.1103/PhysRevLett.59.1930. PMID 10035371.
  11. R. S. Averback and T. Diaz de la Rubia, Displacement damage in irradiated metals and semiconductors, in Solid State Physics, ed. H. Ehrenfest and F. Spaepen, volume 51, pp. 281–402, Academic Press, New York, 1998. ISBN 0-12-607751-7
  12. Nordlund, K.; Ghaly, M.; Averback, R.; Caturla, M.; Diaz De La Rubia, T.; Tarus, J. (1998). "मौलिक अर्धचालकों और एफसीसी धातुओं में टकराव कैस्केड में दोष उत्पादन" (PDF). Physical Review B. 57 (13): 7556. Bibcode:1998PhRvB..57.7556N. doi:10.1103/PhysRevB.57.7556. Archived from the original (PDF) on 2011-07-16.
  13. Nordlund, K.; Gao, F. (1999). "टकराव कैस्केड में स्टैकिंग-फ़ॉल्ट टेट्राहेड्रा का गठन". Applied Physics Letters. 74 (18): 2720. Bibcode:1999ApPhL..74.2720N. doi:10.1063/1.123948.
  14. Heinisch, H. L. (1990). "उच्च ऊर्जा विस्थापन कैस्केड का कंप्यूटर सिमुलेशन". Radiation Effects and Defects in Solids. 113 (1–3): 53–73. doi:10.1080/10420159008213055.
  15. Pugacheva, T; Djurabekova, F; Khvaliev, S (1998). "बोरोन नाइट्राइड की उच्च खुराक प्रकाश आयन विकिरण द्वारा कैस्केड मिश्रण, स्पटरिंग और प्रसार के प्रभाव". Nuclear Instruments and Methods in Physics Research Section B. 141 (1–4): 99–104. Bibcode:1998NIMPB.141...99P. doi:10.1016/S0168-583X(98)00139-6.
  16. SRIM web site
  17. Hofsäss, H.; Zhang, K.; Mutzke, A. (2014). "SDTrimSP, TRIDYN और SRIM के साथ आयन बीम स्पटरिंग का अनुकरण". Applied Surface Science. 314: 134–141. Bibcode:2014ApSS..310..134H. doi:10.1016/j.apsusc.2014.03.152. hdl:11858/00-001M-0000-0023-C776-9.


बाहरी संबंध