मोयल प्रोडक्ट: Difference between revisions
No edit summary |
No edit summary |
||
Line 11: | Line 11: | ||
<math display="block">f \star g = fg + \sum_{n=1}^\infty \hbar^n C_n(f,g),</math> | <math display="block">f \star g = fg + \sum_{n=1}^\infty \hbar^n C_n(f,g),</math> | ||
जहां प्रत्येक {{mvar|C<sub>n</sub>}} निम्नलिखित गुणों द्वारा विशेषता क्रम {{mvar|n}} का निश्चित द्विविभेदक ऑपरेटर है (स्पष्ट सूत्र के लिए नीचे देखें): | जहां प्रत्येक {{mvar|C<sub>n</sub>}} निम्नलिखित गुणों द्वारा विशेषता क्रम {{mvar|n}} का निश्चित द्विविभेदक ऑपरेटर है (स्पष्ट सूत्र के लिए नीचे देखें): | ||
* <math>f \star g = fg + \mathcal O(\hbar),</math> बिंदुवार प्रोडक्ट का विरूपण | * <math>f \star g = fg + \mathcal O(\hbar),</math> बिंदुवार प्रोडक्ट का विरूपण उपरोक्त सूत्र में निहित है। | ||
* <math>f \star g - g \star f = i\hbar\{f,g\} + \mathcal O(\hbar^3) \equiv i\hbar \{\{f,g\}\},</math> पॉइसन ब्रैकेट का विरूपण, जिसे [[मोयल ब्रैकेट]] कहा जाता है। | * <math>f \star g - g \star f = i\hbar\{f,g\} + \mathcal O(\hbar^3) \equiv i\hbar \{\{f,g\}\},</math> पॉइसन ब्रैकेट का विरूपण, जिसे [[मोयल ब्रैकेट]] कहा जाता है। | ||
* <math>f \star 1 = 1 \star f = f,</math> अविकृत बीजगणित का 1 नये बीजगणित में | * <math>f \star 1 = 1 \star f = f,</math> अविकृत बीजगणित का 1 नये बीजगणित में पहचान है। | ||
* <math>\overline{f \star g} = \overline{g} \star \overline{f},</math> जटिल संयुग्म इंटेग्रल एंटीलिनियर एंटीऑटोमोर्फिज्म है। | * <math>\overline{f \star g} = \overline{g} \star \overline{f},</math> जटिल संयुग्म इंटेग्रल एंटीलिनियर एंटीऑटोमोर्फिज्म है। | ||
ध्यान दें, यदि कोई [[वास्तविक संख्या]] | ध्यान दें, यदि कोई [[वास्तविक संख्या|वास्तविक संख्याओं]] में मान वाले फ़ंक्शन लेना चाहता है, तो इंटेग्रल वैकल्पिक वर्जन दूसरी स्थिति में {{mvar|i}} को विस्थापित कर देता है और चौथी स्थिति को समाप्त कर देता है। | ||
यदि कोई बहुपद कार्यों | यदि कोई बहुपद कार्यों को प्रतिबंधित करता है, तो उपरोक्त बीजगणित [[वेइल बीजगणित]] {{mvar|A<sub>n</sub>}} के लिए आइसोमोर्फिक है, और दोनों {{mvar|n}} चर (या आयाम {{math|2''n''}} के सदिश स्थान के [[सममित बीजगणित]]) में बहुपद के स्थान के विग्नर-वेइल परिवर्तन की वैकल्पिक प्राप्ति को प्रस्तुत करते हैं। | ||
स्पष्ट सूत्र प्रदान करने के लिए, इंटेग्रल स्थिर [[पॉइसन बायवेक्टर]] पर विचार करें {{math|Π}} पर {{math|ℝ<sup>2''n''</sup>}}: | |||
<math display="block">\Pi = \sum_{i,j} \Pi^{ij} \partial_i \wedge \partial_j,</math> | <math display="block">\Pi = \sum_{i,j} \Pi^{ij} \partial_i \wedge \partial_j,</math> | ||
जहाँ {{math|Π<sup>''ij''</sup>}} प्रत्येक के लिए इंटेग्रल वास्तविक संख्या है {{mvar|''i'', ''j''}}. | जहाँ {{math|Π<sup>''ij''</sup>}} प्रत्येक के लिए इंटेग्रल वास्तविक संख्या है {{mvar|''i'', ''j''}}. |
Revision as of 20:19, 1 December 2023
