\end{align}</math>या कोई अन्य लंबकोणीय निर्देशांक, या यहां तक कि सामान्य वक्रीय निर्देशांक। ध्यान दें कि निर्देशांक लेबल हमेशा लेबल के रूप में सबस्क्रिप्ट किए जाते हैं और संख्यात्मक मान लेने वाले सूचकांक नहीं होते हैं। सामान्य सापेक्षता में, स्थानीय वक्रीय निर्देशांक स्थानीय आधार पर उपयोग किए जाने चाहिए। ज्यामितीय रूप से, एक चार-वेक्टर को अभी भी एक तीर के रूप में व्याख्या किया जा सकता है, लेकिन अंतरिक्ष-समय में - केवल स्थान नहीं। सापेक्षता में, तीरों को [[ मिंकोव्स्की आरेख |मिंकोव्स्की आरेख]] (जिसे स्पेसटाइम आरेख भी कहा जाता है) के हिस्से के रूप में खींचा जाता है। इस लेख में, चार-वैक्टर को केवल वेक्टर के रूप में संदर्भित किया जाएगा।
\end{align}</math>या कोई अन्य लंबकोणीय निर्देशांक, या यहां तक कि सामान्य वक्रीय निर्देशांक। ध्यान दें कि निर्देशांक लेबल हमेशा लेबल के रूप में सबस्क्रिप्ट किए जाते हैं और संख्यात्मक मान लेने वाले सूचकांक नहीं होते हैं। सामान्य सापेक्षता में, स्थानीय वक्रीय निर्देशांक स्थानीय आधार पर उपयोग किए जाने चाहिए। ज्यामितीय रूप से, एक चार-वेक्टर को अभी भी एक तीर के रूप में व्याख्या किया जा सकता है, लेकिन अंतरिक्ष-समय में - केवल स्थान नहीं। सापेक्षता में, तीरों को [[ मिंकोव्स्की आरेख |मिंकोव्स्की आरेख]] (जिसे स्पेसटाइम आरेख भी कहा जाता है) के हिस्से के रूप में खींचा जाता है। इस लेख में, चार-वैक्टर को केवल वेक्टर के रूप में संदर्भित किया जाएगा।
स्तंभ वैक्टरों द्वारा आधारों का प्रतिनिधित्व करने के लिए यह भी परंपरागत है:<math display="block">
स्तंभ वैक्टरों द्वारा आधारों का प्रतिनिधित्व करने के लिए यह भी परंपरागत है:<math display="block">
\end{align}</math>जहां निचला सूचकांक इसे सहसंयोजक होने के लिए इंगित करता है। अक्सर मेट्रिक विकर्ण होता है, जैसा कि ऑर्थोगोनल निर्देशांक (रेखा तत्व देखें) के मामले में होता है, लेकिन सामान्य वक्रीय निर्देशांक में नहीं।
\end{align}</math>जहां निचला सूचकांक इसे सहसंयोजक होने के लिए इंगित करता है। अक्सर मेट्रिक विकर्ण होता है, जैसा कि ऑर्थोगोनल निर्देशांक (रेखा तत्व देखें) के मामले में होता है, लेकिन सामान्य वक्रीय निर्देशांक में नहीं।
आधारों को पंक्ति वैक्टर द्वारा दर्शाया जा सकता है:<math display="block">
आधारों को पंक्ति वैक्टर द्वारा दर्शाया जा सकता है:<math display="block">
Line 67:
Line 66:
{{main|Lorentz transformation}}
{{main|Lorentz transformation}}
संदर्भ के दो जड़त्वीय या घुमाए गए फ़्रेमों को देखते हुए, एक चार-वेक्टर को एक मात्रा के रूप में परिभाषित किया जाता है जो लोरेंत्ज़ परिवर्तन मैट्रिक्स Λ के अनुसार परिवर्तित होता है:<math display="block">\mathbf{A}' = \boldsymbol{\Lambda}\mathbf{A}</math>सूचकांक संकेतन में, प्रतिपरिवर्ती और सहपरिवर्ती घटक क्रमशः निम्न के अनुसार बदलते हैं:<math display="block">{A'}^\mu = \Lambda^\mu {}_\nu A^\nu \,, \quad{A'}_\mu = \Lambda_\mu {}^\nu A_\nu</math>जिसमें मैट्रिक्स {{math|'''Λ'''}} में पंक्ति {{math|''μ''}} और स्तंभ {{math|''ν''}} में घटक {{math|Λ''<sup>μ</sup><sub>ν</sub>''}} हैं, और [[ उलटा मैट्रिक्स |उलटा मैट्रिक्स]] {{math|'''Λ'''<sup>−1</sup>}} में पंक्ति {{math|''μ''}} और स्तंभ {{math|''ν''}} में घटक {{math|Λ''<sub>μ</sub><sup>ν</sup>''}} हैं।
संदर्भ के दो जड़त्वीय या घुमाए गए फ़्रेमों को देखते हुए, एक चार-वेक्टर को एक मात्रा के रूप में परिभाषित किया जाता है जो लोरेंत्ज़ परिवर्तन मैट्रिक्स Λ के अनुसार परिवर्तित होता है:<math display="block">\mathbf{A}' = \boldsymbol{\Lambda}\mathbf{A}</math>सूचकांक संकेतन में, प्रतिपरिवर्ती और सहपरिवर्ती घटक क्रमशः निम्न के अनुसार बदलते हैं:<math display="block">{A'}^\mu = \Lambda^\mu {}_\nu A^\nu \,, \quad{A'}_\mu = \Lambda_\mu {}^\nu A_\nu</math>जिसमें मैट्रिक्स {{math|'''Λ'''}} में पंक्ति {{math|''μ''}} और स्तंभ {{math|''ν''}} में घटक {{math|Λ''<sup>μ</sup><sub>ν</sub>''}} हैं, और [[ उलटा मैट्रिक्स |उलटा मैट्रिक्स]] {{math|'''Λ'''<sup>−1</sup>}} में पंक्ति {{math|''μ''}} और स्तंभ {{math|''ν''}} में घटक {{math|Λ''<sub>μ</sub><sup>ν</sup>''}} हैं।<br />इस परिवर्तन परिभाषा की प्रकृति की पृष्ठभूमि के लिए टेंसर देखें। सभी चार-वैक्टर एक ही तरह से रूपांतरित होते हैं, और इसे चार-आयामी सापेक्षतावादी टेन्सर के लिए सामान्यीकृत किया जा सकता है; विशेष आपेक्षिकता देखें।
इस परिवर्तन परिभाषा की प्रकृति की पृष्ठभूमि के लिए टेंसर देखें। सभी चार-वैक्टर एक ही तरह से रूपांतरित होते हैं, और इसे चार-आयामी सापेक्षतावादी टेन्सर के लिए सामान्यीकृत किया जा सकता है; विशेष आपेक्षिकता देखें।
\end{align}</math>जहां δj [[ क्रोनकर डेल्टा |क्रोनकर डेल्टा]] है, और εijk त्रि-आयामी [[ लेवी-सिविटा प्रतीक |लेवी-सिविटा प्रतीक]] है। चार-वैक्टरों के स्पेसलाइक घटकों को घुमाया जाता है, जबकि समयबद्ध घटकों में कोई बदलाव नहीं होता है।
\end{align}</math>जहां δj [[ क्रोनकर डेल्टा |क्रोनकर डेल्टा]] है, और εijk त्रि-आयामी [[ लेवी-सिविटा प्रतीक |लेवी-सिविटा प्रतीक]] है। चार-वैक्टरों के स्पेसलाइक घटकों को घुमाया जाता है, जबकि समयबद्ध घटकों में कोई बदलाव नहीं होता है।
केवल z-अक्ष के चारों ओर घूमने के मामले में, लोरेंत्ज़ मैट्रिक्स का स्पेसलाइक भाग z-अक्ष के बारे में [[ रोटेशन मैट्रिक्स |रोटेशन मैट्रिक्स]] को कम करता है:<math display="block">
केवल z-अक्ष के चारों ओर घूमने के मामले में, लोरेंत्ज़ मैट्रिक्स का स्पेसलाइक भाग z-अक्ष के बारे में [[ रोटेशन मैट्रिक्स |रोटेशन मैट्रिक्स]] को कम करता है:<math display="block">
