भाजक: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{short description|Integer that is a factor of another integer}}
{{short description|Integer that is a factor of another integer}}
{{more footnotes|date=June 2015}}
{{more footnotes|date=June 2015}}
{{about|an integer that is a factor of another integer|a number used to divide another number in a division operation|Division (mathematics)|other uses|}}
{{about|एक पूर्णांक जो दूसरे पूर्णांक का गुणनखंड है|एक संख्या एक विभाजन संक्रिया में दूसरी संख्या को विभाजित करने के लिए उपयोग की जाती है|प्रभाग (गणित)|अन्य उपयोग|}}
{{redirect|Divisible|divisibility of groups|Divisible group}}
{{redirect|भाज्य|समूहों की विभाज्यता|विभाज्य समूह}}
[[File:Cuisenaire ten.JPG|thumb|10 के भाजक Cuisenaire छड़ के साथ सचित्र: 1, 2, 5, और 10]]गणित में, एक पूर्णांक का भाजक <math>n</math>, जिसे कारक भी कहा जाता है <math>n</math>, एक [[ पूर्णांक ]] है <math>m</math> जिसे उत्पन्न करने के लिए किसी पूर्णांक से गुणा किया जा सकता है <math>n</math>. ऐसे में एक का यह भी कहना है <math>n</math> का गुणज है <math>m.</math> पूर्णांक <math>n</math> किसी अन्य पूर्णांक से विभाज्य या समान रूप से विभाज्य है <math>m</math> यदि <math>m</math> का भाजक है <math>n</math>; इसका अर्थ है विभाजित करना <math>n</math> द्वारा <math>m</math> शेष नहीं रहता।
[[File:Cuisenaire ten.JPG|thumb|10 के भाजक Cuisenaire छड़ के साथ सचित्र: 1, 2, 5, और 10]]गणित में, एक पूर्णांक का भाजक <math>n</math>, जिसे कारक भी कहा जाता है <math>n</math>, एक [[ पूर्णांक ]] है <math>m</math> जिसे उत्पन्न करने के लिए किसी पूर्णांक से गुणा किया जा सकता है <math>n</math>. ऐसे में एक का यह भी कहना है <math>n</math> का गुणज है <math>m.</math> पूर्णांक <math>n</math> किसी अन्य पूर्णांक से विभाज्य या समान रूप से विभाज्य है <math>m</math> यदि <math>m</math> का भाजक है <math>n</math>; इसका अर्थ है विभाजित करना <math>n</math> द्वारा <math>m</math> शेष नहीं रहता है।


== परिभाषा ==
== परिभाषा ==
Line 9: Line 9:
:<math>m\mid n.</math>
:<math>m\mid n.</math>
उसी बात को कहने के अन्य तरीके हैं {{mvar|m}} विभाजित {{mvar|n}}, {{mvar|m}} का भाजक है {{mvar|n}}, {{mvar|m}} का कारक है {{mvar|n}}, तथा {{mvar|n}} का गुणज है {{mvar|m}}. यदि {{mvar|m}} विभाजित नहीं करता {{mvar|n}}, तो अंकन है <math> m\not\mid n</math>.<ref name="hardy-wright-p1">{{harnvb |Hardy|Wright|1960| p=1}}</ref><ref name="niven-p4">{{harnvb |Niven|Zuckerman|Montgomery|1991|p=4}}</ref>
उसी बात को कहने के अन्य तरीके हैं {{mvar|m}} विभाजित {{mvar|n}}, {{mvar|m}} का भाजक है {{mvar|n}}, {{mvar|m}} का कारक है {{mvar|n}}, तथा {{mvar|n}} का गुणज है {{mvar|m}}. यदि {{mvar|m}} विभाजित नहीं करता {{mvar|n}}, तो अंकन है <math> m\not\mid n</math>.<ref name="hardy-wright-p1">{{harnvb |Hardy|Wright|1960| p=1}}</ref><ref name="niven-p4">{{harnvb |Niven|Zuckerman|Montgomery|1991|p=4}}</ref>
सामान्यतः, {{mvar|m}} अशून्य होना आवश्यक है, लेकिन {{mvar|n}} शून्य होने की स्वीकृति है। इस समूह के साथ, <math>m \mid 0</math> प्रत्येक शून्येतर पूर्णांक के लिए {{mvar|m}}.<ref name="hardy-wright-p1" /><ref name="niven-p4" />कुछ परिभाषाएँ उस आवश्यकता को छोड़ देती हैं <math>m</math> शून्य न हो।<ref>{{harvnb |Durbin|2009| p=57|loc=Chapter III Section 10}}</ref>


