चरण अंतरिक्ष क्रिस्टल: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|A state of a physical system in phase space}} {{Orphan|date=August 2023}} चरण अंतरिक्ष क्रिस्टल एक भौत...")
 
 
(14 intermediate revisions by 2 users not shown)
Line 2: Line 2:
{{Orphan|date=August 2023}}
{{Orphan|date=August 2023}}


चरण [[अंतरिक्ष]] क्रिस्टल एक भौतिक प्रणाली की स्थिति है जो अंतरिक्ष के बजाय [[चरण स्थान]] में असतत समरूपता प्रदर्शित करती है। एकल-कण प्रणाली के लिए, चरण अंतरिक्ष क्रिस्टल स्थिति एक बंद [[क्वांटम प्रणाली]] के लिए हैमिल्टनियन के [[अपना राज्य]] को संदर्भित करती है<ref name="Guo2013prl">{{cite journal |last1=Guo |first1=Lingzhen |last2=Marthaler |first2=Michael |last3=Schön |first3=Gerd |title=Phase Space Crystals: A New Way to Create a Quasienergy Band Structure |journal=Physical Review Letters |date=13 November 2013 |volume=111 |issue=20|pages=205303 |doi=10.1103/PhysRevLett.111.205303 |pmid=24289695 |arxiv=1305.1800 |bibcode=2013PhRvL.111t5303G |s2cid=9337383 |url=https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.205303}}</ref> या एक खुली क्वांटम प्रणाली के लिए [[लिउविलियन]] का [[eigenoperator]]<ref name=Lang2021NJP>{{cite journal |last1=Lang |first1=Ben |last2=Armour |first2=Andrew D |title=जोसेफसन जंक्शन-गुहा सर्किट में मल्टी-फोटॉन अनुनाद|journal=New Journal of Physics |date=1 March 2021 |volume=23 |issue=3 |pages=033021 |doi=10.1088/1367-2630/abe483|arxiv=2012.10149 |bibcode=2021NJPh...23c3021L |s2cid=229332222 }}</ref> कई-निकाय प्रणाली के लिए, चरण अंतरिक्ष क्रिस्टल चरण अंतरिक्ष में ठोस जैसी क्रिस्टलीय अवस्था है।<ref name="Liang2018NJP">{{cite journal |last1=Liang |first1=Pengfei |last2=Marthaler |first2=Michael |last3=Guo |first3=Lingzhen |title=Floquet many-body engineering: topology and many-body physics in phase space lattices |journal=New Journal of Physics |date=3 April 2018 |volume=20 |issue=2 |pages=023043 |doi=10.1088/1367-2630/aaa7c3|arxiv=1710.09716 |bibcode=2018NJPh...20b3043L |s2cid=3275846 }}</ref><ref name=guo2022prb>{{cite journal |last1=Guo |first1=Lingzhen |last2=Peano |first2=Vittorio |last3=Marquardt |first3=Florian |title=Phase space crystal vibrations: Chiral edge states with preserved time-reversal symmetry |journal=Physical Review B |date=3 March 2022 |volume=105 |issue=9 |pages=094301 |doi=10.1103/PhysRevB.105.094301|arxiv=2105.06989 |bibcode=2022PhRvB.105i4301G |s2cid=234680134 }}</ref> चरण अंतरिक्ष क्रिस्टल की सामान्य रूपरेखा ठोस अवस्था भौतिकी और [[संघनित पदार्थ भौतिकी]] के अध्ययन को गतिशील प्रणालियों के चरण स्थान में विस्तारित करना है।<ref name="Guo2021book">{{cite book |last1=Guo |first1=Lingzhen |title=Phase space crystals : condensed matter in dynamical systems |date=2021 |publisher=IOP Publishing Ltd |location=Bristol UK |isbn=978-0-7503-3563-8 |url=https://iopscience.iop.org/book/978-0-7503-3563-8}}</ref> जबकि वास्तविक स्थान में [[यूक्लिडियन ज्यामिति]] है, चरण स्थान शास्त्रीय सहानुभूति ज्यामिति या क्वांटम [[गैर-अनुवांशिक ज्यामिति]] के साथ अंतर्निहित है।
'''चरण [[अंतरिक्ष]] क्रिस्टल''' भौतिक प्रणाली की स्थिति है जो वास्तविक अंतरिक्ष के अतिरिक्त [[चरण स्थान|चरण-अंतरिक्ष]] में असतत समरूपता प्रदर्शित करती है। एकल-कण प्रणाली के लिए, चरण-अंतरिक्ष क्रिस्टल स्थिति संवृत [[क्वांटम प्रणाली]] के लिए हैमिल्टनियन की [[अपना राज्य|आइगेन-स्थिति]] अथवा विवृत क्वांटम प्रणाली के लिए [[लिउविलियन]] के [[eigenoperator|आइगेन-संकारक]] को संदर्भित करती है।<ref name="Guo2013prl">{{cite journal |last1=Guo |first1=Lingzhen |last2=Marthaler |first2=Michael |last3=Schön |first3=Gerd |title=Phase Space Crystals: A New Way to Create a Quasienergy Band Structure |journal=Physical Review Letters |date=13 November 2013 |volume=111 |issue=20|pages=205303 |doi=10.1103/PhysRevLett.111.205303 |pmid=24289695 |arxiv=1305.1800 |bibcode=2013PhRvL.111t5303G |s2cid=9337383 |url=https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.205303}}</ref><ref name=Lang2021NJP>{{cite journal |last1=Lang |first1=Ben |last2=Armour |first2=Andrew D |title=जोसेफसन जंक्शन-गुहा सर्किट में मल्टी-फोटॉन अनुनाद|journal=New Journal of Physics |date=1 March 2021 |volume=23 |issue=3 |pages=033021 |doi=10.1088/1367-2630/abe483|arxiv=2012.10149 |bibcode=2021NJPh...23c3021L |s2cid=229332222 }}</ref> अनेक-निकाय प्रणालियों के लिए, चरण-अंतरिक्ष क्रिस्टल चरण-अंतरिक्ष में ठोस जैसी क्रिस्टलीय अवस्था है।<ref name="Liang2018NJP">{{cite journal |last1=Liang |first1=Pengfei |last2=Marthaler |first2=Michael |last3=Guo |first3=Lingzhen |title=Floquet many-body engineering: topology and many-body physics in phase space lattices |journal=New Journal of Physics |date=3 April 2018 |volume=20 |issue=2 |pages=023043 |doi=10.1088/1367-2630/aaa7c3|arxiv=1710.09716 |bibcode=2018NJPh...20b3043L |s2cid=3275846 }}</ref><ref name=guo2022prb>{{cite journal |last1=Guo |first1=Lingzhen |last2=Peano |first2=Vittorio |last3=Marquardt |first3=Florian |title=Phase space crystal vibrations: Chiral edge states with preserved time-reversal symmetry |journal=Physical Review B |date=3 March 2022 |volume=105 |issue=9 |pages=094301 |doi=10.1103/PhysRevB.105.094301|arxiv=2105.06989 |bibcode=2022PhRvB.105i4301G |s2cid=234680134 }}</ref> चरण-अंतरिक्ष क्रिस्टल की सामान्य रूपरेखा ठोस अवस्था भौतिकी और [[संघनित पदार्थ भौतिकी]] के अध्ययन को गतिशील प्रणालियों की चरण-अंतरिक्ष में विस्तारित करना है।<ref name="Guo2021book">{{cite book |last1=Guo |first1=Lingzhen |title=Phase space crystals : condensed matter in dynamical systems |date=2021 |publisher=IOP Publishing Ltd |location=Bristol UK |isbn=978-0-7503-3563-8 |url=https://iopscience.iop.org/book/978-0-7503-3563-8}}</ref> जबकि वास्तविक अंतरिक्ष में [[यूक्लिडियन ज्यामिति]] है, चरण-अंतरिक्ष क्लासिकल सिंपलेक्टिक ज्यामिति अथवा क्वांटम [[गैर-अनुवांशिक ज्यामिति|अविनिमेय ज्यामिति]] के साथ अंतर्निहित है।


==चरण अंतरिक्ष जालक==
==चरण-अंतरिक्ष जालक==


उनकी प्रसिद्ध पुस्तक गणितीय फ़ाउंडेशन ऑफ़ क्वांटम मैकेनिक्स में,<ref>{{cite book |last1=von Neumann |first1=John |title=क्वांटम यांत्रिकी की गणितीय नींव|date=1955 |publisher=Princeton University Press |location=Princeton NJ |page=406}}</ref> [[जॉन वॉन न्यूमैन]] ने क्रमशः स्थिति और गति दिशाओं के साथ दो क्रमविनिमेय प्राथमिक विस्थापन ऑपरेटरों द्वारा एक चरण अंतरिक्ष जाली का निर्माण किया, जिसे आजकल वॉन न्यूमैन जाली भी कहा जाता है। यदि चरण स्थान को आवृत्ति-समय विमान से बदल दिया जाता है, तो वॉन न्यूमैन जाली को गैबोर जाली कहा जाता है <ref>{{cite journal |last1=Gabor |first1=D. |title=संचार का सिद्धांत|journal=J. Inst. Electr. Eng. |date=1946 |volume=93 |pages=429–457}}</ref> और सिग्नल प्रोसेसिंग के लिए व्यापक रूप से उपयोग किया जाता है <ref>{{cite journal |last1=Daubechies |first1=I. |title=तरंगिका परिवर्तन, समय-आवृत्ति स्थानीयकरण और संकेत विश्लेषण|journal=IEEE Transactions on Information Theory |date=1990 |volume=36 |issue=5 |pages=961–1005 |doi=10.1109/18.57199|bibcode=1990ITIT...36..961D }}</ref>
[[जॉन वॉन न्यूमैन]] ने अपनी प्रसिद्ध पुस्तक मैथमेटिकल फ़ाउंडेशन ऑफ़ क्वांटम मैकेनिक्स में,<ref>{{cite book |last1=von Neumann |first1=John |title=क्वांटम यांत्रिकी की गणितीय नींव|date=1955 |publisher=Princeton University Press |location=Princeton NJ |page=406}}</ref> क्रमशः स्थिति और गति दिशाओं के साथ दो क्रमविनिमेय प्राथमिक विस्थापन संकारकों द्वारा चरण-अंतरिक्ष जालक का निर्माण किया, जिसे वर्तमान में वॉन न्यूमैन जालक भी कहा जाता है। यदि चरण-अंतरिक्ष को आवृत्ति-समय तल से प्रतिस्थापित किया जाता है, तो वॉन न्यूमैन जालक को गैबोर जालक कहा जाता है <ref>{{cite journal |last1=Gabor |first1=D. |title=संचार का सिद्धांत|journal=J. Inst. Electr. Eng. |date=1946 |volume=93 |pages=429–457}}</ref> और इस प्रकार सिग्नल प्रोसेसिंग के लिए इसका उपयोग व्यापक रूप से किया जाता है।<ref>{{cite journal |last1=Daubechies |first1=I. |title=तरंगिका परिवर्तन, समय-आवृत्ति स्थानीयकरण और संकेत विश्लेषण|journal=IEEE Transactions on Information Theory |date=1990 |volume=36 |issue=5 |pages=961–1005 |doi=10.1109/18.57199|bibcode=1990ITIT...36..961D }}</ref>
चरण अंतरिक्ष जाली मूल रूप से वास्तविक अंतरिक्ष जाली से भिन्न होती है क्योंकि चरण स्थान के दो निर्देशांक [[क्वांटम यांत्रिकी]] में गैर-अनुवांशिक होते हैं। परिणामस्वरूप, चरण स्थान में एक बंद पथ के साथ चलने वाली सुसंगत स्थिति एक अतिरिक्त चरण कारक प्राप्त करती है, जो चुंबकीय क्षेत्र में घूमने वाले चार्ज कण के अहरोनोव-बोहम प्रभाव के समान है।<ref name="Zak1992EPL">{{cite journal |last1=Zak |first1=J |title=लैंडौ लेवल ऑर्बिटल्स के लिए पहचान|journal=Europhysics Letters (EPL) |date=1 February 1992 |volume=17 |issue=5 |pages=443–448 |doi=10.1209/0295-5075/17/5/011 |bibcode=1992EL.....17..443Z |s2cid=250911987 |url=https://iopscience.iop.org/article/10.1209/0295-5075/17/5/011}}</ref><ref name="Liang2018NJP"/>चरण स्थान और चुंबकीय क्षेत्र के बीच गहरा संबंध है। वास्तव में, गति के विहित समीकरण को लोरेन्ज़-बल रूप में भी फिर से लिखा जा सकता है जो शास्त्रीय चरण स्थान की सहानुभूति ज्यामिति को दर्शाता है <ref name="Guo2021book"/>