\end{align}</math>जहां [[ लोरेंत्ज़ कारक |लोरेंत्ज़ कारक]] द्वारा परिभाषित किया गया है:<math display="block">\gamma = \frac{1}{\sqrt{1 - \boldsymbol{\beta}\cdot\boldsymbol{\beta}}} \,,</math>तथा {{math|''δ<sub>ij</sub>''}} क्रोनकर डेल्टा है। शुद्ध घुमावों के मामले के विपरीत, स्पेसलाइक और टाइमलाइक घटकों को बूस्ट के तहत एक साथ मिलाया जाता है।
\end{align}</math>जहां [[ लोरेंत्ज़ कारक |लोरेंत्ज़ कारक]] द्वारा परिभाषित किया गया है:<math display="block">\gamma = \frac{1}{\sqrt{1 - \boldsymbol{\beta}\cdot\boldsymbol{\beta}}} \,,</math>तथा {{math|''δ<sub>ij</sub>''}} क्रोनकर डेल्टा है। शुद्ध घुमावों के मामले के विपरीत, स्पेसलाइक और टाइमलाइक घटकों को बूस्ट के तहत एक साथ मिलाया जाता है।
केवल एक्स-दिशा में वृद्धि के मामले में, मैट्रिक्स कम हो जाता है;<ref>Dynamics and Relativity, J.R. Forshaw, B.G. Smith, Wiley, 2009, ISAN 978-0-470-01460-8</ref><ref>Relativity DeMystified, D. McMahon, Mc Graw Hill (ASB), 2006, ISAN 0-07-145545-0</ref><math display="block">
केवल एक्स-दिशा में वृद्धि के मामले में, मैट्रिक्स कम हो जाता है;<ref>Dynamics and Relativity, J.R. Forshaw, B.G. Smith, Wiley, 2009, ISAN 978-0-470-01460-8</ref><ref>Relativity DeMystified, D. McMahon, Mc Graw Hill (ASB), 2006, ISAN 0-07-145545-0</ref><math display="block">
</math>जबकि इसके लिए {{math|'''A'''}} तथा {{math|'''B'''}} सहसंयोजक घटकों में से प्रत्येक:<math display="block">\mathbf{A} \cdot \mathbf{B} = A_{\mu} \eta^{\mu \nu} B_{\nu}</math>उपरोक्त के समान मैट्रिक्स अभिव्यक्ति के साथ।
</math>जबकि इसके लिए {{math|'''A'''}} तथा {{math|'''B'''}} सहसंयोजक घटकों में से प्रत्येक:<math display="block">\mathbf{A} \cdot \mathbf{B} = A_{\mu} \eta^{\mu \nu} B_{\nu}</math>उपरोक्त के समान मैट्रिक्स अभिव्यक्ति के साथ।
मिंकोव्स्की टेंसर को चार-वेक्टर ए पर लागू करने से हमें मिलता है:<math display="block">\mathbf{A \cdot A} = A^\mu \eta_{\mu\nu} A^\nu </math>जो, स्थिति के आधार पर, सदिश की लंबाई का वर्ग, या उसके ऋणात्मक माना जा सकता है।
मिंकोव्स्की टेंसर को चार-वेक्टर ए पर लागू करने से हमें मिलता है:<math display="block">\mathbf{A \cdot A} = A^\mu \eta_{\mu\nu} A^\nu </math>जो, स्थिति के आधार पर, सदिश की लंबाई का वर्ग, या उसके ऋणात्मक माना जा सकता है।<br />मानक आधार (अनिवार्य रूप से कार्टेशियन निर्देशांक) में मीट्रिक टेंसर के लिए दो सामान्य विकल्प निम्नलिखित हैं। यदि ऑर्थोगोनल निर्देशांक का उपयोग किया जाता है, तो मीट्रिक के स्पेसलाइक भाग के विकर्ण भाग के साथ स्केल कारक होंगे, जबकि सामान्य घुमावदार निर्देशांक के लिए मीट्रिक के पूरे स्पेसलाइक भाग में उपयोग किए जाने वाले वक्रीय आधार पर घटक होंगे।
मानक आधार (अनिवार्य रूप से कार्टेशियन निर्देशांक) में मीट्रिक टेंसर के लिए दो सामान्य विकल्प निम्नलिखित हैं। यदि ऑर्थोगोनल निर्देशांक का उपयोग किया जाता है, तो मीट्रिक के स्पेसलाइक भाग के विकर्ण भाग के साथ स्केल कारक होंगे, जबकि सामान्य घुमावदार निर्देशांक के लिए मीट्रिक के पूरे स्पेसलाइक भाग में उपयोग किए जाने वाले वक्रीय आधार पर घटक होंगे।
===== मानक आधार, (+−−−) हस्ताक्षर =====
===== मानक आधार, (+−−−) हस्ताक्षर =====
Line 165:
Line 158:
===व्युत्पन्न और डिफरेंशियल ===
===व्युत्पन्न और डिफरेंशियल ===
विशेष आपेक्षिकता (लेकिन सामान्य सापेक्षता नहीं) में, अदिश λ (अपरिवर्तनीय) के संबंध में चार-वेक्टर का [[ यौगिक |व्युत्पन्न]] स्वयं एक चार-सदिश होता है। चार-सदिश, dA के अंतर को लेना और इसे स्केलर के [[ फ़ंक्शन का अंतर |अंतर]], dλ से विभाजित करना भी उपयोगी है:<math display="block">\underset{\text{differential}}{d\mathbf{A}} = \underset{\text{derivative}}{\frac{d\mathbf{A}}{d\lambda}} \underset{\text{differential}}{d\lambda} </math>जहां प्रतिपरिवर्ती घटक हैं:<math display="block"> d\mathbf{A} = \left(dA^0, dA^1, dA^2, dA^3\right) </math>जबकि सहसंयोजक घटक हैं:<math display="block"> d\mathbf{A} = \left(dA_0, dA_1, dA_2, dA_3\right) </math>सापेक्षवादी यांत्रिकी में, अक्सर चार-वेक्टर का अंतर लेता है और [[ उचित समय | उचित समय]] में अंतर से विभाजित होता है (नीचे देखें)।
विशेष आपेक्षिकता (लेकिन सामान्य सापेक्षता नहीं) में, अदिश λ (अपरिवर्तनीय) के संबंध में चार-वेक्टर का [[ यौगिक |व्युत्पन्न]] स्वयं एक चार-सदिश होता है। चार-सदिश, dA के अंतर को लेना और इसे स्केलर के [[ फ़ंक्शन का अंतर |अंतर]], dλ से विभाजित करना भी उपयोगी है:<math display="block">\underset{\text{differential}}{d\mathbf{A}} = \underset{\text{derivative}}{\frac{d\mathbf{A}}{d\lambda}} \underset{\text{differential}}{d\lambda} </math>जहां प्रतिपरिवर्ती घटक हैं:<math display="block"> d\mathbf{A} = \left(dA^0, dA^1, dA^2, dA^3\right) </math>जबकि सहसंयोजक घटक हैं:<math display="block"> d\mathbf{A} = \left(dA_0, dA_1, dA_2, dA_3\right) </math>सापेक्षवादी यांत्रिकी में, अक्सर एक चार-सदिश के अंतर को लेता है और अंतर से [[ उचित समय |उचित समय]] में विभाजित करता है (नीचे देखें)।
==मौलिक चार-वैक्टर==
==मौलिक चार-वैक्टर==
Line 171:
Line 164:
===चार स्थिति ===
===चार स्थिति ===
मिंकोव्स्की अंतरिक्ष में एक बिंदु एक समय और स्थानिक स्थिति है, जिसे एक घटना कहा जाता है, या कभी-कभी चार-सदिश या चार-स्थिति या 4-स्थिति की स्थिति, चार निर्देशांक के एक सेट द्वारा कुछ संदर्भ फ्रेम में वर्णित है:
मिन्कोव्स्की अंतरिक्ष में एक बिंदु एक समय और स्थानिक स्थिति है, जिसे "घटना" कहा जाता है, या कभी-कभी स्थिति चार-वेक्टर या चार-स्थिति या 4-स्थिति, चार निर्देशांक के एक सेट द्वारा कुछ संदर्भ फ्रेम में वर्णित होती है:<math display="block"> \mathbf{R} = \left(ct, \mathbf{r}\right) </math>जहाँ r त्रि-आयामी स्थान [[ स्थिति वेक्टर |स्थिति वेक्टर]] है। यदि आर एक ही फ्रेम में समन्वय समय ''t'' का एक कार्य है, यानी r = r(''t''), यह घटनाओं के अनुक्रम के अनुरूप होता है क्योंकि ''t'' भिन्न होता है। परिभाषा R0 = ct यह सुनिश्चित करती है कि सभी निर्देशांकों की इकाइयाँ (दूरी की) समान हों।<ref>Jean-Bernard Zuber & Claude Itzykson, ''Quantum Field Theory'', pg 5 , {{ISBN|0-07-032071-3}}</ref><ref>[[Charles W. Misner]], [[Kip S. Thorne]] & [[John A. Wheeler]],''Gravitation'', pg 51, {{ISBN|0-7167-0344-0}}</ref><ref>[[George Sterman]], ''An Introduction to Quantum Field Theory'', pg 4 , {{ISBN|0-521-31132-2}}</ref> ये निर्देशांक घटना के लिए चार-वेक्टर की स्थिति के घटक हैं।
जहां r त्रि-आयामी अंतरिक्ष [[ स्थिति वेक्टर ]] है। यदि r एक ही फ्रेम में समन्वय समय ''t'' का एक कार्य है, अर्थात r = r(''t''), तो यह घटनाओं के अनुक्रम से मेल खाता है क्योंकि ''t'' बदलता रहता है। परिभाषा ''आर''<sup>0</sup> = ct सुनिश्चित करता है कि सभी निर्देशांकों की इकाइयाँ (दूरी की) समान हों।<ref>Jean-Bernard Zuber & Claude Itzykson, ''Quantum Field Theory'', pg 5 , {{ISBN|0-07-032071-3}}</ref><ref>[[Charles W. Misner]], [[Kip S. Thorne]] & [[John A. Wheeler]],''Gravitation'', pg 51, {{ISBN|0-7167-0344-0}}</ref><ref>[[George Sterman]], ''An Introduction to Quantum Field Theory'', pg 4 , {{ISBN|0-521-31132-2}}</ref> ये निर्देशांक घटना के लिए चार-सदिश स्थिति के घटक हैं।
विस्थापन चार-वेक्टर को दो घटनाओं को जोड़ने वाले तीर के रूप में परिभाषित किया गया है:
विस्थापन चार-वेक्टर को दो घटनाओं को जोड़ने वाले तीर के रूप में परिभाषित किया गया है:<math display="block"> \Delta \mathbf{R} = \left(c\Delta t, \Delta \mathbf{r} \right) </math>विश्व रेखा पर [[ अंतर (अनंतिम) |अंतर]] चार-स्थिति के लिए, हमारे पास एक आदर्श संकेतन का उपयोग करते हुए:<math display="block">\|d\mathbf{R}\|^2 = \mathbf{dR \cdot dR} = dR^\mu dR_\mu = c^2d\tau^2 = ds^2 \,,</math>अंतर रेखा तत्व डीएस और अंतर उचित समय वृद्धि डीτ को परिभाषित करना, लेकिन यह "मानक" भी है:<math display="block">\|d\mathbf{R}\|^2 = (cdt)^2 - d\mathbf{r}\cdot d\mathbf{r} \,,</math>ताकि:<math display="block">(c d\tau)^2 = (cdt)^2 - d\mathbf{r}\cdot d\mathbf{r} \,.</math>भौतिक परिघटनाओं पर विचार करते समय, विभेदक समीकरण स्वाभाविक रूप से उत्पन्न होते हैं; हालाँकि, जब कार्यों के स्थान और समय के डेरिवेटिव पर विचार किया जाता है, तो यह स्पष्ट नहीं होता है कि इन डेरिवेटिव को किस संदर्भ में लिया गया है। यह सहमति है कि उचित समय <math>\tau</math> के संबंध में [[ समय व्युत्पन्न |समय व्युत्पन्न]] लिया जाता है। चूंकि उचित समय एक अपरिवर्तनीय है, यह गारंटी देता है कि किसी भी चार-सदिश का उचित-समय-व्युत्पन्न स्वयं एक चार-वेक्टर है। इसके बाद इस उचित-समय-व्युत्पन्न और अन्य समय व्युत्पन्न (एक जड़त्वीय संदर्भ फ्रेम के [[ समन्वय समय |समन्वय समय]] टी का उपयोग करके) के बीच संबंध खोजना महत्वपूर्ण है। यह संबंध ऊपर दिए गए अंतर अपरिवर्तनीय स्पेसटाइम अंतराल को लेकर प्रदान किया गया है, फिर प्राप्त करने के लिए (cdt)2 से विभाजित करके:<math display="block">\left(\frac{cd\tau}{cdt}\right)^2
हमारे पास एक विश्व रेखा पर [[ अंतर (अनंतिम) ]] चार-स्थिति के लिए, मिंकोव्स्की स्पेस # मिंकोवस्की टेंसर का उपयोग करते हुए:
भौतिक घटनाओं पर विचार करते समय, अंतर समीकरण स्वाभाविक रूप से उत्पन्न होते हैं; हालांकि, फ़ंक्शन के स्थान और समय डेरिवेटिव पर विचार करते समय, यह स्पष्ट नहीं है कि इन डेरिवेटिव्स को किस संदर्भ फ्रेम के संबंध में लिया जाता है। यह सहमति है कि [[ समय व्युत्पन्न ]] उचित समय के संबंध में लिया जाता है <math>\tau</math>. चूंकि उचित समय एक अपरिवर्तनीय है, यह गारंटी देता है कि किसी भी चार-वेक्टर का उचित-समय-व्युत्पन्न स्वयं चार-वेक्टर है। इस उचित-समय-व्युत्पन्न और एक अन्य समय व्युत्पन्न (एक जड़त्वीय संदर्भ फ्रेम के [[ समन्वय समय ]] टी का उपयोग करके) के बीच संबंध खोजना महत्वपूर्ण है। यह संबंध उपरोक्त अंतर अपरिवर्तनीय स्पेसटाइम अंतराल को लेकर, फिर (cdt) से विभाजित करके प्रदान किया जाता है<sup>2</sup> प्राप्त करने के लिए:
</math>जहाँ u = dr/dt किसी वस्तु का निर्देशांक 3-[[ वेग |वेग]] है जिसे निर्देशांक x, y, z और निर्देशांक समय t के समान फ़्रेम में मापा जाता है, और<math display="block">\gamma(\mathbf{u}) = \frac{1}{\sqrt{1 - \frac{\mathbf{u}\cdot\mathbf{u}}{c^2}}}</math>लोरेन्ट्ज कारक है। यह निर्देशांक समय और उचित समय में अंतरों के बीच एक उपयोगी संबंध प्रदान करता है:<math display="block">dt = \gamma(\mathbf{u})d\tau \,.</math>यह संबंध लोरेंत्ज़ परिवर्तनों में समय परिवर्तन से भी पाया जा सकता है।
जहां u = ''d''r/''dt'' निर्देशांक ''x'', ''y'', ''z'' के समान फ्रेम में मापी गई वस्तु का निर्देशांक 3-[[ वेग ]] है, और समन्वय समय ''t'', and
यह संबंध लोरेंत्ज़ परिवर्तनों में समय परिवर्तन से भी पाया जा सकता है।
इस अंतर को लागू करके सापेक्षता सिद्धांत में महत्वपूर्ण चार-वैक्टर को परिभाषित किया जा सकता है <math>\frac{d}{d\tau}</math>.