सामान्यतः, {{mvar|m}} अशून्य होना आवश्यक है, लेकिन {{mvar|n}} शून्य होने की स्वीकृति है। इस समूह के साथ, <math>m \mid 0</math> प्रत्येक शून्येतर पूर्णांक के लिए {{mvar|m}}.<ref name="hardy-wright-p1" /><ref name="niven-p4" /> कुछ परिभाषाएँ उस आवश्यकता को छोड़ देती हैं <math>m</math> शून्य न हो।<ref>{{harvnb |Durbin|2009| p=57|loc=Chapter III Section 10}}</ref>
== सामान्य ==
== सामान्य ==
विभाजक [[ ऋणात्मक संख्या ]] के साथ-साथ धनात्मक भी हो सकते हैं,यद्यपि कभी-कभी यह शब्द धनात्मक भाजक तक ही सीमित होता है। उदाहरण के लिए, 4 के छह विभाजक हैं; वे 1, 2, 4, -1, -2, और -4 हैं, लेकिन आमतौर पर केवल सकारात्मक (1, 2, और 4) का उल्लेख किया जाएगा।
विभाजक [[ ऋणात्मक संख्या ]] के साथ-साथ धनात्मक भी हो सकते हैं,यद्यपि कभी-कभी यह शब्द धनात्मक भाजक तक ही सीमित होता है। उदाहरण के लिए, 4 के छह विभाजक हैं; वे 1, 2, 4, -1, -2, और -4 हैं, लेकिन आमतौर पर केवल सकारात्मक (1, 2, और 4) का उल्लेख किया जाएगा।
Line 29: Line 28:
[[File:Lattice of the divisibility of 60; factors.svg|center|350px]]
[[File:Lattice of the divisibility of 60; factors.svg|center|350px]]


== आगे की धारणाएं और तथ्य ==<!-- Perfect number links here. -->
== आगे की धारणाएं और तथ्य ==
कुछ प्राथमिक नियम हैं:
कुछ प्राथमिक नियम हैं:
* यदि <math>a \mid b</math> तथा <math>b \mid c</math>, फिर <math>a \mid c</math>, अर्थात विभाज्यता एक [[ सकर्मक संबंध ]] है।
* यदि <math>a \mid b</math> तथा <math>b \mid c</math>, फिर <math>a \mid c</math>, अर्थात विभाज्यता एक [[ सकर्मक संबंध | सकारात्मक संबंध]] है।
* यदि <math>a \mid b</math> तथा <math>b \mid a</math>, फिर <math>a = b</math> या <math>a = -b</math>.
* यदि <math>a \mid b</math> तथा <math>b \mid a</math>, फिर <math>a = b</math> या <math>a = -b</math>.
* यदि <math>a \mid b</math> तथा <math>a \mid c</math>, फिर <math> a \mid (b + c)</math> धारण करता है, के रूप में करता है <math> a \mid (b - c)</math>.<ref><math>a \mid b,\, a \mid c \Rightarrow b=ja,\, c=ka \Rightarrow b+c=(j+k)a \Rightarrow a \mid (b+c)</math>. Similarly, <math>a \mid b,\, a \mid c \Rightarrow b=ja,\, c=ka \Rightarrow b-c=(j-k)a \Rightarrow a \mid (b-c)</math></ref> हालांकि, यदि <math>a \mid b</math> तथा <math>c \mid b</math>, फिर <math>(a + c) \mid b</math> हमेशा धारण नहीं करता (उदा। <math>2\mid6</math> तथा <math>3 \mid 6</math> लेकिन 5, 6 को विभाजित नहीं करता है)।
* यदि <math>a \mid b</math> तथा <math>a \mid c</math>, फिर <math> a \mid (b + c)</math> धारण करता है, के रूप में करता है <math> a \mid (b - c)</math>.<ref><math>a \mid b,\, a \mid c \Rightarrow b=ja,\, c=ka \Rightarrow b+c=(j+k)a \Rightarrow a \mid (b+c)</math>. Similarly, <math>a \mid b,\, a \mid c \Rightarrow b=ja,\, c=ka \Rightarrow b-c=(j-k)a \Rightarrow a \mid (b-c)</math></ref> यद्यपि, यदि <math>a \mid b</math> तथा <math>c \mid b</math>, फिर <math>(a + c) \mid b</math> हमेशा धारण नहीं करता (उदा। <math>2\mid6</math> तथा <math>3 \mid 6</math> लेकिन 5, 6 को विभाजित नहीं करता है)।