गतिशील प्रणालियों के चरण स्थान में, स्थिर बिंदु अपने पड़ोसी क्षेत्रों के साथ मिलकर अराजक समुद्र में तथाकथित पोंकारे-बिरखॉफ द्वीप बनाते हैं जो चरण स्थान में एक श्रृंखला या कुछ नियमित दो आयामी जाली संरचनाएं बना सकते हैं। उदाहरण के लिए, किक्ड हार्मोनिक ऑसिलेटर (KHO) का प्रभावी हैमिल्टनियन <ref>{{cite book |last1=Zaslavsky |first1=G. M. |title=हैमिल्टनियन कैओस और फ्रैक्शनल डायनेमिक्स|date=2008 |publisher=Oxford University Press |location=Oxford |isbn=978-0199535484 |edition=1}}</ref><ref>{{cite journal |last1=Zaslavsky |first1=George |title=ज़स्लावस्की वेब मानचित्र|journal=Scholarpedia |pages=3369 |language=en |doi=10.4249/scholarpedia.3369 |date=11 October 2007|volume=2 |issue=10 |bibcode=2007SchpJ...2.3369Z |doi-access=free }}</ref> किकिंग संख्या के अनुपात के आधार पर चरण स्थान में वर्गाकार जाली, त्रिकोण जाली और यहां तक ​​कि अर्ध-क्रिस्टल संरचनाएं भी हो सकती हैं। वास्तव में, किसी भी मनमाने चरण स्थान जाली को केएचओ के लिए उपयुक्त किकिंग अनुक्रम का चयन करके इंजीनियर किया जा सकता है <ref name="guo2022prb" />
चरण-अंतरिक्ष जालक मूल रूप से वास्तविक अंतरिक्ष जालक से भिन्न होते है क्योंकि चरण-अंतरिक्ष के दो निर्देशांक [[क्वांटम यांत्रिकी]] में अविनिमेय होते हैं। परिणामस्वरूप, चरण-अंतरिक्ष में संवृत पथ के साथ गति करने वाली सुसंगत स्थिति अतिरिक्त चरण गुणक प्राप्त करती है, जो चुंबकीय क्षेत्र में गति करने वाले आवेश कण के अहरोनोव-बोहम प्रभाव के समान होती है।<ref name="Zak1992EPL">{{cite journal |last1=Zak |first1=J |title=लैंडौ लेवल ऑर्बिटल्स के लिए पहचान|journal=Europhysics Letters (EPL) |date=1 February 1992 |volume=17 |issue=5 |pages=443–448 |doi=10.1209/0295-5075/17/5/011 |bibcode=1992EL.....17..443Z |s2cid=250911987 |url=https://iopscience.iop.org/article/10.1209/0295-5075/17/5/011}}</ref><ref name="Liang2018NJP" /> इस प्रकार चरण-अंतरिक्ष और चुंबकीय क्षेत्र के मध्य घनिष्ठ संबंध है। वास्तव में, गति के विहित समीकरण को लोरेन्ज़-बल के रूप में भी पुनः अंकित किया जा सकता है जो वास्तविक चरण-अंतरिक्ष की सिंपलेक्टिक ज्यामिति को दर्शाता है <ref name="Guo2021book" />


गतिशील प्रणालियों के चरण-अंतरिक्ष में, स्थिर बिंदु अपने प्रतिवेशी क्षेत्रों के साथ अराजक समुद्र में तथाकथित पोंकारे-बिरखॉफ द्वीप बनाते हैं जो चरण-अंतरिक्ष में श्रेणी या कुछ नियमित दो आयामी जालक संरचनाएं बना सकते हैं। उदाहरण के लिए, किक्ड हार्मोनिक ऑसिलेटर (केएचओ) के प्रभावी हैमिल्टनियन <ref>{{cite book |last1=Zaslavsky |first1=G. M. |title=हैमिल्टनियन कैओस और फ्रैक्शनल डायनेमिक्स|date=2008 |publisher=Oxford University Press |location=Oxford |isbn=978-0199535484 |edition=1}}</ref><ref>{{cite journal |last1=Zaslavsky |first1=George |title=ज़स्लावस्की वेब मानचित्र|journal=Scholarpedia |pages=3369 |language=en |doi=10.4249/scholarpedia.3369 |date=11 October 2007|volume=2 |issue=10 |bibcode=2007SchpJ...2.3369Z |doi-access=free }}</ref> में किकिंग संख्या के अनुपात के आधार पर चरण-अंतरिक्ष में वर्गाकार जालक, त्रिकोण जालक और अर्ध-क्रिस्टलीय संरचनाएं भी हो सकती हैं। वास्तव में, किसी भी आरबिटरेरी चरण-अंतरिक्ष जालक को केएचओ के लिए उपयुक्त किकिंग अनुक्रम का चयन करके डिज़ाइन किया जा सकता है।<ref name="guo2022prb" />


==चरण अंतरिक्ष क्रिस्टल (पीएससी)==
== चरण-अंतरिक्ष क्रिस्टल (पीएससी) ==
चरण-अंतरिक्ष क्रिस्टल की अवधारणा गुओ एट अल द्वारा प्रस्तावित की गई थी<ref name="Guo2013prl" /> और मूल रूप से समय-समय पर संचालित (फ्लोक्वेट) गतिशील प्रणाली के प्रभावी हैमिल्टन की आइगेन-स्थिति को संदर्भित करती है। इस पर निर्भर करते हुए कि इंटरैक्शन प्रभाव सम्मिलित है या नहीं, चरण-अंतरिक्ष क्रिस्टल को एकल-कण पीएससी और अनेक-निकाय पीएससी में वर्गीकृत किया जा सकता है।<ref name="Sach2022aapps">{{cite journal |last1=Hannaford |first1=Peter |last2=Sacha |first2=Krzysztof |title=बड़े असतत समय क्रिस्टल में संघनित पदार्थ भौतिकी|journal=AAPPS Bulletin |date=December 2022 |volume=32 |issue=1 |pages=12 |doi=10.1007/s43673-022-00041-8|arxiv=2202.05544 |bibcode=2022APPSB..32...12H |s2cid=246823338 }}</ref>


चरण अंतरिक्ष क्रिस्टल की अवधारणा गुओ एट अल द्वारा प्रस्तावित की गई थी <ref name="Guo2013prl" />और मूल रूप से समय-समय पर संचालित (फ्लोक्वेट) गतिशील प्रणाली के प्रभावी हैमिल्टन के स्वदेशीकरण को संदर्भित करता है। इस पर निर्भर करते हुए कि इंटरैक्शन प्रभाव शामिल है या नहीं, चरण अंतरिक्ष क्रिस्टल को एकल-कण पीएससी और कई-बॉडी पीएससी में वर्गीकृत किया जा सकता है।<ref name="Sach2022aapps">{{cite journal |last1=Hannaford |first1=Peter |last2=Sacha |first2=Krzysztof |title=बड़े असतत समय क्रिस्टल में संघनित पदार्थ भौतिकी|journal=AAPPS Bulletin |date=December 2022 |volume=32 |issue=1 |pages=12 |doi=10.1007/s43673-022-00041-8|arxiv=2202.05544 |bibcode=2022APPSB..32...12H |s2cid=246823338 }}</ref>
'''एकल-कण चरण-अंतरिक्ष क्रिस्टल'''


चरण-अंतरिक्ष में समरूपता के आधार पर, चरण-अंतरिक्ष क्रिस्टल, चरण-अंतरिक्ष में <math>n</math>-फोल्ड घूर्णी समरूपता के साथ 1 आयामी (1डी) स्थिति हो सकती है या पूर्ण चरण-अंतरिक्ष में विस्तारित दो-आयामी (2डी) जालक स्थिति हो सकती है। इस प्रकार संवृत प्रणाली के लिए चरण-अंतरिक्ष क्रिस्टल की अवधारणा को विवृत क्वांटम प्रणाली में विस्तारित किया गया है और इसे क्षणिक चरण-अंतरिक्ष क्रिस्टल का नाम दिया गया है।<ref name="Lang2021NJP" />


===एकल-कण चरण अंतरिक्ष क्रिस्टल===
'''Z<sub>n</sub> पीएससी'''


चरण अंतरिक्ष में समरूपता के आधार पर, चरण अंतरिक्ष क्रिस्टल एक आयामी (1डी) स्थिति हो सकता है <math>n</math>चरण स्थान या द्वि-आयामी (2D) जाली स्थिति में घूर्णी समरूपता को पूरे चरण स्थान में विस्तारित करें। एक बंद प्रणाली के लिए चरण अंतरिक्ष क्रिस्टल की अवधारणा को खुले क्वांटम सिस्टम में विस्तारित किया गया है और इसे विघटनकारी चरण अंतरिक्ष क्रिस्टल का नाम दिया गया है।<ref name=Lang2021NJP />
चरण-अंतरिक्ष मूल रूप से वास्तविक अंतरिक्ष से भिन्न है क्योंकि चरण-अंतरिक्ष के दो निर्देशांक कम्यूट नहीं करते हैं, अर्थात, <math>[\hat{x},\hat{p}]=i\lambda </math>, जहाँ <math>\lambda</math> आयामहीन [[प्लैंक स्थिरांक]] है। लैडर संकारक को <math> \hat{a}=(\hat{x}+i\hat{p})/\sqrt{2\lambda} </math> के रूप में परिभाषित किया गया है, जैसे कि <math>[\hat{a},\hat{a}^\dagger]=1</math> है। भौतिक प्रणाली के हैमिल्टनियन <math>\hat{H}=H(\hat{x},\hat{p})</math> को लैडर संकारकों के फलन <math>\hat{H}=H(\hat{a},\hat{a}^\dagger)</math> के रूप में भी लिखा जा सकता है। चरण-अंतरिक्ष में घूर्णी संकारक को <math>\hat{T}_\tau=e^{-i\tau \hat{a}^\dagger \hat{a}}</math> द्वारा परिभाषित किया गया है<ref name="Guo2013prl" /><ref>{{cite journal |last1=Grimsmo |first1=Arne L. |last2=Combes |first2=Joshua |last3=Baragiola |first3=Ben Q. |title=रोटेशन-सममित बोसोनिक कोड के साथ क्वांटम कंप्यूटिंग|journal=Physical Review X |date=6 March 2020 |volume=10 |issue=1 |pages=011058 |doi=10.1103/PhysRevX.10.011058|arxiv=1901.08071 |bibcode=2020PhRvX..10a1058G |s2cid=119383352 }}</ref> जहाँ <math>\tau={2\pi}/{n}</math>, <math>n</math> धनात्मक पूर्णांक के साथ, प्रणाली में <math>n</math>-फोल्ड घूर्णी समरूपता या <math>Z_n</math> समरूपता है, यदि हैमिल्टनियन घूर्णी संकारक <math>[\hat{H},\hat{T}_\tau]=0</math> के साथ कम्यूट करता है, अर्थात,
<math display="block">\hat{H}=\hat{T}^\dagger_\tau\hat{H}\hat{T}_\tau \rightarrow H(\hat{a},\hat{a}^\dagger)=H(\hat{T}^\dagger_\tau\hat{a}\hat{T}_\tau,\hat{T}^\dagger_\tau\hat{H}\hat{a}^\dagger_\tau)=H(\hat{a}e^{-i\tau},\hat{a}^\dagger e^{i\tau}).</math>इस स्थिति में, कोई [[बलोच प्रमेय]] को <math>n</math>-फोल्ड सममित हैमिल्टनियन पर प्रयुक्त कर सकता है और [[बैंड संरचना]] की गणना कर सकता है।<ref name="Guo2013prl" /><ref name="guo2016njp">{{cite journal |last1=Guo |first1=Lingzhen |last2=Marthaler |first2=Michael |title=चरण स्थान में जाली संरचनाओं का संश्लेषण|journal=New Journal of Physics |date=1 February 2016 |volume=18 |issue=2 |pages=023006 |doi=10.1088/1367-2630/18/2/023006|bibcode=2016NJPh...18b3006G |s2cid=117684029 |doi-access=free }}</ref> हैमिल्टनियन की असतत घूर्णी सममित संरचना को <math>Z_n</math> चरण-अंतरिक्ष जालक कहा जाता है<ref name="Guo2020njp">{{cite journal |last1=Guo |first1=Lingzhen |last2=Liang |first2=Pengfei |title=समय क्रिस्टल में संघनित पदार्थ भौतिकी|journal=New Journal of Physics |date=1 July 2020 |volume=22 |issue=7 |pages=075003 |doi=10.1088/1367-2630/ab9d54|arxiv=2005.03138 |bibcode=2020NJPh...22g5003G |s2cid=218538401 }}</ref> और संबंधित आइगेन-स्थितियों को <math>Z_n</math> चरण-अंतरिक्ष क्रिस्टल कहा जाता है।
====जालक पीएससी====


