डिराक ब्रैकेट: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 17: Line 17:


:<math> L = \tfrac{1}{2}m\vec{v}^2 + \frac{q}{c}\vec{A}\cdot\vec{v} - V(\vec{r}),</math>
:<math> L = \tfrac{1}{2}m\vec{v}^2 + \frac{q}{c}\vec{A}\cdot\vec{v} - V(\vec{r}),</math>
'''जहाँ''' {{math|{{overset|→|''A''}}}} चुंबकीय क्षेत्र के लिए सदिश क्षमता है, {{math|{{overset|→|''B''}}}}; {{mvar|c}} निर्वात में प्रकाश की गति है; और {{math|V({{overset|→|''r''}})}} इच्छानुसार बाह्य अदिश विभव है; कोई इसे आसानी से द्विघात मान सकता है {{mvar|x}} और {{mvar|y}}, व्यापकता के नुकसान के बिना। हम उपयोग करते हैं
जहां {{math|{{overset|→|''A''}}}} चुंबकीय क्षेत्र के लिए सदिश क्षमता {{math|{{overset|→|''B''}}}} है; {{mvar|c}} निर्वात में प्रकाश की गति है; और {{math|V({{overset|→|''r''}})}} इच्छानुसार बाह्य अदिश विभव है जिसे व्यापकता की हानि के बिना सरलता से {{mvar|x}} और {{mvar|y}} में द्विघात माना जा सकता है। हम उपयोग करते हैं


:<math> \vec{A} = \frac{B}{2}(x\hat{y} - y\hat{x})</math>
:<math> \vec{A} = \frac{B}{2}(x\hat{y} - y\hat{x})</math>
हमारी सदिश क्षमता के रूप में; यह z दिशा में समान और स्थिर चुंबकीय क्षेत्र B से मेल खाता है। यहां, टोपियाँ इकाई सदिशों को दर्शाती हैं। चूँकि, बाद में लेख में, उनका उपयोग क्वांटम मैकेनिकल ऑपरेटरों को उनके मौलिक एनालॉग्स से अलग करने के लिए किया जाता है। उपयोग सन्दर्भ से स्पष्ट होना चाहिए।
हमारी सदिश क्षमता के रूप में; यह z दिशा में समान और स्थिर चुंबकीय क्षेत्र B से मेल खाता है। यहां, हैट इकाई सदिशों को दर्शाती हैं। चूँकि, पश्चात के लेख में, उनका उपयोग क्वांटम यांत्रिक संचालको को उनके मौलिक एनालॉग्स से भिन्न करने के लिए किया जाता है। उपयोग सन्दर्भ से स्पष्ट होना चाहिए।


स्पष्ट रूप से, लैग्रेंजियन यांत्रिकी न्यायसंगत है
सामान्यतः, लैग्रेंजियन यांत्रिकी स्पष्ट है


:<math>
:<math>
Line 35: Line 35:
m\ddot{y} = - \frac{\partial V}{\partial y} - \frac{q B}{c}\dot{x}.
m\ddot{y} = - \frac{\partial V}{\partial y} - \frac{q B}{c}\dot{x}.
</math>
</math>
हार्मोनिक क्षमता के लिए, की ढाल {{math|''V''}} का ग्रेडिएंट केवल निर्देशांक के समान होता है {{math|−(''x'',''y'')}}
एक हार्मोनिक क्षमता के लिए {{math|''V''}} का ग्रेडिएंट केवल निर्देशांक {{math|−(''x'',''y'')}} के समान होता है।


अब, बहुत बड़े चुंबकीय क्षेत्र की सीमा में, {{math|''qB''/''mc'' ≫ 1}}। फिर कोई साधारण सन्निकट लैग्रेन्जियन उत्पन्न करने के लिए गतिज शब्द को छोड़ सकता है,
अब एक बहुत बड़े चुंबकीय क्षेत्र {{math|''qB''/''mc'' ≫ 1}} की सीमा में कोई एक साधारण सन्निकट लैग्रेंजियन उत्पन्न करने के लिए गतिज शब्द को छोड़ सकता है


:<math>
:<math>
Line 50: Line 50:
\dot{x} = -\frac{c}{q B}\frac{\partial V}{\partial y}~.
\dot{x} = -\frac{c}{q B}\frac{\partial V}{\partial y}~.
</math>
</math>
ध्यान दें कि यह अनुमानित लैग्रेंजियन वेग में रैखिक है, जो उन स्थितियों में से है जिसके अनुसार मानक हैमिल्टनियन प्रक्रिया टूट जाती है। चूँकि इस उदाहरण को सन्निकटन के रूप में प्रेरित किया गया है, विचाराधीन लैग्रैन्जियन वैध है और लैग्रैन्जियन औपचारिकता में गति के लगातार समीकरणों की ओर ले जाता है।
ध्यान दें कि यह सन्निकट लैग्रेंजियन वेग में रैखिक है, जो उन स्थितियों में से एक है जिसके अनुसार मानक हैमिल्टनियन प्रक्रिया टूट जाती है। चूँकि इस उदाहरण को सन्निकटन के रूप में प्रेरित किया गया है, विचाराधीन लैग्रैन्जियन वैध है और लैग्रैन्जियन औपचारिकता में गति के निरंतर समीकरणों की ओर ले जाता है।


चूँकि, हैमिल्टनियन प्रक्रिया का पालन करते हुए, निर्देशांक से जुड़े कैनोनिकल क्षण अब हैं
चूँकि, हैमिल्टनियन प्रक्रिया का पालन करते हुए, निर्देशांक से जुड़े कैनोनिकल क्षण अब हैं
Line 60: Line 60:
p_y = \frac{\partial L}{\partial \dot{y}} = \frac{q B}{2c}x ~,
p_y = \frac{\partial L}{\partial \dot{y}} = \frac{q B}{2c}x ~,
</math>
</math>
जो इस अभिप्राय में असामान्य हैं कि वे वेगों के व्युत्क्रमणीय नहीं हैं; इसके अतिरिक्त, वे निर्देशांक के कार्य होने के लिए बाध्य हैं: चार चरण-स्थान वैरिएबल रैखिक रूप से निर्भर हैं, इसलिए परिवर्तनीय आधार [[अतिपूर्णता]] है।
जो इस अभिप्राय में असामान्य हैं कि वह वेगों के व्युत्क्रमणीय नहीं हैं; इसके अतिरिक्त, वह निर्देशांक के कार्य होने के लिए बाध्य हैं: चार चरण-समष्टि वैरिएबल रैखिक रूप से निर्भर हैं, इसलिए परिवर्तनीय आधार [[अतिपूर्णता]] है।


लीजेंड्रे परिवर्तन तब हैमिल्टनियन का निर्माण करता है
लीजेंड्रे परिवर्तन तब हैमिल्टनियन का निर्माण करता है
Line 67: Line 67:
H(x,y, p_x, p_y) = \dot{x}p_x + \dot{y} p_y - L = V(x, y).
H(x,y, p_x, p_y) = \dot{x}p_x + \dot{y} p_y - L = V(x, y).
</math>
</math>
ध्यान दें कि इस "भोले" हैमिल्टनियन की ''संवेग पर कोई निर्भरता नहीं'' है , जिसका अर्थ है कि गति के समीकरण (हैमिल्टन के समीकरण) असंगत हैं।
ध्यान दें कि इस "नैव " हैमिल्टनियन की ''संवेग पर कोई निर्भरता नहीं'' है , जिसका अर्थ है कि गति के समीकरण (हैमिल्टन के समीकरण) असंगत हैं।


हैमिल्टनियन प्रक्रिया टूट गई है। कोई व्यक्ति 4 -आयामी चरण समष्टि के दो घटकों , जैसे y और ''p <sub>y</sub>'' , को 2 आयामों के कम चरण समष्टि तक हटाकर समस्या को सही करने का प्रयास कर सकता है, जो कभी-कभी निर्देशांक को क्षण के रूप में और कभी-कभी निर्देशांक के रूप में व्यक्त करता है। चूँकि , यह न तो कोई सामान्य और न ही कठोर समाधान है। यह स्थितियों की तह तक जाता है: कैनोनिकल संवेग की परिभाषा से ''चरण'' समष्टि (संवेग और निर्देशांक के बीच) पर रूकावट का पता चलता है जिस पर कभी ध्यान नहीं दिया गया।
हैमिल्टनियन प्रक्रिया टूट गई है। कोई व्यक्ति 4 -आयामी चरण समष्टि के दो घटकों , जैसे y और ''p <sub>y</sub>'' , को 2 आयामों के कम चरण समष्टि तक हटाकर समस्या को सही करने का प्रयास कर सकता है, जो कभी-कभी निर्देशांक को क्षण के रूप में और कभी-कभी निर्देशांक के रूप में व्यक्त करता है। चूँकि , यह न तो कोई सामान्य और न ही कठोर समाधान है। यह स्थितियों की आधार तक जाता है: कैनोनिकल संवेग की परिभाषा से ''चरण'' समष्टि (संवेग और निर्देशांक के मध्य) पर रूकावट का पता चलता है जिस पर कभी ध्यान नहीं दिया गया था।


== सामान्यीकृत हैमिल्टनियन प्रक्रिया ==
== सामान्यीकृत हैमिल्टनियन प्रक्रिया ==


लैग्रेंजियन यांत्रिकी में, यदि प्रणाली में [[होलोनोमिक बाधा|होलोनोमिक]] रूकावट हैं, तो सामान्यतः उनके लिए लैग्रेंजियन में [[लैग्रेंज गुणक]] को जोड़ा जाता है। जब रूकावट संतुष्ट हो जाती हैं तो अतिरिक्त शर्तें लापता हो जाती हैं, जिससे स्थिर कार्रवाई का मार्ग रूकावट सतह पर होने के लिए मजबूर हो जाता है। इस स्थितियों में, हैमिल्टनियन औपचारिकता पर जाने से हैमिल्टनियन यांत्रिकी में चरण समष्टि पर रूकावट उत्पन्न होती है, किन्तु समाधान समान है।
लैग्रेंजियन यांत्रिकी में, यदि प्रणाली में [[होलोनोमिक बाधा|होलोनोमिक]] रूकावट हैं, तो सामान्यतः उनके लिए लैग्रेंजियन में [[लैग्रेंज गुणक]] को जोड़ा जाता है। जब रूकावट संतुष्ट हो जाती हैं तो अतिरिक्त नियम विलुप्त हो जाती हैं, जिससे स्थिर कार्रवाई का मार्ग रूकावट सतह पर होने के लिए विवश हो जाता है। इस स्थितियों में, हैमिल्टनियन औपचारिकता पर जाने से हैमिल्टनियन यांत्रिकी में चरण समष्टि पर रूकावट उत्पन्न होती है, किन्तु समाधान समान है।


आगे बढ़ने से पहले, 'अशक्त समानता' और 'सशक्त समानता' की धारणाओं को समझना उपयोगी है। चरण समष्टि पर दो कार्य, {{mvar|f}} और {{mvar|g}}, अशक्त रूप से समान हैं यदि रूकावट संतुष्ट होने पर वे समान हैं, किन्तु पूरे चरण समष्टि में नहीं, दर्शाया गया है {{math| ''f ≈ g''}}। यदि {{mvar|f}} और {{mvar|g}} रूकावट के संतुष्ट होने से स्वतंत्र रूप से समान हैं, उन्हें दृढ़ता से समान, लिखित कहा जाता है {{math|''f'' {{=}} ''g''}}। यह ध्यान रखना महत्वपूर्ण है कि, सही उत्तर प्राप्त करने के लिए, डेरिवेटिव या पॉइसन ब्रैकेट का मूल्यांकन करने से पहले किसी भी अशक्त समीकरण का उपयोग नहीं किया जा सकता है।
आगे बढ़ने से पहले, 'अशक्त समानता' और 'सशक्त समानता' की धारणाओं को समझना उपयोगी है। चरण समष्टि पर दो कार्य, {{mvar|f}} और {{mvar|g}}, अशक्त रूप से समान हैं यदि रूकावट संतुष्ट होने पर वह समान हैं, किन्तु पूर्ण चरण समष्टि में नहीं जिसे {{math| ''f ≈ g''}} द्वारा दर्शाया गया है । यदि {{mvar|f}} और {{mvar|g}} रूकावट के संतुष्ट होने से स्वतंत्र रूप से समान हैं, उन्हें दृढ़ता से समान {{math|''f'' {{=}} ''g''}} लिखित कहा जाता है । यह ध्यान रखना महत्वपूर्ण है कि, सही उत्तर प्राप्त करने के लिए, डेरिवेटिव या पॉइसन ब्रैकेट का मूल्यांकन करने से पहले किसी भी अशक्त समीकरण का उपयोग नहीं किया जा सकता है।