यदि <math>a \mid bc</math>, तथा <math>\gcd(a, b) = 1</math>, फिर <math>a \mid c</math>.<ref group="note"><math>\gcd</math> refers to the [[greatest common divisor]].</ref> इसे यूक्लिड की लेम्मा कहा जाता है।
यदि <math>a \mid bc</math>, तथा <math>\gcd(a, b) = 1</math>, फिर <math>a \mid c</math>.<ref group="note"><math>\gcd</math> refers to the [[greatest common divisor]].</ref> इसे यूक्लिड की लेम्मा कहा जाता है।
Line 39: Line 38:
यदि <math>p</math> एक अभाज्य संख्या है और <math>p \mid ab</math> फिर <math>p \mid a</math> या <math>p \mid b</math>.
यदि <math>p</math> एक अभाज्य संख्या है और <math>p \mid ab</math> फिर <math>p \mid a</math> या <math>p \mid b</math>.


का धनात्मक भाजक <math>n</math> जो इससे अलग है <math>n</math> ए कहा जाता है{{vanchor|proper divisor}}या एक{{vanchor|aliquot part}}का <math>n</math>. एक संख्या जो समान रूप से विभाजित नहीं होती <math>n</math> लेकिन एक शेष छोड़ देता है जिसे कभी-कभी एक कहा जाता है{{vanchor|aliquant part}}का <math>n</math>.
का धनात्मक भाजक <math>n</math> जो इससे अलग है <math>n</math> ए कहा जाता है उचित विभाजन या एक {{vanchor|विभाज्य भाग}} का <math>n</math>. एक संख्या जो समान रूप से विभाजित नहीं होती <math>n</math> लेकिन एक शेष छोड़ देता है जिसे कभी-कभी एक कहा जाता है {{vanchor|तरल भाग}} का <math>n</math>.


पूर्णांक <math>n > 1</math> जिसका एकमात्र उचित भाजक 1 है, अभाज्य संख्या कहलाती है। समतुल्य रूप से, एक अभाज्य संख्या एक सकारात्मक पूर्णांक है जिसके दो सकारात्मक कारक हैं: 1 और स्वयं।
पूर्णांक <math>n > 1</math> जिसका एकमात्र उचित भाजक 1 है, अभाज्य संख्या कहलाती है। समतुल्य रूप से, एक अभाज्य संख्या एक सकारात्मक पूर्णांक है जिसके दो सकारात्मक कारक हैं: 1 और स्वयं।


का कोई सकारात्मक विभाजक <math>n</math> के प्रमुख कारक का उत्पाद है <math>n</math> कुछ शक्ति के लिए उठाया। यह अंकगणित के मौलिक प्रमेय का परिणाम है।
का कोई सकारात्मक विभाजक <math>n</math> के प्रमुख कारक का उत्पाद है <math>n</math> कुछ शक्ति के लिए उठाया, यह अंकगणित के मौलिक प्रमेय का परिणाम है।


एक संख्या <math>n</math> पूर्ण संख्या कहलाती है यदि यह अपने उचित भाजक के योग के बराबर है, [[ कमी संख्या ]] यदि इसके उचित भाजक का योग इससे कम है <math>n</math>, और प्रचुर मात्रा में संख्या यदि यह योग अधिक हो <math>n</math>.
एक संख्या <math>n</math> पूर्ण संख्या कहलाती है यदि यह अपने उचित भाजक के योग के बराबर है, दोषपूर्ण संख्या यदि इसके उचित भाजक का योग इससे कम है <math>n</math>, और प्रचुर मात्रा में संख्या यदि यह योग अधिक हो <math>n</math>.


