चार-सदिश: Difference between revisions

From Vigyanwiki
(minor changes)
(first para edited)
Line 1: Line 1:
{{Use American English|date = March 2019}}
{{Use American English|date = March 2019}}
{{Short description|4-dimensional vector in relativity}}
{{Short description|4-dimensional vector in relativity}}
{{distinguish|p-vector}}
{{distinguish|पी-सदिश}}
{{spacetime|cTopic=Mathematics}}
{{spacetime|cTopic=Mathematics}}  


[[ विशेष सापेक्षता |विशेष सापेक्षता]] में, एक चार-वेक्टर (या 4-वेक्टर)<ref>Rindler, W. ''Introduction to Special Relativity (2nd edn.)'' (1991) Clarendon Press Oxford {{ISBN|0-19-853952-5}}</ref> चार घटकों वाली एक वस्तु है, जो [[ लोरेंत्ज़ परिवर्तन |लोरेंत्ज़ रूपांतरणों]] के तहत एक विशिष्ट तरीके से रूपांतरित होती है। विशेष रूप से, एक चार-वेक्टर एक चार-आयामी वेक्टर अंतरिक्ष का एक तत्व है जिसे [[ लोरेंत्ज़ समूह |लोरेंत्ज़ समूह]] के मानक प्रतिनिधित्व, ({{sfrac|1|2}},{{sfrac|1|2}}) प्रतिनिधित्व के [[ प्रतिनिधित्व स्थान |प्रतिनिधित्व स्थान]] के रूप में माना जाता है। यह एक [[ यूक्लिडियन वेक्टर |यूक्लिडियन वेक्टर]] से भिन्न होता है कि इसका परिमाण कैसे निर्धारित किया जाता है। इस परिमाण को संरक्षित करने वाले परिवर्तन लोरेंत्ज़ परिवर्तन हैं, जिसमें स्थानिक घुमाव और बूस्ट शामिल हैं (एक निरंतर वेग द्वारा एक और [[ जड़त्वीय संदर्भ फ्रेम |जड़त्वीय संदर्भ फ्रेम]] में परिवर्तन)।<ref name="BaskalKim2015">{{cite book|author1=Sibel Baskal|author2=Young S Kim|author3=Marilyn E Noz|title=लोरेंत्ज़ समूह का भौतिकी|date=1 November 2015|publisher=Morgan & Claypool Publishers|isbn=978-1-68174-062-1}}</ref> {{rp|ch1}}
[[ विशेष सापेक्षता |विशेष सापेक्षता]] में, एक '''चतुर्विम-सदिश''' (या '''4-सदिश''')<ref>Rindler, W. ''Introduction to Special Relativity (2nd edn.)'' (1991) Clarendon Press Oxford {{ISBN|0-19-853952-5}}</ref> एक प्रकार की वस्तु है जिसके चार घातक होते है, जिसका रूपांतरण [[ लोरेंत्ज़ परिवर्तन |लोरेंत्ज़ रूपांतरणों]] के अधीन विशिष्ट रूप से किया जाता है। विशेष रूप से, चतुर्विम-सदिश एक चतुर्विमीय सदिश समष्टि का एक भाग या अंश होता है जिसे [[ लोरेंत्ज़ समूह |लोरेंत्ज़ समूह]] के मानक निरूपण का [[ प्रतिनिधित्व स्थान |निरूपण समिष्टि]], ({{sfrac|1|2}},{{sfrac|1|2}}) निरूपण के रूप में माना जाता है। यह [[ यूक्लिडियन वेक्टर |यूक्लिडियन सदिश]] से भिन्न होता है कि इसका परिमाण कैसे निर्धारित किया जाता है। इस परिमाण को संरक्षित करने वाले रूपांतरण लोरेंत्ज़ रूपांतरण कहलाते हैं, जिसमें स्थानिक घूर्णन और बूस्ट सम्मिलित होते हैं (एक नियत वेग द्वारा एक अन्य [[ जड़त्वीय संदर्भ फ्रेम |जड़त्वीय निर्देश तंत्र]] में परिवर्तन)।<ref name="BaskalKim2015">{{cite book|author1=Sibel Baskal|author2=Young S Kim|author3=Marilyn E Noz|title=लोरेंत्ज़ समूह का भौतिकी|date=1 November 2015|publisher=Morgan & Claypool Publishers|isbn=978-1-68174-062-1}}</ref> {{rp|ch1}}


चार-वैक्टर वर्णन करते हैं, उदाहरण के लिए, [[ मिंकोव्स्की स्पेस |मिंकोव्स्की स्पेस]] के रूप में मॉडलिंग किए गए स्पेसटाइम में स्थिति {{math|''x''{{i sup|''μ''}}}}, एक कण का चार-संवेग {{math|''p''{{i sup|''μ''}}}}, स्पेसटाइम में एक बिंदु {{mvar|x}} पर [[ विद्युत चुम्बकीय चार-क्षमता |विद्युत चुम्बकीय चार-क्षमता]] {{math|''A''{{i sup|''μ''}}(''x'')}} का आयाम, और डायराक बीजगणित के अंदर [[ गामा मैट्रिसेस |गामा मैट्रिसेस]] द्वारा फैलाए गए उप-स्थान के तत्व।
चतुर्विम-सदिश वर्णन करते हैं, किसी अवस्था के लिए, [[ मिंकोव्स्की स्पेस |मिंकोव्स्की समष्टि]] के रूप में मॉडल किए गए दिक्काल में स्थिति {{math|''x''{{i sup|''μ''}}}}, एक कण का चतुर्विम-संवेग {{math|''p''{{i sup|''μ''}}}}, दिक्काल में बिंदु {{mvar|x}} पर [[ विद्युत चुम्बकीय चार-क्षमता |विद्युत चुम्बकीय चतुर्विम-विभव]] {{math|''A''{{i sup|''μ''}}(''x'')}} का आयाम, और डायराक बीजगणित के अंतर्गत [[ गामा मैट्रिसेस |गामा आव्यूहों]] द्वारा विस्तरित उपसमष्‍टि के तत्व है।


लोरेंत्ज़ समूह को 4×4 आव्यूह {{math|Λ}} द्वारा दर्शाया जा सकता है। प्रविष्टियों में एक जड़त्वीय फ्रेम के संबंध में कार्तीय निर्देशांक के साथ एक स्तंभ वेक्टर के रूप में माने जाने वाले एक सामान्य प्रतिपरिवर्ती चार-वेक्टर {{mvar|X}} (ऊपर दिए गए उदाहरणों की तरह) पर एक लोरेंत्ज़ रूपांतरण की क्रिया, द्वारा दी गई है<math display="block">X' = \Lambda X,</math>(मैट्रिक्स गुणा) जहां प्राथमिक वस्तु के घटक नए फ्रेम को संदर्भित करते हैं। ऊपर दिए गए उदाहरणों से संबंधित जो प्रतिपरिवर्ती सदिशों के रूप में दिए गए हैं, [[ सहसंयोजक वेक्टर |सहसंयोजक वेक्टर]] {{math|''x''<sub>''μ''</sub>}}, {{math|''p''<sub>''μ''</sub>}} और {{math|''A''<sub>''μ''</sub>(''x'')}}  भी हैं। ये नियमानुसार परिवर्तित होते हैं<math display="block">X' = \left(\Lambda^{-1}\right)^\textrm{T} X,</math>जहां {{math|<sup>T</sup>}} [[ मैट्रिक्स स्थानांतरण |मैट्रिक्स स्थानांतरण]] को दर्शाता है। यह नियम ऊपर दिए गए नियम से अलग है। यह मानक प्रतिनिधित्व के दोहरे प्रतिनिधित्व से मेल खाता है। हालाँकि, लोरेन्ट्ज़ समूह के लिए किसी भी प्रतिनिधित्व का दोहरा मूल प्रतिनिधित्व के बराबर है। इस प्रकार सहसंयोजक सूचकांकों वाली वस्तुएँ चार-वैक्टर भी हैं।
लोरेंत्ज़ समूह को 4×4 आव्यूह {{math|Λ}} द्वारा दर्शाया जा सकता है। प्रविष्टियों में किसी जड़त्वीय तंत्र के संबंध में कार्तीय निर्देशांक के साथ एक स्तंभ सदिश के रूप में माने जाने वाले एक सामान्य प्रतिपरिवर्ती चतुर्विम-सदिश {{mvar|X}} (ऊपर दिए गए उदाहरणों की तरह) पर लोरेंत्ज़ रूपांतरण की क्रिया, निम्न द्वारा दी गई है<math display="block">X' = \Lambda X,</math>(आव्यूह गुणा) जहां प्राथमिक वस्तु के घटक नए फ्रेम को संदर्भित करते हैं। ऊपर दिए गए उदाहरणों से संबंधित जो प्रतिपरिवर्ती सदिशों के रूप में दिए गए हैं, [[ सहसंयोजक वेक्टर |सहसंयोजक सदिश]] {{math|''x''<sub>''μ''</sub>}}, {{math|''p''<sub>''μ''</sub>}} और {{math|''A''<sub>''μ''</sub>(''x'')}}  भी हैं। ये नियमानुसार परिवर्तित होते हैं<math display="block">X' = \left(\Lambda^{-1}\right)^\textrm{T} X,</math>जहां {{math|<sup>T</sup>}} [[ मैट्रिक्स स्थानांतरण |आव्यूह स्थानांतरण]] को दर्शाता है। यह नियम ऊपर दिए गए नियम से अलग है। यह मानक प्रतिनिधित्व के दोहरे प्रतिनिधित्व से मेल खाता है। हालाँकि, लोरेन्ट्ज़ समूह के लिए किसी भी प्रतिनिधित्व का दोहरा मूल प्रतिनिधित्व के बराबर है। इस प्रकार सहसंयोजक सूचकांकों वाली वस्तुएँ चतुर्विम-सदिश भी हैं।




विशेष सापेक्षता में एक अच्छी तरह से व्यवहार किए गए चार-घटक वस्तु के उदाहरण के लिए, जो कि चार-वेक्टर नहीं है, [[ बिसपिनोर |बिस्पिनर]] देखें। इसे समान रूप से परिभाषित किया गया है, अंतर यह है कि लोरेंत्ज़ परिवर्तनों के तहत रूपांतरण नियम मानक प्रतिनिधित्व के अलावा अन्य प्रतिनिधित्व द्वारा दिया जाता है। इस मामले में, नियम {{math|''X''{{′}} {{=}} Π(Λ)''X''}} पढ़ता है, जहां {{math|Π(Λ)}} {{math|Λ}}के अलावा 4×4 मैट्रिक्स है। इसी तरह की टिप्पणी उन वस्तुओं पर लागू होती है जिनमें कम या अधिक घटक होते हैं जो लोरेंत्ज़ परिवर्तनों के तहत अच्छी तरह से व्यवहार करते हैं। इनमें [[ अदिश क्षेत्र |अदिश]], [[ स्पिनर |स्पिनर]], [[ टेंसर क्षेत्र |टेंसर]] और स्पिनोर-टेंसर शामिल हैं।


लेख विशेष आपेक्षिकता के संदर्भ में चार-वैक्टरों पर विचार करता है। हालांकि चार-वैक्टर की अवधारणा [[ सामान्य सापेक्षता |सामान्य सापेक्षता]] तक भी फैली हुई है, इस लेख में बताए गए कुछ परिणामों में सामान्य सापेक्षता में संशोधन की आवश्यकता है।<!-- TO DO: provide a GR section for this article! -->
विशेष सापेक्षता में एक अच्छी तरह से व्यवहार किए गए चार-घटक वस्तु के उदाहरण के लिए, जो कि चतुर्विम-सदिश नहीं है, [[ बिसपिनोर |बिस्पिनर]] देखें। इसे समान रूप से परिभाषित किया गया है, अंतर यह है कि लोरेंत्ज़ परिवर्तनों के तहत रूपांतरण नियम मानक प्रतिनिधित्व के अलावा अन्य प्रतिनिधित्व द्वारा दिया जाता है। इस मामले में, नियम {{math|''X''{{′}} {{=}} Π(Λ)''X''}} पढ़ता है, जहां {{math|Π(Λ)}} {{math|Λ}}के अलावा 4×4 आव्यूह है। इसी तरह की टिप्पणी उन वस्तुओं पर लागू होती है जिनमें कम या अधिक घटक होते हैं जो लोरेंत्ज़ परिवर्तनों के तहत अच्छी तरह से व्यवहार करते हैं। इनमें [[ अदिश क्षेत्र |अदिश]], [[ स्पिनर |स्पिनर]], [[ टेंसर क्षेत्र |टेंसर]] और स्पिनोर-टेंसर सम्मिलित हैं।
 
लेख विशेष आपेक्षिकता के संदर्भ में चतुर्विम-सदिशों पर विचार करता है। हालांकि चतुर्विम-सदिश की अवधारणा [[ सामान्य सापेक्षता |सामान्य सापेक्षता]] तक भी फैली हुई है, इस लेख में बताए गए कुछ परिणामों में सामान्य सापेक्षता में संशोधन की आवश्यकता है।<!-- TO DO: provide a GR section for this article! -->


== संकेतन ==
== संकेतन ==
इस लेख में नोटेशन हैं: [[ त्रि-आयामी अंतरिक्ष |त्रि-आयामी वैक्टर]] के लिए लोअरकेस बोल्ड, तीन-आयामी इकाई वैक्टर के लिए हैट, चार-आयामी वैक्टर के लिए कैपिटल बोल्ड (चार-ढाल को छोड़कर), और [[ टेंसर इंडेक्स नोटेशन |टेंसर इंडेक्स नोटेशन]]।
इस लेख में नोटेशन हैं: [[ त्रि-आयामी अंतरिक्ष |त्रि-आयामी सदिश]] के लिए लोअरकेस बोल्ड, तीन-आयामी इकाई सदिश के लिए हैट, चतुर्विमीय सदिश के लिए कैपिटल बोल्ड (चार-ढाल को छोड़कर), और [[ टेंसर इंडेक्स नोटेशन |टेंसर इंडेक्स नोटेशन]]।


== चार-सदिश बीजगणित ==
== चार-सदिश बीजगणित ==


=== वास्तविक-मूल्यवान आधार में चार-वैक्टर ===
=== वास्तविक-मूल्यवान आधार में चतुर्विम-सदिश ===


एक चार-वेक्टर ए एक "टाइमलाइक" घटक और तीन "स्पेसलाइक" घटकों वाला एक वेक्टर है, और इसे विभिन्न समकक्ष नोटेशन में लिखा जा सकता है:<ref>Relativity DeMystified, D. McMahon, Mc Graw Hill (BSA), 2006, {{ISBN|0-07-145545-0}}</ref><math display="block"> \begin{align}   
एक चतुर्विम-सदिश ए एक "टाइमलाइक" घटक और तीन "स्पेसलाइक" घटकों वाला एक सदिश है, और इसे विभिन्न समकक्ष नोटेशन में लिखा जा सकता है:<ref>Relativity DeMystified, D. McMahon, Mc Graw Hill (BSA), 2006, {{ISBN|0-07-145545-0}}</ref><math display="block"> \begin{align}   
   \mathbf{A} & = \left(A^0, \, A^1, \, A^2, \, A^3\right) \\
   \mathbf{A} & = \left(A^0, \, A^1, \, A^2, \, A^3\right) \\
   & = A^0\mathbf{E}_0 + A^1 \mathbf{E}_1 + A^2 \mathbf{E}_2 + A^3  \mathbf{E}_3 \\
   & = A^0\mathbf{E}_0 + A^1 \mathbf{E}_1 + A^2 \mathbf{E}_2 + A^3  \mathbf{E}_3 \\
Line 28: Line 29:
   & = A^\alpha\mathbf{E}_\alpha\\
   & = A^\alpha\mathbf{E}_\alpha\\
   & = A^\mu   
   & = A^\mu   
\end{align}</math>जहां अंतिम रूप में परिमाण घटक और [[ आधार वेक्टर |आधार वेक्टर]] को एक ही तत्व में जोड़ा गया है।
\end{align}</math>जहां अंतिम रूप में परिमाण घटक और [[ आधार वेक्टर |आधार सदिश]] को एक ही तत्व में जोड़ा गया है।






ऊपरी सूचकांक प्रतिपरिवर्ती घटकों को दर्शाते हैं। यहाँ मानक परिपाटी यह है कि लैटिन सूचकांक स्थानिक घटकों के लिए मान लेते हैं, ताकि i = 1, 2, 3, और यूनानी सूचकांक स्थान और समय घटकों के लिए मान लें, इसलिए α = 0, 1, 2, 3, योग सम्मेलन के साथ उपयोग किया जाता है। समय घटक और स्थानिक घटकों के बीच विभाजन अन्य टेन्सर मात्राओं के साथ एक चार वेक्टर के संकुचन का निर्धारण करते समय उपयोगी होता है, जैसे कि आंतरिक उत्पादों में लोरेंत्ज़ इनवेरिएंट की गणना के लिए (उदाहरण नीचे दिए गए हैं), या सूचकांकों को ऊपर उठाना और कम करना।
ऊपरी सूचकांक प्रतिपरिवर्ती घटकों को दर्शाते हैं। यहाँ मानक परिपाटी यह है कि लैटिन सूचकांक स्थानिक घटकों के लिए मान लेते हैं, ताकि i = 1, 2, 3, और यूनानी सूचकांक स्थान और समय घटकों के लिए मान लें, इसलिए α = 0, 1, 2, 3, योग सम्मेलन के साथ उपयोग किया जाता है। समय घटक और स्थानिक घटकों के बीच विभाजन अन्य टेन्सर मात्राओं के साथ एक चार सदिश के संकुचन का निर्धारण करते समय उपयोगी होता है, जैसे कि आंतरिक उत्पादों में लोरेंत्ज़ इनवेरिएंट की गणना के लिए (उदाहरण नीचे दिए गए हैं), या सूचकांकों को ऊपर उठाना और कम करना।