नई प्रक्रिया इस प्रकार काम करती है, लैग्रेंजियन से प्रारंभ करें और सामान्य विधि से कैनोनिकल संवेग को परिभाषित करें। उनमें से कुछ परिभाषाएँ उलटी नहीं हो सकती हैं और इसके अतिरिक्त चरण समष्टि में रूकावट देती हैं (जैसा कि ऊपर बताया गया है)। इस प्रकार उत्पन्न या समस्या की प्रारंभ से लगाए गए अवरोधों को 'प्राथमिक अवरोध' कहा जाता है। रूकावट, लेबल {{math|''φ''<sub>''j''</sub>}}, अशक्त रूप से लापता हो जाना चाहिए, {{math|''φ''<sub>''j'' </sub>(''p,q'') ≈ 0}}।


इसके बाद, कोई भोला-भाला हैमिल्टनियन पाता है, {{mvar|H}}, लीजेंड्रे परिवर्तन के माध्यम से सामान्य विधि से, बिल्कुल उपरोक्त उदाहरण की प्रकार । ध्यान दें कि हैमिल्टनियन को हमेशा केवल ''q'' s और ''p'' s के फलन के रूप में लिखा जा सकता है, भले ही वेगों को संवेग के फलनों में उलटा न किया जा सके।
नई प्रक्रिया इस प्रकार कार्य करती है, लैग्रेंजियन से प्रारंभ करें और सामान्य विधि से कैनोनिकल संवेग को परिभाषित करें। उनमें से कुछ परिभाषाएँ उलटी नहीं हो सकती हैं और इसके अतिरिक्त चरण समष्टि में रूकावट देती हैं (जैसा कि ऊपर बताया गया है)। इस प्रकार उत्पन्न या समस्या की प्रारंभ से लगाए गए अवरोधों को 'प्राथमिक अवरोध' कहा जाता है।इस प्रकार  {{math|''φ''<sub>''j''</sub>}} लेबल वाली रूकावट {{math|''φ''<sub>''j'' </sub>(''p,q'') ≈ 0}} अशक्त रूप से विलुप्त होनी चाहिए
 
 
इसके पश्चात लेजेंडरे परिवर्तन के माध्यम से सामान्य विधि से नेव हैमिल्टनियन {{mvar|H}} को खोजता है, पूर्णतः उपरोक्त उदाहरण की तरह ध्यान दें कि हैमिल्टनियन को सदैव ''q'' s और ''p'' s के फलन के रूप में ही लिखा जा सकता है, तथापि वेग को संवेग के फलन में विपरीत नही किया जा सकता है।


=== हैमिल्टनियन का सामान्यीकरण ===
=== हैमिल्टनियन का सामान्यीकरण ===
Line 87: Line 89:
H^* = H + \sum_j c_j\phi_j \approx H,
H^* = H + \sum_j c_j\phi_j \approx H,
</math>
</math>
जहां {{math|''c''<sub>''j''</sub>}} स्थिरांक नहीं हैं किंतु निर्देशांक और संवेग के कार्य हैं। चूंकि यह नया हैमिल्टनियन निर्देशांक का सबसे सामान्य कार्य है और क्षणभंगुर हैमिल्टनियन के समान अशक्त है, {{math|''H''<sup>*</sup>}} हैमिल्टनियन का संभवतः सबसे व्यापक सामान्यीकरण है जिससे {{math|''δH'' * ≈ ''δH''}} कब {{math| ''δφ<sub>j</sub>'' ≈ 0}} हो ।
जहां {{math|''c''<sub>''j''</sub>}} स्थिरांक नहीं हैं किंतु निर्देशांक और संवेग के कार्य हैं। चूंकि यह नया हैमिल्टनियन निर्देशांक का सबसे सामान्य कार्य है और नेव हैमिल्टनियन {{math|''H''<sup>*</sup>}} के समान अशक्त रूप से हैमिल्टनियन का सबसे व्यापक सामान्यीकरण संभव है जिससे δH * ≈ δH जब δφj ≈ 0 होता है।
 


{{math|''c''<sub>''j''</sub>}}, और अधिक स्पष्ट करने के लिए , विचार करें कि मानक प्रक्रिया में भोले हैमिल्टनियन से गति के समीकरण कैसे प्राप्त किए जाते हैं। हैमिल्टनियन की भिन्नता को दो विधियों से विस्तारित करता है और उन्हें समान सेट करता है (दबे हुए सूचकांकों और योगों के साथ कुछ संक्षिप्त संकेतन का उपयोग करके):
{{math|''c''<sub>''j''</sub>}}, और अधिक स्पष्ट करने के लिए , विचार करें कि मानक प्रक्रिया में नैव  हैमिल्टनियन से गति के समीकरण कैसे प्राप्त किए जाते हैं। हैमिल्टनियन की भिन्नता को दो विधियों से विस्तारित करता है और उन्हें समान सेट करता है (सप्रेस सूचकांकों और योगों के साथ कुछ संक्षिप्त संकेतन का उपयोग करके):


:<math>
:<math>
Line 95: Line 98:
         \approx \dot{q}\delta p - \dot{p}\delta q  ~,
         \approx \dot{q}\delta p - \dot{p}\delta q  ~,
</math>
</math>
जहां गति के यूलर-लैग्रेंज समीकरणों और कैनोनिकल गति की परिभाषा को सरल बनाने के बाद दूसरी समानता कायम है। इस समानता से, हैमिल्टनियन औपचारिकता में गति के समीकरणों का अनुमान लगाया जाता है
जहां गति के यूलर-लैग्रेंज समीकरणों और कैनोनिकल गति की परिभाषा को सरल बनाने के पश्चात दूसरी समानता बनाए है। इस समानता से, हैमिल्टनियन औपचारिकता में गति के समीकरणों का अनुमान लगाया जाता है


:<math>
:<math>
\left(\frac{\partial H}{\partial q} + \dot{p}\right)\delta q + \left(\frac{\partial H}{\partial p} - \dot{q}\right)\delta p = 0 ~,
\left(\frac{\partial H}{\partial q} + \dot{p}\right)\delta q + \left(\frac{\partial H}{\partial p} - \dot{q}\right)\delta p = 0 ~,
</math>
</math>
जहां अशक्त समानता प्रतीक अब स्पष्ट रूप से प्रदर्शित नहीं होता है, क्योंकि परिभाषा के अनुसार गति के समीकरण केवल अशक्त होते हैं। वर्तमान संदर्भ में, कोई केवल गुणांक निर्धारित नहीं कर सकता है {{math| ''δq''}} और {{math|''δp''}} अलग से शून्य तक, क्योंकि भिन्नताएं कुछ सीमा तक रूकावट द्वारा प्रतिबंधित हैं। विशेष रूप से, विविधताएं रूकावट सतह के स्पर्शरेखा होनी चाहिए।
जहां अशक्त समानता प्रतीक अब स्पष्ट रूप से प्रदर्शित नहीं होता है, क्योंकि परिभाषा के अनुसार गति के समीकरण केवल अशक्त होते हैं। वर्तमान संदर्भ में, कोई केवल {{math| ''δq''}} और {{math|''δp''}} भिन्न से शून्य तक गुणांक निर्धारित नहीं कर सकता है, क्योंकि भिन्नताएं कुछ सीमा तक रूकावट द्वारा प्रतिबंधित हैं। विशेष रूप से, विविधताएं रूकावट सतह के स्पर्शरेखा होनी चाहिए।


कोई इसका समाधान प्रदर्शित कर सकता है
कोई इसका समाधान प्रदर्शित कर सकता है
Line 107: Line 110:
\sum_n A_n\delta q_n + \sum_n B_n\delta p_n = 0,
\sum_n A_n\delta q_n + \sum_n B_n\delta p_n = 0,
</math>
</math>
विविधताओं के लिए {{math|''δq''<sub>''n''</sub>}} और {{math|''δp''<sub>''n''</sub>}} रूकावट द्वारा प्रतिबंधित {{math|''Φ''<sub>''j''</sub> ≈ 0}} (यह मानते हुए कि रूकावट कुछ [[नियमित कार्य]] को संतुष्ट करती हैं) सामान्यतः है<ref name = Henneaux>See page 8 in Henneaux and Teitelboim in the references.</ref>
सामान्यतः विविधताओं के लिए {{math|''δq''<sub>''n''</sub>}} और {{math|''δp''<sub>''n''</sub>}} रूकावट द्वारा प्रतिबंधित {{math|''Φ''<sub>''j''</sub> ≈ 0}} (यह मानते हुए कि रूकावट कुछ नियमितता नियमो को संतुष्ट करती हैं) है <ref name="Henneaux">See page 8 in Henneaux and Teitelboim in the references.</ref>
:<math>
:<math>
A_n = \sum_m u_m \frac{\partial \phi_m}{\partial q_n}
A_n = \sum_m u_m \frac{\partial \phi_m}{\partial q_n}
Line 129: Line 132:
जहां {{math|''u<sub>k</sub>''}} निर्देशांक और वेग के कार्य हैं जिन्हें, सिद्धांत रूप में, उपरोक्त गति के दूसरे समीकरण से निर्धारित किया जा सकता है।
जहां {{math|''u<sub>k</sub>''}} निर्देशांक और वेग के कार्य हैं जिन्हें, सिद्धांत रूप में, उपरोक्त गति के दूसरे समीकरण से निर्धारित किया जा सकता है।


लैग्रेंजियन औपचारिकता और हैमिल्टनियन औपचारिकता के बीच लीजेंड्रे परिवर्तन को नए वैरिएबल जोड़ने की मूल्य पर बचाया गया है।
लैग्रेंजियन औपचारिकता और हैमिल्टनियन औपचारिकता के मध्य लीजेंड्रे परिवर्तन को नए वैरिएबल जोड़ने की मूल्य पर बचाया गया है।


=== संगति की शर्तें ===
=== स्थिरता के नियम ===


यदि, पॉइसन ब्रैकेट का उपयोग करते समय गति के समीकरण अधिक कॉम्पैक्ट हो जाते हैं {{mvar|f}} तो निर्देशांक और संवेग का कुछ कार्य है
पॉइसन ब्रैकेट का उपयोग करते समय गति के समीकरण अधिक कॉम्पैक्ट हो जाते हैं, क्योंकि यदि {{mvar|f}} निर्देशांक और संवेग का कुछ कार्य है तो


:<math>
:<math>
\dot{f} \approx \{f, H^*\}_{PB} \approx \{f, H\}_{PB} + \sum_k u_k\{f, \phi_k\}_{PB},
\dot{f} \approx \{f, H^*\}_{PB} \approx \{f, H\}_{PB} + \sum_k u_k\{f, \phi_k\}_{PB},
</math>
</math>
यदि कोई मानता है कि पॉइसन ब्रैकेट के साथ {{math|''u''<sub>''k''</sub>}} (वेग के कार्य) उपस्थित हैं; इससे कोई समस्या नहीं होती क्योंकि योगदान अशक्त रूप से लापता हो जाता है। अब, इस औपचारिकता को सार्थक बनाने के लिए कुछ स्थिरता की शर्तें हैं जिन्हें पूरा किया जाना चाहिए। यदि रूकावट संतुष्ट होने वाली हैं, तो गति के उनके समीकरण अशक्त रूप से लापता हो जाने चाहिए, अर्थात हमें आवश्यकता है
यदि कोई मानता है कि {{math|''u''<sub>''k''</sub>}} (वेग के कार्य) के साथ पॉइसन ब्रैकेट उपस्थित है; इससे कोई समस्या नहीं होती क्योंकि योगदान अशक्त रूप से विलुप्त हो जाता है। अब, इस औपचारिकता को सार्थक बनाने के लिए कुछ स्थिरता की नियम हैं जिन्हें पूर्ण किया जाना चाहिए। यदि रूकावट संतुष्ट होने वाली हैं, तो गति के उनके समीकरण अशक्त रूप से विलुप्त हो जाने चाहिए, अर्थात हमें आवश्यकता है