के सकारात्मक विभाजकों की कुल संख्या <math>n</math> एक गुणक कार्य है <math>d(n)</math>, जिसका अर्थ है कि जब दो नंबर <math>m</math> तथा <math>n</math> अपेक्षाकृत प्रमुख हैं, तो <math>d(mn)=d(m)\times d(n)</math>. उदाहरण के लिए, <math>d(42) = 8 = 2 \times 2 \times 2 = d(2) \times d(3) \times d(7)</math>; 42 के आठ विभाजक 1, 2, 3, 6, 7, 14, 21 और 42 हैं। <math>m</math> तथा <math>n</math> एक सामान्य विभाजक साझा करें, तो यह सच नहीं हो सकता है <math>d(mn)=d(m)\times d(n)</math>. के सकारात्मक भाजक का योग <math>n</math> एक अन्य गुणक कार्य है <math>\sigma (n)</math> (उदा <math>\sigma (42) = 96 = 3 \times 4 \times 8 = \sigma (2) \times \sigma (3) \times \sigma (7) = 1+2+3+6+7+14+21+42</math>). ये दोनों फलन [[ भाजक फलन ]] के उदाहरण हैं।
के सकारात्मक विभाजकों की कुल संख्या <math>n</math> एक गुणक कार्य है <math>d(n)</math>, जिसका अर्थ है कि जब दो नंबर <math>m</math> तथा <math>n</math> अपेक्षाकृत प्रमुख हैं, तो <math>d(mn)=d(m)\times d(n)</math>. उदाहरण के लिए, <math>d(42) = 8 = 2 \times 2 \times 2 = d(2) \times d(3) \times d(7)</math>; 42 के आठ विभाजक 1, 2, 3, 6, 7, 14, 21 और 42 हैं। <math>m</math> तथा <math>n</math> एक सामान्य विभाजक भागीदारी करें, तो यह सच नहीं हो सकता है <math>d(mn)=d(m)\times d(n)</math>. के सकारात्मक भाजक का योग <math>n</math> एक अन्य गुणक कार्य है <math>\sigma (n)</math> (उदा के लिए<math>\sigma (42) = 96 = 3 \times 4 \times 8 = \sigma (2) \times \sigma (3) \times \sigma (7) = 1+2+3+6+7+14+21+42</math>). ये दोनों फलन [[ भाजक फलन ]] के उदाहरण हैं।


{{anchor|number_of_divisors_formula}}
यदि का अभाज्य गुणनखंडन <math>n</math> द्वारा दिया गया है
यदि . का अभाज्य गुणनखंडन <math>n</math> द्वारा दिया गया है


:<math> n = p_1^{\nu_1} \, p_2^{\nu_2} \cdots p_k^{\nu_k} </math>
:<math> n = p_1^{\nu_1} \, p_2^{\nu_2} \cdots p_k^{\nu_k} </math>
Line 59: Line 57:


:<math> p_1^{\mu_1} \, p_2^{\mu_2} \cdots p_k^{\mu_k} </math>
:<math> p_1^{\mu_1} \, p_2^{\mu_2} \cdots p_k^{\mu_k} </math>
कहाँ पे <math> 0 \le \mu_i \le \nu_i </math> प्रत्येक के लिए <math>1 \le i \le k.</math>
यहाँ पर <math> 0 \le \mu_i \le \nu_i </math> प्रत्येक के लिए <math>1 \le i \le k.</math> प्रत्येक प्राकृतिक के लिए <math>n</math>, <math>d(n) < 2 \sqrt{n}</math>.
प्रत्येक प्राकृतिक के लिए <math>n</math>, <math>d(n) < 2 \sqrt{n}</math>.


भी,<ref>{{harvnb|Hardy|Wright|1960|p=264|loc=Theorem 320}}</ref>
भी,<ref>{{harvnb|Hardy|Wright|1960|p=264|loc=Theorem 320}}</ref>
:<math>d(1)+d(2)+ \cdots +d(n) = n \ln n + (2 \gamma -1) n + O(\sqrt{n}).</math>
:<math>d(1)+d(2)+ \cdots +d(n) = n \ln n + (2 \gamma -1) n + O(\sqrt{n}).</math>
कहाँ पे <math> \gamma </math> यूलर-मास्चेरोनी स्थिरांक है।
यहाँ पर <math> \gamma </math> यूलर-मास्चेरोनी स्थिरांक है।
इस परिणाम की एक व्याख्या यह है कि यादृच्छिक रूप से चुने गए धनात्मक पूर्णांक n का औसत होता है
 