गणित में, मोयल प्रोडक्ट (जोस एनरिक मोयल के पश्चात; जिसे हरमन वेइल और हिलब्रांड जे. ग्रोएनवॉल्ड के पश्चात स्टार प्रोडक्ट या वेइल-ग्रोएनवॉल्ड प्रोडक्ट भी कहा जाता है) चरण-अंतरिक्ष स्टार प्रोडक्ट का इंटेग्रल उदाहरण है। यह इंटेग्रल सहयोगी, नॉन-कम्यूटेटिव प्रोडक्ट है, ★, ℝ2n कार्यों पर, इसके पॉइसन ब्रैकेट से सुसज्जित है (स्यम्प्लेटिक मैनिफोल्ड्स के सामान्यीकरण के साथ, नीचे वर्णित है)। यह सार्वभौमिक आवरण बीजगणित के "प्रतीकों के बीजगणित" के ★-प्रोडक्ट का विशेष केस है।
ऐतिहासिक टिप्पणियाँ
मोयल प्रोडक्ट का नाम जोस एनरिक मोयल के नाम पर रखा गया है, किंतु कभी-कभी इसे हरमन वेइल-ग्रोएनवॉल्ड प्रोडक्ट भी कहा जाता है क्योंकि इसे एचजे ग्रोएनवॉल्ड ने अपने 1946 के डॉक्टरेट शोध प्रबंध में वेइल पत्राचार की तीव्र सराहना में प्रस्तुत किया था। [1]ऐसा प्रतीत होता है कि मोयल को वास्तव में अपने प्रसिद्ध लेख में प्रोडक्ट के बारे में ज्ञात नहीं था[2] और डिराक के साथ उनके प्रसिद्ध पत्राचार में इसका अत्यंत अभाव था। [3] जैसा कि उनकी जीवनी में दर्शाया गया है। ऐसा प्रतीत होता है कि मोयल के नाम पर लोकप्रिय नामकरण उनके फ्लैट चरण-अंतरिक्ष परिमाणीकरण चित्र के सम्मान में, 1970 के दशक में ही उभरा था।[4]
परिभाषा
ℝ2n पर सुचारू कार्य f और g के लिए प्रोडक्ट रूप लेता है
- बिंदुवार प्रोडक्ट का विरूपण उपरोक्त सूत्र में निहित है।
- पॉइसन ब्रैकेट का विरूपण, जिसे मोयल ब्रैकेट कहा जाता है।
- अविकृत बीजगणित का 1 नये बीजगणित में पहचान है।
- जटिल संयुग्म इंटेग्रल एंटीलिनियर एंटीऑटोमोर्फिज्म है।
ध्यान दें, यदि कोई वास्तविक संख्याओं में मान वाले फ़ंक्शन लेना चाहता है, तो इंटेग्रल वैकल्पिक वर्जन दूसरी स्थिति में i को विस्थापित कर देता है और चौथी स्थिति को समाप्त कर देता है।
यदि कोई बहुपद कार्यों को प्रतिबंधित करता है, तो उपरोक्त बीजगणित वेइल बीजगणित An के लिए आइसोमोर्फिक है, और दोनों n चर (या आयाम 2n के सदिश स्थान के सममित बीजगणित) में बहुपद के स्थान के विग्नर-वेइल परिवर्तन की वैकल्पिक प्राप्ति को प्रस्तुत करते हैं।
स्पष्ट सूत्र प्रदान करने के लिए, इंटेग्रल स्थिर पॉइसन बायवेक्टर पर विचार करें Π पर ℝ2n:
यह इंटेग्रल विशेष मामला है जिसे सार्वभौमिक आवरण बीजगणित के रूप में जाना जाता है[5] प्रतीकों के बीजगणित पर और इसे इंटेग्रल बंद रूप दिया जा सकता है[6] (जो बेकर-कैंपबेल-हॉसडॉर्फ सूत्र से अनुसरण करता है)। मैट्रिक्स घातांक का उपयोग करके बंद फॉर्म प्राप्त किया जा सकता है:
ध्यान दें कि यदि कार्य f और g बहुपद हैं, उपरोक्त अनंत योग परिमित हो जाते हैं (सामान्य वेइल-बीजगणित मामले को कम करते हुए)।
मोयल प्रोडक्ट का सामान्यीकृत से संबंध ★-इंटेग्रल सार्वभौमिक आवरण बीजगणित के प्रतीकों के बीजगणित की परिभाषा में प्रयुक्त प्रोडक्ट इस तथ्य से अनुसरण करता है कि वेइल बीजगणित हेइज़ेनबर्ग बीजगणित का सार्वभौमिक आवरण बीजगणित है (मॉड्यूलो कि केंद्र इकाई के बराबर है)।
कई गुना पर
किसी भी सिंपलेक्टिक मैनिफोल्ड पर, कोई भी, कम से कम स्थानीय रूप से, निर्देशांक चुन सकता है ताकि डार्बौक्स के प्रमेय द्वारा सिंपलेक्टिक संरचना को स्थिर बनाया जा सके; और, संबंधित पॉइसन बायवेक्टर का उपयोग करके, कोई उपरोक्त सूत्र पर विचार कर सकता है। विश्व स्तर पर काम करने के लिए, पूरे मैनिफोल्ड (और सिर्फ इंटेग्रल स्थानीय सूत्र नहीं) पर इंटेग्रल फ़ंक्शन के रूप में, किसी को सिम्पलेक्टिक मैनिफोल्ड को मरोड़-मुक्त सिम्पलेक्टिक कनेक्शन (गणित) से लैस करना होगा। यह इसे फेडोसोव मैनिफोल्ड बनाता है।