विशेष आपेक्षिकता में, स्पेसलाइक आधार E1, E2, E3 और घटक A1, A2, A3 अक्सर कार्तीय आधार और घटक होते हैं:<math display="block"> \begin{align}   
विशेष आपेक्षिकता में, स्पेसलाइक आधार E1, E2, E3 और घटक A1, A2, A3 अक्सर कार्तीय आधार और घटक होते हैं:<math display="block"> \begin{align}   
Line 43: Line 44:
   \mathbf{A} & = (A_t, \, A_r, \, A_\theta, \, A_z) \\
   \mathbf{A} & = (A_t, \, A_r, \, A_\theta, \, A_z) \\
   & = A_t \mathbf{E}_t + A_r \mathbf{E}_r + A_\theta \mathbf{E}_\theta + A_z \mathbf{E}_z \\
   & = A_t \mathbf{E}_t + A_r \mathbf{E}_r + A_\theta \mathbf{E}_\theta + A_z \mathbf{E}_z \\
\end{align}</math>या कोई अन्य लंबकोणीय निर्देशांक, या यहां तक कि सामान्य वक्रीय निर्देशांक। ध्यान दें कि निर्देशांक लेबल हमेशा लेबल के रूप में सबस्क्रिप्ट किए जाते हैं और संख्यात्मक मान लेने वाले सूचकांक नहीं होते हैं। सामान्य सापेक्षता में, स्थानीय वक्रीय निर्देशांक स्थानीय आधार पर उपयोग किए जाने चाहिए। ज्यामितीय रूप से, एक चार-वेक्टर को अभी भी एक तीर के रूप में व्याख्या किया जा सकता है, लेकिन अंतरिक्ष-समय में - केवल स्थान नहीं। सापेक्षता में, तीरों को [[ मिंकोव्स्की आरेख |मिंकोव्स्की आरेख]] (जिसे स्पेसटाइम आरेख भी कहा जाता है) के हिस्से के रूप में खींचा जाता है। इस लेख में, चार-वैक्टर को केवल वेक्टर के रूप में संदर्भित किया जाएगा।
\end{align}</math>या कोई अन्य लंबकोणीय निर्देशांक, या यहां तक कि सामान्य वक्रीय निर्देशांक। ध्यान दें कि निर्देशांक लेबल हमेशा लेबल के रूप में सबस्क्रिप्ट किए जाते हैं और संख्यात्मक मान लेने वाले सूचकांक नहीं होते हैं। सामान्य सापेक्षता में, स्थानीय वक्रीय निर्देशांक स्थानीय आधार पर उपयोग किए जाने चाहिए। ज्यामितीय रूप से, एक चतुर्विम-सदिश को अभी भी एक तीर के रूप में व्याख्या किया जा सकता है, लेकिन अंतरिक्ष-समय में - केवल स्थान नहीं। सापेक्षता में, तीरों को [[ मिंकोव्स्की आरेख |मिंकोव्स्की आरेख]] (जिसे दिक्काल आरेख भी कहा जाता है) के हिस्से के रूप में खींचा जाता है। इस लेख में, चतुर्विम-सदिश को केवल सदिश के रूप में संदर्भित किया जाएगा।
स्तंभ वैक्टरों द्वारा आधारों का प्रतिनिधित्व करने के लिए यह भी परंपरागत है:<math display="block">
स्तंभ सदिशों द्वारा आधारों का प्रतिनिधित्व करने के लिए यह भी परंपरागत है:<math display="block">
   \mathbf{E}_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \,,\quad
   \mathbf{E}_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \,,\quad
   \mathbf{E}_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \,,\quad
   \mathbf{E}_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \,,\quad
Line 57: Line 58:




आधारों को पंक्ति वैक्टर द्वारा दर्शाया जा सकता है:<math display="block">
आधारों को पंक्ति सदिश द्वारा दर्शाया जा सकता है:<math display="block">
   \mathbf{E}^0 = \begin{pmatrix} 1 & 0 & 0 & 0 \end{pmatrix} \,,\quad
   \mathbf{E}^0 = \begin{pmatrix} 1 & 0 & 0 & 0 \end{pmatrix} \,,\quad
   \mathbf{E}^1 = \begin{pmatrix} 0 & 1 & 0 & 0 \end{pmatrix} \,,\quad
   \mathbf{E}^1 = \begin{pmatrix} 0 & 1 & 0 & 0 \end{pmatrix} \,,\quad
Line 67: Line 68:


{{main|Lorentz transformation}}
{{main|Lorentz transformation}}
संदर्भ के दो जड़त्वीय या घुमाए गए फ़्रेमों को देखते हुए, एक चार-वेक्टर को एक मात्रा के रूप में परिभाषित किया जाता है जो लोरेंत्ज़ परिवर्तन मैट्रिक्स Λ के अनुसार परिवर्तित होता है:<math display="block">\mathbf{A}' = \boldsymbol{\Lambda}\mathbf{A}</math>सूचकांक संकेतन में, प्रतिपरिवर्ती और सहपरिवर्ती घटक क्रमशः निम्न के अनुसार बदलते हैं:<math display="block">{A'}^\mu = \Lambda^\mu {}_\nu A^\nu \,, \quad{A'}_\mu = \Lambda_\mu {}^\nu A_\nu</math>जिसमें मैट्रिक्स {{math|'''Λ'''}} में पंक्ति {{math|''μ''}} और स्तंभ {{math|''ν''}} में घटक {{math|Λ''<sup>μ</sup><sub>ν</sub>''}} हैं, और [[ उलटा मैट्रिक्स |उलटा मैट्रिक्स]] {{math|'''Λ'''<sup>−1</sup>}} में पंक्ति {{math|''μ''}} और स्तंभ {{math|''ν''}} में घटक {{math|Λ''<sub>μ</sub><sup>ν</sup>''}} हैं।<br />इस परिवर्तन परिभाषा की प्रकृति की पृष्ठभूमि के लिए टेंसर देखें। सभी चार-वैक्टर एक ही तरह से रूपांतरित होते हैं, और इसे चार-आयामी सापेक्षतावादी टेन्सर के लिए सामान्यीकृत किया जा सकता है; विशेष आपेक्षिकता देखें।
संदर्भ के दो जड़त्वीय या घुमाए गए फ़्रेमों को देखते हुए, एक चतुर्विम-सदिश को एक मात्रा के रूप में परिभाषित किया जाता है जो लोरेंत्ज़ परिवर्तन आव्यूह Λ के अनुसार परिवर्तित होता है:<math display="block">\mathbf{A}' = \boldsymbol{\Lambda}\mathbf{A}</math>सूचकांक संकेतन में, प्रतिपरिवर्ती और सहपरिवर्ती घटक क्रमशः निम्न के अनुसार बदलते हैं:<math display="block">{A'}^\mu = \Lambda^\mu {}_\nu A^\nu \,, \quad{A'}_\mu = \Lambda_\mu {}^\nu A_\nu</math>जिसमें आव्यूह {{math|'''Λ'''}} में पंक्ति {{math|''μ''}} और स्तंभ {{math|''ν''}} में घटक {{math|Λ''<sup>μ</sup><sub>ν</sub>''}} हैं, और [[ उलटा मैट्रिक्स |उलटा आव्यूह]] {{math|'''Λ'''<sup>−1</sup>}} में पंक्ति {{math|''μ''}} और स्तंभ {{math|''ν''}} में घटक {{math|Λ''<sub>μ</sub><sup>ν</sup>''}} हैं।<br />इस परिवर्तन परिभाषा की प्रकृति की पृष्ठभूमि के लिए टेंसर देखें। सभी चतुर्विम-सदिश एक ही तरह से रूपांतरित होते हैं, और इसे चतुर्विमीय सापेक्षतावादी टेन्सर के लिए सामान्यीकृत किया जा सकता है; विशेष आपेक्षिकता देखें।


==== एक मनमाना अक्ष के बारे में शुद्ध घुमाव ====
==== एक मनमाना अक्ष के बारे में शुद्ध घूर्णन ====


एक निश्चित कोण से घुमाए गए दो फ्रेम के लिए {{math|''θ''}} इकाई वेक्टर द्वारा परिभाषित अक्ष के बारे में:<math display="block">\hat{\mathbf{n}} = \left(\hat{n}_1, \hat{n}_2, \hat{n}_3\right)\,,</math>बिना किसी बूस्ट के, मैट्रिक्स Λ में निम्नलिखित घटक हैं:<ref>{{cite book| author=C.B. Parker| title=मैकग्रा हिल इनसाइक्लोपीडिया ऑफ फिजिक्स| publisher=McGraw Hill| edition=2nd| page=[https://archive.org/details/mcgrawhillencycl1993park/page/1333 1333]| year=1994| isbn=0-07-051400-3| url-access=registration| url=https://archive.org/details/mcgrawhillencycl1993park/page/1333}}</ref><math display="block">\begin{align}
एक निश्चित कोण से घुमाए गए दो फ्रेम के लिए {{math|''θ''}} इकाई सदिश द्वारा परिभाषित अक्ष के बारे में:<math display="block">\hat{\mathbf{n}} = \left(\hat{n}_1, \hat{n}_2, \hat{n}_3\right)\,,</math>बिना किसी बूस्ट के, आव्यूह Λ में निम्नलिखित घटक हैं:<ref>{{cite book| author=C.B. Parker| title=मैकग्रा हिल इनसाइक्लोपीडिया ऑफ फिजिक्स| publisher=McGraw Hill| edition=2nd| page=[https://archive.org/details/mcgrawhillencycl1993park/page/1333 1333]| year=1994| isbn=0-07-051400-3| url-access=registration| url=https://archive.org/details/mcgrawhillencycl1993park/page/1333}}</ref><math display="block">\begin{align}
                 \Lambda_{00} &= 1 \\
                 \Lambda_{00} &= 1 \\
   \Lambda_{0i} = \Lambda_{i0} &= 0 \\
   \Lambda_{0i} = \Lambda_{i0} &= 0 \\
                 \Lambda_{ij} &= \left(\delta_{ij} - \hat{n}_i \hat{n}_j\right) \cos\theta - \varepsilon_{ijk} \hat{n}_k \sin\theta + \hat{n}_i \hat{n}_j
                 \Lambda_{ij} &= \left(\delta_{ij} - \hat{n}_i \hat{n}_j\right) \cos\theta - \varepsilon_{ijk} \hat{n}_k \sin\theta + \hat{n}_i \hat{n}_j
\end{align}</math>जहां δj [[ क्रोनकर डेल्टा |क्रोनकर डेल्टा]] है, और εijk त्रि-आयामी [[ लेवी-सिविटा प्रतीक |लेवी-सिविटा प्रतीक]] है। चार-वैक्टरों के स्पेसलाइक घटकों को घुमाया जाता है, जबकि समयबद्ध घटकों में कोई बदलाव नहीं होता है।
\end{align}</math>जहां δj [[ क्रोनकर डेल्टा |क्रोनकर डेल्टा]] है, और εijk त्रि-आयामी [[ लेवी-सिविटा प्रतीक |लेवी-सिविटा प्रतीक]] है। चतुर्विम-सदिशों के स्पेसलाइक घटकों को घुमाया जाता है, जबकि समयबद्ध घटकों में कोई बदलाव नहीं होता है।
केवल z-अक्ष के चारों ओर घूमने के मामले में, लोरेंत्ज़ मैट्रिक्स का स्पेसलाइक भाग z-अक्ष के बारे में [[ रोटेशन मैट्रिक्स |रोटेशन मैट्रिक्स]] को कम करता है:<math display="block">
केवल z-अक्ष के चारों ओर घूमने के मामले में, लोरेंत्ज़ आव्यूह का स्पेसलाइक भाग z-अक्ष के बारे में [[ रोटेशन मैट्रिक्स |रोटेशन आव्यूह]] को कम करता है:<math display="block">
   \begin{pmatrix}
   \begin{pmatrix}
     {A'}^0 \\ {A'}^1 \\ {A'}^2 \\ {A'}^3
     {A'}^0 \\ {A'}^1 \\ {A'}^2 \\ {A'}^3
Line 92: Line 93:


==== मनमाना दिशा में शुद्ध बूस्ट ====
==== मनमाना दिशा में शुद्ध बूस्ट ====
[[File:Standard conf.png|right|thumb|300px|समन्वय प्रणालियों का मानक विन्यास; एक्स-दिशा में लोरेंत्ज़ बूस्ट के लिए।]]निरंतर सापेक्ष तीन-वेग v (चार-वेग नहीं, नीचे देखें) पर चलने वाले दो फ्रेमों के लिए, c की इकाइयों में सापेक्ष वेग को निरूपित और परिभाषित करना सुविधाजनक है:<math display="block"> \boldsymbol{\beta} = (\beta_1,\,\beta_2,\,\beta_3) = \frac{1}{c}(v_1,\,v_2,\,v_3) = \frac{1}{c}\mathbf{v} \,. </math>फिर बिना घुमाव के, मैट्रिक्स Λ में घटक दिए गए हैं:<ref>Gravitation, J.B. Wheeler, C. Misner, K.S. Thorne, W.H. Freeman & Co, 1973, ISAN 0-7167-0344-0</ref><math display="block">\begin{align}
[[File:Standard conf.png|right|thumb|300px|समन्वय प्रणालियों का मानक विन्यास; एक्स-दिशा में लोरेंत्ज़ बूस्ट के लिए।]]निरंतर सापेक्ष तीन-वेग v (चार-वेग नहीं, नीचे देखें) पर चलने वाले दो फ्रेमों के लिए, c की इकाइयों में सापेक्ष वेग को निरूपित और परिभाषित करना सुविधाजनक है:<math display="block"> \boldsymbol{\beta} = (\beta_1,\,\beta_2,\,\beta_3) = \frac{1}{c}(v_1,\,v_2,\,v_3) = \frac{1}{c}\mathbf{v} \,. </math>फिर बिना घूर्णन के, आव्यूह Λ में घटक दिए गए हैं:<ref>Gravitation, J.B. Wheeler, C. Misner, K.S. Thorne, W.H. Freeman & Co, 1973, ISAN 0-7167-0344-0</ref><math display="block">\begin{align}
                 \Lambda_{00} &= \gamma, \\
                 \Lambda_{00} &= \gamma, \\
   \Lambda_{0i} = \Lambda_{i0} &= -\gamma \beta_{i}, \\
   \Lambda_{0i} = \Lambda_{i0} &= -\gamma \beta_{i}, \\
   \Lambda_{ij} = \Lambda_{ji} &= (\gamma - 1)\frac{\beta_{i}\beta_{j}}{\beta^2} + \delta_{ij} = (\gamma - 1)\frac{v_i v_j}{v^2} + \delta_{ij}, \\
   \Lambda_{ij} = \Lambda_{ji} &= (\gamma - 1)\frac{\beta_{i}\beta_{j}}{\beta^2} + \delta_{ij} = (\gamma - 1)\frac{v_i v_j}{v^2} + \delta_{ij}, \\
\end{align}</math>जहां [[ लोरेंत्ज़ कारक |लोरेंत्ज़ कारक]] द्वारा परिभाषित किया गया है:<math display="block">\gamma = \frac{1}{\sqrt{1 - \boldsymbol{\beta}\cdot\boldsymbol{\beta}}} \,,</math>तथा {{math|''δ<sub>ij</sub>''}} क्रोनकर डेल्टा है। शुद्ध घुमावों के मामले के विपरीत, स्पेसलाइक और टाइमलाइक घटकों को बूस्ट के तहत एक साथ मिलाया जाता है।
\end{align}</math>जहां [[ लोरेंत्ज़ कारक |लोरेंत्ज़ कारक]] द्वारा परिभाषित किया गया है:<math display="block">\gamma = \frac{1}{\sqrt{1 - \boldsymbol{\beta}\cdot\boldsymbol{\beta}}} \,,</math>तथा {{math|''δ<sub>ij</sub>''}} क्रोनकर डेल्टा है। शुद्ध घूर्णनों के मामले के विपरीत, स्पेसलाइक और टाइमलाइक घटकों को बूस्ट के तहत एक साथ मिलाया जाता है।




केवल एक्स-दिशा में वृद्धि के मामले में, मैट्रिक्स कम हो जाता है;<ref>Dynamics and Relativity, J.R. Forshaw, B.G. Smith, Wiley, 2009, ISAN 978-0-470-01460-8</ref><ref>Relativity DeMystified, D. McMahon, Mc Graw Hill (ASB), 2006, ISAN 0-07-145545-0</ref><math display="block">
केवल एक्स-दिशा में वृद्धि के मामले में, आव्यूह कम हो जाता है;<ref>Dynamics and Relativity, J.R. Forshaw, B.G. Smith, Wiley, 2009, ISAN 978-0-470-01460-8</ref><ref>Relativity DeMystified, D. McMahon, Mc Graw Hill (ASB), 2006, ISAN 0-07-145545-0</ref><math display="block">
   \begin{pmatrix}
   \begin{pmatrix}
     A'^0 \\ A'^1 \\ A'^2 \\ A'^3
     A'^0 \\ A'^1 \\ A'^2 \\ A'^3
Line 112: Line 113:
     A^0 \\ A^1 \\ A^2 \\ A^3
     A^0 \\ A^1 \\ A^2 \\ A^3
   \end{pmatrix}  
   \end{pmatrix}  
</math>जहां [[ अतिशयोक्तिपूर्ण कार्य |अतिशयोक्तिपूर्ण कार्यों]] के संदर्भ में लिखा गया है, वहां रैपिडिटी {{math|''ϕ''}} अभिव्यक्ति का उपयोग किया गया है:<math display="block">\gamma = \cosh \phi</math>यह लोरेंत्ज़ मैट्रिक्स चार आयामी स्पेसटाइम में एक अतिशयोक्तिपूर्ण रोटेशन होने के लिए बढ़ावा देता है, जो त्रि-आयामी अंतरिक्ष में ऊपर परिपत्र रोटेशन के अनुरूप है।
</math>जहां [[ अतिशयोक्तिपूर्ण कार्य |अतिशयोक्तिपूर्ण कार्यों]] के संदर्भ में लिखा गया है, वहां रैपिडिटी {{math|''ϕ''}} अभिव्यक्ति का उपयोग किया गया है:<math display="block">\gamma = \cosh \phi</math>यह लोरेंत्ज़ आव्यूह चार आयामी दिक्काल में एक अतिशयोक्तिपूर्ण रोटेशन होने के लिए बढ़ावा देता है, जो त्रि-आयामी अंतरिक्ष में ऊपर परिपत्र रोटेशन के अनुरूप है।