:<math>
:<math>
\dot{\phi_j} \approx \{\phi_j, H\}_{PB} + \sum_k u_k\{\phi_j,\phi_k\}_{PB} \approx 0.
\dot{\phi_j} \approx \{\phi_j, H\}_{PB} + \sum_k u_k\{\phi_j,\phi_k\}_{PB} \approx 0.
</math>
</math>
उपरोक्त से चार अलग-अलग प्रकार की स्थितियाँ उत्पन्न हो सकती हैं:
उपरोक्त से चार भिन्न-भिन्न प्रकार की स्थितियाँ उत्पन्न हो सकती हैं:
# समीकरण जो स्वाभाविक रूप से गलत है, जैसे {{math|1=1=0}} ।
# समीकरण जो स्वाभाविक रूप से गलत है, जैसे {{math|1=1=0}} है
# समीकरण जो संभवतः हमारे प्राथमिक अवरोधों में से किसी का उपयोग करने के बाद, समान रूप से सत्य है।
# समीकरण जो संभवतः हमारे प्राथमिक अवरोधों में से किसी का उपयोग करने के पश्चात, समान रूप से सत्य है।
# समीकरण जो हमारे निर्देशांक और संवेग पर नई रूकावट डालता है, किन्तु इससे स्वतंत्र है {{math|''u''<sub>''k''</sub>}}।
# समीकरण जो हमारे निर्देशांक और संवेग पर नई रूकावट डालता है, किन्तु इससे {{math|''u''<sub>''k''</sub>}} स्वतंत्र है
# समीकरण जो निर्दिष्ट करने का कार्य करता है {{math|''u''<sub>''k''</sub>}}।
# समीकरण जो निर्दिष्ट करने का कार्य {{math|''u''<sub>''k''</sub>}} करता है


पहला स्थिति संकेत करता है कि प्रारंभिक लैग्रेंजियन गति के असंगत समीकरण देता है, जैसे {{math|''L {{=}} q''}}दूसरा स्थिति कोई नया योगदान नहीं देता।
पहला स्थिति संकेत करता है कि प्रारंभिक लैग्रेंजियन गति के असंगत समीकरण देता है, जैसे {{math|''L {{=}} q''}} दूसरा स्थिति कोई नया योगदान नहीं देता है।


तीसरा स्थिति चरण समष्टि में नई रूकावट देता है। इस विधि से प्राप्त रूकावट को [[द्वितीयक बाधा|द्वितीयक]] रूकावट कहा जाता है। द्वितीयक रूकावट का पता चलने पर उसे विस्तारित हैमिल्टनियन में जोड़ना चाहिए और नई स्थिरता स्थितियों की जांच करनी चाहिए, जिसके परिणामस्वरूप और भी अधिक रूकावट उत्पन्न हो सकती हैं। इस प्रक्रिया को तब तक दोहराएँ जब तक कोई और रूकावट न रह जाए। प्राथमिक और द्वितीयक रूकावट के बीच अंतर अधिक सीमा तक कृत्रिम है (अर्थात ही प्रणाली के लिए रूकावट लैग्रेंजियन के आधार पर प्राथमिक या माध्यमिक हो सकती है), इसलिए यह लेख यहां से उनके बीच अंतर नहीं करता है। यह मानते हुए कि स्थिरता की स्थिति को तब तक दोहराया गया है जब तक कि सभी रूकावट नहीं मिल जातीं {{math|''φ''<sub>''j''</sub>}}उन सभी को अनुक्रमित करेगा। ध्यान दें कि यह लेख किसी भी रूकावट के लिए द्वितीयक रूकावट का उपयोग करता है जो प्रारंभ में समस्या में नहीं थी या कैनोनिकल संवेग की परिभाषा से ली गई थी; कुछ लेखक द्वितीयक रूकावट , तृतीयक रूकावट आदि के बीच अंतर करते हैं।
तीसरा स्थिति चरण समष्टि में नई रूकावट देता है। इस विधि से प्राप्त रूकावट को [[द्वितीयक बाधा|द्वितीयक]] रूकावट कहा जाता है। द्वितीयक रूकावट का पता चलने पर उसे विस्तारित हैमिल्टनियन में जोड़ना चाहिए और नई स्थिरता स्थितियों की जांच करनी चाहिए, जिसके परिणामस्वरूप और भी अधिक रूकावट उत्पन्न हो सकती हैं। इस प्रक्रिया को तब तक दोहराएँ जब तक कोई और रूकावट न रह जाए। प्राथमिक और द्वितीयक रूकावट के मध्य अंतर अधिक सीमा तक कृत्रिम है (अर्थात ही प्रणाली के लिए रूकावट लैग्रेंजियन के आधार पर प्राथमिक या माध्यमिक हो सकती है), इसलिए यह लेख यहां से उनके मध्य अंतर नहीं करता है। यह मानते हुए कि स्थिरता की स्थिति को तब तक दोहराया गया है जब तक कि सभी रूकावट {{math|''φ''<sub>''j''</sub>}} नहीं मिल जातीं उन सभी को अनुक्रमित करेगा। ध्यान दें कि यह लेख किसी भी रूकावट के लिए द्वितीयक रूकावट का उपयोग करता है जो प्रारंभ में समस्या में नहीं थी या कैनोनिकल संवेग की परिभाषा से ली गई थी; कुछ लेखक द्वितीयक रूकावट , तृतीयक रूकावट आदि के मध्य अंतर करते हैं।


अंत में, अंतिम स्थिति सही करने में मदद करता है {{math|''u''<sub>''k''</sub>}}यदि, इस प्रक्रिया के अंत में, {{math|''u''<sub>''k''</sub>}} पूरी प्रकार से निर्धारित नहीं हैं, तो इसका कारण है कि प्रणाली में स्वतंत्रता की अभौतिक (गेज) डिग्री हैं। बार सभी रूकावट (प्राथमिक और माध्यमिक) को भोले हैमिल्टनियन में जोड़ दिया जाता है और स्थिरता की स्थिति के समाधान के लिए {{math|''u<sub>k</sub>''}} को प्लग इन किया जाता है, परिणाम को कुल हैमिल्टनियन कहा जाता है।
अंत में, अंतिम स्थिति {{math|''u''<sub>''k''</sub>}} को सही करने में सहायता करता है। यदि इस प्रक्रिया के अंत में {{math|''u''<sub>''k''</sub>}} पूर्ण रूप से निर्धारित नहीं होता है तो इसका कारण है कि प्रणाली में स्वतंत्रता की अभौतिक (गेज) डिग्री हैं। एक बार जब सभी रूकावट (प्राथमिक और माध्यमिक) को नेव हैमिल्टनियन में जोड़ दिया जाता है और {{math|''u<sub>k</sub>''}} के लिए स्थिरता की स्थिति के समाधान को जोड़ दिया जाता है तो परिणाम को कुल हैमिल्टनियन कहा जाता है।


=== {{math|''u''<sub>''k''</sub>}} का निर्धारण ===
=== {{math|''u''<sub>''k''</sub>}} का निर्धारण ===
''u''<sub>k</sub> को इस प्रकार के असमशीत रैखिक समीकरण का समाधान करना होगा
''u''<sub>k</sub> को इस प्रकार के विषम रैखिक समीकरण को हल करना होगा


:<math>
:<math>
Line 171: Line 174:
\sum_k V_k\{\phi_j,\phi_k\}_{PB}\approx 0.
\sum_k V_k\{\phi_j,\phi_k\}_{PB}\approx 0.
</math>
</math>
सबसे सामान्य समाधान उपरोक्त सजातीय समीकरण के रैखिक रूप से स्वतंत्र समाधानों का रैखिक संयोजन होगा। रैखिक रूप से स्वतंत्र समाधानों की संख्या की संख्या के समान होती है {{math|''u''<sub>''k''</sub>}} (जो रूकावट की संख्या के समान है) चौथे प्रकार की स्थिरता स्थितियों की संख्या घटाएं (पिछले उपधारा में)। यह प्रणाली में स्वतंत्रता की अभौतिक डिग्री की संख्या है। रैखिक स्वतंत्र समाधानों को लेबल करना {{math|''V''<sub>''k''</sub><sup>''a''</sup>}} जहां सूचकांक {{mvar|a}} से चलती है {{math|1}} स्वतंत्रता की अभौतिक डिग्री की संख्या के लिए, स्थिरता की स्थिति का सामान्य समाधान रूप का है
सबसे सामान्य समाधान उपरोक्त सजातीय समीकरण के रैखिक रूप से स्वतंत्र समाधानों का रैखिक संयोजन होगा। रैखिक रूप से स्वतंत्र समाधानों की संख्या {{math|''u''<sub>''k''</sub>}} की संख्या (जो रूकावट की संख्या के समान है) के समान होती है चौथे प्रकार की स्थिरता स्थितियों की संख्या घटाएं (पिछले उपधारा में)। यह प्रणाली में स्वतंत्रता की अभौतिक डिग्री की संख्या है। रैखिक स्वतंत्र समाधानों {{math|''V''<sub>''k''</sub><sup>''a''</sup>}} को लेबल करता है  जहां सूचकांक {{mvar|a}} से {{math|1}} चलती है  स्वतंत्रता की अभौतिक डिग्री की संख्या के लिए, स्थिरता की स्थिति का सामान्य समाधान है


:<math>
:<math>
u_k \approx U_k + \sum_a v_a V^a_k,
u_k \approx U_k + \sum_a v_a V^a_k,
</math>
</math>
जहां {{math|''v''<sub>''a''</sub>}}समय के पूरी प्रकार से विविध समय के अनुक्रम हैं। {{math|''v''<sub>''a''</sub>}} का विभिन्न चयन गेज परिवर्तन का समर्थन करता है, और प्रणाली की भौतिक स्थिति को अपरिवर्तित छोड़ना चाहिए।<ref>Weinberg, Steven, ''The Quantum Theory of Fields'', Volume 1. Cambridge University Press, 1995. {{isbn|0-521-55001-7}}</ref>
जहां {{math|''v''<sub>''a''</sub>}}समय के पूर्ण रूप से विविध समय के अनुक्रम हैं। {{math|''v''<sub>''a''</sub>}} का विभिन्न विकल्प गेज परिवर्तन का समर्थन करता है, और प्रणाली की भौतिक स्थिति को अपरिवर्तित छोड़ना चाहिए।<ref>Weinberg, Steven, ''The Quantum Theory of Fields'', Volume 1. Cambridge University Press, 1995. {{isbn|0-521-55001-7}}</ref>
 
=== कुल हैमिल्टनियन ===
=== कुल हैमिल्टनियन ===
इस बिंदु पर, कुल हैमिल्टनियन का परिचय देना स्वाभाविक है
इस बिंदु पर, कुल हैमिल्टनियन का परिचय देना स्वाभाविक है
Line 183: Line 187:
H_T = H + \sum_k U_k\phi_k + \sum_{a, k} v_a V^a_k \phi_k
H_T = H + \sum_k U_k\phi_k + \sum_{a, k} v_a V^a_k \phi_k
</math>
</math>
और जिसे यह नकारात्मकारीता से प्रदर्शित किया गया है
और जिसे यह ऋणात्मकता से प्रदर्शित किया गया है
:<math>
:<math>
H' = H + \sum_k U_k \phi_k.
H' = H + \sum_k U_k \phi_k.
</math>
</math>
चरण समष्टि पर किसी फलन का समय विकास, {{mvar|f}} निर्धारित होता है, जहां PB हैमिल्टोनियन उपाधी को आंतरिक गुणरूप में व्यक्त करने के लिए उपयोग हो रहा है।
चरण समष्टि पर किसी फलन {{mvar|f}} का समय विकास निर्धारित होता है, जहां PB हैमिल्टोनियन उपाधी को आंतरिक गुणरूप में व्यक्त करने के लिए उपयोग हो रहा है।


:<math>
:<math>
\dot{f} \approx \{f, H_T\}_{PB}.
\dot{f} \approx \{f, H_T\}_{PB}.
</math>
</math>
बाद में, विस्तारित हैमिल्टनियन प्रस्तुत किया जाता है। गेज-अवैशिष्ट (भौतिक रूप से मापनीय मात्राएँ) मात्राएँ के लिए, सभी हैमिल्टोनियन्स कोई भी समय के विकास को समान होना चाहिए, क्योंकि वे सभी अशक्त रूप से समरूप हैं। यह केवल गेज-अवैशिष्ट मात्राओं के लिए है कि भेद सामने आता है, जिन्हें महत्वपूर्ण होता है।
इसके पश्चात में, विस्तारित हैमिल्टनियन प्रस्तुत किया जाता है। गेज-अवैशिष्ट (भौतिक रूप से मापनीय मात्राएँ) मात्राएँ के लिए, सभी हैमिल्टोनियन्स कोई भी समय के विकास को समान होना चाहिए, क्योंकि वह सभी अशक्त रूप से समरूप हैं। यह केवल नॉनगेज-इनवेरिएंट मात्राओं के लिए है, जो महत्वपूर्ण होता है।