मनमाने ढंग से पॉइसन मैनिफोल्ड्स (जहां डार्बौक्स प्रमेय लागू नहीं होता है) के लिए अधिक सामान्य परिणाम कोंटसेविच परिमाणीकरण सूत्र द्वारा दिए गए हैं।
उदाहरण
के निर्माण और उपयोगिता का इंटेग्रल सरल स्पष्ट उदाहरण ★-प्रोडक्ट (द्वि-आयामी यूक्लिडियन चरण स्थान के सबसे सरल मामले के लिए) विग्नर-वेइल परिवर्तन पर लेख में दिया गया है: दो गॉसियन इसके साथ रचना करते हैं ★-अतिशयोक्तिपूर्ण स्पर्शरेखा नियम के अनुसार प्रोडक्ट:[7]
हालाँकि, चरण स्थान और हिल्बर्ट स्थान के बीच प्रत्येक पत्राचार नुस्खा प्रेरित करता है its own समय-आवृत्ति विश्लेषण में वितरण के बीच परिवर्तन ★-प्रोडक्ट।[8][9] इसी तरह के परिणाम सेगल-बार्गमैन स्पेस और हाइजेनबर्ग समूह के थीटा प्रतिनिधित्व में देखे जाते हैं, जहां निर्माण और विनाश संचालक a∗ = z और a = ∂/∂z को जटिल तल (क्रमशः, हेइज़ेनबर्ग समूह के लिए ऊपरी आधा तल) पर कार्य करने के लिए समझा जाता है, ताकि स्थिति और संवेग संचालक दिए जाएं x = (a + a∗)/2 और p = (a - a∗)/(2i). यह स्थिति उस मामले से स्पष्ट रूप से भिन्न है जहां पदों को वास्तविक-मूल्यवान माना जाता है, किंतु यह हाइजेनबर्ग बीजगणित और उसके आवरण, वेइल बीजगणित की समग्र बीजगणितीय संरचना में अंतर्दृष्टि प्रदान करता है।
फ़ेज़-स्पेस इंटीग्रल्स के अंदर
इंटेग्रल चरण-अंतरिक्ष अभिन्न अंग के अंदर, बस one मोयल प्रकार का स्टार प्रोडक्ट गिराया जा सकता है,[10] जिसके परिणामस्वरूप सादा गुणन होता है, जैसा कि भागों द्वारा इंटेग्रलीकरण से स्पष्ट होता है,
संदर्भ
- ↑ Groenewold, H. J. (1946). "प्राथमिक क्वांटम यांत्रिकी के सिद्धांतों पर" (PDF). Physica. 12: 405–460.
- ↑ Moyal, J. E.; Bartlett, M. S. (1949). "एक सांख्यिकीय सिद्धांत के रूप में क्वांटम यांत्रिकी". Mathematical Proceedings of the Cambridge Philosophical Society. 45: 99. Bibcode:1949PCPS...45...99M. doi:10.1017/S0305004100000487.
- ↑ Moyal, Ann (2006). Maverick Mathematician: The Life and Science of J. E. Moyal. ANU E-press.
- ↑ Curtright, T. L.; Zachos, C. K. (2012). "चरण अंतरिक्ष में क्वांटम यांत्रिकी". Asia Pacific Physics Newsletter. 1: 37. arXiv:1104.5269. doi:10.1142/S2251158X12000069.
- ↑ Berezin, Felix A. (1967). "लाई बीजगणित के संबंधित लिफ़ाफ़े के बारे में कुछ टिप्पणियाँ". Functional Analysis and its Applications. 1: 91.
- ↑ Bekaert, Xavier (June 2005). "सार्वभौमिक आवरण बीजगणित और भौतिकी में कुछ अनुप्रयोग" (PDF) (Lecture notes). Université Libre du Bruxelles, Institut des Hautes Études Scientifiques.
- ↑ Zachos, Cosmas; Fairlie, David; Curtright, Thomas, eds. (2005). Quantum Mechanics in Phase Space: An Overview with Selected Papers. World Scientific Series in 20th Century Physics. Vol. 34. Singapore: World Scientific. ISBN 978-981-238-384-6.
- ↑ Cohen, L (1995). समय-आवृत्ति विश्लेषण. New York: Prentice-Hall. ISBN 978-0135945322.
- ↑ Lee, H. W. (1995). "क्वांटम चरण-अंतरिक्ष वितरण कार्यों का सिद्धांत और अनुप्रयोग". Physics Reports. 259 (3): 147. Bibcode:1995PhR...259..147L. doi:10.1016/0370-1573(95)00007-4.
- ↑ Curtright, T. L.; Fairlie, D. B.; Zachos, C. K. (2014). चरण अंतरिक्ष में क्वांटम यांत्रिकी पर एक संक्षिप्त ग्रंथ. World Scientific. ISBN 9789814520430.