=== गुण ===
=== गुण ===
Line 118: Line 119:
====रैखिकता====
====रैखिकता====


चार-वैक्टरों में [[ तीन आयाम |तीन आयामों]] में यूक्लिडियन वैक्टर के समान रैखिकता गुण होते हैं। उन्हें सामान्य एंट्रीवाइज तरीके से जोड़ा जा सकता है:<math display="block">\mathbf{A} + \mathbf{B} = \left(A^0, A^1, A^2, A^3\right) + \left(B^0, B^1, B^2, B^3\right) = \left(A^0 + B^0, A^1 + B^1, A^2 + B^2, A^3 + B^3\right)</math>और इसी तरह एक [[ अदिश (गणित) |अदिश]] λ द्वारा स्केलर गुणन को प्रवेशवार परिभाषित किया गया है:<math display="block">\lambda\mathbf{A} = \lambda\left(A^0, A^1, A^2, A^3\right) = \left(\lambda A^0, \lambda A^1, \lambda A^2, \lambda A^3\right)</math>फिर घटाना जोड़ की व्युत्क्रम संक्रिया है, जिसे प्रवेश के अनुसार परिभाषित किया गया है:<math display="block">\mathbf{A} + (-1)\mathbf{B} = \left(A^0, A^1, A^2, A^3\right) + (-1)\left(B^0, B^1, B^2, B^3\right) = \left(A^0 - B^0, A^1 - B^1, A^2 - B^2, A^3 - B^3\right)</math>
चतुर्विम-सदिशों में [[ तीन आयाम |तीन आयामों]] में यूक्लिडियन सदिश के समान रैखिकता गुण होते हैं। उन्हें सामान्य एंट्रीवाइज तरीके से जोड़ा जा सकता है:<math display="block">\mathbf{A} + \mathbf{B} = \left(A^0, A^1, A^2, A^3\right) + \left(B^0, B^1, B^2, B^3\right) = \left(A^0 + B^0, A^1 + B^1, A^2 + B^2, A^3 + B^3\right)</math>और इसी तरह एक [[ अदिश (गणित) |अदिश]] λ द्वारा स्केलर गुणन को प्रवेशवार परिभाषित किया गया है:<math display="block">\lambda\mathbf{A} = \lambda\left(A^0, A^1, A^2, A^3\right) = \left(\lambda A^0, \lambda A^1, \lambda A^2, \lambda A^3\right)</math>फिर घटाना जोड़ की व्युत्क्रम संक्रिया है, जिसे प्रवेश के अनुसार परिभाषित किया गया है:<math display="block">\mathbf{A} + (-1)\mathbf{B} = \left(A^0, A^1, A^2, A^3\right) + (-1)\left(B^0, B^1, B^2, B^3\right) = \left(A^0 - B^0, A^1 - B^1, A^2 - B^2, A^3 - B^3\right)</math>


====मिन्कोव्स्की टेंसर ====
====मिन्कोव्स्की टेंसर ====


{{See also|spacetime interval}}
{{See also|spacetime interval}}
[[ मिंकोव्स्की टेंसर |मिंकोव्स्की टेंसर]] {{math|''η<sub>μν</sub>''}} को दो चार-सदिश {{math|'''A'''}} और {{math|'''B'''}} पर लागू करते हुए, [[ डॉट उत्पाद |डॉट उत्पाद]] संकेतन में परिणाम लिखते हुए, हमारे पास [[ आइंस्टीन संकेतन |आइंस्टीन संकेतन]] का उपयोग कर रहा है:<math display="block">\mathbf{A} \cdot \mathbf{B} = A^{\mu} \eta_{\mu \nu} B^{\nu} </math>परिभाषा को [[ मैट्रिक्स (गणित) |मैट्रिक्स]] रूप में फिर से लिखना सुविधाजनक है:<math display="block">\mathbf{A \cdot B} = \begin{pmatrix} A^0 & A^1 & A^2 & A^3 \end{pmatrix} \begin{pmatrix} \eta_{00} & \eta_{01} & \eta_{02} & \eta_{03} \\ \eta_{10} & \eta_{11} & \eta_{12} & \eta_{13} \\ \eta_{20} & \eta_{21} & \eta_{22} & \eta_{23} \\ \eta_{30} & \eta_{31} & \eta_{32} & \eta_{33} \end{pmatrix} \begin{pmatrix} B^0 \\ B^1 \\ B^2 \\ B^3 \end{pmatrix} </math>किस मामले में उपरोक्त {{math|''η<sub>μν</sub>''}} एक वर्ग मैट्रिक्स के रूप में मिन्कोव्स्की मीट्रिक की पंक्ति {{math|''μ''}} और कॉलम {{math|''ν''}} में प्रविष्टि है। मिन्कोव्स्की मीट्रिक एक [[ यूक्लिडियन मीट्रिक |यूक्लिडियन मीट्रिक]] नहीं है, क्योंकि यह अनिश्चित है (मीट्रिक हस्ताक्षर देखें)। कई अन्य अभिव्यक्तियों का उपयोग किया जा सकता है क्योंकि मीट्रिक टेन्सर {{math|'''A'''}} या {{math|'''B'''}} के घटकों को बढ़ा और घटा सकता है। {{math|'''A'''}} के कॉन्ट्रा/को-वेरिएंट घटकों और {{math|'''B'''}} के सह/कॉन्ट्रा-वैरिएंट घटकों के लिए, हमारे पास:<math display="block">\mathbf{A} \cdot \mathbf{B} = A^{\mu} \eta_{\mu \nu} B^{\nu} = A_{\nu} B^{\nu} = A^{\mu} B_{\mu} </math>तो मैट्रिक्स नोटेशन में:<math display="block">\mathbf{A} \cdot \mathbf{B}
[[ मिंकोव्स्की टेंसर |मिंकोव्स्की टेंसर]] {{math|''η<sub>μν</sub>''}} को दो चार-सदिश {{math|'''A'''}} और {{math|'''B'''}} पर लागू करते हुए, [[ डॉट उत्पाद |डॉट उत्पाद]] संकेतन में परिणाम लिखते हुए, हमारे पास [[ आइंस्टीन संकेतन |आइंस्टीन संकेतन]] का उपयोग कर रहा है:<math display="block">\mathbf{A} \cdot \mathbf{B} = A^{\mu} \eta_{\mu \nu} B^{\nu} </math>परिभाषा को [[ मैट्रिक्स (गणित) |आव्यूह]] रूप में फिर से लिखना सुविधाजनक है:<math display="block">\mathbf{A \cdot B} = \begin{pmatrix} A^0 & A^1 & A^2 & A^3 \end{pmatrix} \begin{pmatrix} \eta_{00} & \eta_{01} & \eta_{02} & \eta_{03} \\ \eta_{10} & \eta_{11} & \eta_{12} & \eta_{13} \\ \eta_{20} & \eta_{21} & \eta_{22} & \eta_{23} \\ \eta_{30} & \eta_{31} & \eta_{32} & \eta_{33} \end{pmatrix} \begin{pmatrix} B^0 \\ B^1 \\ B^2 \\ B^3 \end{pmatrix} </math>किस मामले में उपरोक्त {{math|''η<sub>μν</sub>''}} एक वर्ग आव्यूह के रूप में मिन्कोव्स्की मीट्रिक की पंक्ति {{math|''μ''}} और कॉलम {{math|''ν''}} में प्रविष्टि है। मिन्कोव्स्की मीट्रिक एक [[ यूक्लिडियन मीट्रिक |यूक्लिडियन मीट्रिक]] नहीं है, क्योंकि यह अनिश्चित है (मीट्रिक हस्ताक्षर देखें)। कई अन्य अभिव्यक्तियों का उपयोग किया जा सकता है क्योंकि मीट्रिक टेन्सर {{math|'''A'''}} या {{math|'''B'''}} के घटकों को बढ़ा और घटा सकता है। {{math|'''A'''}} के कॉन्ट्रा/को-वेरिएंट घटकों और {{math|'''B'''}} के सह/कॉन्ट्रा-वैरिएंट घटकों के लिए, हमारे पास:<math display="block">\mathbf{A} \cdot \mathbf{B} = A^{\mu} \eta_{\mu \nu} B^{\nu} = A_{\nu} B^{\nu} = A^{\mu} B_{\mu} </math>तो आव्यूह नोटेशन में:<math display="block">\mathbf{A} \cdot \mathbf{B}
   = \begin{pmatrix} A_0 & A_1 & A_2 & A_3 \end{pmatrix} \begin{pmatrix} B^0 \\ B^1 \\ B^2 \\ B^3 \end{pmatrix}
   = \begin{pmatrix} A_0 & A_1 & A_2 & A_3 \end{pmatrix} \begin{pmatrix} B^0 \\ B^1 \\ B^2 \\ B^3 \end{pmatrix}
   = \begin{pmatrix} B_0 & B_1 & B_2 & B_3 \end{pmatrix} \begin{pmatrix} A^0 \\ A^1 \\ A^2 \\ A^3 \end{pmatrix}
   = \begin{pmatrix} B_0 & B_1 & B_2 & B_3 \end{pmatrix} \begin{pmatrix} A^0 \\ A^1 \\ A^2 \\ A^3 \end{pmatrix}
</math>जबकि इसके लिए {{math|'''A'''}} तथा {{math|'''B'''}} सहसंयोजक घटकों में से प्रत्येक:<math display="block">\mathbf{A} \cdot \mathbf{B} = A_{\mu} \eta^{\mu \nu} B_{\nu}</math>उपरोक्त के समान मैट्रिक्स अभिव्यक्ति के साथ।
</math>जबकि इसके लिए {{math|'''A'''}} तथा {{math|'''B'''}} सहसंयोजक घटकों में से प्रत्येक:<math display="block">\mathbf{A} \cdot \mathbf{B} = A_{\mu} \eta^{\mu \nu} B_{\nu}</math>उपरोक्त के समान आव्यूह अभिव्यक्ति के साथ।
मिंकोव्स्की टेंसर को चार-वेक्टर ए पर लागू करने से हमें मिलता है:<math display="block">\mathbf{A \cdot A} = A^\mu \eta_{\mu\nu} A^\nu </math>जो, स्थिति के आधार पर, सदिश की लंबाई का वर्ग, या उसके ऋणात्मक माना जा सकता है।<br />मानक आधार (अनिवार्य रूप से कार्टेशियन निर्देशांक) में मीट्रिक टेंसर के लिए दो सामान्य विकल्प निम्नलिखित हैं। यदि ऑर्थोगोनल निर्देशांक का उपयोग किया जाता है, तो मीट्रिक के स्पेसलाइक भाग के विकर्ण भाग के साथ स्केल कारक होंगे, जबकि सामान्य घुमावदार निर्देशांक के लिए मीट्रिक के पूरे स्पेसलाइक भाग में उपयोग किए जाने वाले वक्रीय आधार पर घटक होंगे।
मिंकोव्स्की टेंसर को चतुर्विम-सदिश ए पर लागू करने से हमें मिलता है:<math display="block">\mathbf{A \cdot A} = A^\mu \eta_{\mu\nu} A^\nu </math>जो, स्थिति के आधार पर, सदिश की लंबाई का वर्ग, या उसके ऋणात्मक माना जा सकता है।<br />मानक आधार (अनिवार्य रूप से कार्टेशियन निर्देशांक) में मीट्रिक टेंसर के लिए दो सामान्य विकल्प निम्नलिखित हैं। यदि ऑर्थोगोनल निर्देशांक का उपयोग किया जाता है, तो मीट्रिक के स्पेसलाइक भाग के विकर्ण भाग के साथ स्केल कारक होंगे, जबकि सामान्य घूर्णनदार निर्देशांक के लिए मीट्रिक के पूरे स्पेसलाइक भाग में उपयोग किए जाने वाले वक्रीय आधार पर घटक होंगे।


===== मानक आधार, (+−−−) हस्ताक्षर =====
===== मानक आधार, (+−−−) हस्ताक्षर =====


(+−−−) मीट्रिक हस्ताक्षर में, सूचकांकों पर योग का मूल्यांकन करने से यह मिलता है:<math display="block">\mathbf{A} \cdot \mathbf{B} =  A^0 B^0 - A^1 B^1 - A^2 B^2 - A^3 B^3  </math>मैट्रिक्स फॉर्म में रहते हुए:<math display="block">\mathbf{A \cdot B}
(+−−−) मीट्रिक हस्ताक्षर में, सूचकांकों पर योग का मूल्यांकन करने से यह मिलता है:<math display="block">\mathbf{A} \cdot \mathbf{B} =  A^0 B^0 - A^1 B^1 - A^2 B^2 - A^3 B^3  </math>आव्यूह फॉर्म में रहते हुए:<math display="block">\mathbf{A \cdot B}
   = \begin{pmatrix} A^0 & A^1 & A^2 & A^3 \end{pmatrix}
   = \begin{pmatrix} A^0 & A^1 & A^2 & A^3 \end{pmatrix}
     \begin{pmatrix}
     \begin{pmatrix}
Line 139: Line 140:
       0 &  0 &  0 & -1
       0 &  0 &  0 & -1
     \end{pmatrix} \begin{pmatrix} B^0 \\ B^1 \\ B^2 \\ B^3 \end{pmatrix}
     \end{pmatrix} \begin{pmatrix} B^0 \\ B^1 \\ B^2 \\ B^3 \end{pmatrix}
</math>यह व्यंजक लेने के लिए विशेष सापेक्षता में एक आवर्ती विषय है<math display="block"> \mathbf{A}\cdot\mathbf{B} = A^0 B^0 - A^1 B^1 - A^2 B^2 - A^3 B^3 = C</math>एक संदर्भ फ़्रेम में, जहाँ C इस फ़्रेम में आंतरिक उत्पाद का मान है, और:<math display="block"> \mathbf{A}'\cdot\mathbf{B}' = {A'}^0 {B'}^0 - {A'}^1 {B'}^1 - {A'}^2 {B'}^2 - {A'}^3 {B'}^3 = C' </math>दूसरे फ्रेम में, जिसमें C′ इस फ्रेम में आंतरिक उत्पाद का मान है। फिर चूंकि आंतरिक उत्पाद एक अपरिवर्तनीय है, ये बराबर होना चाहिए:<math display="block"> \mathbf{A}\cdot\mathbf{B} = \mathbf{A}'\cdot\mathbf{B}' </math>वह है:<math display="block"> C = A^0 B^0 - A^1 B^1 - A^2 B^2 - A^3 B^3 = {A'}^0 {B'}^0 - {A'}^1 {B'}^1 - {A'}^2 {B'}^2 - {A'}^3{B'}^3 </math>यह मानते हुए कि सापेक्षता में भौतिक राशियाँ चार-वैक्टर हैं, इस समीकरण में "[[ संरक्षण कानून (भौतिकी) |संरक्षण कानून]]" का आभास होता है, लेकिन इसमें कोई "संरक्षण" शामिल नहीं है। मिन्कोव्स्की आंतरिक उत्पाद का प्राथमिक महत्व यह है कि किन्हीं दो चार-वैक्टरों के लिए, इसका मूल्य सभी पर्यवेक्षकों के लिए [[ अपरिवर्तनीय (भौतिकी) |अपरिवर्तनीय]] है; निर्देशांकों में परिवर्तन के परिणामस्वरूप आंतरिक उत्पाद के मूल्य में परिवर्तन नहीं होता है। चार वैक्टर के घटक एक फ्रेम से दूसरे में बदलते हैं; A और A' एक लोरेंत्ज़ परिवर्तन द्वारा जुड़े हुए हैं, और इसी तरह B और B' के लिए, हालांकि आंतरिक उत्पाद सभी फ्रेम में समान हैं। फिर भी, इस प्रकार की अभिव्यक्ति का संरक्षण कानूनों के साथ सापेक्षतावादी गणनाओं में उपयोग किया जाता है, क्योंकि घटकों के परिमाण को स्पष्ट रूप से किसी भी लोरेन्ट्ज़ परिवर्तनों को निष्पादित किए बिना निर्धारित किया जा सकता है। एक विशेष उदाहरण चार-गति वेक्टर से प्राप्त [[ ऊर्जा-गति संबंध |ऊर्जा-गति संबंध]] में ऊर्जा और गति के साथ है (नीचे भी देखें)।
</math>यह व्यंजक लेने के लिए विशेष सापेक्षता में एक आवर्ती विषय है<math display="block"> \mathbf{A}\cdot\mathbf{B} = A^0 B^0 - A^1 B^1 - A^2 B^2 - A^3 B^3 = C</math>एक संदर्भ फ़्रेम में, जहाँ C इस फ़्रेम में आंतरिक उत्पाद का मान है, और:<math display="block"> \mathbf{A}'\cdot\mathbf{B}' = {A'}^0 {B'}^0 - {A'}^1 {B'}^1 - {A'}^2 {B'}^2 - {A'}^3 {B'}^3 = C' </math>दूसरे फ्रेम में, जिसमें C′ इस फ्रेम में आंतरिक उत्पाद का मान है। फिर चूंकि आंतरिक उत्पाद एक अपरिवर्तनीय है, ये बराबर होना चाहिए:<math display="block"> \mathbf{A}\cdot\mathbf{B} = \mathbf{A}'\cdot\mathbf{B}' </math>वह है:<math display="block"> C = A^0 B^0 - A^1 B^1 - A^2 B^2 - A^3 B^3 = {A'}^0 {B'}^0 - {A'}^1 {B'}^1 - {A'}^2 {B'}^2 - {A'}^3{B'}^3 </math>यह मानते हुए कि सापेक्षता में भौतिक राशियाँ चतुर्विम-सदिश हैं, इस समीकरण में "[[ संरक्षण कानून (भौतिकी) |संरक्षण कानून]]" का आभास होता है, लेकिन इसमें कोई "संरक्षण" सम्मिलित नहीं है। मिन्कोव्स्की आंतरिक उत्पाद का प्राथमिक महत्व यह है कि किन्हीं दो चतुर्विम-सदिशों के लिए, इसका मूल्य सभी पर्यवेक्षकों के लिए [[ अपरिवर्तनीय (भौतिकी) |अपरिवर्तनीय]] है; निर्देशांकों में परिवर्तन के परिणामस्वरूप आंतरिक उत्पाद के मूल्य में परिवर्तन नहीं होता है। चार सदिश के घटक एक फ्रेम से दूसरे में बदलते हैं; A और A' एक लोरेंत्ज़ परिवर्तन द्वारा जुड़े हुए हैं, और इसी तरह B और B' के लिए, हालांकि आंतरिक उत्पाद सभी फ्रेम में समान हैं। फिर भी, इस प्रकार की अभिव्यक्ति का संरक्षण कानूनों के साथ सापेक्षतावादी गणनाओं में उपयोग किया जाता है, क्योंकि घटकों के परिमाण को स्पष्ट रूप से किसी भी लोरेन्ट्ज़ परिवर्तनों को निष्पादित किए बिना निर्धारित किया जा सकता है। एक विशेष उदाहरण चार-गति सदिश से प्राप्त [[ ऊर्जा-गति संबंध |ऊर्जा-गति संबंध]] में ऊर्जा और गति के साथ है (नीचे भी देखें)।
इस हस्ताक्षर में हमारे पास है:<math display="block"> \mathbf{A \cdot A} = \left(A^0\right)^2 - \left(A^1\right)^2 - \left(A^2\right)^2 - \left(A^3\right)^2 </math>हस्ताक्षर (+−−−) के साथ, चार-वैक्टर को या तो स्पेसलाइक के रूप में वर्गीकृत किया जा सकता है यदि <math>\mathbf{A \cdot A} < 0</math>, टाइमलाइक यदि <math>\mathbf{A \cdot A} > 0</math>, और शून्य वैक्टर यदि <math>\mathbf{A \cdot A} = 0</math> हो।
इस हस्ताक्षर में हमारे पास है:<math display="block"> \mathbf{A \cdot A} = \left(A^0\right)^2 - \left(A^1\right)^2 - \left(A^2\right)^2 - \left(A^3\right)^2 </math>हस्ताक्षर (+−−−) के साथ, चतुर्विम-सदिश को या तो स्पेसलाइक के रूप में वर्गीकृत किया जा सकता है यदि <math>\mathbf{A \cdot A} < 0</math>, टाइमलाइक यदि <math>\mathbf{A \cdot A} > 0</math>, और शून्य सदिश यदि <math>\mathbf{A \cdot A} = 0</math> हो।