== डिराक ब्रैकेट ==
== डिराक ब्रैकेट ==
ऊपर वह सब है जो डिरैक के संशोधित हैमिल्टोनियन प्रक्रिया में समीक्षा करने के लिए आवश्यक है। ऊपर वह सब है जो डिरैक के संशोधित हैमिल्टोनियन प्रक्रिया में समीक्षा करने के लिए आवश्यक है। यदि कोई सामान्य प्रणाली को प्रामाणिक रूप से परिमाणित करना चाहता है, तो उसे डिराक कोष्ठक की आवश्यकता होती है। डिराक कोष्ठक को परिभाषित करने से पहले, प्रथम श्रेणी और द्वितीय श्रेणी की रूकावट को प्रस्तुत करने की आवश्यकता है।
'''ऊपर वह सब है जो डिरैक के संशोधित हैमिल्टोनियन प्रक्रिया में समीक्षा करने के लिए आवश्यक है।''' ऊपर वह सब है जो डिरैक के संशोधित हैमिल्टोनियन प्रक्रिया में समीक्षा करने के लिए आवश्यक है। यदि कोई सामान्य प्रणाली को प्रामाणिक रूप से परिमाणित करना चाहता है, तो उसे डिराक ब्रैकेट की आवश्यकता होती है। डिराक ब्रैकेट को परिभाषित करने से पहले, प्रथम श्रेणी और द्वितीय श्रेणी की रूकावट को प्रस्तुत करने की आवश्यकता है।


हम फलन {{math|''f(q, p)''}} को संयोजन और शंकुतों का पहला वर्ग कहते हैं यदि इसका पोयसन ब्रैकेट सभी प्रतिबंधियों के साथ अशक्त रूप से शून्य है, अर्थात,
हम फलन {{math|''f(q, p)''}} को संयोजन और शंकुतों का पहला वर्ग कहते हैं यदि इसका पोयसन ब्रैकेट सभी प्रतिबंधियों के साथ अशक्त रूप से शून्य है, अर्थात,
Line 202: Line 206:
\{f, \phi_j\}_{PB} \approx 0,
\{f, \phi_j\}_{PB} \approx 0,
</math>
</math>
प्रत्येक {{mvar|j}} के लिए। ध्यान दें कि एकमात्र मात्राएँ जो अशक्त रूप से शून्य हो जाती हैं, वे रूकावट {{math|''φ''<sub>''j''</sub>}} हैं, और इसलिए जो कुछ भी अशक्त रूप से लापता हो जाता है वह दृढ़ता से रूकावट के रैखिक संयोजन के समान होना चाहिए। कोई यह प्रदर्शित कर सकता है कि दो प्रथम श्रेणी मात्राओं का पॉइसन ब्रैकेट भी प्रथम श्रेणी होना चाहिए। प्रथम श्रेणी की रूकावट पहले उल्लिखित स्वतंत्रता की अभौतिक डिग्री के साथ घनिष्ठ रूप से जुड़ी हुई हैं। अर्थात्, स्वतंत्र प्रथम श्रेणी रूकावट की संख्या स्वतंत्रता की अभौतिक डिग्री की संख्या के समान है, और इसके अतिरिक्त, प्राथमिक प्रथम श्रेणी रूकावट गेज परिवर्तन उत्पन्न करती हैं। डिराक ने आगे कहा कि सभी माध्यमिक प्रथम श्रेणी की रूकावट गेज परिवर्तनों के जनक हैं, जो गलत सिद्ध होती हैं; चूँकि, सामान्यतः कोई इस धारणा के अनुसार काम करता है कि इस उपचार का उपयोग करते समय सभी प्रथम श्रेणी की रूकावट गेज परिवर्तन उत्पन्न करती हैं।<ref>See Henneaux and Teitelboim, pages 18-19.</ref>
प्रत्येक {{mvar|j}} के लिए ध्यान दें कि एकमात्र मात्राएँ जो अशक्त रूप से शून्य हो जाती हैं, वह रूकावट {{math|''φ''<sub>''j''</sub>}} हैं, और इसलिए जो कुछ भी अशक्त रूप से विलुप्त हो जाता है वह दृढ़ता से रूकावट के रैखिक संयोजन के समान होना चाहिए। कोई यह प्रदर्शित कर सकता है कि दो प्रथम श्रेणी मात्राओं का पॉइसन ब्रैकेट भी प्रथम श्रेणी होना चाहिए। प्रथम श्रेणी की रूकावट पहले उल्लिखित स्वतंत्रता की अभौतिक डिग्री के साथ घनिष्ठ रूप से जुड़ी हुई हैं। अर्थात्, स्वतंत्र प्रथम श्रेणी रूकावट की संख्या स्वतंत्रता की अभौतिक डिग्री की संख्या के समान है, और इसके अतिरिक्त, प्राथमिक प्रथम श्रेणी रूकावट गेज परिवर्तन उत्पन्न करती हैं। डिराक ने आगे कहा कि सभी माध्यमिक प्रथम श्रेणी की रूकावट गेज परिवर्तनों के जनक हैं, जो गलत सिद्ध होती हैं; चूँकि, सामान्यतः कोई इस धारणा के अनुसार कार्य करता है कि इस उपचार का उपयोग करते समय सभी प्रथम श्रेणी की रूकावट गेज परिवर्तन उत्पन्न करती हैं।<ref>See Henneaux and Teitelboim, pages 18-19.</ref>


जब प्रथम श्रेणी के माध्यमिक अवरोधों को हैमिल्टनियन में अर्बिट्रे {{math|''v''<sub>''a''</sub>}} के साथ डाला जाता है जैसा कि पहले कक्षा के प्राथमिक नियमों को जोड़कर कुल हैमिल्टनीअन पर पहुंचने के लिए, तो व्यापक हैमिल्टनीअन प्राप्त होता है। व्यापक हैमिल्टनीअन ने किसी भी गेज-आधीन परिमाणों के लिए सबसे सामान्य समय विकास प्रदान किया है, और वास्तव में संभवतः लैग्रेंजियन रूपवाद के उसके समीकरणों को विस्तारित कर सकता है।
जब प्रथम श्रेणी के माध्यमिक अवरोधों को हैमिल्टनियन में अर्बिट्रे {{math|''v''<sub>''a''</sub>}} के साथ डाला जाता है जैसा कि पहले कक्षा के प्राथमिक नियमों को जोड़कर कुल हैमिल्टनीअन पर पहुंचने के लिए, तो व्यापक हैमिल्टनीअन प्राप्त होता है। व्यापक हैमिल्टनीअन ने किसी भी गेज-आधीन परिमाणों के लिए सबसे सामान्य समय विकास प्रदान किया है, और वास्तव में संभवतः लैग्रेंजियन रूपवाद के उसके समीकरणों को विस्तारित कर सकता है।


डिराक ब्रैकेट परिचित करने के उद्देश्य से, दीर्घकालीन रूप से अधिक रुचिकर हैं द्वितीय कक्षाएं। द्वितीय कक्षाएं वे कक्षाएं हैं जिनके साथ कम से कम अन्य कक्षा के साथ ऐसा पॉयसन ब्रैकेट होता है जो असुन्य है।
डिराक ब्रैकेट परिचित करने के उद्देश्य से, दीर्घकालीन रूप से अधिक रुचिकर हैं द्वितीय कक्षाएं वह कक्षाएं हैं जिनके साथ कम से कम अन्य कक्षा के साथ ऐसा पॉयसन ब्रैकेट होता है जो असून्य है।


उदाहरण के लिए, द्वितीय श्रेणी की रूकावट पर विचार करें {{math|''φ''<sub>1</sub>}} और {{math|''φ''<sub>2</sub>}} जिसका पॉइसन ब्रैकेट बस स्थिरांक {{mvar|c}} है,  
उदाहरण के लिए, द्वितीय श्रेणी {{math|''φ''<sub>1</sub>}} और {{math|''φ''<sub>2</sub>}} की रूकावट पर विचार करें जिसका पॉइसन ब्रैकेट स्थिरांक {{mvar|c}} है,  


:<math>
:<math>
\{\phi_1,\phi_2\}_{PB} = c ~.
\{\phi_1,\phi_2\}_{PB} = c ~.
</math>
</math>
अब, मान लीजिए कि कोई कैनोनिकल परिमाणीकरण को नियोजित करना चाहता है, तो चरण-अंतरिक्ष निर्देशांक ऑपरेटर बन जाते हैं जिनके कम्यूटेटर्स इनके क्लासिकल पॉयसन ब्रैकेट का {{math|''iħ''}} गुणा होता है। नए क्वांटम सुधारों को उत्पन्न करने वाली कोई क्रमबद्धता निर्गम न होने की मानक की अनुमान करते हुए, इससे यह संकेत है कि
अब, मान लीजिए कि कोई कैनोनिकल परिमाणीकरण को नियोजित करना चाहता है, तो चरण-समष्टि निर्देशांक ऑपरेटर बन जाते हैं जिनके कम्यूटेटर्स इनके मौलिक पॉयसन ब्रैकेट का {{math|''iħ''}} गुणा होता है। नए क्वांटम सुधारों को उत्पन्न करने वाली कोई क्रमबद्धता निर्गम न होने की मानक की अनुमान करते हुए, इससे यह संकेत है कि


:<math>
:<math>
[\hat{\phi}_1, \hat{\phi}_2] = i\hbar ~c,
[\hat{\phi}_1, \hat{\phi}_2] = i\hbar ~c,
</math>
</math>
जहां हैट्स यह दिखाने के लिए हैं कि कक्षाएं ऑपरेटर्स पर हैं।
जहां हैट्स यह दिखाने के लिए हैं कि कक्षाएं संचालक पर हैं।


कैनोनिकल परिमाणीकरण उपरोक्त रूपान्तरण संबंध देता है, किन्तु दूसरी ओर {{mvar|φ}}<sub>1</sub> और {{math|''φ''<sub>2</sub>}} ऐसी रूकावट हैं जो भौतिक अवस्थाओं पर शून्य होनी चाहिए, चूँकि दाहिना हाथ शून्य नहीं हो सकता है। यह उदाहरण किसी प्रणाली की प्रतिबंधों का समर्थन करने वाले पॉयसन ब्रैकेट की कुछ सामान्यीकृतियों की आवश्यकता को सारांशित करता है, जो संगत क्वैंटाइज़ेशन प्रक्रिया की ओर ले जाती है। इस नए ब्रैकेट को व्यापक होना चाहिए, उसे उपाधारित करना चाहिए, जैसा कि पॉयसन ब्रैकेट करता है, प्रतिबिंबी होना चाहिए, पॉयसन ब्रैकेट की प्रकार जैकोबी पहचान को पूरा करना चाहिए, अयश्च सुचि के लिए पॉयसन ब्रैकेट की समानता करनी चाहिए, और उसके अतिरिक्त, किसी भी द्वितीय कक्षा प्रतिबंध के साथ किसी अन्य मात्रा का ब्रैकेट शून्य होना चाहिए।
कैनोनिकल परिमाणीकरण उपरोक्त रूपान्तरण संबंध देता है, किन्तु दूसरी ओर {{mvar|φ}}<sub>1</sub> और {{math|''φ''<sub>2</sub>}} ऐसी रूकावट हैं जो भौतिक अवस्थाओं पर शून्य होनी चाहिए, चूँकि दाहिना हैण्ड शून्य नहीं हो सकता है। यह उदाहरण किसी प्रणाली की प्रतिबंधों का समर्थन करने वाले पॉयसन ब्रैकेट की कुछ सामान्यीकृतियों की आवश्यकता को सारांशित करता है, जो संगत क्वैंटाइज़ेशन प्रक्रिया की ओर ले जाती है। इस नए ब्रैकेट को व्यापक होना चाहिए, उसे उपाधारित करना चाहिए, जैसा कि पॉयसन ब्रैकेट करता है, प्रतिबिंबी होना चाहिए, पॉयसन ब्रैकेट की प्रकार जैकोबी पहचान को पूर्ण करना चाहिए, अप्रतिबंधित प्रणालियों के लिए पॉइसन ब्रैकेट का निर्माण करें और इसके अतिरिक्त किसी भी अन्य मात्रा के साथ किसी भी द्वितीय श्रेणी की रूकावट का ब्रैकेट विलुप्त हो जाना चाहिए।


इस बिंदु पर, द्वितीय कक्षाओं को चिह्नित किया जाएगा <math> \tilde{\phi}_a </math>आव्युह को परिभाषित करें जिसके प्रविष्टियाँ हैं
 
इस बिंदु पर दूसरी श्रेणी की रूकावट को <math> \tilde{\phi}_a </math> प्रविष्टियों के साथ एक आव्युह परिभाषित करें लेबल किया जाएगा
:<math>
:<math>
M_{ab} = \{\tilde{\phi}_a,\tilde{\phi}_b\}_{PB}.
M_{ab} = \{\tilde{\phi}_a,\tilde{\phi}_b\}_{PB}.
</math>
</math>
इस स्थितियों में, चरण समष्टि पर दो कार्यों का डिराक ब्रैकेट, {{mvar|f}} और {{mvar|g}}, परिभाषित किया जाता है
इस स्थितियों में, चरण समष्टि {{mvar|f}} और {{mvar|g}}, पर दो कार्यों का डिराक ब्रैकेट को इस प्रकार परिभाषित किया जाता है
{{Equation box 1
{{Equation box 1
|indent =:
|indent =:
Line 236: Line 241:
|border colour = #0073CF
|border colour = #0073CF
|background colour=#F9FFF7}}
|background colour=#F9FFF7}}
जहाँ {{math|''M''<sup>−1</sup><sub>''ab''</sub>}} दर्शाता है {{math|''ab''}} की प्रविष्टि {{mvar|M}} का व्युत्क्रम मैट्रिक्स। डिराक ने यह सिद्ध कर दिया {{mvar|M}} सदैव उलटा रहेगा।