===[[ चार-ढाल ]] ===
यह देखते हुए कि [[ आंशिक व्युत्पन्न ]] [[ रैखिक ऑपरेटर ]] हैं, कोई आंशिक समय व्युत्पन्न से चार-ढाल बना सकता है {{math|∂}}/{{math|∂}}टी और स्थानिक [[ ढाल ]] ∇। मानक आधार का उपयोग करते हुए, सूचकांक और संक्षिप्त संकेतन में, विरोधाभासी घटक हैं:
सापेक्षता सिद्धांत में महत्वपूर्ण चार-सदिश इस अंतर <math>\frac{d}{d\tau}</math> को लागू करके परिभाषित किए जा सकते हैं।
<math display="block">\begin{align}
=== चार ग्रेडिएंट ===
यह देखते हुए कि [[ आंशिक व्युत्पन्न |आंशिक व्युत्पन्न]] [[ रैखिक ऑपरेटर |रैखिक ऑपरेटर]] हैं, आंशिक समय व्युत्पन्न {{math|∂}}/{{math|∂}}t और स्थानिक ग्रेडिएंट ∇ से [[ चार-ढाल |चार-ढाल]] बना सकते हैं। मानक आधार का प्रयोग करते हुए, अनुक्रमणिका और संक्षिप्त संकेतन में, प्रतिपरिवर्ती घटक हैं:<math display="block">\begin{align}
\end{align}</math>ध्यान दें कि आधार सदिशों को घटकों के सामने रखा जाता है, आधार सदिश के व्युत्पन्न लेने के बीच भ्रम को रोकने के लिए, या केवल आंशिक व्युत्पन्न इस चार-सदिश का एक घटक है। सहसंयोजक घटक इस प्रकार हैं:<math display="block">\begin{align}
ध्यान दें कि आधार वैक्टर को घटकों के सामने रखा जाता है, ताकि आधार वेक्टर के व्युत्पन्न को लेने के बीच भ्रम को रोका जा सके, या केवल आंशिक व्युत्पन्न का संकेत इस चार-वेक्टर का एक घटक है। सहसंयोजक घटक हैं:
\end{align}</math>चूंकि यह एक ऑपरेटर है, इसकी "लंबाई" नहीं है, लेकिन ऑपरेटर के आंतरिक उत्पाद का मूल्यांकन स्वयं के साथ एक अन्य ऑपरेटर देता है:<math display="block">\partial^\mu \partial_\mu = \frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \nabla^2 = \frac{{\partial_t}^2}{c^2} - \nabla^2</math>डी'अलेम्बर्ट ऑपरेटर कहा जाता है।
चूंकि यह एक ऑपरेटर है, इसकी लंबाई नहीं है, लेकिन ऑपरेटर के आंतरिक उत्पाद का मूल्यांकन स्वयं के साथ एक और ऑपरेटर देता है:
एक कण के चार-वेग को निम्न द्वारा परिभाषित किया गया है:<math display="block">\mathbf{U} = \frac{d\mathbf{X}}{d \tau} = \frac{d\mathbf{X}}{dt}\frac{dt}{d \tau} = \gamma(\mathbf{u})\left(c, \mathbf{u}\right),</math>ज्यामितीय रूप से, यू कण की [[ विश्व रेखा |विश्व रेखा]] के लिए सामान्यीकृत वेक्टर स्पर्शक है। चार-स्थिति के अंतर का उपयोग करते हुए, चार-वेग का परिमाण प्राप्त किया जा सकता है:<math display="block">\|\mathbf{U}\|^2 = U^\mu U_\mu = \frac{dX^\mu}{d\tau} \frac{dX_\mu}{d\tau} = \frac{dX^\mu dX_\mu}{d\tau^2} = c^2 \,,</math>संक्षेप में, किसी भी वस्तु के लिए चार-वेग का परिमाण हमेशा एक स्थिर स्थिरांक होता है:<math display="block">\| \mathbf{U} \|^2 = c^2 </math>मानदंड भी है:<math display="block">\|\mathbf{U}\|^2 = {\gamma(\mathbf{u})}^2 \left( c^2 - \mathbf{u}\cdot\mathbf{u} \right) \,,</math>ताकि:<math display="block">c^2 = {\gamma(\mathbf{u})}^2 \left( c^2 - \mathbf{u}\cdot\mathbf{u} \right) \,,</math>जो लोरेंत्ज़ फैक्टर की परिभाषा को कम करता है।
ज्यामितीय रूप से, यू कण की [[ विश्व रेखा ]] के लिए एक सामान्यीकृत वेक्टर स्पर्शरेखा है। चार-स्थिति के अंतर का उपयोग करके, चार-वेग का परिमाण प्राप्त किया जा सकता है:
चार-वेग की इकाइयाँ [[ इकाइयों की अंतर्राष्ट्रीय प्रणाली ]] में m/s और [[ ज्यामितीय इकाई प्रणाली ]] में 1 हैं। चार-वेग एक विरोधाभासी वेक्टर है।
चार-वेग की इकाइयाँ [[ इकाइयों की अंतर्राष्ट्रीय प्रणाली |SI]] में m/s हैं और [[ ज्यामितीय इकाई प्रणाली |ज्यामितीय इकाई प्रणाली]] में 1 है। चार-वेग एक प्रतिपरिवर्ती सदिश है।
विशेष सापेक्षता में, एक चार-वेक्टर (या 4-वेक्टर)[1] चार घटकों वाली एक वस्तु है, जो लोरेंत्ज़ रूपांतरणों के तहत एक विशिष्ट तरीके से रूपांतरित होती है। विशेष रूप से, एक चार-वेक्टर एक चार-आयामी वेक्टर अंतरिक्ष का एक तत्व है जिसे लोरेंत्ज़ समूह के मानक प्रतिनिधित्व, (1/2,1/2) प्रतिनिधित्व के प्रतिनिधित्व स्थान के रूप में माना जाता है। यह एक यूक्लिडियन वेक्टर से भिन्न होता है कि इसका परिमाण कैसे निर्धारित किया जाता है। इस परिमाण को संरक्षित करने वाले परिवर्तन लोरेंत्ज़ परिवर्तन हैं, जिसमें स्थानिक घुमाव और बूस्ट शामिल हैं (एक निरंतर वेग द्वारा एक और जड़त्वीय संदर्भ फ्रेम में परिवर्तन)।[2]: ch1
चार-वैक्टर वर्णन करते हैं, उदाहरण के लिए, मिंकोव्स्की स्पेस के रूप में मॉडलिंग किए गए स्पेसटाइम में स्थिति xμ, एक कण का चार-संवेग pμ, स्पेसटाइम में एक बिंदु x पर विद्युत चुम्बकीय चार-क्षमताAμ(x) का आयाम, और डायराक बीजगणित के अंदर गामा मैट्रिसेस द्वारा फैलाए गए उप-स्थान के तत्व।
लोरेंत्ज़ समूह को 4×4 आव्यूह Λ द्वारा दर्शाया जा सकता है। प्रविष्टियों में एक जड़त्वीय फ्रेम के संबंध में कार्तीय निर्देशांक के साथ एक स्तंभ वेक्टर के रूप में माने जाने वाले एक सामान्य प्रतिपरिवर्ती चार-वेक्टर X (ऊपर दिए गए उदाहरणों की तरह) पर एक लोरेंत्ज़ रूपांतरण की क्रिया, द्वारा दी गई है