===== मानक आधार, (−+++) हस्ताक्षर =====
===== मानक आधार, (−+++) हस्ताक्षर =====


कुछ लेखक η को विपरीत चिन्ह के साथ परिभाषित करते हैं, इस मामले में हमारे पास (−+++) मीट्रिक हस्ताक्षर होते हैं। इस हस्ताक्षर के साथ सारांश का मूल्यांकन:<math display="block">\mathbf{A \cdot B} = - A^0 B^0 + A^1 B^1 + A^2 B^2 + A^3 B^3 </math>जबकि मैट्रिक्स फॉर्म है:<math display="block">\mathbf{A \cdot B} = \left( \begin{matrix}A^0 & A^1 & A^2 & A^3 \end{matrix} \right)  
कुछ लेखक η को विपरीत चिन्ह के साथ परिभाषित करते हैं, इस मामले में हमारे पास (−+++) मीट्रिक हस्ताक्षर होते हैं। इस हस्ताक्षर के साथ सारांश का मूल्यांकन:<math display="block">\mathbf{A \cdot B} = - A^0 B^0 + A^1 B^1 + A^2 B^2 + A^3 B^3 </math>जबकि आव्यूह फॉर्म है:<math display="block">\mathbf{A \cdot B} = \left( \begin{matrix}A^0 & A^1 & A^2 & A^3 \end{matrix} \right)  
\left( \begin{matrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{matrix} \right)
\left( \begin{matrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{matrix} \right)
\left( \begin{matrix}B^0 \\ B^1 \\ B^2 \\ B^3 \end{matrix} \right) </math>ध्यान दें कि इस मामले में, एक फ्रेम में:<math display="block"> \mathbf{A}\cdot\mathbf{B} = - A^0 B^0 + A^1 B^1 + A^2 B^2 + A^3 B^3 = -C </math>जबकि दूसरे में:<math display="block"> \mathbf{A}'\cdot\mathbf{B}' = - {A'}^0 {B'}^0 + {A'}^1 {B'}^1 + {A'}^2 {B'}^2 + {A'}^3 {B'}^3 = -C'</math>ताकि:<math display="block"> -C = - A^0 B^0 + A^1 B^1 + A^2 B^2 + A^3 B^3 = - {A'}^0 {B'}^0 + {A'}^1 {B'}^1 + {A'}^2 {B'}^2 + {A'}^3 {B'}^3</math>जो ए और बी के संदर्भ में सी के लिए उपरोक्त अभिव्यक्ति के बराबर है। कोई भी सम्मेलन काम करेगा। उपरोक्त दो तरीकों से परिभाषित मिन्कोव्स्की मीट्रिक के साथ, सहसंयोजक और प्रतिपरिवर्ती चार-वेक्टर घटकों के बीच एकमात्र अंतर संकेत हैं, इसलिए संकेत इस बात पर निर्भर करते हैं कि किस चिह्न परिपाटी का उपयोग किया जाता है।
\left( \begin{matrix}B^0 \\ B^1 \\ B^2 \\ B^3 \end{matrix} \right) </math>ध्यान दें कि इस मामले में, एक फ्रेम में:<math display="block"> \mathbf{A}\cdot\mathbf{B} = - A^0 B^0 + A^1 B^1 + A^2 B^2 + A^3 B^3 = -C </math>जबकि दूसरे में:<math display="block"> \mathbf{A}'\cdot\mathbf{B}' = - {A'}^0 {B'}^0 + {A'}^1 {B'}^1 + {A'}^2 {B'}^2 + {A'}^3 {B'}^3 = -C'</math>ताकि:<math display="block"> -C = - A^0 B^0 + A^1 B^1 + A^2 B^2 + A^3 B^3 = - {A'}^0 {B'}^0 + {A'}^1 {B'}^1 + {A'}^2 {B'}^2 + {A'}^3 {B'}^3</math>जो ए और बी के संदर्भ में सी के लिए उपरोक्त अभिव्यक्ति के बराबर है। कोई भी सम्मेलन काम करेगा। उपरोक्त दो तरीकों से परिभाषित मिन्कोव्स्की मीट्रिक के साथ, सहसंयोजक और प्रतिपरिवर्ती चतुर्विम-सदिश घटकों के बीच एकमात्र अंतर संकेत हैं, इसलिए संकेत इस बात पर निर्भर करते हैं कि किस चिह्न परिपाटी का उपयोग किया जाता है।




हमारे पास है:<math display="block"> \mathbf{A \cdot A} = - \left(A^0\right)^2 + \left(A^1\right)^2 + \left(A^2\right)^2 + \left(A^3\right)^2 </math>सिग्नेचर (-+++) के साथ, चार-वैक्टर को या तो स्पेसलाइक अगर <math>\mathbf{A \cdot A} > 0</math>, टाइमलाइक अगर <math>\mathbf{A \cdot A} < 0</math>, और नल अगर <math>\mathbf{A \cdot A} = 0</math> है तो वर्गीकृत किया जा सकता है।
हमारे पास है:<math display="block"> \mathbf{A \cdot A} = - \left(A^0\right)^2 + \left(A^1\right)^2 + \left(A^2\right)^2 + \left(A^3\right)^2 </math>सिग्नेचर (-+++) के साथ, चतुर्विम-सदिश को या तो स्पेसलाइक अगर <math>\mathbf{A \cdot A} > 0</math>, टाइमलाइक अगर <math>\mathbf{A \cdot A} < 0</math>, और नल अगर <math>\mathbf{A \cdot A} = 0</math> है तो वर्गीकृत किया जा सकता है।


===== दोहरी वैक्टर =====
===== दोहरी सदिश =====


मिन्कोव्स्की टेन्सर को लागू करना अक्सर एक वेक्टर के दोहरे वेक्टर के प्रभाव के रूप में दूसरे पर व्यक्त किया जाता है:<math display="block">\mathbf{A \cdot B} = A^*(\mathbf{B}) = A{_\nu}B^{\nu}. </math>यहाँ Aνs दोहरे आधार में A के दोहरे सदिश A* के घटक हैं और A के सहसंयोजक निर्देशांक कहलाते हैं, जबकि मूल Aν घटकों को प्रतिपरिवर्ती निर्देशांक कहा जाता है।
मिन्कोव्स्की टेन्सर को लागू करना अक्सर एक सदिश के दोहरे सदिश के प्रभाव के रूप में दूसरे पर व्यक्त किया जाता है:<math display="block">\mathbf{A \cdot B} = A^*(\mathbf{B}) = A{_\nu}B^{\nu}. </math>यहाँ Aνs दोहरे आधार में A के दोहरे सदिश A* के घटक हैं और A के सहसंयोजक निर्देशांक कहलाते हैं, जबकि मूल Aν घटकों को प्रतिपरिवर्ती निर्देशांक कहा जाता है।


== चार-सदिश कलन ==
== चार-सदिश कलन ==
Line 159: Line 160:
===व्युत्पन्न और डिफरेंशियल ===
===व्युत्पन्न और डिफरेंशियल ===


विशेष आपेक्षिकता (लेकिन सामान्य सापेक्षता नहीं) में, अदिश λ (अपरिवर्तनीय) के संबंध में चार-वेक्टर का [[ यौगिक |व्युत्पन्न]] स्वयं एक चार-सदिश होता है। चार-सदिश, dA के अंतर को लेना और इसे स्केलर के [[ फ़ंक्शन का अंतर |अंतर]], dλ से विभाजित करना भी उपयोगी है:<math display="block">\underset{\text{differential}}{d\mathbf{A}} = \underset{\text{derivative}}{\frac{d\mathbf{A}}{d\lambda}} \underset{\text{differential}}{d\lambda} </math>जहां प्रतिपरिवर्ती घटक हैं:<math display="block"> d\mathbf{A} = \left(dA^0, dA^1, dA^2, dA^3\right) </math>जबकि सहसंयोजक घटक हैं:<math display="block"> d\mathbf{A} = \left(dA_0, dA_1, dA_2, dA_3\right) </math>सापेक्षवादी यांत्रिकी में, अक्सर एक चार-सदिश के अंतर को लेता है और अंतर से [[ उचित समय |उचित समय]] में विभाजित करता है (नीचे देखें)।
विशेष आपेक्षिकता (लेकिन सामान्य सापेक्षता नहीं) में, अदिश λ (अपरिवर्तनीय) के संबंध में चतुर्विम-सदिश का [[ यौगिक |व्युत्पन्न]] स्वयं एक चार-सदिश होता है। चार-सदिश, dA के अंतर को लेना और इसे स्केलर के [[ फ़ंक्शन का अंतर |अंतर]], dλ से विभाजित करना भी उपयोगी है:<math display="block">\underset{\text{differential}}{d\mathbf{A}} = \underset{\text{derivative}}{\frac{d\mathbf{A}}{d\lambda}} \underset{\text{differential}}{d\lambda} </math>जहां प्रतिपरिवर्ती घटक हैं:<math display="block"> d\mathbf{A} = \left(dA^0, dA^1, dA^2, dA^3\right) </math>जबकि सहसंयोजक घटक हैं:<math display="block"> d\mathbf{A} = \left(dA_0, dA_1, dA_2, dA_3\right) </math>सापेक्षवादी यांत्रिकी में, अक्सर एक चार-सदिश के अंतर को लेता है और अंतर से [[ उचित समय |उचित समय]] में विभाजित करता है (नीचे देखें)।


==मौलिक चार-वैक्टर==
==मौलिक चतुर्विम-सदिश==


===चार स्थिति ===
===चार स्थिति ===


मिन्कोव्स्की अंतरिक्ष में एक बिंदु एक समय और स्थानिक स्थिति है, जिसे "घटना" कहा जाता है, या कभी-कभी स्थिति चार-वेक्टर या चार-स्थिति या 4-स्थिति, चार निर्देशांक के एक सेट द्वारा कुछ संदर्भ फ्रेम में वर्णित होती है:<math display="block"> \mathbf{R} = \left(ct, \mathbf{r}\right) </math>जहाँ r त्रि-आयामी स्थान [[ स्थिति वेक्टर |स्थिति वेक्टर]] है। यदि आर एक ही फ्रेम में समन्वय समय ''t'' का एक कार्य है, यानी r = r(''t''), यह घटनाओं के अनुक्रम के अनुरूप होता है क्योंकि ''t'' भिन्न होता है। परिभाषा R0 = ct यह सुनिश्चित करती है कि सभी निर्देशांकों की इकाइयाँ (दूरी की) समान हों।<ref>Jean-Bernard Zuber & Claude Itzykson, ''Quantum Field Theory'', pg 5 , {{ISBN|0-07-032071-3}}</ref><ref>[[Charles W. Misner]], [[Kip S. Thorne]] & [[John A. Wheeler]],''Gravitation'', pg 51, {{ISBN|0-7167-0344-0}}</ref><ref>[[George Sterman]], ''An Introduction to Quantum Field Theory'', pg 4 , {{ISBN|0-521-31132-2}}</ref> ये निर्देशांक घटना के लिए चार-वेक्टर की स्थिति के घटक हैं।
मिन्कोव्स्की अंतरिक्ष में एक बिंदु एक समय और स्थानिक स्थिति है, जिसे "घटना" कहा जाता है, या कभी-कभी स्थिति चतुर्विम-सदिश या चार-स्थिति या 4-स्थिति, चार निर्देशांक के एक सेट द्वारा कुछ संदर्भ फ्रेम में वर्णित होती है:<math display="block"> \mathbf{R} = \left(ct, \mathbf{r}\right) </math>जहाँ r त्रि-आयामी स्थान [[ स्थिति वेक्टर |स्थिति सदिश]] है। यदि आर एक ही फ्रेम में समन्वय समय ''t'' का एक कार्य है, यानी r = r(''t''), यह घटनाओं के अनुक्रम के अनुरूप होता है क्योंकि ''t'' भिन्न होता है। परिभाषा R0 = ct यह सुनिश्चित करती है कि सभी निर्देशांकों की इकाइयाँ (दूरी की) समान हों।<ref>Jean-Bernard Zuber & Claude Itzykson, ''Quantum Field Theory'', pg 5 , {{ISBN|0-07-032071-3}}</ref><ref>[[Charles W. Misner]], [[Kip S. Thorne]] & [[John A. Wheeler]],''Gravitation'', pg 51, {{ISBN|0-7167-0344-0}}</ref><ref>[[George Sterman]], ''An Introduction to Quantum Field Theory'', pg 4 , {{ISBN|0-521-31132-2}}</ref> ये निर्देशांक घटना के लिए चतुर्विम-सदिश की स्थिति के घटक हैं।


विस्थापन चार-वेक्टर को दो घटनाओं को जोड़ने वाले तीर के रूप में परिभाषित किया गया है:<math display="block"> \Delta \mathbf{R} = \left(c\Delta t, \Delta \mathbf{r} \right) </math>विश्व रेखा पर [[ अंतर (अनंतिम) |अंतर]] चार-स्थिति के लिए, हमारे पास एक आदर्श संकेतन का उपयोग करते हुए:<math display="block">\|d\mathbf{R}\|^2 = \mathbf{dR \cdot dR} = dR^\mu dR_\mu = c^2d\tau^2 = ds^2 \,,</math>अंतर रेखा तत्व डीएस और अंतर उचित समय वृद्धि डीτ को परिभाषित करना, लेकिन यह "मानक" भी है:<math display="block">\|d\mathbf{R}\|^2 = (cdt)^2 - d\mathbf{r}\cdot d\mathbf{r} \,,</math>ताकि:<math display="block">(c d\tau)^2 = (cdt)^2 - d\mathbf{r}\cdot d\mathbf{r} \,.</math>भौतिक परिघटनाओं पर विचार करते समय, विभेदक समीकरण स्वाभाविक रूप से उत्पन्न होते हैं; हालाँकि, जब कार्यों के स्थान और समय के डेरिवेटिव पर विचार किया जाता है, तो यह स्पष्ट नहीं होता है कि इन डेरिवेटिव को किस संदर्भ में लिया गया है। यह सहमति है कि उचित समय <math>\tau</math> के संबंध में [[ समय व्युत्पन्न |समय व्युत्पन्न]] लिया जाता है। चूंकि उचित समय एक अपरिवर्तनीय है, यह गारंटी देता है कि किसी भी चार-सदिश का उचित-समय-व्युत्पन्न स्वयं एक चार-वेक्टर है। इसके बाद इस उचित-समय-व्युत्पन्न और अन्य समय व्युत्पन्न (एक जड़त्वीय संदर्भ फ्रेम के [[ समन्वय समय |समन्वय समय]] टी का उपयोग करके) के बीच संबंध खोजना महत्वपूर्ण है। यह संबंध ऊपर दिए गए अंतर अपरिवर्तनीय स्पेसटाइम अंतराल को लेकर प्रदान किया गया है, फिर प्राप्त करने के लिए (cdt)2 से विभाजित करके:<math display="block">\left(\frac{cd\tau}{cdt}\right)^2
विस्थापन चतुर्विम-सदिश को दो घटनाओं को जोड़ने वाले तीर के रूप में परिभाषित किया गया है:<math display="block"> \Delta \mathbf{R} = \left(c\Delta t, \Delta \mathbf{r} \right) </math>विश्व रेखा पर [[ अंतर (अनंतिम) |अंतर]] चार-स्थिति के लिए, हमारे पास एक आदर्श संकेतन का उपयोग करते हुए:<math display="block">\|d\mathbf{R}\|^2 = \mathbf{dR \cdot dR} = dR^\mu dR_\mu = c^2d\tau^2 = ds^2 \,,</math>अंतर रेखा तत्व डीएस और अंतर उचित समय वृद्धि डीτ को परिभाषित करना, लेकिन यह "मानक" भी है:<math display="block">\|d\mathbf{R}\|^2 = (cdt)^2 - d\mathbf{r}\cdot d\mathbf{r} \,,</math>ताकि:<math display="block">(c d\tau)^2 = (cdt)^2 - d\mathbf{r}\cdot d\mathbf{r} \,.</math>भौतिक परिघटनाओं पर विचार करते समय, विभेदक समीकरण स्वाभाविक रूप से उत्पन्न होते हैं; हालाँकि, जब कार्यों के स्थान और समय के डेरिवेटिव पर विचार किया जाता है, तो यह स्पष्ट नहीं होता है कि इन डेरिवेटिव को किस संदर्भ में लिया गया है। यह सहमति है कि उचित समय <math>\tau</math> के संबंध में [[ समय व्युत्पन्न |समय व्युत्पन्न]] लिया जाता है। चूंकि उचित समय एक अपरिवर्तनीय है, यह गारंटी देता है कि किसी भी चार-सदिश का उचित-समय-व्युत्पन्न स्वयं एक चतुर्विम-सदिश है। इसके बाद इस उचित-समय-व्युत्पन्न और अन्य समय व्युत्पन्न (एक जड़त्वीय संदर्भ फ्रेम के [[ समन्वय समय |समन्वय समय]] टी का उपयोग करके) के बीच संबंध खोजना महत्वपूर्ण है। यह संबंध ऊपर दिए गए अंतर अपरिवर्तनीय दिक्काल अंतराल को लेकर प्रदान किया गया है, फिर प्राप्त करने के लिए (cdt)2 से विभाजित करके:<math display="block">\left(\frac{cd\tau}{cdt}\right)^2
   = 1 - \left(\frac{d\mathbf{r}}{cdt}\cdot \frac{d\mathbf{r}}{cdt}\right)
   = 1 - \left(\frac{d\mathbf{r}}{cdt}\cdot \frac{d\mathbf{r}}{cdt}\right)
   = 1 - \frac{\mathbf{u}\cdot\mathbf{u}}{c^2} = \frac{1}{\gamma(\mathbf{u})^2} \,,
   = 1 - \frac{\mathbf{u}\cdot\mathbf{u}}{c^2} = \frac{1}{\gamma(\mathbf{u})^2} \,,
Line 200: Line 201:
=== चार-वेग ===
=== चार-वेग ===
{{Main|Four-velocity}}
{{Main|Four-velocity}}
एक कण के चार-वेग को निम्न द्वारा परिभाषित किया गया है:<math display="block">\mathbf{U} = \frac{d\mathbf{X}}{d \tau} = \frac{d\mathbf{X}}{dt}\frac{dt}{d \tau} = \gamma(\mathbf{u})\left(c, \mathbf{u}\right),</math>ज्यामितीय रूप से, यू कण की [[ विश्व रेखा |विश्व रेखा]] के लिए सामान्यीकृत वेक्टर स्पर्शक है। चार-स्थिति के अंतर का उपयोग करते हुए, चार-वेग का परिमाण प्राप्त किया जा सकता है:<math display="block">\|\mathbf{U}\|^2 = U^\mu U_\mu = \frac{dX^\mu}{d\tau} \frac{dX_\mu}{d\tau} = \frac{dX^\mu dX_\mu}{d\tau^2} = c^2 \,,</math>संक्षेप में, किसी भी वस्तु के लिए चार-वेग का परिमाण हमेशा एक स्थिर स्थिरांक होता है:<math display="block">\| \mathbf{U} \|^2 = c^2 </math>मानदंड भी है:<math display="block">\|\mathbf{U}\|^2 = {\gamma(\mathbf{u})}^2 \left( c^2 - \mathbf{u}\cdot\mathbf{u} \right) \,,</math>ताकि:<math display="block">c^2 = {\gamma(\mathbf{u})}^2 \left( c^2 - \mathbf{u}\cdot\mathbf{u} \right) \,,</math>जो लोरेंत्ज़ फैक्टर की परिभाषा को कम करता है।
एक कण के चार-वेग को निम्न द्वारा परिभाषित किया गया है:<math display="block">\mathbf{U} = \frac{d\mathbf{X}}{d \tau} = \frac{d\mathbf{X}}{dt}\frac{dt}{d \tau} = \gamma(\mathbf{u})\left(c, \mathbf{u}\right),</math>ज्यामितीय रूप से, यू कण की [[ विश्व रेखा |विश्व रेखा]] के लिए सामान्यीकृत सदिश स्पर्शक है। चार-स्थिति के अंतर का उपयोग करते हुए, चार-वेग का परिमाण प्राप्त किया जा सकता है:<math display="block">\|\mathbf{U}\|^2 = U^\mu U_\mu = \frac{dX^\mu}{d\tau} \frac{dX_\mu}{d\tau} = \frac{dX^\mu dX_\mu}{d\tau^2} = c^2 \,,</math>संक्षेप में, किसी भी वस्तु के लिए चार-वेग का परिमाण हमेशा एक स्थिर स्थिरांक होता है:<math display="block">\| \mathbf{U} \|^2 = c^2 </math>मानदंड भी है:<math display="block">\|\mathbf{U}\|^2 = {\gamma(\mathbf{u})}^2 \left( c^2 - \mathbf{u}\cdot\mathbf{u} \right) \,,</math>ताकि:<math display="block">c^2 = {\gamma(\mathbf{u})}^2 \left( c^2 - \mathbf{u}\cdot\mathbf{u} \right) \,,</math>जो लोरेंत्ज़ फैक्टर की परिभाषा को कम करता है।


