प्रतिच्छेदी संख्या: Difference between revisions
m (Sugatha moved page चौराहा संख्या to प्रतिच्छेदी संख्या without leaving a redirect) |
|
(No difference)
|
Revision as of 15:40, 1 December 2022
गणित में, और विशेष रूप से बीजगणितीय ज्यामिति में, प्रतिच्छेदन संख्या दो वक्रों को उच्च आयामों, एकाधिक (2 से अधिक) घटता, और स्पर्शरेखा के लिए ठीक से लेखांकन करने की संख्या की गिनती की सहज धारणा को सामान्यीकृत करती है। बेज़ाउट के प्रमेय जैसे परिणामों को बताने के लिए किसी को प्रतिच्छेदन संख्या की परिभाषा की आवश्यकता होती है।
कुछ मामलों में प्रतिच्छेदन संख्या स्पष्ट होती है, जैसे x- और y-अक्षों का प्रतिच्छेदन जो एक होना चाहिए। सकारात्मक आयामी सेट के साथ स्पर्शरेखा और चौराहों के बिंदुओं पर चौराहों की गणना करते समय जटिलता प्रवेश करती है। उदाहरण के लिए, यदि एक तल एक रेखा के साथ किसी सतह पर स्पर्शरेखा है, तो रेखा के साथ प्रतिच्छेदन संख्या कम से कम दो होनी चाहिए। इन प्रश्नों पर प्रतिच्छेदन सिद्धांत में व्यवस्थित रूप से चर्चा की जाती है।
रीमैन सतहों के लिए परिभाषा
बता दें कि X एक रीमैन सतह है। तब X पर दो बंद वक्रों के प्रतिच्छेदन संख्या की एक अभिन्न के संदर्भ में एक सरल परिभाषा है। एक्स पर प्रत्येक बंद वक्र सी के लिए (यानी, चिकनी कार्य ), हम एक अंतर रूप को जोड़ सकते हैं संपत्ति के साथ कॉम्पैक्ट समर्थन की सी के साथ इंटीग्रल की गणना एक्स पर इंटीग्रल द्वारा की जा सकती है:
- , हर बंद (1-) अंतर के लिए एक्स पर,
कहाँ पे अंतरों का कील उत्पाद है, और हॉज स्टार है। तब X पर दो बंद वक्रों, a और b की प्रतिच्छेदन संख्या को इस रूप में परिभाषित किया गया है
- . h> की सहज परिभाषा निम्नानुसार है। वे वक्र c के साथ एक प्रकार का डायराक डेल्टा हैं, जो एक इकाई चरण फ़ंक्शन के अंतर को पूरा करके पूरा किया जाता है जो 1 से 0 तक c से गिरता है। अधिक औपचारिक रूप से, हम एक्स पर एक सरल बंद वक्र सी, एक फ़ंक्शन एफ के लिए परिभाषित करके शुरू करते हैंcजैसे भी हो c के चारों ओर वलय के आकार की एक छोटी सी पट्टी हो। के बाएँ और दाएँ भागों के नाम लिखिए जैसा तथा . फिर c के चारों ओर एक छोटी उप-पट्टी लें, , बाएँ और दाएँ भागों के साथ तथा . फिर एफ परिभाषित करेंcद्वारा
- .
फिर परिभाषा को मनमाने ढंग से बंद वक्रों तक विस्तारित किया जाता है। X पर प्रत्येक बंद वक्र c समरूपता (गणित) है कुछ सरल बंद वक्रों के लिए ci, वह है,
- , हर अंतर के लिए .
को परिभाषित करो द्वारा
- .
बीजगणितीय किस्मों के लिए परिभाषा
बीजगणितीय किस्मों के मामले में सामान्य रचनात्मक परिभाषा चरणों में आगे बढ़ती है। नीचे दी गई परिभाषा एक गैर विलक्षण किस्म X पर विभाजक (बीजीय ज्यामिति) के प्रतिच्छेदन संख्या के लिए है।
1. एकमात्र प्रतिच्छेदन संख्या जिसकी परिभाषा से सीधे गणना की जा सकती है, वह हाइपरसर्फ्स (कोडिमेंशन एक के X की उप-किस्में) का प्रतिच्छेदन है जो x पर सामान्य स्थिति में हैं। विशेष रूप से, मान लें कि हमारे पास एक निरर्थक किस्म X है, और n हाइपरसर्फ्स Z है1, ..., सेn जिसके स्थानीय समीकरण f हैं1, ..., एफn बहुपद f के लिए x के पासi(टी1, ..., टीn), जैसे कि निम्नलिखित पकड़:
- .