 
असतत घूर्णी समरूपता को पूर्ण चरण-अंतरिक्ष में असतत अनुवादात्मक समरूपता तक विस्तारित किया जा सकता है। ऐसे उद्देश्य के लिए, चरण-अंतरिक्ष में विस्थापन संकारक को <math>\hat{D}(\xi)=\exp[(\xi\hat{a}^\dagger-\xi^*\hat{a})/\sqrt{2\lambda}]</math> द्वारा परिभाषित किया गया है, जिसमें गुण <math>\hat{D}^\dagger(\xi)\hat{a}\hat{D}(\xi)=\hat{a}+\xi</math> है, जहाँ <math>\xi</math> चरण-अंतरिक्ष में विस्थापन सदिश के अनुरूप [[जटिल संख्या|सम्मिश्र संख्या]] है। यदि हैमिल्टनियन अनुवादात्मक संकारक <math>[\hat{H},\hat{D}^\dagger(\xi)]=0</math> के साथ कम्यूट करता है तो प्रणाली में असतत अनुवादात्मक समरूपता होती है, अर्थात,<math display="block"> \hat{H}=\hat{D}^\dagger(\xi)\hat{H}\hat{D}(\xi) \rightarrow H(\hat{a},\hat{a}^\dagger)=H(\hat{D}^\dagger(\xi)\hat{a}\hat{D}(\xi),\hat{D}^\dagger\hat{a}^\dagger\hat{D}(\xi))=H(\hat{a}+\xi,\hat{a}^\dagger+\xi^*).</math>यदि दो प्राथमिक विस्थापन <math>\hat{D}(\xi_1)</math> और <math>\hat{D}(\xi_2)</math> उपस्थित हैं जो उपरोक्त स्थिति को पूर्ण करते हैं, तो चरण-अंतरिक्ष हैमिल्टनियन के निकट चरण-अंतरिक्ष में 2डी जालक समरूपता है। यद्यपि, दो विस्थापन संकारक सामान्य <math>[\hat{D}(\xi_1),\hat{D}(\xi_2)]\neq 0</math> में क्रमविनिमेय नहीं हैं। इस प्रकार अविनिमेय चरण-अंतरिक्ष में, बिंदु की अवधारणा अर्थहीन है। इसके अतिरिक्त, सुसंगत स्थिति <math>|\alpha\rangle</math> को <math>\hat{a}|\alpha\rangle=\alpha|\alpha\rangle</math> के माध्यम से निचले संकारक के आइगेन-स्थिति के रूप में परिभाषित किया गया है। विस्थापन संकारक सुसंगत स्थिति को अतिरिक्त चरण के साथ विस्थापित करता है, अर्थात, <math>\hat{D}(\xi)|\alpha\rangle=e^{i\mathrm{Im}(\xi\alpha^*)}|\alpha+\xi\rangle</math> होता है। सुसंगत स्थिति जो संवृत पथ पर गति करती है, उदाहरण के लिए, तीन कोरों वाला त्रिकोण <math>(\xi_1,\xi_2,-\xi_1-\xi_2)</math> चरण-अंतरिक्ष में, [[ज्यामितीय चरण]] गुणक प्राप्त करता है।<ref>{{cite journal |last1=Pechal |first1=M. |last2=Berger |first2=S. |last3=Abdumalikov |first3=A. A. |last4=Fink |first4=J. M. |last5=Mlynek |first5=J. A. |last6=Steffen |first6=L. |last7=Wallraff |first7=A. |last8=Filipp |first8=S. |title=एक इलेक्ट्रॉनिक हार्मोनिक ऑसिलेटर में ज्यामितीय चरण और नॉनडायबेटिक प्रभाव|journal=Physical Review Letters |date=23 April 2012 |volume=108 |issue=17 |pages=170401 |doi=10.1103/PhysRevLett.108.170401|pmid=22680840 |arxiv=1109.1157 |bibcode=2012PhRvL.108q0401P |s2cid=22269801 }}</ref><ref name="Liang2018NJP" />  
 
====जेड<sub>n</sub> पीएससी====
 
चरण स्थान मूल रूप से वास्तविक स्थान से भिन्न है क्योंकि चरण स्थान के दो निर्देशांक आवागमन नहीं करते हैं, अर्थात, <math>[\hat{x},\hat{p}]=i\lambda </math> कहाँ <math>\lambda</math> आयामहीन [[प्लैंक स्थिरांक]] है। सीढ़ी ऑपरेटर को इस प्रकार परिभाषित किया गया है <math> \hat{a}=(\hat{x}+i\hat{p})/\sqrt{2\lambda} </math> ऐसा है कि <math>[\hat{a},\hat{a}^\dagger]=1</math>. एक भौतिक प्रणाली का हैमिल्टनियन <math>\hat{H}=H(\hat{x},\hat{p})</math> सीढ़ी ऑपरेटरों के एक फ़ंक्शन में भी लिखा जा सकता है <math>\hat{H}=H(\hat{a},\hat{a}^\dagger)</math>. चरण स्थान में घूर्णी ऑपरेटर को परिभाषित करके <ref name="Guo2013prl" /><ref>{{cite journal |last1=Grimsmo |first1=Arne L. |last2=Combes |first2=Joshua |last3=Baragiola |first3=Ben Q. |title=रोटेशन-सममित बोसोनिक कोड के साथ क्वांटम कंप्यूटिंग|journal=Physical Review X |date=6 March 2020 |volume=10 |issue=1 |pages=011058 |doi=10.1103/PhysRevX.10.011058|arxiv=1901.08071 |bibcode=2020PhRvX..10a1058G |s2cid=119383352 }}</ref> द्वारा <math>\hat{T}_\tau=e^{-i\tau \hat{a}^\dagger \hat{a}}</math> कहाँ <math>\tau={2\pi}/{n}</math> साथ <math>n</math> सिस्टम के पास एक धनात्मक पूर्णांक है <math>n</math>-गुना घूर्णी समरूपता या <math>Z_n</math> समरूपता यदि हैमिल्टनियन घूर्णी ऑपरेटर के साथ कम्यूट करता है <math>[\hat{H},\hat{T}_\tau]=0</math>, अर्थात।,
<math display="block">\hat{H}=\hat{T}^\dagger_\tau\hat{H}\hat{T}_\tau \rightarrow H(\hat{a},\hat{a}^\dagger)=H(\hat{T}^\dagger_\tau\hat{a}\hat{T}_\tau,\hat{T}^\dagger_\tau\hat{H}\hat{a}^\dagger_\tau)=H(\hat{a}e^{-i\tau},\hat{a}^\dagger e^{i\tau}).</math>
इस मामले में, कोई [[बलोच प्रमेय]] को लागू कर सकता है <math>n</math>-सममित हैमिल्टनियन को मोड़ें और [[बैंड संरचना]] की गणना करें।<ref name="Guo2013prl" /><ref name="guo2016njp">{{cite journal |last1=Guo |first1=Lingzhen |last2=Marthaler |first2=Michael |title=चरण स्थान में जाली संरचनाओं का संश्लेषण|journal=New Journal of Physics |date=1 February 2016 |volume=18 |issue=2 |pages=023006 |doi=10.1088/1367-2630/18/2/023006|bibcode=2016NJPh...18b3006G |s2cid=117684029 |doi-access=free }}</ref> हैमिल्टनियन की असतत घूर्णी सममित संरचना को कहा जाता है<math>Z_n</math> चरण स्थान जाली  <ref name="Guo2020njp">{{cite journal |last1=Guo |first1=Lingzhen |last2=Liang |first2=Pengfei |title=समय क्रिस्टल में संघनित पदार्थ भौतिकी|journal=New Journal of Physics |date=1 July 2020 |volume=22 |issue=7 |pages=075003 |doi=10.1088/1367-2630/ab9d54|arxiv=2005.03138 |bibcode=2020NJPh...22g5003G |s2cid=218538401 }}</ref> और संबंधित स्वदेशी राज्यों को कहा जाता है<math>Z_n</math> चरण अंतरिक्ष क्रिस्टल.
 
====जाली पीएससी====
 
असतत घूर्णी समरूपता को पूरे चरण स्थान में असतत अनुवादात्मक समरूपता तक बढ़ाया जा सकता है। ऐसे उद्देश्य के लिए, चरण स्थान में विस्थापन ऑपरेटर को परिभाषित किया गया है <math>\hat{D}(\xi)=\exp[(\xi\hat{a}^\dagger-\xi^*\hat{a})/\sqrt{2\lambda}]</math> जिसके पास संपत्ति है <math>\hat{D}^\dagger(\xi)\hat{a}\hat{D}(\xi)=\hat{a}+\xi</math>, कहाँ <math>\xi</math> चरण स्थान में विस्थापन वेक्टर के अनुरूप एक [[जटिल संख्या]] है। यदि हैमिल्टनियन ट्रांसलेशनल ऑपरेटर के साथ कम्यूट करता है तो सिस्टम में असतत ट्रांसलेशनल समरूपता होती है <math>[\hat{H},\hat{D}^\dagger(\xi)]=0</math>, अर्थात।,
<math display="block"> \hat{H}=\hat{D}^\dagger(\xi)\hat{H}\hat{D}(\xi) \rightarrow H(\hat{a},\hat{a}^\dagger)=H(\hat{D}^\dagger(\xi)\hat{a}\hat{D}(\xi),\hat{D}^\dagger\hat{a}^\dagger\hat{D}(\xi))=H(\hat{a}+\xi,\hat{a}^\dagger+\xi^*).</math>
यदि दो प्राथमिक विस्थापन मौजूद हैं <math>\hat{D}(\xi_1)</math> और <math>\hat{D}(\xi_2)</math> जो उपरोक्त शर्त को एक साथ पूरा करते हैं, चरण स्थान हैमिल्टनियन के पास चरण स्थान में 2डी जाली समरूपता है। हालाँकि, दो विस्थापन ऑपरेटर सामान्य रूप से क्रमविनिमेय नहीं हैं <math>[\hat{D}(\xi_1),\hat{D}(\xi_2)]\neq 0</math>. गैर-क्रमविनिमेय चरण स्थान में, एक बिंदु की अवधारणा अर्थहीन है। इसके बजाय, एक सुसंगत स्थिति <math>|\alpha\rangle</math> के माध्यम से कम करने वाले ऑपरेटर के eigenstate के रूप में परिभाषित किया गया है <math>\hat{a}|\alpha\rangle=\alpha|\alpha\rangle</math>. विस्थापन ऑपरेटर सुसंगत स्थिति को एक अतिरिक्त चरण के साथ विस्थापित करता है, अर्थात, <math>\hat{D}(\xi)|\alpha\rangle=e^{i\mathrm{Im}(\xi\alpha^*)}|\alpha+\xi\rangle</math>. एक सुसंगत अवस्था जो एक बंद रास्ते पर चलती है, उदाहरण के लिए, तीन किनारों वाला एक त्रिकोण <math>(\xi_1,\xi_2,-\xi_1-\xi_2)</math> चरण स्थान में, एक [[ज्यामितीय चरण]] कारक प्राप्त करता है <ref>{{cite journal |last1=Pechal |first1=M. |last2=Berger |first2=S. |last3=Abdumalikov |first3=A. A. |last4=Fink |first4=J. M. |last5=Mlynek |first5=J. A. |last6=Steffen |first6=L. |last7=Wallraff |first7=A. |last8=Filipp |first8=S. |title=एक इलेक्ट्रॉनिक हार्मोनिक ऑसिलेटर में ज्यामितीय चरण और नॉनडायबेटिक प्रभाव|journal=Physical Review Letters |date=23 April 2012 |volume=108 |issue=17 |pages=170401 |doi=10.1103/PhysRevLett.108.170401|pmid=22680840 |arxiv=1109.1157 |bibcode=2012PhRvL.108q0401P |s2cid=22269801 }}</ref><ref name="Liang2018NJP" />  
<math>\hat{D}[-\xi_1-\xi_2]\hat{D}(\xi_2)\hat{D}(\xi_1)|\alpha\rangle=e^{i\frac{S}{\lambda}}|\alpha\rangle,</math>
<math>\hat{D}[-\xi_1-\xi_2]\hat{D}(\xi_2)\hat{D}(\xi_1)|\alpha\rangle=e^{i\frac{S}{\lambda}}|\alpha\rangle,</math>
कहाँ <math>S=\frac{1}{2}\mathrm{Im}(\xi_2\xi^*_1)</math> संलग्न क्षेत्र है. यह ज्यामितीय चरण चुंबकीय क्षेत्र में आवेशित कण के अहरोनोव-बोहम चरण के अनुरूप है। यदि चुंबकीय इकाई सेल और जाली इकाई सेल तुलनीय हैं, अर्थात्, दो पूर्णांक मौजूद हैं <math>r</math> और <math>s</math> ऐसा है कि <math>[\hat{D}^r(\xi_1),\hat{D}^s(\xi_2)]=0</math>, कोई 2डी ब्रिलॉइन में परिभाषित बैंड संरचना की गणना कर सकता है। उदाहरण के लिए, एक वर्गाकार चरण अंतरिक्ष जाली हैमिल्टनियन का स्पेक्ट्रम <math>\hat{H}=\cos\hat{x}+\cos\hat{p}</math> हॉफस्टैटर की तितली बैंड संरचना प्रदर्शित करता है <ref name="Liang2018NJP" /><ref>{{cite journal |last1=Billam |first1=T. P. |last2=Gardiner |first2=S. A. |title=Quantum resonances in an atom-optical δ -kicked harmonic oscillator |journal=Physical Review A |date=20 August 2009 |volume=80 |issue=2 |pages=023414 |doi=10.1103/PhysRevA.80.023414|arxiv=0809.4373 |bibcode=2009PhRvA..80b3414B |s2cid=118574456 |url=http://dro.dur.ac.uk/7054/1/7054.pdf }}</ref> जो चुंबकीय क्षेत्र में कसकर बांधने वाली जाली साइटों के बीच आवेशित कणों के उछलने का वर्णन करता है।<ref name="Hofstadter1976prb">{{cite journal |last1=Hofstadter |first1=Douglas R. |title=तर्कसंगत और अपरिमेय चुंबकीय क्षेत्रों में बलोच इलेक्ट्रॉनों का ऊर्जा स्तर और तरंग कार्य|journal=Physical Review B |date=15 September 1976 |volume=14 |issue=6 |pages=2239–2249 |doi=10.1103/PhysRevB.14.2239|bibcode=1976PhRvB..14.2239H }}</ref> इस मामले में, ईजेनस्टेट्स को 2डी जाली चरण अंतरिक्ष क्रिस्टल कहा जाता है।