चार-वेग की इकाइयाँ [[ इकाइयों की अंतर्राष्ट्रीय प्रणाली |SI]] में m/s हैं और [[ ज्यामितीय इकाई प्रणाली |ज्यामितीय इकाई प्रणाली]] में 1 है। चार-वेग एक प्रतिपरिवर्ती सदिश है।
चार-वेग की इकाइयाँ [[ इकाइयों की अंतर्राष्ट्रीय प्रणाली |SI]] में m/s हैं और [[ ज्यामितीय इकाई प्रणाली |ज्यामितीय इकाई प्रणाली]] में 1 है। चार-वेग एक प्रतिपरिवर्ती सदिश है।
Line 211: Line 212:
जहाँ a = du/dt 3-त्वरण का निर्देशांक है। चूँकि U का परिमाण एक स्थिरांक है, चार त्वरण चार वेगों के लिए ओर्थोगोनल है, यानी चार-त्वरण और चार-वेग का मिन्कोव्स्की आंतरिक उत्पाद शून्य है:
जहाँ a = du/dt 3-त्वरण का निर्देशांक है। चूँकि U का परिमाण एक स्थिरांक है, चार त्वरण चार वेगों के लिए ओर्थोगोनल है, यानी चार-त्वरण और चार-वेग का मिन्कोव्स्की आंतरिक उत्पाद शून्य है:


<math display="block">\mathbf{A}\cdot\mathbf{U} = A^\mu U_\mu = \frac{dU^\mu}{d\tau} U_\mu = \frac{1}{2} \, \frac{d}{d\tau} \left(U^\mu U_\mu\right) = 0 \,</math>जो सभी विश्व रेखाओं के लिए सत्य है। चार-त्वरण का ज्यामितीय अर्थ मिन्कोवस्की अंतरिक्ष में विश्व रेखा का [[ वक्रता वेक्टर |वक्रता वेक्टर]] है।
<math display="block">\mathbf{A}\cdot\mathbf{U} = A^\mu U_\mu = \frac{dU^\mu}{d\tau} U_\mu = \frac{1}{2} \, \frac{d}{d\tau} \left(U^\mu U_\mu\right) = 0 \,</math>जो सभी विश्व रेखाओं के लिए सत्य है। चार-त्वरण का ज्यामितीय अर्थ मिन्कोवस्की अंतरिक्ष में विश्व रेखा का [[ वक्रता वेक्टर |वक्रता सदिश]] है।


==गतिशीलता==
==गतिशीलता==
Line 217: Line 218:
=== चार गति ===
=== चार गति ===


[[ आराम द्रव्यमान |आराम द्रव्यमान]] (या [[ अपरिवर्तनीय द्रव्यमान |अपरिवर्तनीय द्रव्यमान]]) m<sub>0</sub> के एक विशाल कण के लिए, चार-संवेग द्वारा दिया जाता है:
[[ आराम द्रव्यमान |आराम द्रव्यमान]] (या [[ अपरिवर्तनीय द्रव्यमान |अपरिवर्तनीय द्रव्यमान]]) m<sub>0</sub> के एक विशाल कण के लिए, चतुर्विम-संवेग द्वारा दिया जाता है:


<math display="block">\mathbf{P} = m_0 \mathbf{U} = m_0\gamma(\mathbf{u})(c, \mathbf{u}) = \left(\frac{E}{c}, \mathbf{p}\right)</math>
<math display="block">\mathbf{P} = m_0 \mathbf{U} = m_0\gamma(\mathbf{u})(c, \mathbf{u}) = \left(\frac{E}{c}, \mathbf{p}\right)</math>
Line 254: Line 255:
===चार-गर्मी प्रवाह ===
===चार-गर्मी प्रवाह ===


तरल के स्थानीय फ्रेम में, चार-[[ गर्मी प्रवाह |गर्मी प्रवाह]] वेक्टर क्षेत्र अनिवार्य रूप से 3डी गर्मी प्रवाह वेक्टर क्षेत्र क्यू के समान है:<ref>{{Cite journal |first1=Y. M. |last1=Ali |first2=L. C. |last2=Zhang |title=सापेक्षिक ऊष्मा चालन|journal=Int. J. Heat Mass Trans. |volume=48 |year=2005 |issue=12 |pages=2397–2406 |doi=10.1016/j.ijheatmasstransfer.2005.02.003 }}</ref>
तरल के स्थानीय फ्रेम में, चार-[[ गर्मी प्रवाह |गर्मी प्रवाह]] सदिश क्षेत्र अनिवार्य रूप से 3डी गर्मी प्रवाह सदिश क्षेत्र क्यू के समान है:<ref>{{Cite journal |first1=Y. M. |last1=Ali |first2=L. C. |last2=Zhang |title=सापेक्षिक ऊष्मा चालन|journal=Int. J. Heat Mass Trans. |volume=48 |year=2005 |issue=12 |pages=2397–2406 |doi=10.1016/j.ijheatmasstransfer.2005.02.003 }}</ref>


<math display="block">\mathbf{Q} = -k \boldsymbol{\partial} T = -k\left( \frac{1}{c}\frac{\partial T}{\partial t}, \nabla T\right) </math>
<math display="block">\mathbf{Q} = -k \boldsymbol{\partial} T = -k\left( \frac{1}{c}\frac{\partial T}{\partial t}, \nabla T\right) </math>
Line 267: Line 268:
===चार-एन्ट्रॉपी===
===चार-एन्ट्रॉपी===


चार-एन्ट्रॉपी वेक्टर द्वारा परिभाषित किया गया है:<ref>{{Cite book|title=आकर्षण-शक्ति|url=https://archive.org/details/gravitation00misn_003| url-access=limited|author1=J.A. Wheeler |author2=C. Misner |author3=K.S. Thorne |publisher=W.H. Freeman & Co| year=1973| page=[https://archive.org/details/gravitation00misn_003/page/n591 567]|isbn=0-7167-0344-0}}</ref>
चार-एन्ट्रॉपी सदिश द्वारा परिभाषित किया गया है:<ref>{{Cite book|title=आकर्षण-शक्ति|url=https://archive.org/details/gravitation00misn_003| url-access=limited|author1=J.A. Wheeler |author2=C. Misner |author3=K.S. Thorne |publisher=W.H. Freeman & Co| year=1973| page=[https://archive.org/details/gravitation00misn_003/page/n591 567]|isbn=0-7167-0344-0}}</ref>
<math display="block">\mathbf{s} = s\mathbf{S} + \frac{\mathbf{Q}}{T}</math>
<math display="block">\mathbf{s} = s\mathbf{S} + \frac{\mathbf{Q}}{T}</math>
जहां {{math|''s''}} एंट्रॉपी प्रति बेरोन है, और {{mvar|T}} निरपेक्ष तापमान है, द्रव के स्थानीय रेस्ट फ्रेम में।<ref>{{Cite book|title=आकर्षण-शक्ति|url=https://archive.org/details/gravitation00misn_003|url-access=limited|author1=J.A. Wheeler |author2=C. Misner |author3=K.S. Thorne |publisher=W.H. Freeman & Co|year=1973|page=[https://archive.org/details/gravitation00misn_003/page/n582 558]|isbn=0-7167-0344-0}}</ref>
जहां {{math|''s''}} एंट्रॉपी प्रति बेरोन है, और {{mvar|T}} निरपेक्ष तापमान है, द्रव के स्थानीय रेस्ट फ्रेम में।<ref>{{Cite book|title=आकर्षण-शक्ति|url=https://archive.org/details/gravitation00misn_003|url-access=limited|author1=J.A. Wheeler |author2=C. Misner |author3=K.S. Thorne |publisher=W.H. Freeman & Co|year=1973|page=[https://archive.org/details/gravitation00misn_003/page/n582 558]|isbn=0-7167-0344-0}}</ref>
==विद्युत चुंबकत्व==
==विद्युत चुंबकत्व==


[[ विद्युत |विद्युत चुंबकत्व]] में चार-वैक्टर के उदाहरणों में निम्नलिखित शामिल हैं।
[[ विद्युत |विद्युत चुंबकत्व]] में चतुर्विम-सदिश के उदाहरणों में निम्नलिखित सम्मिलित हैं।


===चार-वर्तमान ===
===चार-वर्तमान ===
Line 291: Line 292:
===चार-संभावित===
===चार-संभावित===


इलेक्ट्रोमैग्नेटिक फोर-पोटेंशियल (या अधिक सही ढंग से चार-ईएम वेक्टर क्षमता) द्वारा परिभाषित
इलेक्ट्रोमैग्नेटिक फोर-पोटेंशियल (या अधिक सही ढंग से चार-ईएम सदिश क्षमता) द्वारा परिभाषित
<math display="block">\mathbf{A} = \left( \frac{\phi}{c}, \mathbf{a} \right)</math>[[ वेक्टर क्षमता |वेक्टर क्षमता]] {{math|'''a'''}} और स्केलर क्षमता {{math|''ϕ''}} से बनता है।
<math display="block">\mathbf{A} = \left( \frac{\phi}{c}, \mathbf{a} \right)</math>[[ वेक्टर क्षमता |सदिश क्षमता]] {{math|'''a'''}} और स्केलर क्षमता {{math|''ϕ''}} से बनता है।


चार-क्षमता अद्वितीय रूप से निर्धारित नहीं है, क्योंकि यह गेज की पसंद पर निर्भर करता है।
चार-क्षमता अद्वितीय रूप से निर्धारित नहीं है, क्योंकि यह गेज की पसंद पर निर्भर करता है।
Line 306: Line 307:


<math display="block">\mathbf{N} = \nu\left(1 , \hat{\mathbf{n}} \right)</math>
<math display="block">\mathbf{N} = \nu\left(1 , \hat{\mathbf{n}} \right)</math>
जहां ν तरंग की आवृत्ति है और <math>\hat{\mathbf{n}}</math> तरंग की यात्रा दिशा में एक इकाई वेक्टर है। अब:
जहां ν तरंग की आवृत्ति है और <math>\hat{\mathbf{n}}</math> तरंग की यात्रा दिशा में एक इकाई सदिश है। अब:


<math display="block">\|\mathbf{N}\| = N^\mu N_\mu = \nu ^2 \left(1 - \hat{\mathbf{n}}\cdot\hat{\mathbf{n}}\right) = 0</math>
<math display="block">\|\mathbf{N}\| = N^\mu N_\mu = \nu ^2 \left(1 - \hat{\mathbf{n}}\cdot\hat{\mathbf{n}}\right) = 0</math>
इसलिए फोटॉन की चार-आवृत्ति हमेशा एक अशक्त वेक्टर होती है।
इसलिए फोटॉन की चार-आवृत्ति हमेशा एक अशक्त सदिश होती है।


===चार तरंगवेक्टर ===
===चार तरंगसदिश ===


{{see also|De Broglie relation}}
{{see also|De Broglie relation}}
समय t और स्थान r के व्युत्क्रम की मात्राएँ क्रमशः [[ कोणीय आवृत्ति |कोणीय आवृत्ति]] ω और वेव वेक्टर k हैं। वे चार-तरंग वेक्टर या तरंग चार-वेक्टर के घटक बनाते हैं:
समय t और स्थान r के व्युत्क्रम की मात्राएँ क्रमशः [[ कोणीय आवृत्ति |कोणीय आवृत्ति]] ω और वेव सदिश k हैं। वे चार-तरंग सदिश या तरंग चतुर्विम-सदिश के घटक बनाते हैं:


<math display="block">\mathbf{K} = \left(\frac{\omega}{c}, \vec{\mathbf{k}}\right) = \left(\frac{\omega}{c}, \frac{\omega}{v_p} \hat\mathbf{n}\right) \,.</math>
<math display="block">\mathbf{K} = \left(\frac{\omega}{c}, \vec{\mathbf{k}}\right) = \left(\frac{\omega}{c}, \frac{\omega}{v_p} \hat\mathbf{n}\right) \,.</math>
Line 320: Line 321:


<math display="block">\mathbf{K} = \frac{2\pi}{c}\mathbf{N} = \frac{2\pi}{c} \nu\left(1,\hat{\mathbf{n}}\right) = \frac{\omega}{c} \left(1, \hat{\mathbf{n}}\right) \,.</math>
<math display="block">\mathbf{K} = \frac{2\pi}{c}\mathbf{N} = \frac{2\pi}{c} \nu\left(1,\hat{\mathbf{n}}\right) = \frac{\omega}{c} \left(1, \hat{\mathbf{n}}\right) \,.</math>
डी ब्रोगली संबंध तब दिखाते हैं कि चार-लहर वेक्टर पदार्थ तरंगों के साथ-साथ प्रकाश तरंगों पर भी लागू होता है:
डी ब्रोगली संबंध तब दिखाते हैं कि चार-लहर सदिश पदार्थ तरंगों के साथ-साथ प्रकाश तरंगों पर भी लागू होता है:
<math display="block">\mathbf{P} = \hbar \mathbf{K} = \left(\frac{E}{c},\vec{p}\right) = \hbar \left(\frac{\omega}{c},\vec{k} \right)\,.</math>
<math display="block">\mathbf{P} = \hbar \mathbf{K} = \left(\frac{E}{c},\vec{p}\right) = \hbar \left(\frac{\omega}{c},\vec{k} \right)\,.</math>
उपज <math>E = \hbar \omega</math> तथा <math>\vec{p} = \hbar \vec{k}</math>, जहां प्लांक नियतांक से विभाजित है {{math|2''π''}}.
उपज <math>E = \hbar \omega</math> तथा <math>\vec{p} = \hbar \vec{k}</math>, जहां प्लांक नियतांक से विभाजित है {{math|2''π''}}.
Line 332: Line 333:
ध्यान दें कि द्रव्यमान रहित कणों के लिए, किस स्थिति में {{math|1=''m''<sub>0</sub> = 0}}, अपने पास:
ध्यान दें कि द्रव्यमान रहित कणों के लिए, किस स्थिति में {{math|1=''m''<sub>0</sub> = 0}}, अपने पास:
<math display="block">\left(\frac{\omega}{c}\right)^2 = \mathbf{k}\cdot\mathbf{k} \,,</math>
<math display="block">\left(\frac{\omega}{c}\right)^2 = \mathbf{k}\cdot\mathbf{k} \,,</math>
या {{math|1=‖'''k'''‖ = ''ω''/''c''}}. ध्यान दें कि यह उपरोक्त मामले के अनुरूप है; मापांक के 3-तरंग वेक्टर वाले फोटॉन के लिए {{math|''ω''/''c''}}, इकाई वेक्टर द्वारा परिभाषित तरंग प्रसार की दिशा में <math>\hat{\mathbf{n}}</math>.
या {{math|1=‖'''k'''‖ = ''ω''/''c''}}. ध्यान दें कि यह उपरोक्त मामले के अनुरूप है; मापांक के 3-तरंग सदिश वाले फोटॉन के लिए {{math|''ω''/''c''}}, इकाई सदिश द्वारा परिभाषित तरंग प्रसार की दिशा में <math>\hat{\mathbf{n}}</math>.