के विभाजकों की संख्या <math>\ln n</math>. हालांकि, यह असामान्य रूप से कई भाजक के साथ अत्यधिक समस्त संख्या | संख्याओं के योगदान का परिणाम है।
इस परिणाम की एक व्याख्या यह है कि यादृच्छिक रूप से चुने गए धनात्मक पूर्णांक n का औसत होता है, के विभाजकों की संख्या <math>\ln n</math>. यद्यपि, यह असामान्य रूप से कई भाजक के साथ अत्यधिक समस्त संख्या | संख्याओं के योगदान का परिणाम है।


== अमूर्त बीजगणित में ==
== आधुनिक बीजगणित में ==


=== वलय सिद्धांत ===
=== वलय सिद्धांत ===
{{Main|Divisibility (ring theory)}}
{{Main|विभाज्यता (अंगूठी सिद्धांत)}}
 


=== डिवीजन जाली ===
=== विभाजन जाली ===
{{Main|Division lattice}}
{{Main|डिवीजन लेटिस}}
जिन परिभाषाओं में 0 शामिल है, विभाज्यता का संबंध सेट को बदल देता है <math>\mathbb{N}</math> आंशिक रूप से आदेशित सेट में गैर-ऋणात्मक पूर्णांकों का: एक [[ जाली (आदेश) ]]। इस जाली का सबसे बड़ा अवयव 0 है और सबसे छोटा 1 है। मिलन संक्रिया ∧ सबसे बड़े उभयनिष्ठ भाजक द्वारा दी जाती है और जोड़ संक्रिया अल्पतम उभयनिष्ठ गुणज द्वारा दी जाती है। यह जाली अनंत [[ चक्रीय समूह ]] पूर्णांक के [[ उपसमूहों की जाली ]] के [[ द्वैत (क्रम सिद्धांत) ]] के समरूप है|<math>\mathbb{Z}</math>.
जिन परिभाषाओं में 0 शामिल है, विभाज्यता का संबंध सेट को बदल देता है <math>\mathbb{N}</math> आंशिक रूप से आदेशित सेट में गैर-ऋणात्मक पूर्णांकों का: एक [[ जाली (आदेश) ]]। इस जाली का सबसे बड़ा अवयव 0 है और सबसे छोटा 1 है। मिलन संक्रिया ∧ सबसे बड़े उभयनिष्ठ भाजक द्वारा दी जाती है और जोड़ संक्रिया अल्पतम उभयनिष्ठ गुणज द्वारा दी जाती है। यह जाली अनंत [[ चक्रीय समूह ]] पूर्णांक के [[ उपसमूहों की जाली ]] के [[ द्वैत (क्रम सिद्धांत) ]] <math>\mathbb{Z}</math> के समरूप है|.


== यह भी देखें ==
== यह भी देखें ==
Line 119: Line 115:
{{Divisor classes}}
{{Divisor classes}}
{{Fractions and ratios}}
{{Fractions and ratios}}
[[Category: प्राथमिक संख्या सिद्धांत]]
[[Category: डिवीजन (गणित)]]


[[Category: Machine Translated Page]]
[[Category:All articles lacking in-text citations]]
[[Category:Articles lacking in-text citations from June 2015]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Articles with short description]]
[[Category:CS1 français-language sources (fr)]]
[[Category:CS1 maint]]
[[Category:CS1 Ελληνικά-language sources (el)]]
[[Category:Citation Style 1 templates|W]]
[[Category:Collapse templates]]
[[Category:Created On 14/11/2022]]
[[Category:Created On 14/11/2022]]
[[Category:Machine Translated Page]]
[[Category:Missing redirects]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates based on the Citation/CS1 Lua module]]
[[Category:Templates generating COinS|Cite web]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates used by AutoWikiBrowser|Cite web]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia fully protected templates|Cite web]]
[[Category:Wikipedia metatemplates]]
[[Category:डिवीजन (गणित)]]
[[Category:प्राथमिक संख्या सिद्धांत]]