====विघटनकारी पीएससी====
जहाँ <math>S=\frac{1}{2}\mathrm{Im}(\xi_2\xi^*_1)</math> संलग्न क्षेत्र है। यह ज्यामितीय चरण चुंबकीय क्षेत्र में आवेशित कण के अहरोनोव-बोहम चरण के अनुरूप है। यदि चुंबकीय इकाई सेल और जालक इकाई सेल उपमा योग्य हैं, अर्थात्, दो पूर्णांक <math>r</math> और <math>s</math> उपस्थित हैं जैसे कि <math>[\hat{D}^r(\xi_1),\hat{D}^s(\xi_2)]=0</math>, तब कोई भी 2डी ब्रिलॉइन में परिभाषित बैंड संरचना की गणना कर सकता है। उदाहरण के लिए, वर्गाकार चरण-अंतरिक्ष जालक हैमिल्टनियन का स्पेक्ट्रम <math>\hat{H}=\cos\hat{x}+\cos\hat{p}</math> हॉफस्टैटर की तितली बैंड संरचना प्रदर्शित करता है,<ref name="Liang2018NJP" /><ref>{{cite journal |last1=Billam |first1=T. P. |last2=Gardiner |first2=S. A. |title=Quantum resonances in an atom-optical δ -kicked harmonic oscillator |journal=Physical Review A |date=20 August 2009 |volume=80 |issue=2 |pages=023414 |doi=10.1103/PhysRevA.80.023414|arxiv=0809.4373 |bibcode=2009PhRvA..80b3414B |s2cid=118574456 |url=http://dro.dur.ac.uk/7054/1/7054.pdf }}</ref> जो चुंबकीय क्षेत्र में टाइट बाइंडिंग जालक साइटों के मध्य आवेशित कणों के हॉपिंग का वर्णन करता है।<ref name="Hofstadter1976prb">{{cite journal |last1=Hofstadter |first1=Douglas R. |title=तर्कसंगत और अपरिमेय चुंबकीय क्षेत्रों में बलोच इलेक्ट्रॉनों का ऊर्जा स्तर और तरंग कार्य|journal=Physical Review B |date=15 September 1976 |volume=14 |issue=6 |pages=2239–2249 |doi=10.1103/PhysRevB.14.2239|bibcode=1976PhRvB..14.2239H }}</ref> इस स्थिति में, आइगेन-स्थिति को 2डी जालक चरण-अंतरिक्ष क्रिस्टल कहा जाता है।


बंद क्वांटम प्रणाली के लिए चरण अंतरिक्ष क्रिस्टल की अवधारणा को खुले क्वांटम प्रणाली तक विस्तारित किया गया है।<ref name="Lang2021NJP" />[[सर्किट QED]] सिस्टम में, एक माइक्रोवेव रेज़ोनेटर [[जोसेफसन जंक्शन]]ों और [[वोल्टेज पूर्वाग्रह]] के साथ संयुक्त होता है <math>n</math>-फोटॉन अनुनाद को [[घूर्णन तरंग सन्निकटन]] (आरडब्ल्यूए) हैमिल्टनियन द्वारा वर्णित किया जा सकता है <math>\hat{H}_{RWA}</math> साथ <math>Z_n</math> ऊपर वर्णित चरण स्थान समरूपता। जब एकल-फोटॉन हानि प्रमुख होती है, तो अनुनादक की विघटनकारी गतिशीलता को निम्नलिखित [[मास्टर समीकरण]] (लिंडब्लैड समीकरण) द्वारा वर्णित किया जाता है।
====क्षणिक पीएससी====
<math display="block"> \frac{d\rho}{dt}=-\frac{i}{\hbar}[\hat{H}_{RWA},\rho]+\frac{\gamma}{2}(2\hat{a}\rho\hat{a}^{\dagger}-\hat{a}^{\dagger}\hat{a}\rho-\rho\hat{a}^{\dagger}\hat{a})=\mathcal{L}(\rho),</math>
कहाँ <math>\gamma</math> हानि दर और [[सुपरऑपरेटर]] है <math>\mathcal{L}</math> लिउविलियन कहा जाता है। कोई सिस्टम के लिउविलियन के [[eigenspectrum]] और संबंधित ईजेनऑपरेटर की गणना कर सकता है <math>\mathcal{L}\hat{\rho}_m=\lambda_m\hat{\rho}_m</math>.
ध्यान दें कि न केवल हैमिल्टनियन बल्कि लिउविलियन भी इसके अंतर्गत अपरिवर्तनीय हैं <math>n</math>-फोल्ड रोटेशनल ऑपरेशन, यानी, <math>[\mathcal{L},\mathcal{T}_\tau]=0</math> साथ <math>\mathcal{T}_\tau\hat{O}=\hat{T}^\dagger_\tau\hat{O}\hat{T}_\tau</math> और <math>\tau={2\pi}/{n}</math>. यह समरूपता चरण अंतरिक्ष क्रिस्टल की अवधारणा को एक खुली क्वांटम प्रणाली तक विस्तारित करने में महत्वपूर्ण भूमिका निभाती है। परिणामस्वरूप, लिउविलियन ईजेनऑपरेटर्स <math>\hat{\rho}_m</math> चरण स्थान में एक बलोच मोड संरचना होती है, जिसे विघटनकारी चरण अंतरिक्ष क्रिस्टल कहा जाता है।<ref name="Lang2021NJP" />


संवृत क्वांटम प्रणाली के लिए चरण-अंतरिक्ष क्रिस्टल की अवधारणा को विवृत क्वांटम प्रणाली तक विस्तारित किया गया है।<ref name="Lang2021NJP" /> [[सर्किट QED|परिपथ क्यूईडी]] प्रणाली में, [[जोसेफसन जंक्शन|जोसेफसन जंक्शनों]] और <math>n</math>-फोटॉन अनुनाद के [[वोल्टेज पूर्वाग्रह]] के साथ संयुक्त माइक्रोवेव रेज़ोनेटर को ऊपर वर्णित <math>Z_n</math> चरण-अंतरिक्ष समरूपता के साथ [[घूर्णन तरंग सन्निकटन|घूर्णन तरंग समीपता]] (आरडब्ल्यूए) हैमिल्टनियन <math>\hat{H}_{RWA}</math> द्वारा वर्णित किया जा सकता है। जब एकल-फोटॉन हानि प्रमुख होती है, तो अनुनादक की क्षणिक गतिशीलता को निम्नलिखित [[मास्टर समीकरण]] (लिंडब्लैड समीकरण) द्वारा इस प्रकार से वर्णित किया जाता है-
<math display="block"> \frac{d\rho}{dt}=-\frac{i}{\hbar}[\hat{H}_{RWA},\rho]+\frac{\gamma}{2}(2\hat{a}\rho\hat{a}^{\dagger}-\hat{a}^{\dagger}\hat{a}\rho-\rho\hat{a}^{\dagger}\hat{a})=\mathcal{L}(\rho),</math>जहाँ <math>\gamma</math> हानि दर है और [[सुपरऑपरेटर]] <math>\mathcal{L}</math> को लिउविलियन कहा जाता है। कोई प्रणाली <math>\mathcal{L}\hat{\rho}_m=\lambda_m\hat{\rho}_m</math> के लिउविलियन के [[eigenspectrum|आइगेनस्पेक्ट्रम]] और संबंधित आइगेनसंकारक की गणना कर सकती है।
ध्यान दें कि न केवल हैमिल्टनियन अपितु लिउविलियन भी <math>n</math>-फोल्ड घूर्णी संक्रिया के अंतर्गत अपरिवर्तनीय हैं, अर्थात, <math>\mathcal{T}_\tau\hat{O}=\hat{T}^\dagger_\tau\hat{O}\hat{T}_\tau</math> और <math>\tau={2\pi}/{n}</math> के साथ <math>[\mathcal{L},\mathcal{T}_\tau]=0</math> है। इस प्रकार यह समरूपता चरण-अंतरिक्ष क्रिस्टल की अवधारणा को विवृत क्वांटम प्रणाली तक विस्तारित करने में महत्वपूर्ण भूमिका निभाती है। परिणामस्वरूप, लिउविलियन आइगेनसंकारक <math>\hat{\rho}_m</math> चरण-अंतरिक्ष में बलोच मोड संरचना होती है, जिसे क्षणिक चरण-अंतरिक्ष क्रिस्टल कहा जाता है।<ref name="Lang2021NJP" />


===अनेक-निकाय चरण अंतरिक्ष क्रिस्टल===
'''अनेक-निकाय चरण-अंतरिक्ष क्रिस्टल'''


चरण अंतरिक्ष क्रिस्टल की अवधारणा को परस्पर क्रिया करने वाले कणों की प्रणालियों तक बढ़ाया जा सकता है जहां यह चरण अंतरिक्ष में ठोस जैसी क्रिस्टलीय संरचना वाले कई-शरीर वाले राज्य को संदर्भित करता है।<ref name="Liang2018NJP" /><ref name="guo2022prb" /><ref name="Sach2022aapps" />इस मामले में, कणों की परस्पर क्रिया एक महत्वपूर्ण भूमिका निभाती है। वास्तविक स्थान में, कई शरीर वाले हैमिल्टनियन एक परेशान आवधिक ड्राइव (अवधि के साथ) के अधीन थे <math>T</math>) द्वारा दिया गया है
चरण-अंतरिक्ष क्रिस्टल की अवधारणा को परस्पर क्रिया करने वाले कणों की प्रणालियों तक विस्तारित किया जा सकता है जहां यह चरण-अंतरिक्ष में ठोस जैसी क्रिस्टलीय संरचना वाली अनेक-निकाय स्थिति को संदर्भित करता है।<ref name="Liang2018NJP" /><ref name="guo2022prb" /><ref name="Sach2022aapps" /> इस स्थिति में, कणों की परस्पर क्रिया महत्वपूर्ण भूमिका निभाती है। वास्तविक अंतरिक्ष में, अनेक-निकाय वाले हैमिल्टनियन को विक्षुब्ध आवधिक ड्राइव (अवधि <math>T</math> के साथ) के अंतर्गत निम्नलिखित समीकरण द्वारा दिया जाता है-
<math display="block">\mathcal{H}=\sum_iH(x_i,p_i,t)+\sum_{i<j}V(x_i-x_j).</math> आमतौर पर, बातचीत की क्षमता <math>V(x_i-x_j)</math> वास्तविक स्थान में दो कणों की दूरी का एक फलन है। ड्राइविंग आवृत्ति के साथ घूर्णन फ्रेम में परिवर्तन करके और घूर्णन तरंग सन्निकटन (आरडब्ल्यूए) को अपनाकर, कोई प्रभावी हैमिल्टनियन प्राप्त कर सकता है <ref name="Guo2020njp" /><ref name="Guo2021book" />  
<math display="block">\mathcal{H}=\sum_iH(x_i,p_i,t)+\sum_{i<j}V(x_i-x_j).</math>सामान्यतः, इंटरैक्शन विभव <math>V(x_i-x_j)</math> वास्तविक अंतरिक्ष में दो कणों की दूरी का फलन है। ड्राइविंग आवृत्ति के साथ घूर्णन फ्रेम में परिवर्तन करके और घूर्णन तरंग समीपता (आरडब्ल्यूए) को स्वीकार करके, कोई प्रभावी हैमिल्टनियन प्राप्त कर सकता है-<ref name="Guo2020njp" /><ref name="Guo2021book" /><math display="block">\mathcal{H}_{RWA}=\sum_iH_{RWA}(X_i,P_i,t)+\sum_{i<j}U(X_i,P_i;X_j,P_j).</math>यहाँ, <math>X_i, P_i</math>, <math>i</math>-वें कण की स्ट्रोबोस्कोपिक स्थिति और गति है, अर्थात्, वे ड्राइविंग अवधि <math>t=nT</math> के पूर्णांक गुणक पर <math>x_i(t), p_i(t)</math> का मान लेते हैं। चरण-अंतरिक्ष में क्रिस्टल संरचना रखने के लिए, चरण-अंतरिक्ष में प्रभावी इंटरैक्शन को चरण-अंतरिक्ष में भिन्न-भिन्न घूर्णी या अनुवादात्मक संक्रिया के अंतर्गत अपरिवर्तनीय होना आवश्यक है।
<math display="block">\mathcal{H}_{RWA}=\sum_iH_{RWA}(X_i,P_i,t)+\sum_{i<j}U(X_i,P_i;X_j,P_j).</math> यहाँ, <math>X_i, P_i</math> की स्ट्रोबोस्कोपिक स्थिति और गति हैं <math>i</math>-वें कण, अर्थात्, वे का मान लेते हैं  <math>x_i(t), p_i(t)</math> ड्राइविंग अवधि के पूर्णांक गुणज पर <math>t=nT</math>. चरण स्थान में क्रिस्टल संरचना रखने के लिए, चरण स्थान में प्रभावी अंतःक्रिया को चरण स्थान में अलग-अलग घूर्णी या अनुवादात्मक संचालन के तहत अपरिवर्तनीय होना आवश्यक है।