यह जांचना सीधा है कि डिराक ब्रैकेट की उपरोक्त परिभाषा सभी वांछित गुणों को संतुष्ट करती है, और विशेष रूप से अंतिम, तर्क के लिए लापता हो जाती है जो द्वितीय श्रेणी की रूकावट है।


कैनोनिकल क्वैंटाइज़ेशन को प्रतिबंधित हैमिल्टनीअन सिस्टम पर लागू करते समय, ऑपरेटर्स के कम्यूटेटर की जगह, उनके क्लासिकल डायराक ब्रैकेट का {{math|''iħ''}} गुणा होता है। क्योंकि डायराक ब्रैकेट प्रतिबंधों का समर्थन करता है, इसलिए किसी भी अशक्त समीकरण का उपयोग करने से पहले सभी ब्रैकेट का मूल्यांकन करने की आवश्यकता नहीं है, जैसा कि पॉयसन ब्रैकेट के साथ स्थितियों होता है।
जहां {{math|''M''<sup>−1</sup><sub>''ab''</sub>}}, {{mvar|M}} के व्युत्क्रम आव्युह की {{math|''ab''}} प्रविष्टि को दर्शाता है। डिराक ने सिद्ध किया कि {{mvar|M}} सदैव विपरीत रहेगा।
 
यह जांचना प्रत्यक्ष है कि डिराक ब्रैकेट की उपरोक्त परिभाषा सभी वांछित गुणों को संतुष्ट करती है, और विशेष रूप से अंतिम, तर्क के लिए विलुप्त हो जाती है जो द्वितीय श्रेणी की रूकावट है।
 
कैनोनिकल क्वैंटाइज़ेशन को प्रतिबंधित हैमिल्टनीअन प्रणाली पर प्रयुक्त करते समय, संचालक के कम्यूटेटर के स्थान, उनके मौलिक डायराक ब्रैकेट का {{math|''iħ''}} गुणा होता है। क्योंकि डायराक ब्रैकेट प्रतिबंधों का समर्थन करता है, इसलिए किसी भी अशक्त समीकरण का उपयोग करने से पहले सभी ब्रैकेट का मूल्यांकन करने की आवश्यकता नहीं है, जैसा कि पॉयसन ब्रैकेट के साथ स्थितियों होता है।


ध्यान दें कि चूँकि बोसोनिक (ग्रासमैन सम) वैरिएबल का पॉइसन ब्रैकेट स्वयं लापता हो जाना चाहिए, [[ग्रासमैन संख्या]] के रूप में दर्शाए गए फर्मियन के पॉइसन ब्रैकेट को लापता होने की आवश्यकता नहीं है। इसका कारण यह है कि फर्मियोनिक स्थितियों में विषम संख्या में द्वितीय श्रेणी की रूकावट होना संभव है।
ध्यान दें कि चूँकि बोसोनिक (ग्रासमैन सम) वैरिएबल का पॉइसन ब्रैकेट स्वयं विलुप्त हो जाना चाहिए, [[ग्रासमैन संख्या]] के रूप में दर्शाए गए फर्मियन के पॉइसन ब्रैकेट को विलुप्त होने की आवश्यकता नहीं है। इसका कारण यह है कि फर्मियोनिक स्थितियों में विषम संख्या में द्वितीय श्रेणी की रूकावट होना संभव है।


== दिए गए उदाहरण पर चित्रण ==
== दिए गए उदाहरण का विवरण ==


उपर्युक्त उदाहरण पर वापस आते हैं, अनुभवहीन हैमिल्टनियन और दो प्राथमिक रूकावट हैं
उपर्युक्त उदाहरण पर वापस आते हैं, नेव हैमिल्टनियन और दो प्राथमिक रूकावट हैं


:<math>
:<math>
Line 259: Line 266:
H^* = V(x, y) + u_1 \left(p_x + \tfrac{q B}{2c}y\right) + u_2 \left(p_y - \tfrac{q B}{2c}x\right).
H^* = V(x, y) + u_1 \left(p_x + \tfrac{q B}{2c}y\right) + u_2 \left(p_y - \tfrac{q B}{2c}x\right).
</math>
</math>
अगला कदम स्थिरता की शर्तों को प्रयुक्त करना है {{math|<nowiki>{</nowiki>''Φ''<sub>''j''</sub>, ''H''<sup>*</sup><nowiki>}</nowiki><sub>''PB''</sub> ≈ 0}}, जो इस स्थितियों में बन जाता है
अगला चरण स्थिरता के नियमो {{math|<nowiki>{</nowiki>''Φ''<sub>''j''</sub>, ''H''<sup>*</sup><nowiki>}</nowiki><sub>''PB''</sub> ≈ 0}} को प्रयुक्त करना है, जो इस स्थितियों में बन जाता है


:<math>
:<math>
Line 267: Line 274:
\{\phi_2, H\}_{PB}+\sum_j u_j\{\phi_2, \phi_j\}_{PB} = -\frac{\partial V}{\partial y} - u_1 \frac{q B}{c} \approx 0.
\{\phi_2, H\}_{PB}+\sum_j u_j\{\phi_2, \phi_j\}_{PB} = -\frac{\partial V}{\partial y} - u_1 \frac{q B}{c} \approx 0.
</math>
</math>
ये द्वितीयक रूकावट नहीं हैं, किंतु ये ऐसी स्थितियाँ हैं जो {{math|''u''<sub>1</sub>}} और {{math|''u''<sub>2</sub>}} सही करने के लिए हैं। इसलिए, कोई दूसरी प्रतिबंधियाँ नहीं हैं और यह ऐसा पूरी प्रकार से निर्दिष्ट करता है कि कोई अभौतिक गुणमान नहीं हैं।
'''यह द्वितीयक रूकावट''' नहीं हैं, किंतु ये ऐसी स्थितियाँ हैं जो {{math|''u''<sub>1</sub>}} और {{math|''u''<sub>2</sub>}} सही करने के लिए हैं। इसलिए, कोई दूसरी प्रतिबंधियाँ नहीं हैं और यह ऐसा पूर्ण रूप से निर्दिष्ट करता है कि कोई अभौतिक गुणमान नहीं हैं।


यदि कोई {{math|''u''<sub>1</sub>}} और {{math|''u''<sub>2</sub>}} के मानों के साथ प्लग इन करता है, तो कोई देख सकता है कि गति के समीकरण हैं
यदि कोई {{math|''u''<sub>1</sub>}} और {{math|''u''<sub>2</sub>}} के मानों के साथ प्लग इन करता है, तो कोई देख सकता है कि गति के समीकरण हैं
Line 299: Line 306:
\end{matrix}\right),
\end{matrix}\right),
</math>
</math>
जिसे आसानी से उलटा किया जा सकता है
जिसे सरलता से विपरीत किया जा सकता है


:<math>
:<math>
Line 308: Line 315:
\end{matrix}\right) \quad\Rightarrow\quad M^{-1}_{ab} = -\frac{c}{q B_0} \varepsilon_{ab},
\end{matrix}\right) \quad\Rightarrow\quad M^{-1}_{ab} = -\frac{c}{q B_0} \varepsilon_{ab},
</math>
</math>
यहाँ {{math|''ε''<sub>''ab''</sub>}} [[लेवी-सिविटा प्रतीक]] है। इस प्रकार, डिराक कोष्ठक को इस प्रकार परिभाषित किया जाता है
यहाँ {{math|''ε''<sub>''ab''</sub>}} [[लेवी-सिविटा प्रतीक]] है। इस प्रकार, डिराक ब्रैकेट को इस प्रकार परिभाषित किया जाता है


:<math>
:<math>
\{f, g\}_{DB} = \{f, g\}_{PB} + \frac{c\varepsilon_{ab}}{q B}  \{f, \phi_a\}_{PB}\{\phi_b, g\}_{PB}.
\{f, g\}_{DB} = \{f, g\}_{PB} + \frac{c\varepsilon_{ab}}{q B}  \{f, \phi_a\}_{PB}\{\phi_b, g\}_{PB}.
</math>
</math>
यदि कोई सदैव पॉइसन ब्रैकेट के अतिरिक्त डिराक ब्रैकेट का उपयोग करता है, तो रूकावट को प्रयुक्त करने और अभिव्यक्तियों का मूल्यांकन करने के क्रम के बारे में कोई समस्या नहीं है, क्योंकि अशक्त रूप से शून्य किसी भी चीज का डिराक ब्रैकेट दृढ़ता से शून्य के समान होता है। इसका कारण यह है कि कोई व्यक्ति गति के सही समीकरण प्राप्त करने के लिए डायराक कोष्ठक के साथ सरल हैमिल्टनियन का उपयोग कर सकता है, जिसकी पुष्टि उपरोक्त समीकरणों पर आसानी से की जा सकती है।
यदि कोई सदैव पॉइसन ब्रैकेट के अतिरिक्त डिराक ब्रैकेट का उपयोग करता है, तो रूकावट को प्रयुक्त करने और अभिव्यक्तियों का मूल्यांकन करने के क्रम के बारे में कोई समस्या नहीं है, क्योंकि अशक्त रूप से शून्य किसी भी चीज का डिराक ब्रैकेट दृढ़ता से शून्य के समान होता है। इसका कारण यह है कि कोई व्यक्ति गति के सही समीकरण प्राप्त करने के लिए डायराक ब्रैकेट के साथ सरल हैमिल्टनियन का उपयोग कर सकता है, जिसकी पुष्टि उपरोक्त समीकरणों पर सरलता से की जा सकती है।


प्रणाली को परिमाणित करने के लिए, सभी चरण समष्टि वैरिएबल के बीच डायराक ब्रैकेट की आवश्यकता होती है। इस प्रणाली के लिए गैर-लुप्त होने वाले डिराक ब्रैकेट हैं
प्रणाली को परिमाणित करने के लिए, सभी चरण समष्टि वैरिएबल के मध्य डायराक ब्रैकेट की आवश्यकता होती है। इस प्रणाली के लिए गैर-लुप्त होने वाले डिराक ब्रैकेट हैं


:<math>
:<math>
Line 323: Line 330:
\{x, p_x\}_{DB} = \{y, p_y\}_{DB} = \tfrac{1}{2}
\{x, p_x\}_{DB} = \{y, p_y\}_{DB} = \tfrac{1}{2}
</math>
</math>
चूँकि क्रॉस-टर्म लापता हो जाते हैं, और
चूँकि क्रॉस-टर्म विलुप्त हो जाते हैं, और


:<math>
:<math>
Line 336: Line 343:
[\hat{x}, \hat{p}_x] = [\hat{y}, \hat{p}_y] = i\frac{\hbar}{2}
[\hat{x}, \hat{p}_x] = [\hat{y}, \hat{p}_y] = i\frac{\hbar}{2}
</math>
</math>
क्रॉस शर्तों के लुप्त होने के साथ, और
क्रॉस नियमो के लुप्त होने के साथ, और


:<math>
:<math>
[\hat{p}_x, \hat{p}_y] = -i\frac{\hbar q B}{4c}~.
[\hat{p}_x, \hat{p}_y] = -i\frac{\hbar q B}{4c}~.
</math>
</math>
इस उदाहरण में {{math|{{overset|&and;|''x''}}}} और {{math|{{overset|&and;|''y''}}}} के बीच गैर-लुप्त होने वाला कम्यूटेटर है, जिसका अर्थ है कि यह संरचना गैर-अनुवांशिक ज्यामिति निर्दिष्ट करती है। (चूंकि दोनों निर्देशांक आवागमन नहीं करते हैं, इसलिए {{mvar|x}} और {{mvar|y}} पद इनके लिए अनिश्चितता सिद्धांत होगा।)
इस उदाहरण में {{math|{{overset|&and;|''x''}}}} और {{math|{{overset|&and;|''y''}}}} के मध्य गैर-लुप्त होने वाला कम्यूटेटर है, जिसका अर्थ है कि यह संरचना गैर-अनुवांशिक ज्यामिति निर्दिष्ट करती है। (चूंकि दोनों निर्देशांक आवागमन नहीं करते हैं, इसलिए {{mvar|x}} और {{mvar|y}} पद इनके लिए अनिश्चितता सिद्धांत होगा।)