Latest revision as of 17:09, 3 December 2022

10 के भाजक Cuisenaire छड़ के साथ सचित्र: 1, 2, 5, और 10

गणित में, एक पूर्णांक का भाजक , जिसे कारक भी कहा जाता है , एक पूर्णांक है जिसे उत्पन्न करने के लिए किसी पूर्णांक से गुणा किया जा सकता है . ऐसे में एक का यह भी कहना है का गुणज है पूर्णांक किसी अन्य पूर्णांक से विभाज्य या समान रूप से विभाज्य है यदि का भाजक है ; इसका अर्थ है विभाजित करना द्वारा शेष नहीं रहता है।

परिभाषा

पूर्णांक n एक शून्येतर पूर्णांक से विभाज्य है m यदि कोई पूर्णांक उपस्थित है k ऐसा है कि . यह इस प्रकार लिखा गया है

उसी बात को कहने के अन्य तरीके हैं m विभाजित n, m का भाजक है n, m का कारक है n, तथा n का गुणज है m. यदि m विभाजित नहीं करता n, तो अंकन है .[1][2]

सामान्यतः, m अशून्य होना आवश्यक है, लेकिन n शून्य होने की स्वीकृति है। इस समूह के साथ, प्रत्येक शून्येतर पूर्णांक के लिए m.[1][2] कुछ परिभाषाएँ उस आवश्यकता को छोड़ देती हैं शून्य न हो।[3]

सामान्य

विभाजक ऋणात्मक संख्या के साथ-साथ धनात्मक भी हो सकते हैं,यद्यपि कभी-कभी यह शब्द धनात्मक भाजक तक ही सीमित होता है। उदाहरण के लिए, 4 के छह विभाजक हैं; वे 1, 2, 4, -1, -2, और -4 हैं, लेकिन आमतौर पर केवल सकारात्मक (1, 2, और 4) का उल्लेख किया जाएगा।

1 और −1 प्रत्येक पूर्णांक को विभाजित (विभाजक) करते हैं। प्रत्येक पूर्णांक (और उसका निषेध) स्वयं का एक विभाजक है। 2 से विभाज्य पूर्णांक सम और विषम संख्याएँ कहलाती हैं, और 2 से विभाज्य पूर्णांक सम और विषम संख्याएँ कहलाती हैं।

1, −1, n और −n को n का 'छोटा विभाजक' कहा जाता है। n का एक भाजक जो छोटा भाजक नहीं है, उसे 'गैर-छोटा भाजक' (या सख्त भाजक) के रूप में जाना जाता है।[4]). कम से कम एक गैर-छोटा भाजक के साथ एक गैर-शून्य पूर्णांक को समस्त संख्या के रूप में जाना जाता है, जबकि इकाई (रिंग सिद्धांत) -1 और 1 और अभाज्य संख्याओं कोई गैर-छोटा भाजक नहीं होता है।

विभाज्यता नियम हैं जो किसी संख्या के अंकों से किसी संख्या के कुछ विभाजकों को पहचानने की स्वीकृति देते हैं।

उदाहरण

1 से 1000 तक पूर्णांकों के विभाजकों की संख्या का आलेख। अभाज्य संख्याओं में बिल्कुल 2 विभाजक होते हैं, और अत्यधिक सम्मिश्र संख्याएँ मोटे में होती हैं।

*7 42 का भाजक है क्योंकि , तो हम कह सकते हैं . यह भी कहा जा सकता है कि 42, 7 से विभाज्य है, 42, 7 का गुणज (गणित) है, 7, 42 को विभाजित करता है, या 7, 42 का एक गुणनखंड है।

  • 6 के गैर-छोटा भाजक 2, -2, 3, -3 हैं।
  • 42 के धनात्मक भाजक 1, 2, 3, 6, 7, 14, 21, 42 हैं।
  • 60 के सभी धनात्मक भाजक का समुच्चय (गणित), , आंशिक रूप से विभाज्यता द्वारा निर्धारित आदेश दिया गया है, यह आरेख है:
Lattice of the divisibility of 60; factors.svg

आगे की धारणाएं और तथ्य

कुछ प्राथमिक नियम हैं:

  • यदि तथा , फिर , अर्थात विभाज्यता एक सकारात्मक संबंध है।
  • यदि तथा , फिर या .
  • यदि तथा , फिर धारण करता है, के रूप में करता है .[5] यद्यपि, यदि तथा , फिर हमेशा धारण नहीं करता (उदा। तथा लेकिन 5, 6 को विभाजित नहीं करता है)।

यदि , तथा , फिर .[note 1] इसे यूक्लिड की लेम्मा कहा जाता है।

यदि एक अभाज्य संख्या है और फिर या .