====चरण अंतरिक्ष इंटरैक्शन====
====चरण-अंतरिक्ष इंटरैक्शन====


शास्त्रीय गतिकी में, अग्रणी क्रम में, चरण स्थान में प्रभावी अंतःक्रिया क्षमता एक ड्राइविंग अवधि में समय-औसत वास्तविक अंतरिक्ष अंतःक्रिया है
गतिकी के अग्रणी क्रम के चरण-अंतरिक्ष में प्रभावी इंटरैक्शन विभव ड्राइविंग अवधि में समय-औसत वास्तविक अंतरिक्ष इंटरैक्शन है-
<math display="block">U_{ij}=\frac{1}{T}\int^T_0V[x_i(t)-x_j(t)].</math> यहाँ, <math>x_i(t)</math> के प्रक्षेप पथ का प्रतिनिधित्व करता है <math>i</math>ड्राइविंग क्षेत्र की अनुपस्थिति में -वाँ कण। मॉडल [[बिजली कानून]] इंटरैक्शन क्षमता के लिए <math>V(x_i-x_j)=\epsilon^{2n}/|x_i-x_j|^{2n}</math> पूर्णांकों और अर्ध-पूर्णांकों के साथ <math>n\geq 1/2</math>, उपरोक्त समय-औसत सूत्र द्वारा दिया गया प्रत्यक्ष अभिन्न अंग अपसारी है, अर्थात, <math>U_{ij}=\infty.</math> विचलन को दूर करने के लिए एक पुनर्सामान्यीकरण प्रक्रिया शुरू की गई थी <ref name="guo2016pra">{{cite journal |last1=Guo |first1=Lingzhen |last2=Liu |first2=Modan |last3=Marthaler |first3=Michael |title=समय-समय पर संचालित एक-आयामी शास्त्रीय प्रणाली में कम दूरी की बातचीत से प्रभावी लंबी दूरी की बातचीत|journal=Physical Review A |date=20 May 2016 |volume=93 |issue=5 |pages=053616 |doi=10.1103/PhysRevA.93.053616|arxiv=1503.03096 |bibcode=2016PhRvA..93e3616G |s2cid=19442809 |url=https://research.chalmers.se/en/publication/237876 }}</ref> और सही चरण अंतरिक्ष अंतःक्रिया चरण अंतरिक्ष दूरी का एक कार्य है <math> R_{ij}</math> में <math>(X_i,P_i)</math> विमान। कूलम्ब विभव के लिए <math>n=1/2</math>, परिणाम <math>U(R_{ij})=2\pi^{-1}\tilde{\epsilon}/R_{ij}</math> अभी भी कूलम्ब के नियम का स्वरूप लघुगणकीय पुनर्सामान्यीकृत आवेश तक बना हुआ है <math>\tilde{\epsilon}=\epsilon\ln (\epsilon^{-1}e^2 R^3_{ij}/2)</math>, कहाँ <math>e=2.71828\cdots</math> यूलर की संख्या है. के लिए <math>n=1,3/2,2,5/2,\cdots</math>, पुनर्सामान्यीकृत चरण अंतरिक्ष अंतःक्रिया क्षमता है <ref name="guo2016pra" />
<math display="block">U_{ij}=\frac{1}{T}\int^T_0V[x_i(t)-x_j(t)].</math>यहाँ, <math>x_i(t)</math> ड्राइविंग क्षेत्र की अनुपस्थिति में <math>i</math>-वें कण के प्रक्षेपवक्र का प्रतिनिधित्व करता है। पूर्णांकों और अर्ध-पूर्णांकों <math>n\geq 1/2</math> के साथ मॉडल [[बिजली कानून|पावर-लॉ]] इंटरैक्शन विभव <math>V(x_i-x_j)=\epsilon^{2n}/|x_i-x_j|^{2n}</math> के लिए, उपरोक्त समय-औसत सूत्र द्वारा दिया गया प्रत्यक्ष अवकलज अपसारी है, अर्थात, <math>U_{ij}=\infty.</math> है। विचलन को कम करने के लिए पुनर्सामान्यीकरण प्रक्रिया प्रारम्भ की गई थी <ref name="guo2016pra">{{cite journal |last1=Guo |first1=Lingzhen |last2=Liu |first2=Modan |last3=Marthaler |first3=Michael |title=समय-समय पर संचालित एक-आयामी शास्त्रीय प्रणाली में कम दूरी की बातचीत से प्रभावी लंबी दूरी की बातचीत|journal=Physical Review A |date=20 May 2016 |volume=93 |issue=5 |pages=053616 |doi=10.1103/PhysRevA.93.053616|arxiv=1503.03096 |bibcode=2016PhRvA..93e3616G |s2cid=19442809 |url=https://research.chalmers.se/en/publication/237876 }}</ref> और उचित चरण-अंतरिक्ष इंटरैक्शन <math>(X_i,P_i)</math> तल में चरण-अंतरिक्ष दूरी <math> R_{ij}</math> का फलन है। कूलम्ब विभव <math>n=1/2</math> के लिए, परिणाम <math>U(R_{ij})=2\pi^{-1}\tilde{\epsilon}/R_{ij}</math> अभी भी कूलम्ब के नियम के रूप को लघुगणकीय पुनर्सामान्यीकृत आवेश <math>\tilde{\epsilon}=\epsilon\ln (\epsilon^{-1}e^2 R^3_{ij}/2)</math> तक रखता है, जहाँ <math>e=2.71828\cdots</math> यूलर की संख्या है। <math>n=1,3/2,2,5/2,\cdots</math> के लिए, पुनर्सामान्यीकृत चरण-अंतरिक्ष इंटरैक्शन विभव है-<ref name="guo2016pra" /><math>U_{ij}=U(R_{ij})=\frac{2\epsilon\gamma^{2n-1}4^{\frac{1}{2n}-1}}{\pi(2n-1)}R^{1-\frac{1}{n}}_{ij}, </math>
<math>U_{ij}=U(R_{ij})=\frac{2\epsilon\gamma^{2n-1}4^{\frac{1}{2n}-1}}{\pi(2n-1)}R^{1-\frac{1}{n}}_{ij}, </math> कहाँ <math>\gamma=(4n-1)^{\frac{1}{2n-1}}</math> टकराव कारक है. के विशेष मामले के लिए <math>n=1</math>, तब से चरण स्थान में कोई प्रभावी अंतःक्रिया नहीं हुई है <math>U(R_{ij})=\sqrt{3}\epsilon\pi^{-1}</math> चरण अंतरिक्ष दूरी के संबंध में एक स्थिरांक है। सामान्य तौर पर के मामले के लिए <math>n>1</math>, चरण अंतरिक्ष अंतःक्रिया <math>{U}(R_{ij})</math> चरण स्थान दूरी के साथ बढ़ता है <math>R_{ij}</math>. हार्ड-स्फीयर इंटरैक्शन के लिए (<math>n\rightarrow\infty</math>), चरण अंतरिक्ष अंतःक्रिया <math>U(R_{ij})=\epsilon\pi^{-1}R_{ij}</math> [[क्वांटम क्रोमोडायनामिक्स]] (क्यूसीडी) में [[क्वार्क]]ों के बीच कारावास की बातचीत की तरह व्यवहार करता है। उपरोक्त चरण अंतरिक्ष इंटरैक्शन वास्तव में चरण स्थान में अलग-अलग घूर्णी या अनुवाद संबंधी संचालन के तहत अपरिवर्तनीय है। ड्राइविंग से चरण अंतरिक्ष जाली क्षमता के साथ संयुक्त, एक स्थिर शासन मौजूद है जहां कण समय-समय पर चरण स्थान में खुद को व्यवस्थित करते हैं जिससे कई-शरीर चरण अंतरिक्ष क्रिस्टल को जन्म मिलता है।<ref name="Liang2018NJP" /><ref name="guo2022prb" /><ref name="Sach2022aapps" />


क्वांटम यांत्रिकी में, बिंदु कण को ​​​​क्वांटम तरंग पैकेट द्वारा प्रतिस्थापित किया जाता है और विचलन समस्या से स्वाभाविक रूप से बचा जाता है। फ़्लोक्वेट प्रणाली के लिए निम्नतम क्रम के [[मैग्नस विस्तार]] के लिए, दो कणों का क्वांटम चरण अंतरिक्ष इंटरैक्शन आवधिक दो-शरीर क्वांटम स्थिति पर समय-औसत वास्तविक अंतरिक्ष इंटरैक्शन है <math>\Phi(x_i,x_j,t)</math> निम्नलिखित नुसार।<ref name="sacha2015sr">{{cite journal |last1=Sacha |first1=Krzysztof |title=टाइम डोमेन में एंडरसन स्थानीयकरण और मॉट इंसुलेटर चरण|journal=Scientific Reports |date=1 September 2015 |volume=5 |issue=1 |pages=10787 |doi=10.1038/srep10787|pmid=26074169 |pmc=4466589 |arxiv=1502.02507 |bibcode=2015NatSR...510787S }}</ref><ref name="Liang2018NJP" />
जहाँ <math>\gamma=(4n-1)^{\frac{1}{2n-1}}</math> संघट्‍टन गुणक है। <math>n=1</math> की विशेष स्थिति के लिए, चरण-अंतरिक्ष में कोई प्रभावी इंटरैक्शन नहीं है, क्योंकि <math>U(R_{ij})=\sqrt{3}\epsilon\pi^{-1}</math> चरण-अंतरिक्ष दूरी के संबंध में स्थिरांक है। सामान्तयः <math>n>1</math> की स्थिति के लिए, चरण-अंतरिक्ष इंटरैक्शन <math>{U}(R_{ij})</math> चरण-अंतरिक्ष दूरी <math>R_{ij}</math> के साथ विस्तृत होता है। हार्ड-स्फीयर इंटरैक्शन (<math>n\rightarrow\infty</math>) के लिए, चरण-अंतरिक्ष इंटरैक्शन <math>U(R_{ij})=\epsilon\pi^{-1}R_{ij}</math> [[क्वांटम क्रोमोडायनामिक्स]] (क्यूसीडी) में [[क्वार्क|क्वार्कों]] के मध्य कॉनफिनेमेंट इंटरेक्शन की भाँति व्यवहार करता है। उपरोक्त चरण-अंतरिक्ष इंटरैक्शन वास्तव में चरण-अंतरिक्ष में भिन्न-भिन्न घूर्णी या अनुवाद संबंधी संक्रिया के अंतर्गत अपरिवर्तनीय है। ड्राइविंग से चरण-अंतरिक्ष जालक विभव के साथ संयुक्त, स्थिर व्यवस्था उपस्थित है जहां कण समय-समय पर चरण-अंतरिक्ष में स्वयं को व्यवस्थित करते हैं जिससे अनेक-निकाय चरण-अंतरिक्ष क्रिस्टल उत्पन्न होते हैं।<ref name="Liang2018NJP" /><ref name="guo2022prb" /><ref name="Sach2022aapps" />
<math display="block">U_{ij}=\frac{1}{T}\int^T_0\langle \Phi(x_i,x_j,t) |V(x_i-x_j)|\Phi(x_i,x_j,t)\rangle.</math> सुसंगत राज्य प्रतिनिधित्व में, क्वांटम चरण अंतरिक्ष इंटरैक्शन लंबी दूरी की सीमा में शास्त्रीय चरण अंतरिक्ष इंटरैक्शन तक पहुंचता है।<ref name="Liang2018NJP" />के लिए <math>N</math> प्रतिकारक संपर्क अंतःक्रिया के साथ बोसोनिक [[अल्ट्राकोल्ड परमाणु]] एक दोलनशील दर्पण पर उछलते हुए, [[मॉट इन्सुलेटर]] जैसी स्थिति बनाना संभव है <math>Z_n</math> चरण स्थान जाली.<ref name="sacha2015sr" /><ref name="Guo2020njp" />इस मामले में, प्रत्येक संभावित साइट में कणों की एक अच्छी तरह से परिभाषित संख्या होती है जिसे 1डी कई-बॉडी चरण स्पेस क्रिस्टल के उदाहरण के रूप में देखा जा सकता है।


यदि दो अविभाज्य कणों में [[स्पिन]] होती है, तो कुल चरण अंतरिक्ष इंटरैक्शन को प्रत्यक्ष इंटरैक्शन और विनिमय इंटरैक्शन के योग में लिखा जा सकता है।<ref name="Liang2018NJP" />इसका मतलब यह है कि दो कणों की टक्कर के दौरान विनिमय प्रभाव एक प्रभावी स्पिन-स्पिन इंटरैक्शन को प्रेरित कर सकता है <ref name="Guo2021book" />
क्वांटम यांत्रिकी में, बिंदु कण को ​​​​क्वांटम तरंग पैकेट द्वारा प्रतिस्थापित किया जाता है और विचलन समस्या से स्वाभाविक रूप से बचा जाता है। फ़्लोक्वेट प्रणाली के निम्नतम क्रम के [[मैग्नस विस्तार]] के लिए, दो कणों का क्वांटम चरण-अंतरिक्ष इंटरैक्शन आवधिक दो-निकाय क्वांटम स्थिति <math>\Phi(x_i,x_j,t)</math> पर समय-औसत वास्तविक अंतरिक्ष इंटरैक्शन इस प्रकार है-<ref name="sacha2015sr">{{cite journal |last1=Sacha |first1=Krzysztof |title=टाइम डोमेन में एंडरसन स्थानीयकरण और मॉट इंसुलेटर चरण|journal=Scientific Reports |date=1 September 2015 |volume=5 |issue=1 |pages=10787 |doi=10.1038/srep10787|pmid=26074169 |pmc=4466589 |arxiv=1502.02507 |bibcode=2015NatSR...510787S }}</ref><ref name="Liang2018NJP" />
<math display="block">U_{ij}=\frac{1}{T}\int^T_0\langle \Phi(x_i,x_j,t) |V(x_i-x_j)|\Phi(x_i,x_j,t)\rangle.</math>सुसंगत स्थिति प्रतिनिधित्व में, क्वांटम चरण-अंतरिक्ष इंटरैक्शन अधिक दूरी की सीमा में चरण-अंतरिक्ष इंटरैक्शन तक जाता है।<ref name="Liang2018NJP" /> दोलनशील दर्पण पर गति करते हुए प्रतिकारक संपर्क इंटरैक्शन के साथ <math>N</math> बोसोनिक [[अल्ट्राकोल्ड परमाणु|अल्ट्राकोल्ड परमाणुओं]] के लिए, <math>Z_n</math> चरण-अंतरिक्ष जालक में [[मॉट इन्सुलेटर]] जैसी स्थिति बनाना संभव है।<ref name="sacha2015sr" /><ref name="Guo2020njp" /> इस स्थिति में, प्रत्येक संभावित साइट में कणों की उचित प्रकार से परिभाषित संख्या होती है जिसे 1डी अनेक-निकाय चरण अंतरिक्ष क्रिस्टल के उदाहरण के रूप में देखा जा सकता है।


यदि दो अविभाज्य कणों में [[स्पिन]] होता है, तो कुल चरण-अंतरिक्ष इंटरैक्शन को प्रत्यक्ष इंटरैक्शन और विनिमय इंटरैक्शन के योग में लिखा जा सकता है।<ref name="Liang2018NJP" /> इसका अर्थ यह है कि दो कणों के संघट्‍टन के समय विनिमय प्रभाव प्रभावी स्पिन-स्पिन इंटरैक्शन को प्रेरित कर सकता है।<ref name="Guo2021book" />