==हाइपरस्फेयर के लिए आगे का चित्रण==
==हाइपरस्फेयर के लिए आगे का चित्रण==
इसी प्रकार, हाइपरस्फीयर {{math|''S''<sup>''n''</sup>}} पर मुक्त गति के लिए, द {{math|n + 1}} स्थानांतरों को बाधित किया जाता है, {{math|''x<sub>i</sub> x<sup>i</sup>'' {{=}} 1}}। सादे गतिज लैग्रेंजियन से, यह स्पष्ट है कि उनके मोमेंटा उनके के साथ अनुप्रयुक्त होते हैं, {{math|''x<sub>i</sub> p<sup>i</sup>'' {{=}} 0}}। इस प्रकार से संबंधित डिरैक ब्रैकेट्स को समाधान करना भी सरल है,<ref>{{Cite journal | last1 = Corrigan | first1 = E. | last2 = Zachos | first2 = C. K. | doi = 10.1016/0370-2693(79)90465-9 | title = Non-local charges for the supersymmetric σ-model | journal = Physics Letters B | volume = 88 | issue = 3–4 | pages = 273 | year = 1979 |bibcode = 1979PhLB...88..273C }}</ref>
इसी प्रकार, हाइपरस्फीयर {{math|''S''<sup>''n''</sup>}} पर मुक्त गति के लिए, द {{math|n + 1}} समष्टिांतरों को बाधित किया जाता है, {{math|''x<sub>i</sub> x<sup>i</sup>'' {{=}} 1}}। सादे गतिज लैग्रेंजियन से, यह स्पष्ट है कि उनके मोमेंटा उनके के साथ अनुप्रयुक्त होते हैं, {{math|''x<sub>i</sub> p<sup>i</sup>'' {{=}} 0}}। इस प्रकार से संबंधित डिरैक ब्रैकेट्स को समाधान करना भी सरल है,<ref>{{Cite journal | last1 = Corrigan | first1 = E. | last2 = Zachos | first2 = C. K. | doi = 10.1016/0370-2693(79)90465-9 | title = Non-local charges for the supersymmetric σ-model | journal = Physics Letters B | volume = 88 | issue = 3–4 | pages = 273 | year = 1979 |bibcode = 1979PhLB...88..273C }}</ref>
:<math>
:<math>
\{x_i, x_j\}_{DB} = 0,
\{x_i, x_j\}_{DB} = 0,
Line 353: Line 360:
\{p_i, p_j\}_{DB} = x_j p_i - x_i p_j ~.
\{p_i, p_j\}_{DB} = x_j p_i - x_i p_j ~.
</math>
</math>
({{math|2''n'' + 1)}} प्रतिबद्ध चरण-स्थानीय वैरिएबल मानक {{math|(''x<sub>i</sub>, p<sub>i</sub>'')}} {{math|2''n''}} अनिर्बंधित मानों की समानता में बहुत आसान डायराक ब्रैकेट का अनुसरण करते हैं, यदि कोई {{mvar|x}}s और {{mvar|p}} को प्रारंभिक रूप से दो प्रतिबद्धियों के माध्यम से हटा जाता है, जो सामान्य पॉइसन ब्रैकेट का अनुसरण करेगा। ये डायराक ब्रैकेट सरलता और शैली जोड़ते हैं, किन्तु इसके साथ ही (प्रतिबद्ध) चर-स्थानीय वैरिएबल मानों की अत्यधिक संख्या की लागत पर होते हैं।
({{math|2''n'' + 1)}} प्रतिबद्ध चरण-समष्टिीय वैरिएबल मानक {{math|(''x<sub>i</sub>, p<sub>i</sub>'')}} {{math|2''n''}} अनिर्बंधित मानों की समानता में बहुत आसान डायराक ब्रैकेट का अनुसरण करते हैं, यदि कोई {{mvar|x}}s और {{mvar|p}} को प्रारंभिक रूप से दो प्रतिबद्धियों के माध्यम से हटा जाता है, जो सामान्य पॉइसन ब्रैकेट का अनुसरण करेगा। ये डायराक ब्रैकेट सरलता और शैली जोड़ते हैं, किन्तु इसके साथ ही (प्रतिबद्ध) चर-समष्टिीय वैरिएबल मानों की अत्यधिक संख्या की लागत पर होते हैं।


उदाहरण के लिए, किसी वृत्त पर मुक्त गति के लिए, {{math|1=''n'' = 1}}, के लिए {{math|''x''<sub>1</sub> ≡ z}} और उन्मूलन {{math|''x''<sub>2</sub>}} वृत्त रूकावट से अप्रतिबंधित की प्राप्ति होती है
उदाहरण के लिए, किसी वृत्त पर मुक्त गति के लिए, {{math|1=''n'' = 1}}, के लिए {{math|''x''<sub>1</sub> ≡ z}} और उन्मूलन {{math|''x''<sub>2</sub>}} वृत्त रूकावट से अप्रतिबंधित की प्राप्ति होती है
Line 373: Line 380:
* पॉइसन ब्रैकेट
* पॉइसन ब्रैकेट
* [[मोयल ब्रैकेट]]
* [[मोयल ब्रैकेट]]
* [[प्रथम श्रेणी की बाधा]]
* [[प्रथम श्रेणी की बाधा|प्रथम श्रेणी की रूकावट]]
* द्वितीय श्रेणी की रूकावट
* द्वितीय श्रेणी की रूकावट
* [[लैग्रेंजियन (क्षेत्र सिद्धांत)]]
* [[लैग्रेंजियन (क्षेत्र सिद्धांत)]]

Revision as of 22:12, 3 December 2023

डिराक ब्रैकेट, जो पॉल डिराक द्वारा विकसित पॉइसन ब्रैकेट का सामान्यीकरण है,[1] हैमिल्टनियन यांत्रिकी में द्वितीय श्रेणी की रूकावट के साथ मौलिक प्रणालियों का समाधान करने के लिए रचना की गई है, और इस प्रकार उन्हें कैनोनिकल परिमाणीकरण से निकलने की अनुमति मिल सकती है। यह डिरैक के हैमिल्टनियन यांत्रिकी के विकास का महत्वपूर्ण भाग है जिससे अधिक सामान्य लैग्रेंजियन यांत्रिकी को सुरुचिपूर्ण विधि से किया जा सके; विशेष रूप से, जब रूकावट प्रत्यक्ष हों, जिससे स्पष्ट वैरिएबल की संख्या गतिशील वैरिएबल से अधिक होटी है।[2] अधिक संक्षेप में, डिराक ब्रैकेट से निहित दो-रूप चरण समष्टि में रूकावट सतह पर सिंपलेक्टिक मैनिफ़ोल्ड का प्रतिबंध है।[3]

यह लेख मानक लैग्रेंजियन यांत्रिकी और हैमिल्टनियन यांत्रिकी औपचारिकताओं से परिचित है, और कैनोनिकल परिमाणीकरण से उनका संबंध मानता है। डिराक ब्रैकेट को संदर्भ में रखने के लिए डिराक की संशोधित हैमिल्टनियन औपचारिकता का विवरण भी संक्षेप में प्रस्तुत किया गया है।

मानक हैमिल्टनियन प्रक्रिया की अपर्याप्तता

हैमिल्टनियन यांत्रिकी का मानक विकास विभिन्न विशिष्ट स्थितियों में अपर्याप्त है:

  1. जब लैग्रेंजियन कम से कम निर्देशांक के वेग में अधिकतम रैखिक होता है;जिसका परिणामस्वरूप, कैनोनिकल समन्वय की परिभाषा रूकावट की ओर ले जाती है। यह डिराक ब्रैकेट का सहायता लेने का यह सबसे समान्य कारण है। उदाहरण के लिए, किसी भी फरमिओन्स के लिए लैग्रेंजियन (घनत्व) इस रूप का होता है।
  2. जब स्वतंत्रता की गेज (या अन्य अभौतिक) स्वतंत्रता की डिग्री होती है जिसे सही करने की आवश्यकता होती है।
  3. जब कोई अन्य रूकावट होती हैं जिन्हें कोई चरण समष्टि में प्रयुक्त करना चाहता है।

वेग में लैग्रेंजियन रैखिक का उदाहरण

मौलिक यांत्रिकी में उदाहरण आवेश q और द्रव्यमान m वाला कण है जो सशक्त स्थिरांक, सजातीय लंबवत चुंबकीय क्षेत्र के साथ x - y समतल तक सीमित है , इसलिए पुनः शक्ति B के साथ z- दिशा में संकेत करता है।[4]

मापदंडों के उचित विकल्प के साथ इस प्रणाली के लिए लैग्रेंजियन है

जहां A चुंबकीय क्षेत्र के लिए सदिश क्षमता B है; c निर्वात में प्रकाश की गति है; और V(r) इच्छानुसार बाह्य अदिश विभव है जिसे व्यापकता की हानि के बिना सरलता से x और y में द्विघात माना जा सकता है। हम उपयोग करते हैं

हमारी सदिश क्षमता के रूप में; यह z दिशा में समान और स्थिर चुंबकीय क्षेत्र B से मेल खाता है। यहां, हैट इकाई सदिशों को दर्शाती हैं। चूँकि, पश्चात के लेख में, उनका उपयोग क्वांटम यांत्रिक संचालको को उनके मौलिक एनालॉग्स से भिन्न करने के लिए किया जाता है। उपयोग सन्दर्भ से स्पष्ट होना चाहिए।

सामान्यतः, लैग्रेंजियन यांत्रिकी स्पष्ट है

जो गति के समीकरणों की ओर ले जाता है

एक हार्मोनिक क्षमता के लिए V का ग्रेडिएंट केवल निर्देशांक −(x,y) के समान होता है।

अब एक बहुत बड़े चुंबकीय क्षेत्र qB/mc ≫ 1 की सीमा में कोई एक साधारण सन्निकट लैग्रेंजियन उत्पन्न करने के लिए गतिज शब्द को छोड़ सकता है

गति के प्रथम-क्रम समीकरणों के साथ

ध्यान दें कि यह सन्निकट लैग्रेंजियन वेग में रैखिक है, जो उन स्थितियों में से एक है जिसके अनुसार मानक हैमिल्टनियन प्रक्रिया टूट जाती है। चूँकि इस उदाहरण को सन्निकटन के रूप में प्रेरित किया गया है, विचाराधीन लैग्रैन्जियन वैध है और लैग्रैन्जियन औपचारिकता में गति के निरंतर समीकरणों की ओर ले जाता है।

चूँकि, हैमिल्टनियन प्रक्रिया का पालन करते हुए, निर्देशांक से जुड़े कैनोनिकल क्षण अब हैं

जो इस अभिप्राय में असामान्य हैं कि वह वेगों के व्युत्क्रमणीय नहीं हैं; इसके अतिरिक्त, वह निर्देशांक के कार्य होने के लिए बाध्य हैं: चार चरण-समष्टि वैरिएबल रैखिक रूप से निर्भर हैं, इसलिए परिवर्तनीय आधार अतिपूर्णता है।

लीजेंड्रे परिवर्तन तब हैमिल्टनियन का निर्माण करता है

ध्यान दें कि इस "नैव " हैमिल्टनियन की संवेग पर कोई निर्भरता नहीं है , जिसका अर्थ है कि गति के समीकरण (हैमिल्टन के समीकरण) असंगत हैं।

हैमिल्टनियन प्रक्रिया टूट गई है। कोई व्यक्ति 4 -आयामी चरण समष्टि के दो घटकों , जैसे y और p y , को 2 आयामों के कम चरण समष्टि तक हटाकर समस्या को सही करने का प्रयास कर सकता है, जो कभी-कभी निर्देशांक को क्षण के रूप में और कभी-कभी निर्देशांक के रूप में व्यक्त करता है। चूँकि , यह न तो कोई सामान्य और न ही कठोर समाधान है। यह स्थितियों की आधार तक जाता है: कैनोनिकल संवेग की परिभाषा से चरण समष्टि (संवेग और निर्देशांक के मध्य) पर रूकावट का पता चलता है जिस पर कभी ध्यान नहीं दिया गया था।

सामान्यीकृत हैमिल्टनियन प्रक्रिया

लैग्रेंजियन यांत्रिकी में, यदि प्रणाली में होलोनोमिक रूकावट हैं, तो सामान्यतः उनके लिए लैग्रेंजियन में लैग्रेंज गुणक को जोड़ा जाता है। जब रूकावट संतुष्ट हो जाती हैं तो अतिरिक्त नियम विलुप्त हो जाती हैं, जिससे स्थिर कार्रवाई का मार्ग रूकावट सतह पर होने के लिए विवश हो जाता है। इस स्थितियों में, हैमिल्टनियन औपचारिकता पर जाने से हैमिल्टनियन यांत्रिकी में चरण समष्टि पर रूकावट उत्पन्न होती है, किन्तु समाधान समान है।