== क्वांटम सिद्धांत ==
== क्वांटम सिद्धांत ==
Line 340: Line 341:
[[ क्वांटम यांत्रिकी |क्वांटम यांत्रिकी]] में, चार-[[ संभाव्यता वर्तमान |संभाव्यता वर्तमान]] या प्रायिकता चार-धारा विद्युत चुम्बकीय चार-धारा के अनुरूप होती है:<ref>Vladimir G. Ivancevic, Tijana T. Ivancevic (2008) ''Quantum leap: from Dirac and Feynman, across the universe, to human body and mind''. World Scientific Publishing Company, {{ISBN|978-981-281-927-7}}, [https://books.google.com/books?id=qyK95FevVbIC&pg=PA41 p. 41]</ref>
[[ क्वांटम यांत्रिकी |क्वांटम यांत्रिकी]] में, चार-[[ संभाव्यता वर्तमान |संभाव्यता वर्तमान]] या प्रायिकता चार-धारा विद्युत चुम्बकीय चार-धारा के अनुरूप होती है:<ref>Vladimir G. Ivancevic, Tijana T. Ivancevic (2008) ''Quantum leap: from Dirac and Feynman, across the universe, to human body and mind''. World Scientific Publishing Company, {{ISBN|978-981-281-927-7}}, [https://books.google.com/books?id=qyK95FevVbIC&pg=PA41 p. 41]</ref>
<math display="block">\mathbf{J} = (\rho c, \mathbf{j}) </math>
<math display="block">\mathbf{J} = (\rho c, \mathbf{j}) </math>
जहां {{math|''ρ''}} समय घटक के संगत प्रायिकता घनत्व फलन है, और {{math|'''j'''}} प्रायिकता वर्तमान वेक्टर है। गैर-सापेक्षवादी क्वांटम यांत्रिकी में, यह धारा हमेशा अच्छी तरह से परिभाषित होती है क्योंकि घनत्व और धारा के भाव सकारात्मक निश्चित होते हैं और संभाव्यता व्याख्या स्वीकार कर सकते हैं। सापेक्षतावादी क्वांटम यांत्रिकी और [[ क्वांटम क्षेत्र सिद्धांत |क्वांटम क्षेत्र सिद्धांत]] में, हमेशा करंट का पता लगाना संभव नहीं होता है, खासकर जब बातचीत शामिल हो।
जहां {{math|''ρ''}} समय घटक के संगत प्रायिकता घनत्व फलन है, और {{math|'''j'''}} प्रायिकता वर्तमान सदिश है। गैर-सापेक्षवादी क्वांटम यांत्रिकी में, यह धारा हमेशा अच्छी तरह से परिभाषित होती है क्योंकि घनत्व और धारा के भाव सकारात्मक निश्चित होते हैं और संभाव्यता व्याख्या स्वीकार कर सकते हैं। सापेक्षतावादी क्वांटम यांत्रिकी और [[ क्वांटम क्षेत्र सिद्धांत |क्वांटम क्षेत्र सिद्धांत]] में, हमेशा करंट का पता लगाना संभव नहीं होता है, खासकर जब बातचीत सम्मिलित हो।


चार-संवेग में [[ ऊर्जा ऑपरेटर |ऊर्जा ऑपरेटर]] द्वारा ऊर्जा और [[ पल ऑपरेटर |संवेग संचालक]] द्वारा संवेग को प्रतिस्थापित करने पर, [[ चार-गति ऑपरेटर |चार-गति ऑपरेटर]] प्राप्त होता है, जिसका उपयोग [[ आपेक्षिक तरंग समीकरण |आपेक्षिक तरंग समीकरण]] में किया जाता है।
चतुर्विम-संवेग में [[ ऊर्जा ऑपरेटर |ऊर्जा ऑपरेटर]] द्वारा ऊर्जा और [[ पल ऑपरेटर |संवेग संचालक]] द्वारा संवेग को प्रतिस्थापित करने पर, [[ चार-गति ऑपरेटर |चार-गति ऑपरेटर]] प्राप्त होता है, जिसका उपयोग [[ आपेक्षिक तरंग समीकरण |आपेक्षिक तरंग समीकरण]] में किया जाता है।


===चार-स्पिन===
===चार-स्पिन===
Line 348: Line 349:
एक कण के [[ फोर-स्पिन |फोर-स्पिन]] को कण के बाकी फ्रेम में परिभाषित किया जाता है
एक कण के [[ फोर-स्पिन |फोर-स्पिन]] को कण के बाकी फ्रेम में परिभाषित किया जाता है
<math display="block">\mathbf{S} = (0, \mathbf{s})</math>
<math display="block">\mathbf{S} = (0, \mathbf{s})</math>
जहां {{math|'''s'''}} [[ स्पिन (भौतिकी) |स्पिन]] स्यूडोवेक्टर है। क्वांटम यांत्रिकी में, इस सदिश के सभी तीन घटकों को एक साथ मापा नहीं जा सकता है, केवल एक घटक है। टाइमलाइक कंपोनेंट पार्टिकल के रेस्ट फ्रेम में जीरो है, लेकिन किसी अन्य फ्रेम में नहीं। यह घटक उपयुक्त लोरेंत्ज़ रूपांतरण से पाया जा सकता है।
जहां {{math|'''s'''}} [[ स्पिन (भौतिकी) |स्पिन]] स्यूडोसदिश है। क्वांटम यांत्रिकी में, इस सदिश के सभी तीन घटकों को एक साथ मापा नहीं जा सकता है, केवल एक घटक है। टाइमलाइक कंपोनेंट पार्टिकल के रेस्ट फ्रेम में जीरो है, लेकिन किसी अन्य फ्रेम में नहीं। यह घटक उपयुक्त लोरेंत्ज़ रूपांतरण से पाया जा सकता है।


मानक वर्ग स्पिन का (ऋणात्मक) परिमाण वर्ग है, और क्वांटम यांत्रिकी के अनुसार हमारे पास है
मानक वर्ग स्पिन का (ऋणात्मक) परिमाण वर्ग है, और क्वांटम यांत्रिकी के अनुसार हमारे पास है
<math display="block">\|\mathbf{S}\|^2 = -|\mathbf{s}|^2 = -\hbar^2 s(s + 1)</math>
<math display="block">\|\mathbf{S}\|^2 = -|\mathbf{s}|^2 = -\hbar^2 s(s + 1)</math>
[[ स्पिन क्वांटम संख्या |स्पिन क्वांटम संख्या]] {{math|''s''}} (स्पिन वेक्टर की परिमाण नहीं) के साथ, यह मान अवलोकनीय और परिमाणित है।
[[ स्पिन क्वांटम संख्या |स्पिन क्वांटम संख्या]] {{math|''s''}} (स्पिन सदिश की परिमाण नहीं) के साथ, यह मान अवलोकनीय और परिमाणित है।


== अन्य फॉर्मूलेशन ==
== अन्य फॉर्मूलेशन ==
Line 358: Line 359:
===भौतिक स्थान के बीजगणित में चार-सदिश ===
===भौतिक स्थान के बीजगणित में चार-सदिश ===


एक चार-वेक्टर ए को भी [[ पॉल के मैट्रिक्स |पॉल के मैट्रिक्स]] को [[ आधार (रैखिक बीजगणित) |आधार]] के रूप में उपयोग करते हुए परिभाषित किया जा सकता है, फिर से विभिन्न समकक्ष नोटेशन में:<ref>{{cite book |pages= 1142–1143|author1=J.A. Wheeler |author2=C. Misner |author3=K.S. Thorne | title=[[गुरुत्वाकर्षण (पुस्तक)|Gravitation]]| publisher=W.H. Freeman & Co| year=1973 | isbn=0-7167-0344-0}}</ref>
एक चतुर्विम-सदिश ए को भी [[ पॉल के मैट्रिक्स |पॉल के आव्यूह]] को [[ आधार (रैखिक बीजगणित) |आधार]] के रूप में उपयोग करते हुए परिभाषित किया जा सकता है, फिर से विभिन्न समकक्ष नोटेशन में:<ref>{{cite book |pages= 1142–1143|author1=J.A. Wheeler |author2=C. Misner |author3=K.S. Thorne | title=[[गुरुत्वाकर्षण (पुस्तक)|Gravitation]]| publisher=W.H. Freeman & Co| year=1973 | isbn=0-7167-0344-0}}</ref>
<math display="block"> \begin{align}   
<math display="block"> \begin{align}   
   \mathbf{A} & = \left(A^0, \, A^1, \, A^2, \, A^3\right) \\
   \mathbf{A} & = \left(A^0, \, A^1, \, A^2, \, A^3\right) \\
Line 376: Line 377:
                 \end{pmatrix}
                 \end{pmatrix}
\end{align}</math>
\end{align}</math>
और इस फॉर्मूलेशन में, चार-वेक्टर को एक वास्तविक-मूल्यवान कॉलम या पंक्ति वेक्टर के बजाय [[ हर्मिटियन मैट्रिक्स |हर्मिटियन मैट्रिक्स]] (मैट्रिक्स ट्रांसपोज़ और मैट्रिक्स के जटिल संयुग्म इसे अपरिवर्तित छोड़ देता है) के रूप में दर्शाया गया है। मैट्रिक्स का निर्धारक चार-सदिश का मॉड्यूलस है, इसलिए निर्धारक एक अपरिवर्तनीय है:
और इस फॉर्मूलेशन में, चतुर्विम-सदिश को एक वास्तविक-मूल्यवान कॉलम या पंक्ति सदिश के बजाय [[ हर्मिटियन मैट्रिक्स |हर्मिटियन आव्यूह]] (आव्यूह ट्रांसपोज़ और आव्यूह के जटिल संयुग्म इसे अपरिवर्तित छोड़ देता है) के रूप में दर्शाया गया है। आव्यूह का निर्धारक चार-सदिश का मॉड्यूलस है, इसलिए निर्धारक एक अपरिवर्तनीय है:
<math display="block"> \begin{align}   
<math display="block"> \begin{align}   
   |\mathbf{A}| & = \begin{vmatrix}
   |\mathbf{A}| & = \begin{vmatrix}
Line 385: Line 386:
               & = \left(A^0\right)^2 - \left(A^1\right)^2 - \left(A^2\right)^2 - \left(A^3\right)^2
               & = \left(A^0\right)^2 - \left(A^1\right)^2 - \left(A^2\right)^2 - \left(A^3\right)^2
\end{align}</math>
\end{align}</math>
पाउली मेट्रिसेस को आधार वैक्टर के रूप में उपयोग करने का यह विचार भौतिक अंतरिक्ष के बीजगणित में नियोजित है, क्लिफर्ड बीजगणित का एक उदाहरण है।
पाउली मेट्रिसेस को आधार सदिश के रूप में उपयोग करने का यह विचार भौतिक अंतरिक्ष के बीजगणित में नियोजित है, क्लिफर्ड बीजगणित का एक उदाहरण है।


=== स्पेसटाइम बीजगणित में चार-वैक्टर ===
=== दिक्काल बीजगणित में चतुर्विम-सदिश ===


[[ स्पेसटाइम बीजगणित |स्पेसटाइम बीजगणित]] में, क्लिफोर्ड बीजगणित का एक और उदाहरण, गामा मैट्रिक्स भी आधार बना सकते हैं। ([[ डिराक समीकरण |डिराक समीकरण]] में उनकी उपस्थिति के कारण उन्हें डायराक मैट्रिस भी कहा जाता है)। गामा मैट्रिसेस को व्यक्त करने के एक से अधिक तरीके हैं, जो कि मुख्य लेख में विस्तृत हैं।
[[ स्पेसटाइम बीजगणित |दिक्काल बीजगणित]] में, क्लिफोर्ड बीजगणित का एक और उदाहरण, गामा आव्यूह भी आधार बना सकते हैं। ([[ डिराक समीकरण |डिराक समीकरण]] में उनकी उपस्थिति के कारण उन्हें डायराक मैट्रिस भी कहा जाता है)। गामा आव्यूहों को व्यक्त करने के एक से अधिक तरीके हैं, जो कि मुख्य लेख में विस्तृत हैं।


[[ फेनमैन स्लैश नोटेशन |फेनमैन स्लैश नोटेशन]] गामा मैट्रिसेस के साथ अनुबंधित चार-वेक्टर A के लिए एक शॉर्टहैंड है:<math display="block">\mathbf{A}\!\!\!\!/ = A_\alpha \gamma^\alpha = A_0 \gamma^0 + A_1 \gamma^1 + A_2 \gamma^2 + A_3 \gamma^3 </math>
[[ फेनमैन स्लैश नोटेशन |फेनमैन स्लैश नोटेशन]] गामा आव्यूहों के साथ अनुबंधित चतुर्विम-सदिश A के लिए एक शॉर्टहैंड है:<math display="block">\mathbf{A}\!\!\!\!/ = A_\alpha \gamma^\alpha = A_0 \gamma^0 + A_1 \gamma^1 + A_2 \gamma^2 + A_3 \gamma^3 </math>
गामा मैट्रिक्स के साथ अनुबंधित चार-संवेग सापेक्षतावादी क्वांटम यांत्रिकी और सापेक्षतावादी क्वांटम क्षेत्र सिद्धांत में एक महत्वपूर्ण मामला है। डायराक समीकरण और अन्य आपेक्षिकीय तरंग समीकरणों में, इस रूप के पद:
गामा आव्यूह के साथ अनुबंधित चतुर्विम-संवेग सापेक्षतावादी क्वांटम यांत्रिकी और सापेक्षतावादी क्वांटम क्षेत्र सिद्धांत में एक महत्वपूर्ण मामला है। डायराक समीकरण और अन्य आपेक्षिकीय तरंग समीकरणों में, इस रूप के पद:
<math display="block">\mathbf{P}\!\!\!\!/ = P_\alpha \gamma^\alpha = P_0 \gamma^0 + P_1 \gamma^1 + P_2 \gamma^2 + P_3 \gamma^3 = \dfrac{E}{c} \gamma^0 - p_x \gamma^1 - p_y \gamma^2 - p_z \gamma^3 </math>
<math display="block">\mathbf{P}\!\!\!\!/ = P_\alpha \gamma^\alpha = P_0 \gamma^0 + P_1 \gamma^1 + P_2 \gamma^2 + P_3 \gamma^3 = \dfrac{E}{c} \gamma^0 - p_x \gamma^1 - p_y \gamma^2 - p_z \gamma^3 </math>
प्रकट होते हैं, जिसमें ऊर्जा {{mvar|E}} और संवेग घटक {{math|(''p<sub>x</sub>'', ''p<sub>y</sub>'', ''p<sub>z</sub>'')}} उनके संबंधित [[ ऑपरेटर (भौतिकी) |ऑपरेटर]] द्वारा प्रतिस्थापित कर दिए जाते हैं।
प्रकट होते हैं, जिसमें ऊर्जा {{mvar|E}} और संवेग घटक {{math|(''p<sub>x</sub>'', ''p<sub>y</sub>'', ''p<sub>z</sub>'')}} उनके संबंधित [[ ऑपरेटर (भौतिकी) |ऑपरेटर]] द्वारा प्रतिस्थापित कर दिए जाते हैं।
Line 398: Line 399:
==यह भी देखें==
==यह भी देखें==
*[[ घुमावदार स्पेसटाइम के गणित का मूल परिचय |वक्रित दिक्-काल के गणित का मूल परिचय]]
*[[ घुमावदार स्पेसटाइम के गणित का मूल परिचय |वक्रित दिक्-काल के गणित का मूल परिचय]]
* संख्या-प्रवाह चार-वेक्टर के लिए [[ धूल (सापेक्षता) |धूल (सापेक्षता)]]।
* संख्या-प्रवाह चतुर्विम-सदिश के लिए [[ धूल (सापेक्षता) |धूल (सापेक्षता)]]।
*मिंकोव्स्की स्पेस
*मिंकोव्स्की स्पेस
*[[ पैरावेक्टर |पैरावेक्टर]]
*[[ पैरावेक्टर |पैरासदिश]]
*सापेक्ष यांत्रिकी
*सापेक्ष यांत्रिकी
*वेव वेक्टर
*वेव सदिश





Revision as of 19:34, 24 November 2022

विशेष सापेक्षता में, एक चतुर्विम-सदिश (या 4-सदिश)[1] एक प्रकार की वस्तु है जिसके चार घातक होते है, जिसका रूपांतरण लोरेंत्ज़ रूपांतरणों के अधीन विशिष्ट रूप से किया जाता है। विशेष रूप से, चतुर्विम-सदिश एक चतुर्विमीय सदिश समष्टि का एक भाग या अंश होता है जिसे लोरेंत्ज़ समूह के मानक निरूपण का निरूपण समिष्टि, (1/2,1/2) निरूपण के रूप में माना जाता है। यह यूक्लिडियन सदिश से भिन्न होता है कि इसका परिमाण कैसे निर्धारित किया जाता है। इस परिमाण को संरक्षित करने वाले रूपांतरण लोरेंत्ज़ रूपांतरण कहलाते हैं, जिसमें स्थानिक घूर्णन और बूस्ट सम्मिलित होते हैं (एक नियत वेग द्वारा एक अन्य जड़त्वीय निर्देश तंत्र में परिवर्तन)।[2]: ch1 

चतुर्विम-सदिश वर्णन करते हैं, किसी अवस्था के लिए, मिंकोव्स्की समष्टि के रूप में मॉडल किए गए दिक्काल में स्थिति xμ, एक कण का चतुर्विम-संवेग pμ, दिक्काल में बिंदु x पर विद्युत चुम्बकीय चतुर्विम-विभव Aμ(x) का आयाम, और डायराक बीजगणित के अंतर्गत गामा आव्यूहों द्वारा विस्तरित उपसमष्‍टि के तत्व है।