====चरण अंतरिक्ष क्रिस्टल कंपन====
'''चरण-अंतरिक्ष क्रिस्टल कंपन'''


ठोस क्रिस्टल को वास्तविक स्थान में परमाणुओं की आवधिक व्यवस्था द्वारा परिभाषित किया जाता है, समय-आवधिक ड्राइव के अधीन परमाणु चरण स्थान में भी क्रिस्टल बना सकते हैं।<ref name="Liang2018NJP" />इन परमाणुओं के बीच परस्पर क्रिया ठोस क्रिस्टल में [[फोनन]] के समान सामूहिक कंपन मोड को जन्म देती है। [[ मधुकोश ]] चरण स्पेस क्रिस्टल विशेष रूप से दिलचस्प है क्योंकि कंपन बैंड संरचना में दो उप-जाली बैंड होते हैं जिनमें गैर-तुच्छ टोपोलॉजिकल भौतिकी हो सकती है।<ref name="guo2022prb" />किन्हीं दो परमाणुओं के कंपन को आंतरिक रूप से जटिल युग्मन के साथ युग्मन अंतःक्रिया के माध्यम से जोड़ा जाता है। उनके जटिल चरणों की एक सरल ज्यामितीय व्याख्या होती है और इसे [[गेज परिवर्तन]] द्वारा समाप्त नहीं किया जा सकता है, जिससे चरण स्थान में गैर-तुच्छ [[चेर्न संख्या]]ओं और चिरल किनारे वाले राज्यों के साथ एक कंपन बैंड संरचना बनती है। वास्तविक अंतरिक्ष में सभी टोपोलॉजिकल परिवहन परिदृश्यों के विपरीत, चरण अंतरिक्ष फ़ोनों के लिए चिरल परिवहन भौतिक [[समय-उलट समरूपता]] को तोड़ने के बिना उत्पन्न हो सकता है।
ठोस क्रिस्टल को वास्तविक अंतरिक्ष में परमाणुओं की आवधिक व्यवस्था द्वारा परिभाषित किया जाता है, समय-आवधिक ड्राइव के अंतर्गत परमाणु चरण-अंतरिक्ष में भी क्रिस्टल बना सकते हैं।<ref name="Liang2018NJP" /> इन परमाणुओं के मध्य परस्पर क्रिया ठोस क्रिस्टल में [[फोनन]] के समान सामूहिक कंपन मोड को उत्पन्न करती है। [[ मधुकोश |मधुकोश]] चरण अंतरिक्ष क्रिस्टल विशेष रूप से रोचक है क्योंकि कंपन बैंड संरचना में दो उप-जालक बैंड होते हैं जिनमें नॉन ट्रैवियल टोपोलॉजिकल भौतिकी हो सकती है।<ref name="guo2022prb" /> किन्हीं दो परमाणुओं के कंपन को आंतरिक रूप से अंतरिक्ष युग्मन के साथ युग्मन इंटरैक्शन के माध्यम से संयोजित किया जाता है। उनके अंतरिक्ष चरणों की सरल ज्यामितीय व्याख्या होती है और इसे [[गेज परिवर्तन]] द्वारा समाप्त नहीं किया जा सकता है, जिससे चरण-अंतरिक्ष में नॉन ट्रैवियल [[चेर्न संख्या|चेर्न संख्याओं]] और चिरल कोर वाली स्थितियों के साथ कंपन बैंड संरचना बनती है। वास्तविक अंतरिक्ष में सभी टोपोलॉजिकल परिवहन परिदृश्यों के विपरीत, चरण-अंतरिक्ष फ़ोनों के लिए चिरल परिवहन भौतिक [[समय-उलट समरूपता|समय-व्युत्क्रम समरूपता]] को खंडित किये बिना यह उत्पन्न हो सकता है।


==[[समय क्रिस्टल]] से संबंध==
==[[समय क्रिस्टल]] से संबंध==


समय क्रिस्टल और चरण अंतरिक्ष क्रिस्टल निकट से संबंधित हैं लेकिन अलग-अलग अवधारणाएँ हैं।<ref name="Guo2021book" />वे दोनों समय-समय पर संचालित प्रणालियों में उभरने वाले सबहार्मोनिक मोड का अध्ययन करते हैं। टाइम क्रिस्टल असतत [[ समय अनुवादात्मक समरूपता ]] (डीटीटीएस) की सहज समरूपता तोड़ने की प्रक्रिया और क्वांटम कई-बॉडी सिस्टम में सबहार्मोनिक मोड के सुरक्षा तंत्र पर ध्यान केंद्रित करते हैं। इसके विपरीत, चरण अंतरिक्ष क्रिस्टल का अध्ययन चरण अंतरिक्ष में असतत समरूपता पर केंद्रित है। चरण अंतरिक्ष क्रिस्टल का निर्माण करने वाले बुनियादी तरीके आवश्यक रूप से कई-निकाय वाले राज्य नहीं हैं, और एकल-कण चरण अंतरिक्ष क्रिस्टल के लिए डीटीटीएस को तोड़ने की आवश्यकता नहीं है। कई-निकाय प्रणालियों के लिए, चरण अंतरिक्ष क्रिस्टल संभावित सबहार्मोनिक मोड के परस्पर क्रिया का अध्ययन करते हैं जो समय-समय पर चरण स्थान में व्यवस्थित होते हैं। अनेक समय के क्रिस्टलों की परस्पर क्रिया का अध्ययन करने का चलन है <ref name="autti2021nm">{{cite journal |last1=Autti |first1=S. |last2=Heikkinen |first2=P. J. |last3=Mäkinen |first3=J. T. |last4=Volovik |first4=G. E. |last5=Zavjalov |first5=V. V. |last6=Eltsov |first6=V. B. |title=दो सुपरफ्लुइड समय क्रिस्टल के बीच एसी जोसेफसन प्रभाव|journal=Nature Materials |date=February 2021 |volume=20 |issue=2 |pages=171–174 |doi=10.1038/s41563-020-0780-y|pmid=32807922 |arxiv=2003.06313 |bibcode=2021NatMa..20..171A |s2cid=212717702 |url=https://eprints.lancs.ac.uk/id/eprint/147170/1/TimeCrystalJosephson.pdf }}</ref> जिसे [[समय के क्रिस्टल]] में संघनित पदार्थ भौतिकी के रूप में गढ़ा गया है <ref name="sacha2018rpp">{{cite journal |last1=Sacha |first1=Krzysztof |last2=Zakrzewski |first2=Jakub |title=Time crystals: a review |journal=Reports on Progress in Physics |date=1 January 2018 |volume=81 |issue=1 |pages=016401 |doi=10.1088/1361-6633/aa8b38|pmid=28885193 |arxiv=1704.03735 |bibcode=2018RPPh...81a6401S |s2cid=28224975 }}</ref><ref name="Guo2020njp" /><ref name="sacha2020tc">{{cite journal |last1=Sacha |first1=Krzysztof |title=समय आयाम में संघनित पदार्थ भौतिकी|journal=Time Crystals |series=Springer Series on Atomic, Optical, and Plasma Physics |date=2020 |volume=114 |pages=173–235 |doi=10.1007/978-3-030-52523-1_5|isbn=978-3-030-52522-4 |s2cid=226488734 }}</ref>
समय क्रिस्टल और चरण-अंतरिक्ष क्रिस्टल निकटता से संबंधित हैं किन्तु इनकी अवधारणाएँ भिन्न-भिन्न हैं।<ref name="Guo2021book" /> इस प्रकार वे दोनों समय-समय पर संचालित प्रणालियों में प्रकट होने वाले सबहार्मोनिक मोड का अध्ययन करते हैं। समय क्रिस्टल असतत [[ समय अनुवादात्मक समरूपता |समय अनुवादात्मक समरूपता]] (डीटीटीएस) की सहज समरूपता खंडित करने की प्रक्रिया और क्वांटम अनेक-निकाय प्रणाली में सबहार्मोनिक मोड की सुरक्षा विधि पर ध्यान केंद्रित करते हैं। इसके विपरीत, चरण-अंतरिक्ष क्रिस्टल का अध्ययन चरण-अंतरिक्ष में असतत समरूपता पर केंद्रित है। चरण-अंतरिक्ष क्रिस्टल का निर्माण करने वाले मूल प्रकारों में आवश्यक रूप से अनेक-निकाय वाली स्थिति नहीं होती हैं, और एकल-कण चरण-अंतरिक्ष क्रिस्टल के लिए डीटीटीएस को खंडित करने की आवश्यकता नहीं है। अनेक-निकाय प्रणालियों के लिए, चरण-अंतरिक्ष क्रिस्टल संभावित सबहार्मोनिक मोड के इंटरैक्शन का अध्ययन करते हैं जो समय-समय पर चरण-अंतरिक्ष में व्यवस्थित होते हैं। कई समय के क्रिस्टलों की परस्पर क्रिया का अध्ययन करने की प्रवृत्ति है<ref name="autti2021nm">{{cite journal |last1=Autti |first1=S. |last2=Heikkinen |first2=P. J. |last3=Mäkinen |first3=J. T. |last4=Volovik |first4=G. E. |last5=Zavjalov |first5=V. V. |last6=Eltsov |first6=V. B. |title=दो सुपरफ्लुइड समय क्रिस्टल के बीच एसी जोसेफसन प्रभाव|journal=Nature Materials |date=February 2021 |volume=20 |issue=2 |pages=171–174 |doi=10.1038/s41563-020-0780-y|pmid=32807922 |arxiv=2003.06313 |bibcode=2021NatMa..20..171A |s2cid=212717702 |url=https://eprints.lancs.ac.uk/id/eprint/147170/1/TimeCrystalJosephson.pdf }}</ref> जिसे [[समय के क्रिस्टल|समय क्रिस्टल]] में संघनित पदार्थ भौतिकी के रूप में अंकित किया गया है।<ref name="sacha2018rpp">{{cite journal |last1=Sacha |first1=Krzysztof |last2=Zakrzewski |first2=Jakub |title=Time crystals: a review |journal=Reports on Progress in Physics |date=1 January 2018 |volume=81 |issue=1 |pages=016401 |doi=10.1088/1361-6633/aa8b38|pmid=28885193 |arxiv=1704.03735 |bibcode=2018RPPh...81a6401S |s2cid=28224975 }}</ref><ref name="Guo2020njp" /><ref name="sacha2020tc">{{cite journal |last1=Sacha |first1=Krzysztof |title=समय आयाम में संघनित पदार्थ भौतिकी|journal=Time Crystals |series=Springer Series on Atomic, Optical, and Plasma Physics |date=2020 |volume=114 |pages=173–235 |doi=10.1007/978-3-030-52523-1_5|isbn=978-3-030-52522-4 |s2cid=226488734 }}</ref>
 


== संदर्भ ==
== संदर्भ ==
{{reflist}}
{{reflist}}
[[Category: भौतिकी में अवधारणाएँ]] [[Category: हैमिल्टनियन यांत्रिकी]] [[Category: आयामी विश्लेषण]] [[Category: गतिशील प्रणालियाँ]] [[Category: क्वांटम यांत्रिकी]]  
[[Category: भौतिकी में अवधारणाएँ]] [[Category: हैमिल्टनियन यांत्रिकी]] [[Category: आयामी विश्लेषण]] [[Category: गतिशील प्रणालियाँ]] [[Category: क्वांटम यांत्रिकी]]  
Line 81: Line 69:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 18/11/2023]]
[[Category:Created On 18/11/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 10:54, 11 December 2023

चरण अंतरिक्ष क्रिस्टल भौतिक प्रणाली की स्थिति है जो वास्तविक अंतरिक्ष के अतिरिक्त चरण-अंतरिक्ष में असतत समरूपता प्रदर्शित करती है। एकल-कण प्रणाली के लिए, चरण-अंतरिक्ष क्रिस्टल स्थिति संवृत क्वांटम प्रणाली के लिए हैमिल्टनियन की आइगेन-स्थिति अथवा विवृत क्वांटम प्रणाली के लिए लिउविलियन के आइगेन-संकारक को संदर्भित करती है।[1][2] अनेक-निकाय प्रणालियों के लिए, चरण-अंतरिक्ष क्रिस्टल चरण-अंतरिक्ष में ठोस जैसी क्रिस्टलीय अवस्था है।[3][4] चरण-अंतरिक्ष क्रिस्टल की सामान्य रूपरेखा ठोस अवस्था भौतिकी और संघनित पदार्थ भौतिकी के अध्ययन को गतिशील प्रणालियों की चरण-अंतरिक्ष में विस्तारित करना है।[5] जबकि वास्तविक अंतरिक्ष में यूक्लिडियन ज्यामिति है, चरण-अंतरिक्ष क्लासिकल सिंपलेक्टिक ज्यामिति अथवा क्वांटम अविनिमेय ज्यामिति के साथ अंतर्निहित है।

चरण-अंतरिक्ष जालक

जॉन वॉन न्यूमैन ने अपनी प्रसिद्ध पुस्तक मैथमेटिकल फ़ाउंडेशन ऑफ़ क्वांटम मैकेनिक्स में,[6] क्रमशः स्थिति और गति दिशाओं के साथ दो क्रमविनिमेय प्राथमिक विस्थापन संकारकों द्वारा चरण-अंतरिक्ष जालक का निर्माण किया, जिसे वर्तमान में वॉन न्यूमैन जालक भी कहा जाता है। यदि चरण-अंतरिक्ष को आवृत्ति-समय तल से प्रतिस्थापित किया जाता है, तो वॉन न्यूमैन जालक को गैबोर जालक कहा जाता है [7] और इस प्रकार सिग्नल प्रोसेसिंग के लिए इसका उपयोग व्यापक रूप से किया जाता है।[8]