का धनात्मक भाजक जो इससे अलग है ए कहा जाता है उचित विभाजन या एक विभाज्य भाग का . एक संख्या जो समान रूप से विभाजित नहीं होती लेकिन एक शेष छोड़ देता है जिसे कभी-कभी एक कहा जाता है तरल भाग का .

पूर्णांक जिसका एकमात्र उचित भाजक 1 है, अभाज्य संख्या कहलाती है। समतुल्य रूप से, एक अभाज्य संख्या एक सकारात्मक पूर्णांक है जिसके दो सकारात्मक कारक हैं: 1 और स्वयं।

का कोई सकारात्मक विभाजक के प्रमुख कारक का उत्पाद है कुछ शक्ति के लिए उठाया, यह अंकगणित के मौलिक प्रमेय का परिणाम है।

एक संख्या पूर्ण संख्या कहलाती है यदि यह अपने उचित भाजक के योग के बराबर है, दोषपूर्ण संख्या यदि इसके उचित भाजक का योग इससे कम है , और प्रचुर मात्रा में संख्या यदि यह योग अधिक हो .

के सकारात्मक विभाजकों की कुल संख्या एक गुणक कार्य है , जिसका अर्थ है कि जब दो नंबर तथा अपेक्षाकृत प्रमुख हैं, तो . उदाहरण के लिए, ; 42 के आठ विभाजक 1, 2, 3, 6, 7, 14, 21 और 42 हैं। तथा एक सामान्य विभाजक भागीदारी करें, तो यह सच नहीं हो सकता है . के सकारात्मक भाजक का योग एक अन्य गुणक कार्य है (उदा के लिए). ये दोनों फलन भाजक फलन के उदाहरण हैं।

यदि का अभाज्य गुणनखंडन द्वारा दिया गया है

फिर के धनात्मक विभाजकों की संख्या है

और प्रत्येक भाजक का रूप है

यहाँ पर प्रत्येक के लिए प्रत्येक प्राकृतिक के लिए , .

भी,[6]

यहाँ पर यूलर-मास्चेरोनी स्थिरांक है।

इस परिणाम की एक व्याख्या यह है कि यादृच्छिक रूप से चुने गए धनात्मक पूर्णांक n का औसत होता है, के विभाजकों की संख्या . यद्यपि, यह असामान्य रूप से कई भाजक के साथ अत्यधिक समस्त संख्या | संख्याओं के योगदान का परिणाम है।

आधुनिक बीजगणित में

वलय सिद्धांत

विभाजन जाली

जिन परिभाषाओं में 0 शामिल है, विभाज्यता का संबंध सेट को बदल देता है आंशिक रूप से आदेशित सेट में गैर-ऋणात्मक पूर्णांकों का: एक जाली (आदेश) । इस जाली का सबसे बड़ा अवयव 0 है और सबसे छोटा 1 है। मिलन संक्रिया ∧ सबसे बड़े उभयनिष्ठ भाजक द्वारा दी जाती है और जोड़ संक्रिया अल्पतम उभयनिष्ठ गुणज द्वारा दी जाती है। यह जाली अनंत चक्रीय समूह पूर्णांक के उपसमूहों की जाली के द्वैत (क्रम सिद्धांत) के समरूप है|.

यह भी देखें

टिप्पणियाँ

  1. refers to the greatest common divisor.
  1. 1.0 1.1 Hardy & Wright 1960, p. 1
  2. 2.0 2.1 Niven, Zuckerman & Montgomery 1991, p. 4
  3. Durbin 2009, p. 57, Chapter III Section 10
  4. "राफेल कॉडरलियर और कैथरीन डुबोइस द्वारा प्रूफ इंटरऑपरेबिलिटी के लिए बचाव के लिए FoCaLiZe और Dedukti" (PDF).
  5. . Similarly,
  6. Hardy & Wright 1960, p. 264, Theorem 320


संदर्भ