(मैट्रिक्स गुणा) जहां प्राथमिक वस्तु के घटक नए फ्रेम को संदर्भित करते हैं। ऊपर दिए गए उदाहरणों से संबंधित जो प्रतिपरिवर्ती सदिशों के रूप में दिए गए हैं, सहसंयोजक वेक्टरxμ, pμ और Aμ(x) भी हैं। ये नियमानुसार परिवर्तित होते हैं
जहां Tमैट्रिक्स स्थानांतरण को दर्शाता है। यह नियम ऊपर दिए गए नियम से अलग है। यह मानक प्रतिनिधित्व के दोहरे प्रतिनिधित्व से मेल खाता है। हालाँकि, लोरेन्ट्ज़ समूह के लिए किसी भी प्रतिनिधित्व का दोहरा मूल प्रतिनिधित्व के बराबर है। इस प्रकार सहसंयोजक सूचकांकों वाली वस्तुएँ चार-वैक्टर भी हैं।
विशेष सापेक्षता में एक अच्छी तरह से व्यवहार किए गए चार-घटक वस्तु के उदाहरण के लिए, जो कि चार-वेक्टर नहीं है, बिस्पिनर देखें। इसे समान रूप से परिभाषित किया गया है, अंतर यह है कि लोरेंत्ज़ परिवर्तनों के तहत रूपांतरण नियम मानक प्रतिनिधित्व के अलावा अन्य प्रतिनिधित्व द्वारा दिया जाता है। इस मामले में, नियम X′ = Π(Λ)X पढ़ता है, जहां Π(Λ)Λके अलावा 4×4 मैट्रिक्स है। इसी तरह की टिप्पणी उन वस्तुओं पर लागू होती है जिनमें कम या अधिक घटक होते हैं जो लोरेंत्ज़ परिवर्तनों के तहत अच्छी तरह से व्यवहार करते हैं। इनमें अदिश, स्पिनर, टेंसर और स्पिनोर-टेंसर शामिल हैं।
लेख विशेष आपेक्षिकता के संदर्भ में चार-वैक्टरों पर विचार करता है। हालांकि चार-वैक्टर की अवधारणा सामान्य सापेक्षता तक भी फैली हुई है, इस लेख में बताए गए कुछ परिणामों में सामान्य सापेक्षता में संशोधन की आवश्यकता है।
इस लेख में नोटेशन हैं: त्रि-आयामी वैक्टर के लिए लोअरकेस बोल्ड, तीन-आयामी इकाई वैक्टर के लिए हैट, चार-आयामी वैक्टर के लिए कैपिटल बोल्ड (चार-ढाल को छोड़कर), और टेंसर इंडेक्स नोटेशन।
चार-सदिश बीजगणित
वास्तविक-मूल्यवान आधार में चार-वैक्टर
एक चार-वेक्टर ए एक "टाइमलाइक" घटक और तीन "स्पेसलाइक" घटकों वाला एक वेक्टर है, और इसे विभिन्न समकक्ष नोटेशन में लिखा जा सकता है:[3]
जहां अंतिम रूप में परिमाण घटक और आधार वेक्टर को एक ही तत्व में जोड़ा गया है।
ऊपरी सूचकांक प्रतिपरिवर्ती घटकों को दर्शाते हैं। यहाँ मानक परिपाटी यह है कि लैटिन सूचकांक स्थानिक घटकों के लिए मान लेते हैं, ताकि i = 1, 2, 3, और यूनानी सूचकांक स्थान और समय घटकों के लिए मान लें, इसलिए α = 0, 1, 2, 3, योग सम्मेलन के साथ उपयोग किया जाता है। समय घटक और स्थानिक घटकों के बीच विभाजन अन्य टेन्सर मात्राओं के साथ एक चार वेक्टर के संकुचन का निर्धारण करते समय उपयोगी होता है, जैसे कि आंतरिक उत्पादों में लोरेंत्ज़ इनवेरिएंट की गणना के लिए (उदाहरण नीचे दिए गए हैं), या सूचकांकों को ऊपर उठाना और कम करना।
विशेष आपेक्षिकता में, स्पेसलाइक आधार E1, E2, E3 और घटक A1, A2, A3 अक्सर कार्तीय आधार और घटक होते हैं:
या कोई अन्य लंबकोणीय निर्देशांक, या यहां तक कि सामान्य वक्रीय निर्देशांक। ध्यान दें कि निर्देशांक लेबल हमेशा लेबल के रूप में सबस्क्रिप्ट किए जाते हैं और संख्यात्मक मान लेने वाले सूचकांक नहीं होते हैं। सामान्य सापेक्षता में, स्थानीय वक्रीय निर्देशांक स्थानीय आधार पर उपयोग किए जाने चाहिए। ज्यामितीय रूप से, एक चार-वेक्टर को अभी भी एक तीर के रूप में व्याख्या किया जा सकता है, लेकिन अंतरिक्ष-समय में - केवल स्थान नहीं। सापेक्षता में, तीरों को मिंकोव्स्की आरेख (जिसे स्पेसटाइम आरेख भी कहा जाता है) के हिस्से के रूप में खींचा जाता है। इस लेख में, चार-वैक्टर को केवल वेक्टर के रूप में संदर्भित किया जाएगा।
स्तंभ वैक्टरों द्वारा आधारों का प्रतिनिधित्व करने के लिए यह भी परंपरागत है:
ताकि:
सहपरिवर्ती और प्रतिपरिवर्ती निर्देशांकों के बीच का संबंध मिंकोव्स्की मीट्रिक टेन्सर (जिसे मीट्रिक कहा जाता है) के माध्यम से होता है, η जो सूचकांकों को निम्न प्रकार से बढ़ाता और घटाता है:
और विभिन्न समकक्ष संकेतन में सहसंयोजक घटक हैं:
जहां निचला सूचकांक इसे सहसंयोजक होने के लिए इंगित करता है। अक्सर मेट्रिक विकर्ण होता है, जैसा कि ऑर्थोगोनल निर्देशांक (रेखा तत्व देखें) के मामले में होता है, लेकिन सामान्य वक्रीय निर्देशांक में नहीं।
आधारों को पंक्ति वैक्टर द्वारा दर्शाया जा सकता है:
ताकि:
उपरोक्त परंपराओं के लिए प्रेरणा यह है कि आंतरिक उत्पाद एक अदिश राशि है, विवरण के लिए नीचे देखें।
संदर्भ के दो जड़त्वीय या घुमाए गए फ़्रेमों को देखते हुए, एक चार-वेक्टर को एक मात्रा के रूप में परिभाषित किया जाता है जो लोरेंत्ज़ परिवर्तन मैट्रिक्स Λ के अनुसार परिवर्तित होता है:
सूचकांक संकेतन में, प्रतिपरिवर्ती और सहपरिवर्ती घटक क्रमशः निम्न के अनुसार बदलते हैं:
जिसमें मैट्रिक्स Λ में पंक्ति μ और स्तंभ ν में घटक Λμν हैं, और उलटा मैट्रिक्सΛ−1 में पंक्ति μ और स्तंभ ν में घटक Λμν हैं। इस परिवर्तन परिभाषा की प्रकृति की पृष्ठभूमि के लिए टेंसर देखें। सभी चार-वैक्टर एक ही तरह से रूपांतरित होते हैं, और इसे चार-आयामी सापेक्षतावादी टेन्सर के लिए सामान्यीकृत किया जा सकता है; विशेष आपेक्षिकता देखें।