आगे बढ़ने से पहले, 'अशक्त समानता' और 'सशक्त समानता' की धारणाओं को समझना उपयोगी है। चरण समष्टि पर दो कार्य, f और g, अशक्त रूप से समान हैं यदि रूकावट संतुष्ट होने पर वह समान हैं, किन्तु पूर्ण चरण समष्टि में नहीं जिसे f ≈ g द्वारा दर्शाया गया है । यदि f और g रूकावट के संतुष्ट होने से स्वतंत्र रूप से समान हैं, उन्हें दृढ़ता से समान f = g लिखित कहा जाता है । यह ध्यान रखना महत्वपूर्ण है कि, सही उत्तर प्राप्त करने के लिए, डेरिवेटिव या पॉइसन ब्रैकेट का मूल्यांकन करने से पहले किसी भी अशक्त समीकरण का उपयोग नहीं किया जा सकता है।


नई प्रक्रिया इस प्रकार कार्य करती है, लैग्रेंजियन से प्रारंभ करें और सामान्य विधि से कैनोनिकल संवेग को परिभाषित करें। उनमें से कुछ परिभाषाएँ उलटी नहीं हो सकती हैं और इसके अतिरिक्त चरण समष्टि में रूकावट देती हैं (जैसा कि ऊपर बताया गया है)। इस प्रकार उत्पन्न या समस्या की प्रारंभ से लगाए गए अवरोधों को 'प्राथमिक अवरोध' कहा जाता है।इस प्रकार φj लेबल वाली रूकावट φj (p,q) ≈ 0 अशक्त रूप से विलुप्त होनी चाहिए


इसके पश्चात लेजेंडरे परिवर्तन के माध्यम से सामान्य विधि से नेव हैमिल्टनियन H को खोजता है, पूर्णतः उपरोक्त उदाहरण की तरह ध्यान दें कि हैमिल्टनियन को सदैव q s और p s के फलन के रूप में ही लिखा जा सकता है, तथापि वेग को संवेग के फलन में विपरीत नही किया जा सकता है।

हैमिल्टनियन का सामान्यीकरण

डिराक का तर्क है कि हमें हैमिल्टनियन (कुछ सीमा तक लैग्रेंज मल्टीप्लायरों की विधि के अनुरूप) का सामान्यीकरण करना चाहिए

जहां cj स्थिरांक नहीं हैं किंतु निर्देशांक और संवेग के कार्य हैं। चूंकि यह नया हैमिल्टनियन निर्देशांक का सबसे सामान्य कार्य है और नेव हैमिल्टनियन H* के समान अशक्त रूप से हैमिल्टनियन का सबसे व्यापक सामान्यीकरण संभव है जिससे δH * ≈ δH जब δφj ≈ 0 होता है।


cj, और अधिक स्पष्ट करने के लिए , विचार करें कि मानक प्रक्रिया में नैव हैमिल्टनियन से गति के समीकरण कैसे प्राप्त किए जाते हैं। हैमिल्टनियन की भिन्नता को दो विधियों से विस्तारित करता है और उन्हें समान सेट करता है (सप्रेस सूचकांकों और योगों के साथ कुछ संक्षिप्त संकेतन का उपयोग करके):

जहां गति के यूलर-लैग्रेंज समीकरणों और कैनोनिकल गति की परिभाषा को सरल बनाने के पश्चात दूसरी समानता बनाए है। इस समानता से, हैमिल्टनियन औपचारिकता में गति के समीकरणों का अनुमान लगाया जाता है

जहां अशक्त समानता प्रतीक अब स्पष्ट रूप से प्रदर्शित नहीं होता है, क्योंकि परिभाषा के अनुसार गति के समीकरण केवल अशक्त होते हैं। वर्तमान संदर्भ में, कोई केवल δq और δp भिन्न से शून्य तक गुणांक निर्धारित नहीं कर सकता है, क्योंकि भिन्नताएं कुछ सीमा तक रूकावट द्वारा प्रतिबंधित हैं। विशेष रूप से, विविधताएं रूकावट सतह के स्पर्शरेखा होनी चाहिए।

कोई इसका समाधान प्रदर्शित कर सकता है

सामान्यतः विविधताओं के लिए δqn और δpn रूकावट द्वारा प्रतिबंधित Φj ≈ 0 (यह मानते हुए कि रूकावट कुछ नियमितता नियमो को संतुष्ट करती हैं) है [5]

जहां um इच्छानुसार कार्य हैं।

इस परिणाम के प्रयोग से गति के समीकरण बन जाते हैं

जहां uk निर्देशांक और वेग के कार्य हैं जिन्हें, सिद्धांत रूप में, उपरोक्त गति के दूसरे समीकरण से निर्धारित किया जा सकता है।

लैग्रेंजियन औपचारिकता और हैमिल्टनियन औपचारिकता के मध्य लीजेंड्रे परिवर्तन को नए वैरिएबल जोड़ने की मूल्य पर बचाया गया है।

स्थिरता के नियम

पॉइसन ब्रैकेट का उपयोग करते समय गति के समीकरण अधिक कॉम्पैक्ट हो जाते हैं, क्योंकि यदि f निर्देशांक और संवेग का कुछ कार्य है तो

यदि कोई मानता है कि uk (वेग के कार्य) के साथ पॉइसन ब्रैकेट उपस्थित है; इससे कोई समस्या नहीं होती क्योंकि योगदान अशक्त रूप से विलुप्त हो जाता है। अब, इस औपचारिकता को सार्थक बनाने के लिए कुछ स्थिरता की नियम हैं जिन्हें पूर्ण किया जाना चाहिए। यदि रूकावट संतुष्ट होने वाली हैं, तो गति के उनके समीकरण अशक्त रूप से विलुप्त हो जाने चाहिए, अर्थात हमें आवश्यकता है

उपरोक्त से चार भिन्न-भिन्न प्रकार की स्थितियाँ उत्पन्न हो सकती हैं:

  1. समीकरण जो स्वाभाविक रूप से गलत है, जैसे 1=0 है ।
  2. समीकरण जो संभवतः हमारे प्राथमिक अवरोधों में से किसी का उपयोग करने के पश्चात, समान रूप से सत्य है।
  3. समीकरण जो हमारे निर्देशांक और संवेग पर नई रूकावट डालता है, किन्तु इससे uk स्वतंत्र है ।
  4. समीकरण जो निर्दिष्ट करने का कार्य uk करता है ।

पहला स्थिति संकेत करता है कि प्रारंभिक लैग्रेंजियन गति के असंगत समीकरण देता है, जैसे L = q दूसरा स्थिति कोई नया योगदान नहीं देता है।

तीसरा स्थिति चरण समष्टि में नई रूकावट देता है। इस विधि से प्राप्त रूकावट को द्वितीयक रूकावट कहा जाता है। द्वितीयक रूकावट का पता चलने पर उसे विस्तारित हैमिल्टनियन में जोड़ना चाहिए और नई स्थिरता स्थितियों की जांच करनी चाहिए, जिसके परिणामस्वरूप और भी अधिक रूकावट उत्पन्न हो सकती हैं। इस प्रक्रिया को तब तक दोहराएँ जब तक कोई और रूकावट न रह जाए। प्राथमिक और द्वितीयक रूकावट के मध्य अंतर अधिक सीमा तक कृत्रिम है (अर्थात ही प्रणाली के लिए रूकावट लैग्रेंजियन के आधार पर प्राथमिक या माध्यमिक हो सकती है), इसलिए यह लेख यहां से उनके मध्य अंतर नहीं करता है। यह मानते हुए कि स्थिरता की स्थिति को तब तक दोहराया गया है जब तक कि सभी रूकावट φj नहीं मिल जातीं उन सभी को अनुक्रमित करेगा। ध्यान दें कि यह लेख किसी भी रूकावट के लिए द्वितीयक रूकावट का उपयोग करता है जो प्रारंभ में समस्या में नहीं थी या कैनोनिकल संवेग की परिभाषा से ली गई थी; कुछ लेखक द्वितीयक रूकावट , तृतीयक रूकावट आदि के मध्य अंतर करते हैं।

अंत में, अंतिम स्थिति uk को सही करने में सहायता करता है। यदि इस प्रक्रिया के अंत में uk पूर्ण रूप से निर्धारित नहीं होता है तो इसका कारण है कि प्रणाली में स्वतंत्रता की अभौतिक (गेज) डिग्री हैं। एक बार जब सभी रूकावट (प्राथमिक और माध्यमिक) को नेव हैमिल्टनियन में जोड़ दिया जाता है और uk के लिए स्थिरता की स्थिति के समाधान को जोड़ दिया जाता है तो परिणाम को कुल हैमिल्टनियन कहा जाता है।

uk का निर्धारण

uk को इस प्रकार के विषम रैखिक समीकरण को हल करना होगा

जहां यह समीकरण कम से कम समाधान पर होना चाहिए, क्योंकि अन्यथा प्रारंभिक लैग्रेंजियन असंगत होगी; चूँकि, स्वतंत्रता की गेज डिग्री वाले प्रणाली में, समाधान अद्वितीय नहीं होगा। सबसे सामान्य समाधान इस प्रकार होता है

जहाँ Uk विशेष समाधान है और Vk सजातीय समीकरण का सबसे सामान्य समाधान है

सबसे सामान्य समाधान उपरोक्त सजातीय समीकरण के रैखिक रूप से स्वतंत्र समाधानों का रैखिक संयोजन होगा। रैखिक रूप से स्वतंत्र समाधानों की संख्या uk की संख्या (जो रूकावट की संख्या के समान है) के समान होती है चौथे प्रकार की स्थिरता स्थितियों की संख्या घटाएं (पिछले उपधारा में)। यह प्रणाली में स्वतंत्रता की अभौतिक डिग्री की संख्या है। रैखिक स्वतंत्र समाधानों Vka को लेबल करता है जहां सूचकांक a से 1 चलती है स्वतंत्रता की अभौतिक डिग्री की संख्या के लिए, स्थिरता की स्थिति का सामान्य समाधान है

जहां vaसमय के पूर्ण रूप से विविध समय के अनुक्रम हैं। va का विभिन्न विकल्प गेज परिवर्तन का समर्थन करता है, और प्रणाली की भौतिक स्थिति को अपरिवर्तित छोड़ना चाहिए।[6]

कुल हैमिल्टनियन

इस बिंदु पर, कुल हैमिल्टनियन का परिचय देना स्वाभाविक है

और जिसे यह ऋणात्मकता से प्रदर्शित किया गया है

चरण समष्टि पर किसी फलन f का समय विकास निर्धारित होता है, जहां PB हैमिल्टोनियन उपाधी को आंतरिक गुणरूप में व्यक्त करने के लिए उपयोग हो रहा है।

इसके पश्चात में, विस्तारित हैमिल्टनियन प्रस्तुत किया जाता है। गेज-अवैशिष्ट (भौतिक रूप से मापनीय मात्राएँ) मात्राएँ के लिए, सभी हैमिल्टोनियन्स कोई भी समय के विकास को समान होना चाहिए, क्योंकि वह सभी अशक्त रूप से समरूप हैं। यह केवल नॉनगेज-इनवेरिएंट मात्राओं के लिए है, जो महत्वपूर्ण होता है।

डिराक ब्रैकेट

ऊपर वह सब है जो डिरैक के संशोधित हैमिल्टोनियन प्रक्रिया में समीक्षा करने के लिए आवश्यक है। ऊपर वह सब है जो डिरैक के संशोधित हैमिल्टोनियन प्रक्रिया में समीक्षा करने के लिए आवश्यक है। यदि कोई सामान्य प्रणाली को प्रामाणिक रूप से परिमाणित करना चाहता है, तो उसे डिराक ब्रैकेट की आवश्यकता होती है। डिराक ब्रैकेट को परिभाषित करने से पहले, प्रथम श्रेणी और द्वितीय श्रेणी की रूकावट को प्रस्तुत करने की आवश्यकता है।

हम फलन f(q, p) को संयोजन और शंकुतों का पहला वर्ग कहते हैं यदि इसका पोयसन ब्रैकेट सभी प्रतिबंधियों के साथ अशक्त रूप से शून्य है, अर्थात,