चरण-अंतरिक्ष जालक मूल रूप से वास्तविक अंतरिक्ष जालक से भिन्न होते है क्योंकि चरण-अंतरिक्ष के दो निर्देशांक क्वांटम यांत्रिकी में अविनिमेय होते हैं। परिणामस्वरूप, चरण-अंतरिक्ष में संवृत पथ के साथ गति करने वाली सुसंगत स्थिति अतिरिक्त चरण गुणक प्राप्त करती है, जो चुंबकीय क्षेत्र में गति करने वाले आवेश कण के अहरोनोव-बोहम प्रभाव के समान होती है।[9][3] इस प्रकार चरण-अंतरिक्ष और चुंबकीय क्षेत्र के मध्य घनिष्ठ संबंध है। वास्तव में, गति के विहित समीकरण को लोरेन्ज़-बल के रूप में भी पुनः अंकित किया जा सकता है जो वास्तविक चरण-अंतरिक्ष की सिंपलेक्टिक ज्यामिति को दर्शाता है [5]

गतिशील प्रणालियों के चरण-अंतरिक्ष में, स्थिर बिंदु अपने प्रतिवेशी क्षेत्रों के साथ अराजक समुद्र में तथाकथित पोंकारे-बिरखॉफ द्वीप बनाते हैं जो चरण-अंतरिक्ष में श्रेणी या कुछ नियमित दो आयामी जालक संरचनाएं बना सकते हैं। उदाहरण के लिए, किक्ड हार्मोनिक ऑसिलेटर (केएचओ) के प्रभावी हैमिल्टनियन [10][11] में किकिंग संख्या के अनुपात के आधार पर चरण-अंतरिक्ष में वर्गाकार जालक, त्रिकोण जालक और अर्ध-क्रिस्टलीय संरचनाएं भी हो सकती हैं। वास्तव में, किसी भी आरबिटरेरी चरण-अंतरिक्ष जालक को केएचओ के लिए उपयुक्त किकिंग अनुक्रम का चयन करके डिज़ाइन किया जा सकता है।[4]

चरण-अंतरिक्ष क्रिस्टल (पीएससी)

चरण-अंतरिक्ष क्रिस्टल की अवधारणा गुओ एट अल द्वारा प्रस्तावित की गई थी[1] और मूल रूप से समय-समय पर संचालित (फ्लोक्वेट) गतिशील प्रणाली के प्रभावी हैमिल्टन की आइगेन-स्थिति को संदर्भित करती है। इस पर निर्भर करते हुए कि इंटरैक्शन प्रभाव सम्मिलित है या नहीं, चरण-अंतरिक्ष क्रिस्टल को एकल-कण पीएससी और अनेक-निकाय पीएससी में वर्गीकृत किया जा सकता है।[12]

एकल-कण चरण-अंतरिक्ष क्रिस्टल

चरण-अंतरिक्ष में समरूपता के आधार पर, चरण-अंतरिक्ष क्रिस्टल, चरण-अंतरिक्ष में -फोल्ड घूर्णी समरूपता के साथ 1 आयामी (1डी) स्थिति हो सकती है या पूर्ण चरण-अंतरिक्ष में विस्तारित दो-आयामी (2डी) जालक स्थिति हो सकती है। इस प्रकार संवृत प्रणाली के लिए चरण-अंतरिक्ष क्रिस्टल की अवधारणा को विवृत क्वांटम प्रणाली में विस्तारित किया गया है और इसे क्षणिक चरण-अंतरिक्ष क्रिस्टल का नाम दिया गया है।[2]

Zn पीएससी

चरण-अंतरिक्ष मूल रूप से वास्तविक अंतरिक्ष से भिन्न है क्योंकि चरण-अंतरिक्ष के दो निर्देशांक कम्यूट नहीं करते हैं, अर्थात, , जहाँ आयामहीन प्लैंक स्थिरांक है। लैडर संकारक को के रूप में परिभाषित किया गया है, जैसे कि है। भौतिक प्रणाली के हैमिल्टनियन को लैडर संकारकों के फलन के रूप में भी लिखा जा सकता है। चरण-अंतरिक्ष में घूर्णी संकारक को द्वारा परिभाषित किया गया है[1][13] जहाँ , धनात्मक पूर्णांक के साथ, प्रणाली में -फोल्ड घूर्णी समरूपता या समरूपता है, यदि हैमिल्टनियन घूर्णी संकारक के साथ कम्यूट करता है, अर्थात,

इस स्थिति में, कोई बलोच प्रमेय को -फोल्ड सममित हैमिल्टनियन पर प्रयुक्त कर सकता है और बैंड संरचना की गणना कर सकता है।[1][14] हैमिल्टनियन की असतत घूर्णी सममित संरचना को चरण-अंतरिक्ष जालक कहा जाता है[15] और संबंधित आइगेन-स्थितियों को चरण-अंतरिक्ष क्रिस्टल कहा जाता है।

जालक पीएससी

असतत घूर्णी समरूपता को पूर्ण चरण-अंतरिक्ष में असतत अनुवादात्मक समरूपता तक विस्तारित किया जा सकता है। ऐसे उद्देश्य के लिए, चरण-अंतरिक्ष में विस्थापन संकारक को द्वारा परिभाषित किया गया है, जिसमें गुण है, जहाँ चरण-अंतरिक्ष में विस्थापन सदिश के अनुरूप सम्मिश्र संख्या है। यदि हैमिल्टनियन अनुवादात्मक संकारक के साथ कम्यूट करता है तो प्रणाली में असतत अनुवादात्मक समरूपता होती है, अर्थात,

यदि दो प्राथमिक विस्थापन और उपस्थित हैं जो उपरोक्त स्थिति को पूर्ण करते हैं, तो चरण-अंतरिक्ष हैमिल्टनियन के निकट चरण-अंतरिक्ष में 2डी जालक समरूपता है। यद्यपि, दो विस्थापन संकारक सामान्य में क्रमविनिमेय नहीं हैं। इस प्रकार अविनिमेय चरण-अंतरिक्ष में, बिंदु की अवधारणा अर्थहीन है। इसके अतिरिक्त, सुसंगत स्थिति को के माध्यम से निचले संकारक के आइगेन-स्थिति के रूप में परिभाषित किया गया है। विस्थापन संकारक सुसंगत स्थिति को अतिरिक्त चरण के साथ विस्थापित करता है, अर्थात, होता है। सुसंगत स्थिति जो संवृत पथ पर गति करती है, उदाहरण के लिए, तीन कोरों वाला त्रिकोण चरण-अंतरिक्ष में, ज्यामितीय चरण गुणक प्राप्त करता है।[16][3]

जहाँ संलग्न क्षेत्र है। यह ज्यामितीय चरण चुंबकीय क्षेत्र में आवेशित कण के अहरोनोव-बोहम चरण के अनुरूप है। यदि चुंबकीय इकाई सेल और जालक इकाई सेल उपमा योग्य हैं, अर्थात्, दो पूर्णांक और उपस्थित हैं जैसे कि , तब कोई भी 2डी ब्रिलॉइन में परिभाषित बैंड संरचना की गणना कर सकता है। उदाहरण के लिए, वर्गाकार चरण-अंतरिक्ष जालक हैमिल्टनियन का स्पेक्ट्रम हॉफस्टैटर की तितली बैंड संरचना प्रदर्शित करता है,[3][17] जो चुंबकीय क्षेत्र में टाइट बाइंडिंग जालक साइटों के मध्य आवेशित कणों के हॉपिंग का वर्णन करता है।[18] इस स्थिति में, आइगेन-स्थिति को 2डी जालक चरण-अंतरिक्ष क्रिस्टल कहा जाता है।

क्षणिक पीएससी

संवृत क्वांटम प्रणाली के लिए चरण-अंतरिक्ष क्रिस्टल की अवधारणा को विवृत क्वांटम प्रणाली तक विस्तारित किया गया है।[2] परिपथ क्यूईडी प्रणाली में, जोसेफसन जंक्शनों और -फोटॉन अनुनाद के वोल्टेज पूर्वाग्रह के साथ संयुक्त माइक्रोवेव रेज़ोनेटर को ऊपर वर्णित चरण-अंतरिक्ष समरूपता के साथ घूर्णन तरंग समीपता (आरडब्ल्यूए) हैमिल्टनियन द्वारा वर्णित किया जा सकता है। जब एकल-फोटॉन हानि प्रमुख होती है, तो अनुनादक की क्षणिक गतिशीलता को निम्नलिखित मास्टर समीकरण (लिंडब्लैड समीकरण) द्वारा इस प्रकार से वर्णित किया जाता है-

जहाँ हानि दर है और सुपरऑपरेटर को लिउविलियन कहा जाता है। कोई प्रणाली के लिउविलियन के आइगेनस्पेक्ट्रम और संबंधित आइगेनसंकारक की गणना कर सकती है। ध्यान दें कि न केवल हैमिल्टनियन अपितु लिउविलियन भी -फोल्ड घूर्णी संक्रिया के अंतर्गत अपरिवर्तनीय हैं, अर्थात, और के साथ है। इस प्रकार यह समरूपता चरण-अंतरिक्ष क्रिस्टल की अवधारणा को विवृत क्वांटम प्रणाली तक विस्तारित करने में महत्वपूर्ण भूमिका निभाती है। परिणामस्वरूप, लिउविलियन आइगेनसंकारक चरण-अंतरिक्ष में बलोच मोड संरचना होती है, जिसे क्षणिक चरण-अंतरिक्ष क्रिस्टल कहा जाता है।[2]

अनेक-निकाय चरण-अंतरिक्ष क्रिस्टल

चरण-अंतरिक्ष क्रिस्टल की अवधारणा को परस्पर क्रिया करने वाले कणों की प्रणालियों तक विस्तारित किया जा सकता है जहां यह चरण-अंतरिक्ष में ठोस जैसी क्रिस्टलीय संरचना वाली अनेक-निकाय स्थिति को संदर्भित करता है।[3][4][12] इस स्थिति में, कणों की परस्पर क्रिया महत्वपूर्ण भूमिका निभाती है। वास्तविक अंतरिक्ष में, अनेक-निकाय वाले हैमिल्टनियन को विक्षुब्ध आवधिक ड्राइव (अवधि के साथ) के अंतर्गत निम्नलिखित समीकरण द्वारा दिया जाता है-

सामान्यतः, इंटरैक्शन विभव वास्तविक अंतरिक्ष में दो कणों की दूरी का फलन है। ड्राइविंग आवृत्ति के साथ घूर्णन फ्रेम में परिवर्तन करके और घूर्णन तरंग समीपता (आरडब्ल्यूए) को स्वीकार करके, कोई प्रभावी हैमिल्टनियन प्राप्त कर सकता है-[15][5]
यहाँ, , -वें कण की स्ट्रोबोस्कोपिक स्थिति और गति है, अर्थात्, वे ड्राइविंग अवधि के पूर्णांक गुणक पर का मान लेते हैं। चरण-अंतरिक्ष में क्रिस्टल संरचना रखने के लिए, चरण-अंतरिक्ष में प्रभावी इंटरैक्शन को चरण-अंतरिक्ष में भिन्न-भिन्न घूर्णी या अनुवादात्मक संक्रिया के अंतर्गत अपरिवर्तनीय होना आवश्यक है।

चरण-अंतरिक्ष इंटरैक्शन

गतिकी के अग्रणी क्रम के चरण-अंतरिक्ष में प्रभावी इंटरैक्शन विभव ड्राइविंग अवधि में समय-औसत वास्तविक अंतरिक्ष इंटरैक्शन है-

यहाँ, ड्राइविंग क्षेत्र की अनुपस्थिति में -वें कण के प्रक्षेपवक्र का प्रतिनिधित्व करता है। पूर्णांकों और अर्ध-पूर्णांकों के साथ मॉडल पावर-लॉ इंटरैक्शन विभव के लिए, उपरोक्त समय-औसत सूत्र द्वारा दिया गया प्रत्यक्ष अवकलज अपसारी है, अर्थात, है। विचलन को कम करने के लिए पुनर्सामान्यीकरण प्रक्रिया प्रारम्भ की गई थी [19] और उचित चरण-अंतरिक्ष इंटरैक्शन तल में चरण-अंतरिक्ष दूरी का फलन है। कूलम्ब विभव के लिए, परिणाम अभी भी कूलम्ब के नियम के रूप को लघुगणकीय पुनर्सामान्यीकृत आवेश तक रखता है, जहाँ यूलर की संख्या है। के लिए, पुनर्सामान्यीकृत चरण-अंतरिक्ष इंटरैक्शन विभव है-[19]

जहाँ संघट्‍टन गुणक है। की विशेष स्थिति के लिए, चरण-अंतरिक्ष में कोई प्रभावी इंटरैक्शन नहीं है, क्योंकि चरण-अंतरिक्ष दूरी के संबंध में स्थिरांक है। सामान्तयः की स्थिति के लिए, चरण-अंतरिक्ष इंटरैक्शन चरण-अंतरिक्ष दूरी के साथ विस्तृत होता है। हार्ड-स्फीयर इंटरैक्शन () के लिए, चरण-अंतरिक्ष इंटरैक्शन क्वांटम क्रोमोडायनामिक्स (क्यूसीडी) में क्वार्कों के मध्य कॉनफिनेमेंट इंटरेक्शन की भाँति व्यवहार करता है। उपरोक्त चरण-अंतरिक्ष इंटरैक्शन वास्तव में चरण-अंतरिक्ष में भिन्न-भिन्न घूर्णी या अनुवाद संबंधी संक्रिया के अंतर्गत अपरिवर्तनीय है। ड्राइविंग से चरण-अंतरिक्ष जालक विभव के साथ संयुक्त, स्थिर व्यवस्था उपस्थित है जहां कण समय-समय पर चरण-अंतरिक्ष में स्वयं को व्यवस्थित करते हैं जिससे अनेक-निकाय चरण-अंतरिक्ष क्रिस्टल उत्पन्न होते हैं।[3][4][12]