लोरेंत्ज़ समूह को 4×4 आव्यूह Λ द्वारा दर्शाया जा सकता है। प्रविष्टियों में किसी जड़त्वीय तंत्र के संबंध में कार्तीय निर्देशांक के साथ एक स्तंभ सदिश के रूप में माने जाने वाले एक सामान्य प्रतिपरिवर्ती चतुर्विम-सदिश X (ऊपर दिए गए उदाहरणों की तरह) पर लोरेंत्ज़ रूपांतरण की क्रिया, निम्न द्वारा दी गई है

(आव्यूह गुणा) जहां प्राथमिक वस्तु के घटक नए फ्रेम को संदर्भित करते हैं। ऊपर दिए गए उदाहरणों से संबंधित जो प्रतिपरिवर्ती सदिशों के रूप में दिए गए हैं, सहसंयोजक सदिश xμ, pμ और Aμ(x) भी हैं। ये नियमानुसार परिवर्तित होते हैं
जहां T आव्यूह स्थानांतरण को दर्शाता है। यह नियम ऊपर दिए गए नियम से अलग है। यह मानक प्रतिनिधित्व के दोहरे प्रतिनिधित्व से मेल खाता है। हालाँकि, लोरेन्ट्ज़ समूह के लिए किसी भी प्रतिनिधित्व का दोहरा मूल प्रतिनिधित्व के बराबर है। इस प्रकार सहसंयोजक सूचकांकों वाली वस्तुएँ चतुर्विम-सदिश भी हैं।


विशेष सापेक्षता में एक अच्छी तरह से व्यवहार किए गए चार-घटक वस्तु के उदाहरण के लिए, जो कि चतुर्विम-सदिश नहीं है, बिस्पिनर देखें। इसे समान रूप से परिभाषित किया गया है, अंतर यह है कि लोरेंत्ज़ परिवर्तनों के तहत रूपांतरण नियम मानक प्रतिनिधित्व के अलावा अन्य प्रतिनिधित्व द्वारा दिया जाता है। इस मामले में, नियम X = Π(Λ)X पढ़ता है, जहां Π(Λ) Λके अलावा 4×4 आव्यूह है। इसी तरह की टिप्पणी उन वस्तुओं पर लागू होती है जिनमें कम या अधिक घटक होते हैं जो लोरेंत्ज़ परिवर्तनों के तहत अच्छी तरह से व्यवहार करते हैं। इनमें अदिश, स्पिनर, टेंसर और स्पिनोर-टेंसर सम्मिलित हैं।

लेख विशेष आपेक्षिकता के संदर्भ में चतुर्विम-सदिशों पर विचार करता है। हालांकि चतुर्विम-सदिश की अवधारणा सामान्य सापेक्षता तक भी फैली हुई है, इस लेख में बताए गए कुछ परिणामों में सामान्य सापेक्षता में संशोधन की आवश्यकता है।

संकेतन

इस लेख में नोटेशन हैं: त्रि-आयामी सदिश के लिए लोअरकेस बोल्ड, तीन-आयामी इकाई सदिश के लिए हैट, चतुर्विमीय सदिश के लिए कैपिटल बोल्ड (चार-ढाल को छोड़कर), और टेंसर इंडेक्स नोटेशन

चार-सदिश बीजगणित

वास्तविक-मूल्यवान आधार में चतुर्विम-सदिश

एक चतुर्विम-सदिश ए एक "टाइमलाइक" घटक और तीन "स्पेसलाइक" घटकों वाला एक सदिश है, और इसे विभिन्न समकक्ष नोटेशन में लिखा जा सकता है:[3]

जहां अंतिम रूप में परिमाण घटक और आधार सदिश को एक ही तत्व में जोड़ा गया है।


ऊपरी सूचकांक प्रतिपरिवर्ती घटकों को दर्शाते हैं। यहाँ मानक परिपाटी यह है कि लैटिन सूचकांक स्थानिक घटकों के लिए मान लेते हैं, ताकि i = 1, 2, 3, और यूनानी सूचकांक स्थान और समय घटकों के लिए मान लें, इसलिए α = 0, 1, 2, 3, योग सम्मेलन के साथ उपयोग किया जाता है। समय घटक और स्थानिक घटकों के बीच विभाजन अन्य टेन्सर मात्राओं के साथ एक चार सदिश के संकुचन का निर्धारण करते समय उपयोगी होता है, जैसे कि आंतरिक उत्पादों में लोरेंत्ज़ इनवेरिएंट की गणना के लिए (उदाहरण नीचे दिए गए हैं), या सूचकांकों को ऊपर उठाना और कम करना।

विशेष आपेक्षिकता में, स्पेसलाइक आधार E1, E2, E3 और घटक A1, A2, A3 अक्सर कार्तीय आधार और घटक होते हैं:

हालाँकि, बेशक, किसी अन्य आधार और घटकों का उपयोग किया जा सकता है, जैसे गोलाकार ध्रुवीय निर्देशांक
अथवा बेलनाकार ध्रुवीय निर्देशांक,
या कोई अन्य लंबकोणीय निर्देशांक, या यहां तक कि सामान्य वक्रीय निर्देशांक। ध्यान दें कि निर्देशांक लेबल हमेशा लेबल के रूप में सबस्क्रिप्ट किए जाते हैं और संख्यात्मक मान लेने वाले सूचकांक नहीं होते हैं। सामान्य सापेक्षता में, स्थानीय वक्रीय निर्देशांक स्थानीय आधार पर उपयोग किए जाने चाहिए। ज्यामितीय रूप से, एक चतुर्विम-सदिश को अभी भी एक तीर के रूप में व्याख्या किया जा सकता है, लेकिन अंतरिक्ष-समय में - केवल स्थान नहीं। सापेक्षता में, तीरों को मिंकोव्स्की आरेख (जिसे दिक्काल आरेख भी कहा जाता है) के हिस्से के रूप में खींचा जाता है। इस लेख में, चतुर्विम-सदिश को केवल सदिश के रूप में संदर्भित किया जाएगा। स्तंभ सदिशों द्वारा आधारों का प्रतिनिधित्व करने के लिए यह भी परंपरागत है:
ताकि:
सहपरिवर्ती और प्रतिपरिवर्ती निर्देशांकों के बीच का संबंध मिंकोव्स्की मीट्रिक टेन्सर (जिसे मीट्रिक कहा जाता है) के माध्यम से होता है, η जो सूचकांकों को निम्न प्रकार से बढ़ाता और घटाता है:
और विभिन्न समकक्ष संकेतन में सहसंयोजक घटक हैं:
जहां निचला सूचकांक इसे सहसंयोजक होने के लिए इंगित करता है। अक्सर मेट्रिक विकर्ण होता है, जैसा कि ऑर्थोगोनल निर्देशांक (रेखा तत्व देखें) के मामले में होता है, लेकिन सामान्य वक्रीय निर्देशांक में नहीं।


आधारों को पंक्ति सदिश द्वारा दर्शाया जा सकता है:

ताकि:
उपरोक्त परंपराओं के लिए प्रेरणा यह है कि आंतरिक उत्पाद एक अदिश राशि है, विवरण के लिए नीचे देखें।

लोरेंत्ज़ परिवर्तन

संदर्भ के दो जड़त्वीय या घुमाए गए फ़्रेमों को देखते हुए, एक चतुर्विम-सदिश को एक मात्रा के रूप में परिभाषित किया जाता है जो लोरेंत्ज़ परिवर्तन आव्यूह Λ के अनुसार परिवर्तित होता है:

सूचकांक संकेतन में, प्रतिपरिवर्ती और सहपरिवर्ती घटक क्रमशः निम्न के अनुसार बदलते हैं:
जिसमें आव्यूह Λ में पंक्ति μ और स्तंभ ν में घटक Λμν हैं, और उलटा आव्यूह Λ−1 में पंक्ति μ और स्तंभ ν में घटक Λμν हैं।
इस परिवर्तन परिभाषा की प्रकृति की पृष्ठभूमि के लिए टेंसर देखें। सभी चतुर्विम-सदिश एक ही तरह से रूपांतरित होते हैं, और इसे चतुर्विमीय सापेक्षतावादी टेन्सर के लिए सामान्यीकृत किया जा सकता है; विशेष आपेक्षिकता देखें।

एक मनमाना अक्ष के बारे में शुद्ध घूर्णन

एक निश्चित कोण से घुमाए गए दो फ्रेम के लिए θ इकाई सदिश द्वारा परिभाषित अक्ष के बारे में:

बिना किसी बूस्ट के, आव्यूह Λ में निम्नलिखित घटक हैं:[4]
जहां δj क्रोनकर डेल्टा है, और εijk त्रि-आयामी लेवी-सिविटा प्रतीक है। चतुर्विम-सदिशों के स्पेसलाइक घटकों को घुमाया जाता है, जबकि समयबद्ध घटकों में कोई बदलाव नहीं होता है। केवल z-अक्ष के चारों ओर घूमने के मामले में, लोरेंत्ज़ आव्यूह का स्पेसलाइक भाग z-अक्ष के बारे में रोटेशन आव्यूह को कम करता है:

मनमाना दिशा में शुद्ध बूस्ट

समन्वय प्रणालियों का मानक विन्यास; एक्स-दिशा में लोरेंत्ज़ बूस्ट के लिए।

निरंतर सापेक्ष तीन-वेग v (चार-वेग नहीं, नीचे देखें) पर चलने वाले दो फ्रेमों के लिए, c की इकाइयों में सापेक्ष वेग को निरूपित और परिभाषित करना सुविधाजनक है:

फिर बिना घूर्णन के, आव्यूह Λ में घटक दिए गए हैं:[5]
जहां लोरेंत्ज़ कारक द्वारा परिभाषित किया गया है:
तथा δij क्रोनकर डेल्टा है। शुद्ध घूर्णनों के मामले के विपरीत, स्पेसलाइक और टाइमलाइक घटकों को बूस्ट के तहत एक साथ मिलाया जाता है।


केवल एक्स-दिशा में वृद्धि के मामले में, आव्यूह कम हो जाता है;[6][7]

जहां अतिशयोक्तिपूर्ण कार्यों के संदर्भ में लिखा गया है, वहां रैपिडिटी ϕ अभिव्यक्ति का उपयोग किया गया है:
यह लोरेंत्ज़ आव्यूह चार आयामी दिक्काल में एक अतिशयोक्तिपूर्ण रोटेशन होने के लिए बढ़ावा देता है, जो त्रि-आयामी अंतरिक्ष में ऊपर परिपत्र रोटेशन के अनुरूप है।

गुण

रैखिकता

चतुर्विम-सदिशों में तीन आयामों में यूक्लिडियन सदिश के समान रैखिकता गुण होते हैं। उन्हें सामान्य एंट्रीवाइज तरीके से जोड़ा जा सकता है:

और इसी तरह एक अदिश λ द्वारा स्केलर गुणन को प्रवेशवार परिभाषित किया गया है:
फिर घटाना जोड़ की व्युत्क्रम संक्रिया है, जिसे प्रवेश के अनुसार परिभाषित किया गया है:

मिन्कोव्स्की टेंसर

मिंकोव्स्की टेंसर ημν को दो चार-सदिश A और B पर लागू करते हुए, डॉट उत्पाद संकेतन में परिणाम लिखते हुए, हमारे पास आइंस्टीन संकेतन का उपयोग कर रहा है:

परिभाषा को आव्यूह रूप में फिर से लिखना सुविधाजनक है:
किस मामले में उपरोक्त ημν एक वर्ग आव्यूह के रूप में मिन्कोव्स्की मीट्रिक की पंक्ति μ और कॉलम ν में प्रविष्टि है। मिन्कोव्स्की मीट्रिक एक यूक्लिडियन मीट्रिक नहीं है, क्योंकि यह अनिश्चित है (मीट्रिक हस्ताक्षर देखें)। कई अन्य अभिव्यक्तियों का उपयोग किया जा सकता है क्योंकि मीट्रिक टेन्सर A या B के घटकों को बढ़ा और घटा सकता है। A के कॉन्ट्रा/को-वेरिएंट घटकों और B के सह/कॉन्ट्रा-वैरिएंट घटकों के लिए, हमारे पास:
तो आव्यूह नोटेशन में:
जबकि इसके लिए A तथा B सहसंयोजक घटकों में से प्रत्येक:
उपरोक्त के समान आव्यूह अभिव्यक्ति के साथ। मिंकोव्स्की टेंसर को चतुर्विम-सदिश ए पर लागू करने से हमें मिलता है:
जो, स्थिति के आधार पर, सदिश की लंबाई का वर्ग, या उसके ऋणात्मक माना जा सकता है।
मानक आधार (अनिवार्य रूप से कार्टेशियन निर्देशांक) में मीट्रिक टेंसर के लिए दो सामान्य विकल्प निम्नलिखित हैं। यदि ऑर्थोगोनल निर्देशांक का उपयोग किया जाता है, तो मीट्रिक के स्पेसलाइक भाग के विकर्ण भाग के साथ स्केल कारक होंगे, जबकि सामान्य घूर्णनदार निर्देशांक के लिए मीट्रिक के पूरे स्पेसलाइक भाग में उपयोग किए जाने वाले वक्रीय आधार पर घटक होंगे।

मानक आधार, (+−−−) हस्ताक्षर

(+−−−) मीट्रिक हस्ताक्षर में, सूचकांकों पर योग का मूल्यांकन करने से यह मिलता है:

आव्यूह फॉर्म में रहते हुए:
यह व्यंजक लेने के लिए विशेष सापेक्षता में एक आवर्ती विषय है
एक संदर्भ फ़्रेम में, जहाँ C इस फ़्रेम में आंतरिक उत्पाद का मान है, और:
दूसरे फ्रेम में, जिसमें C′ इस फ्रेम में आंतरिक उत्पाद का मान है। फिर चूंकि आंतरिक उत्पाद एक अपरिवर्तनीय है, ये बराबर होना चाहिए:
वह है:
यह मानते हुए कि सापेक्षता में भौतिक राशियाँ चतुर्विम-सदिश हैं, इस समीकरण में "संरक्षण कानून" का आभास होता है, लेकिन इसमें कोई "संरक्षण" सम्मिलित नहीं है। मिन्कोव्स्की आंतरिक उत्पाद का प्राथमिक महत्व यह है कि किन्हीं दो चतुर्विम-सदिशों के लिए, इसका मूल्य सभी पर्यवेक्षकों के लिए अपरिवर्तनीय है; निर्देशांकों में परिवर्तन के परिणामस्वरूप आंतरिक उत्पाद के मूल्य में परिवर्तन नहीं होता है। चार सदिश के घटक एक फ्रेम से दूसरे में बदलते हैं; A और A' एक लोरेंत्ज़ परिवर्तन द्वारा जुड़े हुए हैं, और इसी तरह B और B' के लिए, हालांकि आंतरिक उत्पाद सभी फ्रेम में समान हैं। फिर भी, इस प्रकार की अभिव्यक्ति का संरक्षण कानूनों के साथ सापेक्षतावादी गणनाओं में उपयोग किया जाता है, क्योंकि घटकों के परिमाण को स्पष्ट रूप से किसी भी लोरेन्ट्ज़ परिवर्तनों को निष्पादित किए बिना निर्धारित किया जा सकता है। एक विशेष उदाहरण चार-गति सदिश से प्राप्त ऊर्जा-गति संबंध में ऊर्जा और गति के साथ है (नीचे भी देखें)। इस हस्ताक्षर में हमारे पास है:
हस्ताक्षर (+−−−) के साथ, चतुर्विम-सदिश को या तो स्पेसलाइक के रूप में वर्गीकृत किया जा सकता है यदि , टाइमलाइक यदि , और शून्य सदिश यदि हो।

मानक आधार, (−+++) हस्ताक्षर

कुछ लेखक η को विपरीत चिन्ह के साथ परिभाषित करते हैं, इस मामले में हमारे पास (−+++) मीट्रिक हस्ताक्षर होते हैं। इस हस्ताक्षर के साथ सारांश का मूल्यांकन:

जबकि आव्यूह फॉर्म है:
ध्यान दें कि इस मामले में, एक फ्रेम में:
जबकि दूसरे में:
ताकि:
जो ए और बी के संदर्भ में सी के लिए उपरोक्त अभिव्यक्ति के बराबर है। कोई भी सम्मेलन काम करेगा। उपरोक्त दो तरीकों से परिभाषित मिन्कोव्स्की मीट्रिक के साथ, सहसंयोजक और प्रतिपरिवर्ती चतुर्विम-सदिश घटकों के बीच एकमात्र अंतर संकेत हैं, इसलिए संकेत इस बात पर निर्भर करते हैं कि किस चिह्न परिपाटी का उपयोग किया जाता है।


हमारे पास है:

सिग्नेचर (-+++) के साथ, चतुर्विम-सदिश को या तो स्पेसलाइक अगर , टाइमलाइक अगर , और नल अगर है तो वर्गीकृत किया जा सकता है।

दोहरी सदिश

मिन्कोव्स्की टेन्सर को लागू करना अक्सर एक सदिश के दोहरे सदिश के प्रभाव के रूप में दूसरे पर व्यक्त किया जाता है:

यहाँ Aνs दोहरे आधार में A के दोहरे सदिश A* के घटक हैं और A के सहसंयोजक निर्देशांक कहलाते हैं, जबकि मूल Aν घटकों को प्रतिपरिवर्ती निर्देशांक कहा जाता है।

चार-सदिश कलन

व्युत्पन्न और डिफरेंशियल

विशेष आपेक्षिकता (लेकिन सामान्य सापेक्षता नहीं) में, अदिश λ (अपरिवर्तनीय) के संबंध में चतुर्विम-सदिश का व्युत्पन्न स्वयं एक चार-सदिश होता है। चार-सदिश, dA के अंतर को लेना और इसे स्केलर के अंतर, dλ से विभाजित करना भी उपयोगी है:

जहां प्रतिपरिवर्ती घटक हैं:
जबकि सहसंयोजक घटक हैं:
सापेक्षवादी यांत्रिकी में, अक्सर एक चार-सदिश के अंतर को लेता है और अंतर से उचित समय में विभाजित करता है (नीचे देखें)।