प्रत्येक j के लिए ध्यान दें कि एकमात्र मात्राएँ जो अशक्त रूप से शून्य हो जाती हैं, वह रूकावट φj हैं, और इसलिए जो कुछ भी अशक्त रूप से विलुप्त हो जाता है वह दृढ़ता से रूकावट के रैखिक संयोजन के समान होना चाहिए। कोई यह प्रदर्शित कर सकता है कि दो प्रथम श्रेणी मात्राओं का पॉइसन ब्रैकेट भी प्रथम श्रेणी होना चाहिए। प्रथम श्रेणी की रूकावट पहले उल्लिखित स्वतंत्रता की अभौतिक डिग्री के साथ घनिष्ठ रूप से जुड़ी हुई हैं। अर्थात्, स्वतंत्र प्रथम श्रेणी रूकावट की संख्या स्वतंत्रता की अभौतिक डिग्री की संख्या के समान है, और इसके अतिरिक्त, प्राथमिक प्रथम श्रेणी रूकावट गेज परिवर्तन उत्पन्न करती हैं। डिराक ने आगे कहा कि सभी माध्यमिक प्रथम श्रेणी की रूकावट गेज परिवर्तनों के जनक हैं, जो गलत सिद्ध होती हैं; चूँकि, सामान्यतः कोई इस धारणा के अनुसार कार्य करता है कि इस उपचार का उपयोग करते समय सभी प्रथम श्रेणी की रूकावट गेज परिवर्तन उत्पन्न करती हैं।[7]

जब प्रथम श्रेणी के माध्यमिक अवरोधों को हैमिल्टनियन में अर्बिट्रे va के साथ डाला जाता है जैसा कि पहले कक्षा के प्राथमिक नियमों को जोड़कर कुल हैमिल्टनीअन पर पहुंचने के लिए, तो व्यापक हैमिल्टनीअन प्राप्त होता है। व्यापक हैमिल्टनीअन ने किसी भी गेज-आधीन परिमाणों के लिए सबसे सामान्य समय विकास प्रदान किया है, और वास्तव में संभवतः लैग्रेंजियन रूपवाद के उसके समीकरणों को विस्तारित कर सकता है।

डिराक ब्रैकेट परिचित करने के उद्देश्य से, दीर्घकालीन रूप से अधिक रुचिकर हैं द्वितीय कक्षाएं वह कक्षाएं हैं जिनके साथ कम से कम अन्य कक्षा के साथ ऐसा पॉयसन ब्रैकेट होता है जो असून्य है।

उदाहरण के लिए, द्वितीय श्रेणी φ1 और φ2 की रूकावट पर विचार करें जिसका पॉइसन ब्रैकेट स्थिरांक c है,

अब, मान लीजिए कि कोई कैनोनिकल परिमाणीकरण को नियोजित करना चाहता है, तो चरण-समष्टि निर्देशांक ऑपरेटर बन जाते हैं जिनके कम्यूटेटर्स इनके मौलिक पॉयसन ब्रैकेट का गुणा होता है। नए क्वांटम सुधारों को उत्पन्न करने वाली कोई क्रमबद्धता निर्गम न होने की मानक की अनुमान करते हुए, इससे यह संकेत है कि

जहां हैट्स यह दिखाने के लिए हैं कि कक्षाएं संचालक पर हैं।

कैनोनिकल परिमाणीकरण उपरोक्त रूपान्तरण संबंध देता है, किन्तु दूसरी ओर φ1 और φ2 ऐसी रूकावट हैं जो भौतिक अवस्थाओं पर शून्य होनी चाहिए, चूँकि दाहिना हैण्ड शून्य नहीं हो सकता है। यह उदाहरण किसी प्रणाली की प्रतिबंधों का समर्थन करने वाले पॉयसन ब्रैकेट की कुछ सामान्यीकृतियों की आवश्यकता को सारांशित करता है, जो संगत क्वैंटाइज़ेशन प्रक्रिया की ओर ले जाती है। इस नए ब्रैकेट को व्यापक होना चाहिए, उसे उपाधारित करना चाहिए, जैसा कि पॉयसन ब्रैकेट करता है, प्रतिबिंबी होना चाहिए, पॉयसन ब्रैकेट की प्रकार जैकोबी पहचान को पूर्ण करना चाहिए, अप्रतिबंधित प्रणालियों के लिए पॉइसन ब्रैकेट का निर्माण करें और इसके अतिरिक्त किसी भी अन्य मात्रा के साथ किसी भी द्वितीय श्रेणी की रूकावट का ब्रैकेट विलुप्त हो जाना चाहिए।


इस बिंदु पर दूसरी श्रेणी की रूकावट को प्रविष्टियों के साथ एक आव्युह परिभाषित करें लेबल किया जाएगा

इस स्थितियों में, चरण समष्टि f और g, पर दो कार्यों का डिराक ब्रैकेट को इस प्रकार परिभाषित किया जाता है


जहां M−1ab, M के व्युत्क्रम आव्युह की ab प्रविष्टि को दर्शाता है। डिराक ने सिद्ध किया कि M सदैव विपरीत रहेगा।

यह जांचना प्रत्यक्ष है कि डिराक ब्रैकेट की उपरोक्त परिभाषा सभी वांछित गुणों को संतुष्ट करती है, और विशेष रूप से अंतिम, तर्क के लिए विलुप्त हो जाती है जो द्वितीय श्रेणी की रूकावट है।

कैनोनिकल क्वैंटाइज़ेशन को प्रतिबंधित हैमिल्टनीअन प्रणाली पर प्रयुक्त करते समय, संचालक के कम्यूटेटर के स्थान, उनके मौलिक डायराक ब्रैकेट का गुणा होता है। क्योंकि डायराक ब्रैकेट प्रतिबंधों का समर्थन करता है, इसलिए किसी भी अशक्त समीकरण का उपयोग करने से पहले सभी ब्रैकेट का मूल्यांकन करने की आवश्यकता नहीं है, जैसा कि पॉयसन ब्रैकेट के साथ स्थितियों होता है।

ध्यान दें कि चूँकि बोसोनिक (ग्रासमैन सम) वैरिएबल का पॉइसन ब्रैकेट स्वयं विलुप्त हो जाना चाहिए, ग्रासमैन संख्या के रूप में दर्शाए गए फर्मियन के पॉइसन ब्रैकेट को विलुप्त होने की आवश्यकता नहीं है। इसका कारण यह है कि फर्मियोनिक स्थितियों में विषम संख्या में द्वितीय श्रेणी की रूकावट होना संभव है।

दिए गए उदाहरण का विवरण

उपर्युक्त उदाहरण पर वापस आते हैं, नेव हैमिल्टनियन और दो प्राथमिक रूकावट हैं

इसलिए, विस्तारित हैमिल्टोनियन को इस प्रकार लिखा जा सकता है

अगला चरण स्थिरता के नियमो {Φj, H*}PB ≈ 0 को प्रयुक्त करना है, जो इस स्थितियों में बन जाता है

यह द्वितीयक रूकावट नहीं हैं, किंतु ये ऐसी स्थितियाँ हैं जो u1 और u2 सही करने के लिए हैं। इसलिए, कोई दूसरी प्रतिबंधियाँ नहीं हैं और यह ऐसा पूर्ण रूप से निर्दिष्ट करता है कि कोई अभौतिक गुणमान नहीं हैं।

यदि कोई u1 और u2 के मानों के साथ प्लग इन करता है, तो कोई देख सकता है कि गति के समीकरण हैं

जो आत्मनिर्भर हैं और गति के लैग्रेंजियन समीकरणों से समरूप हैं।

साधारण गणना इसकी पुष्टि करती है कि φ1 और φ2 दूसरी प्रकार की प्रतिबंधियाँ हैं, क्योंकि

इसलिए आव्युह ऐसी दिखती है

जिसे सरलता से विपरीत किया जा सकता है

यहाँ εab लेवी-सिविटा प्रतीक है। इस प्रकार, डिराक ब्रैकेट को इस प्रकार परिभाषित किया जाता है

यदि कोई सदैव पॉइसन ब्रैकेट के अतिरिक्त डिराक ब्रैकेट का उपयोग करता है, तो रूकावट को प्रयुक्त करने और अभिव्यक्तियों का मूल्यांकन करने के क्रम के बारे में कोई समस्या नहीं है, क्योंकि अशक्त रूप से शून्य किसी भी चीज का डिराक ब्रैकेट दृढ़ता से शून्य के समान होता है। इसका कारण यह है कि कोई व्यक्ति गति के सही समीकरण प्राप्त करने के लिए डायराक ब्रैकेट के साथ सरल हैमिल्टनियन का उपयोग कर सकता है, जिसकी पुष्टि उपरोक्त समीकरणों पर सरलता से की जा सकती है।

प्रणाली को परिमाणित करने के लिए, सभी चरण समष्टि वैरिएबल के मध्य डायराक ब्रैकेट की आवश्यकता होती है। इस प्रणाली के लिए गैर-लुप्त होने वाले डिराक ब्रैकेट हैं

चूँकि क्रॉस-टर्म विलुप्त हो जाते हैं, और

इसलिए, कैनोनिकल परिमाणीकरण का सही कार्यान्वयन रूपान्तरण संबंधों को निर्धारित करता है,

क्रॉस नियमो के लुप्त होने के साथ, और

इस उदाहरण में x और y के मध्य गैर-लुप्त होने वाला कम्यूटेटर है, जिसका अर्थ है कि यह संरचना गैर-अनुवांशिक ज्यामिति निर्दिष्ट करती है। (चूंकि दोनों निर्देशांक आवागमन नहीं करते हैं, इसलिए x और y पद इनके लिए अनिश्चितता सिद्धांत होगा।)

हाइपरस्फेयर के लिए आगे का चित्रण

इसी प्रकार, हाइपरस्फीयर Sn पर मुक्त गति के लिए, द n + 1 समष्टिांतरों को बाधित किया जाता है, xi xi = 1। सादे गतिज लैग्रेंजियन से, यह स्पष्ट है कि उनके मोमेंटा उनके के साथ अनुप्रयुक्त होते हैं, xi pi = 0। इस प्रकार से संबंधित डिरैक ब्रैकेट्स को समाधान करना भी सरल है,[8]

(2n + 1) प्रतिबद्ध चरण-समष्टिीय वैरिएबल मानक (xi, pi) 2n अनिर्बंधित मानों की समानता में बहुत आसान डायराक ब्रैकेट का अनुसरण करते हैं, यदि कोई xs और p को प्रारंभिक रूप से दो प्रतिबद्धियों के माध्यम से हटा जाता है, जो सामान्य पॉइसन ब्रैकेट का अनुसरण करेगा। ये डायराक ब्रैकेट सरलता और शैली जोड़ते हैं, किन्तु इसके साथ ही (प्रतिबद्ध) चर-समष्टिीय वैरिएबल मानों की अत्यधिक संख्या की लागत पर होते हैं।

उदाहरण के लिए, किसी वृत्त पर मुक्त गति के लिए, n = 1, के लिए x1 ≡ z और उन्मूलन x2 वृत्त रूकावट से अप्रतिबंधित की प्राप्ति होती है

गति के समीकरणों के साथ

अधिकारी; चूँकि H = p2/2 = E देने वाले समकिट प्रणाली के लिए

और इसके फलस्वरूप, तुरंत, अदृश्यता से, दोनों परिवर्तनों के लिए ओसिलेशन,

यह भी देखें

संदर्भ

  1. Dirac, P. A. M. (1950). "सामान्यीकृत हैमिल्टनियन गतिशीलता". Canadian Journal of Mathematics. 2: 129–014. doi:10.4153/CJM-1950-012-1. S2CID 119748805.
  2. Dirac, Paul A. M. (1964). क्वांटम यांत्रिकी पर व्याख्यान. Belfer Graduate School of Science Monographs Series. Vol. 2. Belfer Graduate School of Science, New York. ISBN 9780486417134. MR 2220894.; Dover, ISBN 0486417131.
  3. See pages 48-58 of Ch. 2 in Henneaux, Marc and Teitelboim, Claudio, Quantization of Gauge Systems. Princeton University Press, 1992. ISBN 0-691-08775-X
  4. Dunne, G.; Jackiw, R.; Pi, S. Y.; Trugenberger, C. (1991). "स्व-दोहरी चेर्न-साइमन्स सॉलिटॉन और द्वि-आयामी गैर-रेखीय समीकरण". Physical Review D. 43 (4): 1332–1345. Bibcode:1991PhRvD..43.1332D. doi:10.1103/PhysRevD.43.1332. PMID 10013503.
  5. See page 8 in Henneaux and Teitelboim in the references.
  6. Weinberg, Steven, The Quantum Theory of Fields, Volume 1. Cambridge University Press, 1995. ISBN 0-521-55001-7
  7. See Henneaux and Teitelboim, pages 18-19.
  8. Corrigan, E.; Zachos, C. K. (1979). "Non-local charges for the supersymmetric σ-model". Physics Letters B. 88 (3–4): 273. Bibcode:1979PhLB...88..273C. doi:10.1016/0370-2693(79)90465-9.