क्वांटम यांत्रिकी में, बिंदु कण को ​​​​क्वांटम तरंग पैकेट द्वारा प्रतिस्थापित किया जाता है और विचलन समस्या से स्वाभाविक रूप से बचा जाता है। फ़्लोक्वेट प्रणाली के निम्नतम क्रम के मैग्नस विस्तार के लिए, दो कणों का क्वांटम चरण-अंतरिक्ष इंटरैक्शन आवधिक दो-निकाय क्वांटम स्थिति पर समय-औसत वास्तविक अंतरिक्ष इंटरैक्शन इस प्रकार है-[20][3]

सुसंगत स्थिति प्रतिनिधित्व में, क्वांटम चरण-अंतरिक्ष इंटरैक्शन अधिक दूरी की सीमा में चरण-अंतरिक्ष इंटरैक्शन तक जाता है।[3] दोलनशील दर्पण पर गति करते हुए प्रतिकारक संपर्क इंटरैक्शन के साथ बोसोनिक अल्ट्राकोल्ड परमाणुओं के लिए, चरण-अंतरिक्ष जालक में मॉट इन्सुलेटर जैसी स्थिति बनाना संभव है।[20][15] इस स्थिति में, प्रत्येक संभावित साइट में कणों की उचित प्रकार से परिभाषित संख्या होती है जिसे 1डी अनेक-निकाय चरण अंतरिक्ष क्रिस्टल के उदाहरण के रूप में देखा जा सकता है।

यदि दो अविभाज्य कणों में स्पिन होता है, तो कुल चरण-अंतरिक्ष इंटरैक्शन को प्रत्यक्ष इंटरैक्शन और विनिमय इंटरैक्शन के योग में लिखा जा सकता है।[3] इसका अर्थ यह है कि दो कणों के संघट्‍टन के समय विनिमय प्रभाव प्रभावी स्पिन-स्पिन इंटरैक्शन को प्रेरित कर सकता है।[5]

चरण-अंतरिक्ष क्रिस्टल कंपन

ठोस क्रिस्टल को वास्तविक अंतरिक्ष में परमाणुओं की आवधिक व्यवस्था द्वारा परिभाषित किया जाता है, समय-आवधिक ड्राइव के अंतर्गत परमाणु चरण-अंतरिक्ष में भी क्रिस्टल बना सकते हैं।[3] इन परमाणुओं के मध्य परस्पर क्रिया ठोस क्रिस्टल में फोनन के समान सामूहिक कंपन मोड को उत्पन्न करती है। मधुकोश चरण अंतरिक्ष क्रिस्टल विशेष रूप से रोचक है क्योंकि कंपन बैंड संरचना में दो उप-जालक बैंड होते हैं जिनमें नॉन ट्रैवियल टोपोलॉजिकल भौतिकी हो सकती है।[4] किन्हीं दो परमाणुओं के कंपन को आंतरिक रूप से अंतरिक्ष युग्मन के साथ युग्मन इंटरैक्शन के माध्यम से संयोजित किया जाता है। उनके अंतरिक्ष चरणों की सरल ज्यामितीय व्याख्या होती है और इसे गेज परिवर्तन द्वारा समाप्त नहीं किया जा सकता है, जिससे चरण-अंतरिक्ष में नॉन ट्रैवियल चेर्न संख्याओं और चिरल कोर वाली स्थितियों के साथ कंपन बैंड संरचना बनती है। वास्तविक अंतरिक्ष में सभी टोपोलॉजिकल परिवहन परिदृश्यों के विपरीत, चरण-अंतरिक्ष फ़ोनों के लिए चिरल परिवहन भौतिक समय-व्युत्क्रम समरूपता को खंडित किये बिना यह उत्पन्न हो सकता है।

समय क्रिस्टल से संबंध

समय क्रिस्टल और चरण-अंतरिक्ष क्रिस्टल निकटता से संबंधित हैं किन्तु इनकी अवधारणाएँ भिन्न-भिन्न हैं।[5] इस प्रकार वे दोनों समय-समय पर संचालित प्रणालियों में प्रकट होने वाले सबहार्मोनिक मोड का अध्ययन करते हैं। समय क्रिस्टल असतत समय अनुवादात्मक समरूपता (डीटीटीएस) की सहज समरूपता खंडित करने की प्रक्रिया और क्वांटम अनेक-निकाय प्रणाली में सबहार्मोनिक मोड की सुरक्षा विधि पर ध्यान केंद्रित करते हैं। इसके विपरीत, चरण-अंतरिक्ष क्रिस्टल का अध्ययन चरण-अंतरिक्ष में असतत समरूपता पर केंद्रित है। चरण-अंतरिक्ष क्रिस्टल का निर्माण करने वाले मूल प्रकारों में आवश्यक रूप से अनेक-निकाय वाली स्थिति नहीं होती हैं, और एकल-कण चरण-अंतरिक्ष क्रिस्टल के लिए डीटीटीएस को खंडित करने की आवश्यकता नहीं है। अनेक-निकाय प्रणालियों के लिए, चरण-अंतरिक्ष क्रिस्टल संभावित सबहार्मोनिक मोड के इंटरैक्शन का अध्ययन करते हैं जो समय-समय पर चरण-अंतरिक्ष में व्यवस्थित होते हैं। कई समय के क्रिस्टलों की परस्पर क्रिया का अध्ययन करने की प्रवृत्ति है[21] जिसे समय क्रिस्टल में संघनित पदार्थ भौतिकी के रूप में अंकित किया गया है।[22][15][23]

संदर्भ

  1. 1.0 1.1 1.2 1.3 Guo, Lingzhen; Marthaler, Michael; Schön, Gerd (13 November 2013). "Phase Space Crystals: A New Way to Create a Quasienergy Band Structure". Physical Review Letters. 111 (20): 205303. arXiv:1305.1800. Bibcode:2013PhRvL.111t5303G. doi:10.1103/PhysRevLett.111.205303. PMID 24289695. S2CID 9337383.
  2. 2.0 2.1 2.2 2.3 Lang, Ben; Armour, Andrew D (1 March 2021). "जोसेफसन जंक्शन-गुहा सर्किट में मल्टी-फोटॉन अनुनाद". New Journal of Physics. 23 (3): 033021. arXiv:2012.10149. Bibcode:2021NJPh...23c3021L. doi:10.1088/1367-2630/abe483. S2CID 229332222.
  3. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 Liang, Pengfei; Marthaler, Michael; Guo, Lingzhen (3 April 2018). "Floquet many-body engineering: topology and many-body physics in phase space lattices". New Journal of Physics. 20 (2): 023043. arXiv:1710.09716. Bibcode:2018NJPh...20b3043L. doi:10.1088/1367-2630/aaa7c3. S2CID 3275846.
  4. 4.0 4.1 4.2 4.3 4.4 Guo, Lingzhen; Peano, Vittorio; Marquardt, Florian (3 March 2022). "Phase space crystal vibrations: Chiral edge states with preserved time-reversal symmetry". Physical Review B. 105 (9): 094301. arXiv:2105.06989. Bibcode:2022PhRvB.105i4301G. doi:10.1103/PhysRevB.105.094301. S2CID 234680134.
  5. 5.0 5.1 5.2 5.3 5.4 Guo, Lingzhen (2021). Phase space crystals : condensed matter in dynamical systems. Bristol UK: IOP Publishing Ltd. ISBN 978-0-7503-3563-8.
  6. von Neumann, John (1955). क्वांटम यांत्रिकी की गणितीय नींव. Princeton NJ: Princeton University Press. p. 406.
  7. Gabor, D. (1946). "संचार का सिद्धांत". J. Inst. Electr. Eng. 93: 429–457.
  8. Daubechies, I. (1990). "तरंगिका परिवर्तन, समय-आवृत्ति स्थानीयकरण और संकेत विश्लेषण". IEEE Transactions on Information Theory. 36 (5): 961–1005. Bibcode:1990ITIT...36..961D. doi:10.1109/18.57199.
  9. Zak, J (1 February 1992). "लैंडौ लेवल ऑर्बिटल्स के लिए पहचान". Europhysics Letters (EPL). 17 (5): 443–448. Bibcode:1992EL.....17..443Z. doi:10.1209/0295-5075/17/5/011. S2CID 250911987.
  10. Zaslavsky, G. M. (2008). हैमिल्टनियन कैओस और फ्रैक्शनल डायनेमिक्स (1 ed.). Oxford: Oxford University Press. ISBN 978-0199535484.
  11. Zaslavsky, George (11 October 2007). "ज़स्लावस्की वेब मानचित्र". Scholarpedia (in English). 2 (10): 3369. Bibcode:2007SchpJ...2.3369Z. doi:10.4249/scholarpedia.3369.
  12. 12.0 12.1 12.2 Hannaford, Peter; Sacha, Krzysztof (December 2022). "बड़े असतत समय क्रिस्टल में संघनित पदार्थ भौतिकी". AAPPS Bulletin. 32 (1): 12. arXiv:2202.05544. Bibcode:2022APPSB..32...12H. doi:10.1007/s43673-022-00041-8. S2CID 246823338.
  13. Grimsmo, Arne L.; Combes, Joshua; Baragiola, Ben Q. (6 March 2020). "रोटेशन-सममित बोसोनिक कोड के साथ क्वांटम कंप्यूटिंग". Physical Review X. 10 (1): 011058. arXiv:1901.08071. Bibcode:2020PhRvX..10a1058G. doi:10.1103/PhysRevX.10.011058. S2CID 119383352.
  14. Guo, Lingzhen; Marthaler, Michael (1 February 2016). "चरण स्थान में जाली संरचनाओं का संश्लेषण". New Journal of Physics. 18 (2): 023006. Bibcode:2016NJPh...18b3006G. doi:10.1088/1367-2630/18/2/023006. S2CID 117684029.
  15. 15.0 15.1 15.2 15.3 Guo, Lingzhen; Liang, Pengfei (1 July 2020). "समय क्रिस्टल में संघनित पदार्थ भौतिकी". New Journal of Physics. 22 (7): 075003. arXiv:2005.03138. Bibcode:2020NJPh...22g5003G. doi:10.1088/1367-2630/ab9d54. S2CID 218538401.
  16. Pechal, M.; Berger, S.; Abdumalikov, A. A.; Fink, J. M.; Mlynek, J. A.; Steffen, L.; Wallraff, A.; Filipp, S. (23 April 2012). "एक इलेक्ट्रॉनिक हार्मोनिक ऑसिलेटर में ज्यामितीय चरण और नॉनडायबेटिक प्रभाव". Physical Review Letters. 108 (17): 170401. arXiv:1109.1157. Bibcode:2012PhRvL.108q0401P. doi:10.1103/PhysRevLett.108.170401. PMID 22680840. S2CID 22269801.
  17. Billam, T. P.; Gardiner, S. A. (20 August 2009). "Quantum resonances in an atom-optical δ -kicked harmonic oscillator" (PDF). Physical Review A. 80 (2): 023414. arXiv:0809.4373. Bibcode:2009PhRvA..80b3414B. doi:10.1103/PhysRevA.80.023414. S2CID 118574456.
  18. Hofstadter, Douglas R. (15 September 1976). "तर्कसंगत और अपरिमेय चुंबकीय क्षेत्रों में बलोच इलेक्ट्रॉनों का ऊर्जा स्तर और तरंग कार्य". Physical Review B. 14 (6): 2239–2249. Bibcode:1976PhRvB..14.2239H. doi:10.1103/PhysRevB.14.2239.
  19. 19.0 19.1 Guo, Lingzhen; Liu, Modan; Marthaler, Michael (20 May 2016). "समय-समय पर संचालित एक-आयामी शास्त्रीय प्रणाली में कम दूरी की बातचीत से प्रभावी लंबी दूरी की बातचीत". Physical Review A. 93 (5): 053616. arXiv:1503.03096. Bibcode:2016PhRvA..93e3616G. doi:10.1103/PhysRevA.93.053616. S2CID 19442809.
  20. 20.0 20.1 Sacha, Krzysztof (1 September 2015). "टाइम डोमेन में एंडरसन स्थानीयकरण और मॉट इंसुलेटर चरण". Scientific Reports. 5 (1): 10787. arXiv:1502.02507. Bibcode:2015NatSR...510787S. doi:10.1038/srep10787. PMC 4466589. PMID 26074169.
  21. Autti, S.; Heikkinen, P. J.; Mäkinen, J. T.; Volovik, G. E.; Zavjalov, V. V.; Eltsov, V. B. (February 2021). "दो सुपरफ्लुइड समय क्रिस्टल के बीच एसी जोसेफसन प्रभाव" (PDF). Nature Materials. 20 (2): 171–174. arXiv:2003.06313. Bibcode:2021NatMa..20..171A. doi:10.1038/s41563-020-0780-y. PMID 32807922. S2CID 212717702.
  22. Sacha, Krzysztof; Zakrzewski, Jakub (1 January 2018). "Time crystals: a review". Reports on Progress in Physics. 81 (1): 016401. arXiv:1704.03735. Bibcode:2018RPPh...81a6401S. doi:10.1088/1361-6633/aa8b38. PMID 28885193. S2CID 28224975.
  23. Sacha, Krzysztof (2020). "समय आयाम में संघनित पदार्थ भौतिकी". Time Crystals. Springer Series on Atomic, Optical, and Plasma Physics. 114: 173–235. doi:10.1007/978-3-030-52523-1_5. ISBN 978-3-030-52522-4. S2CID 226488734.