एक मनमाना अक्ष के बारे में शुद्ध घुमाव
एक निश्चित कोण से घुमाए गए दो फ्रेम के लिए θ इकाई वेक्टर द्वारा परिभाषित अक्ष के बारे में:
बिना किसी बूस्ट के, मैट्रिक्स Λ में निम्नलिखित घटक हैं:[4]
जहां δj क्रोनकर डेल्टा है, और εijk त्रि-आयामी लेवी-सिविटा प्रतीक है। चार-वैक्टरों के स्पेसलाइक घटकों को घुमाया जाता है, जबकि समयबद्ध घटकों में कोई बदलाव नहीं होता है।
केवल z-अक्ष के चारों ओर घूमने के मामले में, लोरेंत्ज़ मैट्रिक्स का स्पेसलाइक भाग z-अक्ष के बारे में रोटेशन मैट्रिक्स को कम करता है:
मनमाना दिशा में शुद्ध बूस्ट
समन्वय प्रणालियों का मानक विन्यास; एक्स-दिशा में लोरेंत्ज़ बूस्ट के लिए।
निरंतर सापेक्ष तीन-वेग v (चार-वेग नहीं, नीचे देखें) पर चलने वाले दो फ्रेमों के लिए, c की इकाइयों में सापेक्ष वेग को निरूपित और परिभाषित करना सुविधाजनक है:
फिर बिना घुमाव के, मैट्रिक्स Λ में घटक दिए गए हैं:[5]
तथा δij क्रोनकर डेल्टा है। शुद्ध घुमावों के मामले के विपरीत, स्पेसलाइक और टाइमलाइक घटकों को बूस्ट के तहत एक साथ मिलाया जाता है।
केवल एक्स-दिशा में वृद्धि के मामले में, मैट्रिक्स कम हो जाता है;[6][7]
जहां अतिशयोक्तिपूर्ण कार्यों के संदर्भ में लिखा गया है, वहां रैपिडिटी ϕ अभिव्यक्ति का उपयोग किया गया है:
यह लोरेंत्ज़ मैट्रिक्स चार आयामी स्पेसटाइम में एक अतिशयोक्तिपूर्ण रोटेशन होने के लिए बढ़ावा देता है, जो त्रि-आयामी अंतरिक्ष में ऊपर परिपत्र रोटेशन के अनुरूप है।
गुण
रैखिकता
चार-वैक्टरों में तीन आयामों में यूक्लिडियन वैक्टर के समान रैखिकता गुण होते हैं। उन्हें सामान्य एंट्रीवाइज तरीके से जोड़ा जा सकता है:
और इसी तरह एक अदिश λ द्वारा स्केलर गुणन को प्रवेशवार परिभाषित किया गया है:
फिर घटाना जोड़ की व्युत्क्रम संक्रिया है, जिसे प्रवेश के अनुसार परिभाषित किया गया है:
परिभाषा को मैट्रिक्स रूप में फिर से लिखना सुविधाजनक है:
किस मामले में उपरोक्त ημν एक वर्ग मैट्रिक्स के रूप में मिन्कोव्स्की मीट्रिक की पंक्ति μ और कॉलम ν में प्रविष्टि है। मिन्कोव्स्की मीट्रिक एक यूक्लिडियन मीट्रिक नहीं है, क्योंकि यह अनिश्चित है (मीट्रिक हस्ताक्षर देखें)। कई अन्य अभिव्यक्तियों का उपयोग किया जा सकता है क्योंकि मीट्रिक टेन्सर A या B के घटकों को बढ़ा और घटा सकता है। A के कॉन्ट्रा/को-वेरिएंट घटकों और B के सह/कॉन्ट्रा-वैरिएंट घटकों के लिए, हमारे पास:
तो मैट्रिक्स नोटेशन में:
जबकि इसके लिए A तथा B सहसंयोजक घटकों में से प्रत्येक:
उपरोक्त के समान मैट्रिक्स अभिव्यक्ति के साथ।
मिंकोव्स्की टेंसर को चार-वेक्टर ए पर लागू करने से हमें मिलता है:
जो, स्थिति के आधार पर, सदिश की लंबाई का वर्ग, या उसके ऋणात्मक माना जा सकता है। मानक आधार (अनिवार्य रूप से कार्टेशियन निर्देशांक) में मीट्रिक टेंसर के लिए दो सामान्य विकल्प निम्नलिखित हैं। यदि ऑर्थोगोनल निर्देशांक का उपयोग किया जाता है, तो मीट्रिक के स्पेसलाइक भाग के विकर्ण भाग के साथ स्केल कारक होंगे, जबकि सामान्य घुमावदार निर्देशांक के लिए मीट्रिक के पूरे स्पेसलाइक भाग में उपयोग किए जाने वाले वक्रीय आधार पर घटक होंगे।
मानक आधार, (+−−−) हस्ताक्षर
(+−−−) मीट्रिक हस्ताक्षर में, सूचकांकों पर योग का मूल्यांकन करने से यह मिलता है:
मैट्रिक्स फॉर्म में रहते हुए:
यह व्यंजक लेने के लिए विशेष सापेक्षता में एक आवर्ती विषय है
एक संदर्भ फ़्रेम में, जहाँ C इस फ़्रेम में आंतरिक उत्पाद का मान है, और:
दूसरे फ्रेम में, जिसमें C′ इस फ्रेम में आंतरिक उत्पाद का मान है। फिर चूंकि आंतरिक उत्पाद एक अपरिवर्तनीय है, ये बराबर होना चाहिए:
वह है:
यह मानते हुए कि सापेक्षता में भौतिक राशियाँ चार-वैक्टर हैं, इस समीकरण में "संरक्षण कानून" का आभास होता है, लेकिन इसमें कोई "संरक्षण" शामिल नहीं है। मिन्कोव्स्की आंतरिक उत्पाद का प्राथमिक महत्व यह है कि किन्हीं दो चार-वैक्टरों के लिए, इसका मूल्य सभी पर्यवेक्षकों के लिए अपरिवर्तनीय है; निर्देशांकों में परिवर्तन के परिणामस्वरूप आंतरिक उत्पाद के मूल्य में परिवर्तन नहीं होता है। चार वैक्टर के घटक एक फ्रेम से दूसरे में बदलते हैं; A और A' एक लोरेंत्ज़ परिवर्तन द्वारा जुड़े हुए हैं, और इसी तरह B और B' के लिए, हालांकि आंतरिक उत्पाद सभी फ्रेम में समान हैं। फिर भी, इस प्रकार की अभिव्यक्ति का संरक्षण कानूनों के साथ सापेक्षतावादी गणनाओं में उपयोग किया जाता है, क्योंकि घटकों के परिमाण को स्पष्ट रूप से किसी भी लोरेन्ट्ज़ परिवर्तनों को निष्पादित किए बिना निर्धारित किया जा सकता है। एक विशेष उदाहरण चार-गति वेक्टर से प्राप्त ऊर्जा-गति संबंध में ऊर्जा और गति के साथ है (नीचे भी देखें)।
इस हस्ताक्षर में हमारे पास है:
हस्ताक्षर (+−−−) के साथ, चार-वैक्टर को या तो स्पेसलाइक के रूप में वर्गीकृत किया जा सकता है यदि , टाइमलाइक यदि , और शून्य वैक्टर यदि हो।
मानक आधार, (−+++) हस्ताक्षर
कुछ लेखक η को विपरीत चिन्ह के साथ परिभाषित करते हैं, इस मामले में हमारे पास (−+++) मीट्रिक हस्ताक्षर होते हैं। इस हस्ताक्षर के साथ सारांश का मूल्यांकन:
जबकि मैट्रिक्स फॉर्म है:
ध्यान दें कि इस मामले में, एक फ्रेम में:
जबकि दूसरे में:
ताकि:
जो ए और बी के संदर्भ में सी के लिए उपरोक्त अभिव्यक्ति के बराबर है। कोई भी सम्मेलन काम करेगा। उपरोक्त दो तरीकों से परिभाषित मिन्कोव्स्की मीट्रिक के साथ, सहसंयोजक और प्रतिपरिवर्ती चार-वेक्टर घटकों के बीच एकमात्र अंतर संकेत हैं, इसलिए संकेत इस बात पर निर्भर करते हैं कि किस चिह्न परिपाटी का उपयोग किया जाता है।
हमारे पास है:
सिग्नेचर (-+++) के साथ, चार-वैक्टर को या तो स्पेसलाइक अगर , टाइमलाइक अगर , और नल अगर है तो वर्गीकृत किया जा सकता है।
दोहरी वैक्टर
मिन्कोव्स्की टेन्सर को लागू करना अक्सर एक वेक्टर के दोहरे वेक्टर के प्रभाव के रूप में दूसरे पर व्यक्त किया जाता है:
यहाँ Aνs दोहरे आधार में A के दोहरे सदिश A* के घटक हैं और A के सहसंयोजक निर्देशांक कहलाते हैं, जबकि मूल Aν घटकों को प्रतिपरिवर्ती निर्देशांक कहा जाता है।
चार-सदिश कलन
व्युत्पन्न और डिफरेंशियल
विशेष आपेक्षिकता (लेकिन सामान्य सापेक्षता नहीं) में, अदिश λ (अपरिवर्तनीय) के संबंध में चार-वेक्टर का व्युत्पन्न स्वयं एक चार-सदिश होता है। चार-सदिश, dA के अंतर को लेना और इसे स्केलर के अंतर, dλ से विभाजित करना भी उपयोगी है:
जहां प्रतिपरिवर्ती घटक हैं:
जबकि सहसंयोजक घटक हैं:
सापेक्षवादी यांत्रिकी में, अक्सर एक चार-सदिश के अंतर को लेता है और अंतर से उचित समय में विभाजित करता है (नीचे देखें)।
मौलिक चार-वैक्टर
चार स्थिति
मिन्कोव्स्की अंतरिक्ष में एक बिंदु एक समय और स्थानिक स्थिति है, जिसे "घटना" कहा जाता है, या कभी-कभी स्थिति चार-वेक्टर या चार-स्थिति या 4-स्थिति, चार निर्देशांक के एक सेट द्वारा कुछ संदर्भ फ्रेम में वर्णित होती है:
जहाँ r त्रि-आयामी स्थान स्थिति वेक्टर है। यदि आर एक ही फ्रेम में समन्वय समय t का एक कार्य है, यानी r = r(t), यह घटनाओं के अनुक्रम के अनुरूप होता है क्योंकि t भिन्न होता है। परिभाषा R0 = ct यह सुनिश्चित करती है कि सभी निर्देशांकों की इकाइयाँ (दूरी की) समान हों।[8][9][10] ये निर्देशांक घटना के लिए चार-वेक्टर की स्थिति के घटक हैं।
विस्थापन चार-वेक्टर को दो घटनाओं को जोड़ने वाले तीर के रूप में परिभाषित किया गया है:
विश्व रेखा पर अंतर चार-स्थिति के लिए, हमारे पास एक आदर्श संकेतन का उपयोग करते हुए:
अंतर रेखा तत्व डीएस और अंतर उचित समय वृद्धि डीτ को परिभाषित करना, लेकिन यह "मानक" भी है:
ताकि:
भौतिक परिघटनाओं पर विचार करते समय, विभेदक समीकरण स्वाभाविक रूप से उत्पन्न होते हैं; हालाँकि, जब कार्यों के स्थान और समय के डेरिवेटिव पर विचार किया जाता है, तो यह स्पष्ट नहीं होता है कि इन डेरिवेटिव को किस संदर्भ में लिया गया है। यह सहमति है कि उचित समय के संबंध में समय व्युत्पन्न लिया जाता है। चूंकि उचित समय एक अपरिवर्तनीय है, यह गारंटी देता है कि किसी भी चार-सदिश का उचित-समय-व्युत्पन्न स्वयं एक चार-वेक्टर है। इसके बाद इस उचित-समय-व्युत्पन्न और अन्य समय व्युत्पन्न (एक जड़त्वीय संदर्भ फ्रेम के समन्वय समय टी का उपयोग करके) के बीच संबंध खोजना महत्वपूर्ण है। यह संबंध ऊपर दिए गए अंतर अपरिवर्तनीय स्पेसटाइम अंतराल को लेकर प्रदान किया गया है, फिर प्राप्त करने के लिए (cdt)2 से विभाजित करके:
जहाँ u = dr/dt किसी वस्तु का निर्देशांक 3-वेग है जिसे निर्देशांक x, y, z और निर्देशांक समय t के समान फ़्रेम में मापा जाता है, और
लोरेन्ट्ज कारक है। यह निर्देशांक समय और उचित समय में अंतरों के बीच एक उपयोगी संबंध प्रदान करता है:
यह संबंध लोरेंत्ज़ परिवर्तनों में समय परिवर्तन से भी पाया जा सकता है।
सापेक्षता सिद्धांत में महत्वपूर्ण चार-सदिश इस अंतर को लागू करके परिभाषित किए जा सकते हैं।
चार ग्रेडिएंट
यह देखते हुए कि आंशिक व्युत्पन्नरैखिक ऑपरेटर हैं, आंशिक समय व्युत्पन्न ∂/∂t और स्थानिक ग्रेडिएंट ∇ से चार-ढाल बना सकते हैं। मानक आधार का प्रयोग करते हुए, अनुक्रमणिका और संक्षिप्त संकेतन में, प्रतिपरिवर्ती घटक हैं:
ध्यान दें कि आधार सदिशों को घटकों के सामने रखा जाता है, आधार सदिश के व्युत्पन्न लेने के बीच भ्रम को रोकने के लिए, या केवल आंशिक व्युत्पन्न इस चार-सदिश का एक घटक है। सहसंयोजक घटक इस प्रकार हैं:
चूंकि यह एक ऑपरेटर है, इसकी "लंबाई" नहीं है, लेकिन ऑपरेटर के आंतरिक उत्पाद का मूल्यांकन स्वयं के साथ एक अन्य ऑपरेटर देता है:
एक कण के चार-वेग को निम्न द्वारा परिभाषित किया गया है:
ज्यामितीय रूप से, यू कण की विश्व रेखा के लिए सामान्यीकृत वेक्टर स्पर्शक है। चार-स्थिति के अंतर का उपयोग करते हुए, चार-वेग का परिमाण प्राप्त किया जा सकता है:
संक्षेप में, किसी भी वस्तु के लिए चार-वेग का परिमाण हमेशा एक स्थिर स्थिरांक होता है:
मानदंड भी है:
ताकि:
जो लोरेंत्ज़ फैक्टर की परिभाषा को कम करता है।
चार-वेग की इकाइयाँ SI में m/s हैं और ज्यामितीय इकाई प्रणाली में 1 है। चार-वेग एक प्रतिपरिवर्ती सदिश है।
जहाँ a = du/dt निर्देशांक 3-त्वरण है। चूंकि यू का परिमाण स्थिर है, चार त्वरण चार वेग के लिए ऑर्थोगोनल है, यानी चार-त्वरण और चार-वेग का मिंकोव्स्की आंतरिक उत्पाद शून्य है:
जो सभी विश्व रेखाओं के लिए सत्य है। चार-त्वरण का ज्यामितीय अर्थ मिंकोव्स्की अंतरिक्ष में विश्व रेखा का वक्रता वेक्टर है।
एक कण पर अभिनय करने वाले चार-बल को न्यूटन के दूसरे नियम में 3-गति के समय व्युत्पन्न के रूप में 3-बल के अनुरूप परिभाषित किया गया है:
जहां P कण को स्थानांतरित करने के लिए स्थानांतरित की गई शक्ति (भौतिकी) है, और 'f' कण पर अभिनय करने वाला 3-बल है। स्थिर अपरिवर्तनीय द्रव्यमान के एक कण के लिए m0, यह बराबर है
कहाँ पे n बेरियन तरल पदार्थ के स्थानीय आराम फ्रेम में बेरियन की संख्या घनत्व है (बैरियन के लिए सकारात्मक मूल्य, कण बैरोन के लिए नकारात्मक), और U ऊपर के रूप में चार-वेग क्षेत्र (तरल पदार्थ का)।
चार-एन्ट्रॉपी
चार-एन्ट्रॉपी वेक्टर द्वारा परिभाषित किया गया है:[13]
कहाँ पे s प्रति बैरियन एन्ट्रापी है, और T द्रव के स्थानीय विश्राम फ्रेम में निरपेक्ष तापमान।[14]
समय t और स्थान 'r' के व्युत्क्रम की मात्राएँ क्रमशः कोणीय आवृत्ति और तरंग सदिश 'k' हैं। वे चार-तरंग वेक्टर या तरंग चार-वेक्टर के घटक बनाते हैं:
लगभग एकवर्णी प्रकाश के तरंग पैकेट का वर्णन इस प्रकार किया जा सकता है:
डी ब्रोगली संबंध तब दिखाता है कि चार-लहर वेक्टर पदार्थ तरंगों के साथ-साथ प्रकाश तरंगों पर भी लागू होता है:
उपज तथा , जहां प्लांक नियतांक से विभाजित है 2π.
मानदंड का वर्ग है:
और डी ब्रोगली संबंध द्वारा:
हमारे पास ऊर्जा-गति संबंध का पदार्थ तरंग एनालॉग है:
ध्यान दें कि द्रव्यमान रहित कणों के लिए, किस स्थिति में m0 = 0, अपने पास:
या ‖k‖ = ω/c. ध्यान दें कि यह उपरोक्त मामले के अनुरूप है; मापांक के 3-तरंग वेक्टर वाले फोटॉन के लिए ω/c, इकाई वेक्टर द्वारा परिभाषित तरंग प्रसार की दिशा में .
कहाँ पे ρ समय घटक के अनुरूप प्रायिकता घनत्व फलन है, और j संभाव्यता वर्तमान वेक्टर है। गैर-सापेक्ष क्वांटम यांत्रिकी में, यह धारा हमेशा अच्छी तरह से परिभाषित होती है क्योंकि घनत्व और धारा के लिए भाव सकारात्मक निश्चित होते हैं और एक संभाव्यता व्याख्या को स्वीकार कर सकते हैं। सापेक्षतावादी क्वांटम यांत्रिकी और क्वांटम क्षेत्र सिद्धांत में, वर्तमान को खोजना हमेशा संभव नहीं होता है, खासकर जब बातचीत शामिल होती है।
एक कण के चार-स्पिन को कण के बाकी फ्रेम में परिभाषित किया जाता है
कहाँ पे sस्पिन (भौतिकी) स्यूडोवेक्टर है। क्वांटम यांत्रिकी में, इस वेक्टर के सभी तीन घटक एक साथ मापने योग्य नहीं हैं, केवल एक घटक है। कण के बाकी फ्रेम में समयबद्ध घटक शून्य है, लेकिन किसी अन्य फ्रेम में नहीं। यह घटक उपयुक्त लोरेंत्ज़ परिवर्तन से पाया जा सकता है।
मानक वर्ग स्पिन का (ऋणात्मक) परिमाण वर्ग है, और क्वांटम यांत्रिकी के अनुसार हमारे पास है
यह मान देखने योग्य और परिमाणित है, के साथ sस्पिन क्वांटम संख्या (स्पिन वेक्टर का परिमाण नहीं)।
और इस सूत्रीकरण में, चार-वेक्टर को एक वास्तविक-मूल्यवान स्तंभ या पंक्ति वेक्टर के बजाय एक हर्मिटियन मैट्रिक्स (मैट्रिक्स का स्थानान्तरण और जटिल संयुग्म इसे अपरिवर्तित छोड़ देता है) के रूप में दर्शाया गया है। मैट्रिक्स का निर्धारक चार-वेक्टर का मापांक है, इसलिए निर्धारक एक अपरिवर्तनीय है:
पॉली मैट्रिसेस को आधार वैक्टर के रूप में उपयोग करने का यह विचार भौतिक स्थान के बीजगणित में कार्यरत है, जो क्लिफोर्ड बीजगणित का एक उदाहरण है।
स्पेसटाइम बीजगणित में, क्लिफोर्ड बीजगणित का एक और उदाहरण, गामा मैट्रिक्स भी एक आधार (रैखिक बीजगणित) बना सकता है। (डिराक समीकरण में उनकी उपस्थिति के कारण उन्हें डिराक मैट्रिसेस भी कहा जाता है)। गामा मैट्रिक्स को व्यक्त करने के एक से अधिक तरीके हैं, जो उस मुख्य लेख में विस्तृत हैं।
फेनमैन स्लैश नोटेशन गामा मेट्रिसेस के साथ अनुबंधित चार-वेक्टर ए के लिए एक आशुलिपि है:
गामा मैट्रिक्स के साथ अनुबंधित चार-गति सापेक्षतावादी क्वांटम यांत्रिकी और सापेक्षतावादी क्वांटम क्षेत्र सिद्धांत में एक महत्वपूर्ण मामला है। डिराक समीकरण और अन्य सापेक्षतावादी तरंग समीकरणों में, फॉर्म की शर्तें:
प्रकट होते हैं, जिसमें ऊर्जा E और गति घटक (px, py, pz) उनके संबंधित ऑपरेटर (भौतिकी) द्वारा प्रतिस्थापित किया जाता है।
↑Vladimir G. Ivancevic, Tijana T. Ivancevic (2008) Quantum leap: from Dirac and Feynman, across the universe, to human body and mind. World Scientific Publishing Company, ISBN978-981-281-927-7, p. 41