मौलिक चतुर्विम-सदिश

चार स्थिति

मिन्कोव्स्की अंतरिक्ष में एक बिंदु एक समय और स्थानिक स्थिति है, जिसे "घटना" कहा जाता है, या कभी-कभी स्थिति चतुर्विम-सदिश या चार-स्थिति या 4-स्थिति, चार निर्देशांक के एक सेट द्वारा कुछ संदर्भ फ्रेम में वर्णित होती है:

जहाँ r त्रि-आयामी स्थान स्थिति सदिश है। यदि आर एक ही फ्रेम में समन्वय समय t का एक कार्य है, यानी r = r(t), यह घटनाओं के अनुक्रम के अनुरूप होता है क्योंकि t भिन्न होता है। परिभाषा R0 = ct यह सुनिश्चित करती है कि सभी निर्देशांकों की इकाइयाँ (दूरी की) समान हों।[8][9][10] ये निर्देशांक घटना के लिए चतुर्विम-सदिश की स्थिति के घटक हैं।

विस्थापन चतुर्विम-सदिश को दो घटनाओं को जोड़ने वाले तीर के रूप में परिभाषित किया गया है:

विश्व रेखा पर अंतर चार-स्थिति के लिए, हमारे पास एक आदर्श संकेतन का उपयोग करते हुए:
अंतर रेखा तत्व डीएस और अंतर उचित समय वृद्धि डीτ को परिभाषित करना, लेकिन यह "मानक" भी है:
ताकि:
भौतिक परिघटनाओं पर विचार करते समय, विभेदक समीकरण स्वाभाविक रूप से उत्पन्न होते हैं; हालाँकि, जब कार्यों के स्थान और समय के डेरिवेटिव पर विचार किया जाता है, तो यह स्पष्ट नहीं होता है कि इन डेरिवेटिव को किस संदर्भ में लिया गया है। यह सहमति है कि उचित समय के संबंध में समय व्युत्पन्न लिया जाता है। चूंकि उचित समय एक अपरिवर्तनीय है, यह गारंटी देता है कि किसी भी चार-सदिश का उचित-समय-व्युत्पन्न स्वयं एक चतुर्विम-सदिश है। इसके बाद इस उचित-समय-व्युत्पन्न और अन्य समय व्युत्पन्न (एक जड़त्वीय संदर्भ फ्रेम के समन्वय समय टी का उपयोग करके) के बीच संबंध खोजना महत्वपूर्ण है। यह संबंध ऊपर दिए गए अंतर अपरिवर्तनीय दिक्काल अंतराल को लेकर प्रदान किया गया है, फिर प्राप्त करने के लिए (cdt)2 से विभाजित करके:
जहाँ u = dr/dt किसी वस्तु का निर्देशांक 3-वेग है जिसे निर्देशांक x, y, z और निर्देशांक समय t के समान फ़्रेम में मापा जाता है, और
लोरेन्ट्ज कारक है। यह निर्देशांक समय और उचित समय में अंतरों के बीच एक उपयोगी संबंध प्रदान करता है:
यह संबंध लोरेंत्ज़ परिवर्तनों में समय परिवर्तन से भी पाया जा सकता है।


सापेक्षता सिद्धांत में महत्वपूर्ण चार-सदिश इस अंतर को लागू करके परिभाषित किए जा सकते हैं।

चार ग्रेडिएंट

यह देखते हुए कि आंशिक व्युत्पन्न रैखिक ऑपरेटर हैं, आंशिक समय व्युत्पन्न /t और स्थानिक ग्रेडिएंट ∇ से चार-ढाल बना सकते हैं। मानक आधार का प्रयोग करते हुए, अनुक्रमणिका और संक्षिप्त संकेतन में, प्रतिपरिवर्ती घटक हैं:

ध्यान दें कि आधार सदिशों को घटकों के सामने रखा जाता है, आधार सदिश के व्युत्पन्न लेने के बीच भ्रम को रोकने के लिए, या केवल आंशिक व्युत्पन्न इस चार-सदिश का एक घटक है। सहसंयोजक घटक इस प्रकार हैं:
चूंकि यह एक ऑपरेटर है, इसकी "लंबाई" नहीं है, लेकिन ऑपरेटर के आंतरिक उत्पाद का मूल्यांकन स्वयं के साथ एक अन्य ऑपरेटर देता है:
डी'अलेम्बर्ट ऑपरेटर कहा जाता है।

किनेमेटिक्स

चार-वेग

एक कण के चार-वेग को निम्न द्वारा परिभाषित किया गया है:

ज्यामितीय रूप से, यू कण की विश्व रेखा के लिए सामान्यीकृत सदिश स्पर्शक है। चार-स्थिति के अंतर का उपयोग करते हुए, चार-वेग का परिमाण प्राप्त किया जा सकता है:
संक्षेप में, किसी भी वस्तु के लिए चार-वेग का परिमाण हमेशा एक स्थिर स्थिरांक होता है:
मानदंड भी है:
ताकि:
जो लोरेंत्ज़ फैक्टर की परिभाषा को कम करता है।

चार-वेग की इकाइयाँ SI में m/s हैं और ज्यामितीय इकाई प्रणाली में 1 है। चार-वेग एक प्रतिपरिवर्ती सदिश है।

चार त्वरण

चार त्वरण द्वारा दिया जाता है:

जहाँ a = du/dt 3-त्वरण का निर्देशांक है। चूँकि U का परिमाण एक स्थिरांक है, चार त्वरण चार वेगों के लिए ओर्थोगोनल है, यानी चार-त्वरण और चार-वेग का मिन्कोव्स्की आंतरिक उत्पाद शून्य है:

जो सभी विश्व रेखाओं के लिए सत्य है। चार-त्वरण का ज्यामितीय अर्थ मिन्कोवस्की अंतरिक्ष में विश्व रेखा का वक्रता सदिश है।

गतिशीलता

चार गति

आराम द्रव्यमान (या अपरिवर्तनीय द्रव्यमान) m0 के एक विशाल कण के लिए, चतुर्विम-संवेग द्वारा दिया जाता है:

जहाँ गतिमान कण की कुल ऊर्जा है:

और कुल सापेक्ष गति है:

चार-गति के आंतरिक उत्पाद को अपने साथ लेना:

और भी:

जो ऊर्जा-गति संबंध की ओर जाता है:

यह अंतिम संबंध उपयोगी सापेक्षतावादी यांत्रिकी है, सापेक्षतावादी क्वांटम यांत्रिकी और सापेक्षतावादी क्वांटम क्षेत्र सिद्धांत में आवश्यक है, सभी कण भौतिकी के अनुप्रयोगों के साथ।

चार-बल

न्यूटन के दूसरे नियम में 3-संवेग के समय के व्युत्पन्न के रूप में एक कण पर कार्य करने वाले चार-बल को 3-बल के समान परिभाषित किया गया है:

जहाँ P कण को स्थानांतरित करने के लिए हस्तांतरित शक्ति है, और f कण पर कार्यरत 3-बल है। स्थिर अपरिवर्तनीय द्रव्यमान m0 के एक कण के लिए, यह इसके बराबर है

चार-बल से व्युत्पन्न एक अपरिवर्तनीय है:

उपरोक्त परिणाम से।

ऊष्मप्रवैगिकी

चार-गर्मी प्रवाह

तरल के स्थानीय फ्रेम में, चार-गर्मी प्रवाह सदिश क्षेत्र अनिवार्य रूप से 3डी गर्मी प्रवाह सदिश क्षेत्र क्यू के समान है:[11]

जहाँ T निरपेक्ष तापमान है और k तापीय चालकता है।

चार-बैरियन संख्या प्रवाह

बेरियनों का प्रवाह है:[12]

जहाँ n, बैरियन द्रव के स्थानीय आराम फ्रेम में बेरिऑन का संख्या घनत्व है (बैरिऑन के लिए धनात्मक मान, एंटीबैरिऑन के लिए ऋणात्मक), और U चार-वेग क्षेत्र (तरल पदार्थ का) जैसा कि ऊपर बताया गया है।

चार-एन्ट्रॉपी

चार-एन्ट्रॉपी सदिश द्वारा परिभाषित किया गया है:[13]

जहां s एंट्रॉपी प्रति बेरोन है, और T निरपेक्ष तापमान है, द्रव के स्थानीय रेस्ट फ्रेम में।[14]

विद्युत चुंबकत्व

विद्युत चुंबकत्व में चतुर्विम-सदिश के उदाहरणों में निम्नलिखित सम्मिलित हैं।

चार-वर्तमान

इलेक्ट्रोमैग्नेटिक चार-वर्तमान (या अधिक सही ढंग से फोर-करंट डेंसिटी)[15] द्वारा परिभाषित किया गया है

वर्तमान घनत्व j और चार्ज घनत्व ρ से गठित।

चार-संभावित

इलेक्ट्रोमैग्नेटिक फोर-पोटेंशियल (या अधिक सही ढंग से चार-ईएम सदिश क्षमता) द्वारा परिभाषित

सदिश क्षमता a और स्केलर क्षमता ϕ से बनता है।

चार-क्षमता अद्वितीय रूप से निर्धारित नहीं है, क्योंकि यह गेज की पसंद पर निर्भर करता है।

विद्युत चुम्बकीय क्षेत्र के लिए तरंग समीकरण में:

  • निर्वात में,
  • एक चार-वर्तमान स्रोत के साथ और लॉरेंज गेज स्थिति का उपयोग करके,

लहरें

चार-आवृत्ति

एक फोटोनिक समतल लहर को चार आवृत्ति द्वारा परिभाषित किया जा सकता है

जहां ν तरंग की आवृत्ति है और तरंग की यात्रा दिशा में एक इकाई सदिश है। अब:

इसलिए फोटॉन की चार-आवृत्ति हमेशा एक अशक्त सदिश होती है।

चार तरंगसदिश

समय t और स्थान r के व्युत्क्रम की मात्राएँ क्रमशः कोणीय आवृत्ति ω और वेव सदिश k हैं। वे चार-तरंग सदिश या तरंग चतुर्विम-सदिश के घटक बनाते हैं:

लगभग मोनोक्रोमैटिक प्रकाश के एक तरंग पैकेट का वर्णन निम्न द्वारा किया जा सकता है:

डी ब्रोगली संबंध तब दिखाते हैं कि चार-लहर सदिश पदार्थ तरंगों के साथ-साथ प्रकाश तरंगों पर भी लागू होता है:
उपज तथा , जहां प्लांक नियतांक से विभाजित है 2π.

मानदंड का वर्ग है:

और डी ब्रोगली संबंध द्वारा:
हमारे पास ऊर्जा-गति संबंध का पदार्थ तरंग एनालॉग है:
ध्यान दें कि द्रव्यमान रहित कणों के लिए, किस स्थिति में m0 = 0, अपने पास:
या k‖ = ω/c. ध्यान दें कि यह उपरोक्त मामले के अनुरूप है; मापांक के 3-तरंग सदिश वाले फोटॉन के लिए ω/c, इकाई सदिश द्वारा परिभाषित तरंग प्रसार की दिशा में .

क्वांटम सिद्धांत

चार-प्रायिकता वर्तमान

क्वांटम यांत्रिकी में, चार-संभाव्यता वर्तमान या प्रायिकता चार-धारा विद्युत चुम्बकीय चार-धारा के अनुरूप होती है:[16]

जहां ρ समय घटक के संगत प्रायिकता घनत्व फलन है, और j प्रायिकता वर्तमान सदिश है। गैर-सापेक्षवादी क्वांटम यांत्रिकी में, यह धारा हमेशा अच्छी तरह से परिभाषित होती है क्योंकि घनत्व और धारा के भाव सकारात्मक निश्चित होते हैं और संभाव्यता व्याख्या स्वीकार कर सकते हैं। सापेक्षतावादी क्वांटम यांत्रिकी और क्वांटम क्षेत्र सिद्धांत में, हमेशा करंट का पता लगाना संभव नहीं होता है, खासकर जब बातचीत सम्मिलित हो।

चतुर्विम-संवेग में ऊर्जा ऑपरेटर द्वारा ऊर्जा और संवेग संचालक द्वारा संवेग को प्रतिस्थापित करने पर, चार-गति ऑपरेटर प्राप्त होता है, जिसका उपयोग आपेक्षिक तरंग समीकरण में किया जाता है।

चार-स्पिन

एक कण के फोर-स्पिन को कण के बाकी फ्रेम में परिभाषित किया जाता है

जहां s स्पिन स्यूडोसदिश है। क्वांटम यांत्रिकी में, इस सदिश के सभी तीन घटकों को एक साथ मापा नहीं जा सकता है, केवल एक घटक है। टाइमलाइक कंपोनेंट पार्टिकल के रेस्ट फ्रेम में जीरो है, लेकिन किसी अन्य फ्रेम में नहीं। यह घटक उपयुक्त लोरेंत्ज़ रूपांतरण से पाया जा सकता है।

मानक वर्ग स्पिन का (ऋणात्मक) परिमाण वर्ग है, और क्वांटम यांत्रिकी के अनुसार हमारे पास है

स्पिन क्वांटम संख्या s (स्पिन सदिश की परिमाण नहीं) के साथ, यह मान अवलोकनीय और परिमाणित है।

अन्य फॉर्मूलेशन

भौतिक स्थान के बीजगणित में चार-सदिश

एक चतुर्विम-सदिश ए को भी पॉल के आव्यूह को आधार के रूप में उपयोग करते हुए परिभाषित किया जा सकता है, फिर से विभिन्न समकक्ष नोटेशन में:[17]

या स्पष्ट रूप से:
और इस फॉर्मूलेशन में, चतुर्विम-सदिश को एक वास्तविक-मूल्यवान कॉलम या पंक्ति सदिश के बजाय हर्मिटियन आव्यूह (आव्यूह ट्रांसपोज़ और आव्यूह के जटिल संयुग्म इसे अपरिवर्तित छोड़ देता है) के रूप में दर्शाया गया है। आव्यूह का निर्धारक चार-सदिश का मॉड्यूलस है, इसलिए निर्धारक एक अपरिवर्तनीय है:
पाउली मेट्रिसेस को आधार सदिश के रूप में उपयोग करने का यह विचार भौतिक अंतरिक्ष के बीजगणित में नियोजित है, क्लिफर्ड बीजगणित का एक उदाहरण है।

दिक्काल बीजगणित में चतुर्विम-सदिश

दिक्काल बीजगणित में, क्लिफोर्ड बीजगणित का एक और उदाहरण, गामा आव्यूह भी आधार बना सकते हैं। (डिराक समीकरण में उनकी उपस्थिति के कारण उन्हें डायराक मैट्रिस भी कहा जाता है)। गामा आव्यूहों को व्यक्त करने के एक से अधिक तरीके हैं, जो कि मुख्य लेख में विस्तृत हैं।

फेनमैन स्लैश नोटेशन गामा आव्यूहों के साथ अनुबंधित चतुर्विम-सदिश A के लिए एक शॉर्टहैंड है:

गामा आव्यूह के साथ अनुबंधित चतुर्विम-संवेग सापेक्षतावादी क्वांटम यांत्रिकी और सापेक्षतावादी क्वांटम क्षेत्र सिद्धांत में एक महत्वपूर्ण मामला है। डायराक समीकरण और अन्य आपेक्षिकीय तरंग समीकरणों में, इस रूप के पद:
प्रकट होते हैं, जिसमें ऊर्जा E और संवेग घटक (px, py, pz) उनके संबंधित ऑपरेटर द्वारा प्रतिस्थापित कर दिए जाते हैं।

यह भी देखें


संदर्भ

  1. Rindler, W. Introduction to Special Relativity (2nd edn.) (1991) Clarendon Press Oxford ISBN 0-19-853952-5
  2. Sibel Baskal; Young S Kim; Marilyn E Noz (1 November 2015). लोरेंत्ज़ समूह का भौतिकी. Morgan & Claypool Publishers. ISBN 978-1-68174-062-1.
  3. Relativity DeMystified, D. McMahon, Mc Graw Hill (BSA), 2006, ISBN 0-07-145545-0
  4. C.B. Parker (1994). मैकग्रा हिल इनसाइक्लोपीडिया ऑफ फिजिक्स (2nd ed.). McGraw Hill. p. 1333. ISBN 0-07-051400-3.
  5. Gravitation, J.B. Wheeler, C. Misner, K.S. Thorne, W.H. Freeman & Co, 1973, ISAN 0-7167-0344-0
  6. Dynamics and Relativity, J.R. Forshaw, B.G. Smith, Wiley, 2009, ISAN 978-0-470-01460-8
  7. Relativity DeMystified, D. McMahon, Mc Graw Hill (ASB), 2006, ISAN 0-07-145545-0
  8. Jean-Bernard Zuber & Claude Itzykson, Quantum Field Theory, pg 5 , ISBN 0-07-032071-3
  9. Charles W. Misner, Kip S. Thorne & John A. Wheeler,Gravitation, pg 51, ISBN 0-7167-0344-0
  10. George Sterman, An Introduction to Quantum Field Theory, pg 4 , ISBN 0-521-31132-2
  11. Ali, Y. M.; Zhang, L. C. (2005). "सापेक्षिक ऊष्मा चालन". Int. J. Heat Mass Trans. 48 (12): 2397–2406. doi:10.1016/j.ijheatmasstransfer.2005.02.003.
  12. J.A. Wheeler; C. Misner; K.S. Thorne (1973). आकर्षण-शक्ति. W.H. Freeman & Co. pp. 558–559. ISBN 0-7167-0344-0.
  13. J.A. Wheeler; C. Misner; K.S. Thorne (1973). आकर्षण-शक्ति. W.H. Freeman & Co. p. 567. ISBN 0-7167-0344-0.
  14. J.A. Wheeler; C. Misner; K.S. Thorne (1973). आकर्षण-शक्ति. W.H. Freeman & Co. p. 558. ISBN 0-7167-0344-0.
  15. Rindler, Wolfgang (1991). विशेष सापेक्षता का परिचय (2nd ed.). Oxford Science Publications. pp. 103–107. ISBN 0-19-853952-5.
  16. Vladimir G. Ivancevic, Tijana T. Ivancevic (2008) Quantum leap: from Dirac and Feynman, across the universe, to human body and mind. World Scientific Publishing Company, ISBN 978-981-281-927-7, p. 41
  17. J.A. Wheeler; C. Misner; K.S. Thorne (1973). Gravitation. W.H. Freeman & Co. pp. 1142–1143. ISBN 0-7167-0344-0.
  • Rindler, W. Introduction to Special Relativity (2nd edn.) (1991) Clarendon Press Oxford ISBN 0-19-853952-5