- सभी के लिए मैं (अर्थात, x हाइपरसर्फ्स के चौराहे पर है।)
- (अर्थात भाजक सामान्य स्थिति में हैं।)
- h> x पर विलक्षण हैं।
तब बिंदु x पर प्रतिच्छेदन संख्या (जिसे x पर 'चौराहा बहुलता' कहा जाता है) है
- ,
कहाँ पे x पर X का स्थानीय वलय है, और आयाम k-वेक्टर स्थान के रूप में आयाम है। इसकी गणना एक अंगूठी के स्थानीयकरण के रूप में की जा सकती है , कहाँ पे एक्स पर लुप्त होने वाले बहुपदों का अधिकतम आदर्श है, और यू एक्स युक्त एक खुला संबंध सेट है और इसमें एफ की कोई भी विलक्षणता नहीं हैi.
2. सामान्य स्थिति में हाइपरसर्फ्स की प्रतिच्छेदन संख्या को प्रतिच्छेदन के प्रत्येक बिंदु पर प्रतिच्छेदन संख्याओं के योग के रूप में परिभाषित किया जाता है।
3. रैखिकता द्वारा प्रभावी विभाजकों के लिए परिभाषा का विस्तार करें, अर्थात,
- तथा .
4. प्रत्येक विभाजक को कुछ प्रभावी विभाजक P और N के लिए D = P - N के रूप में एक अद्वितीय अभिव्यक्ति की सूचना देकर सामान्य स्थिति में मनमाना विभाजक की परिभाषा का विस्तार करें। इसलिए D को देंi = पीi - एनi, और फ़ॉर्म के नियमों का उपयोग करें
चौराहे को बदलने के लिए।
5. मनमाना विभाजकों की प्रतिच्छेदन संख्या को चाउ की चलती लेम्मा का उपयोग करके परिभाषित किया जाता है जो गारंटी देता है कि हम सामान्य स्थिति में रैखिक रूप से समतुल्य विभाजक पा सकते हैं, जिसे हम तब प्रतिच्छेद कर सकते हैं।
ध्यान दें कि प्रतिच्छेदन संख्या की परिभाषा उस क्रम पर निर्भर नहीं करती है जिसमें विभाजक इस संख्या की गणना में दिखाई देते हैं।
सेरे का टोर फॉर्मूला
V और W को एक गैर-एकवचन किस्म के प्रक्षेपी विमान X की दो उप-प्रजातियाँ होने दें जैसे कि मंद (V) + मंद (W) = मंद (X)। तब हम अपेक्षा करते हैं कि प्रतिच्छेदन V∩W बिंदुओं का एक परिमित समुच्चय होगा। यदि हम उन्हें गिनने का प्रयास करें तो दो प्रकार की समस्याएँ उत्पन्न हो सकती हैं। सबसे पहले, भले ही V∩W का अपेक्षित आयाम शून्य हो, वास्तविक चौराहा एक बड़े आयाम का हो सकता है। उदाहरण के लिए, हम एक प्रक्षेपी तल में एक प्रक्षेपी रेखा के स्व-प्रतिच्छेदन संख्या को खोजने का प्रयास कर सकते हैं। दूसरी संभावित समस्या यह है कि भले ही प्रतिच्छेदन शून्य-आयामी है, यह गैर-अनुप्रस्थ हो सकता है। उदाहरण के लिए, V समतल वक्र W की स्पर्श रेखा हो सकती है।
पहली समस्या के लिए प्रतिच्छेदन सिद्धांत की मशीनरी की आवश्यकता है, जिसकी चर्चा ऊपर विस्तार से की गई है। आवश्यक विचार यह है कि चलती लेम्मा का उपयोग करके V और W को अधिक सुविधाजनक उप-किस्मों द्वारा प्रतिस्थापित किया जाए। दूसरी ओर, दूसरी समस्या को सीधे V या W को स्थानांतरित किए बिना हल किया जा सकता है। 1965 में जीन पियरे सेरे ने वर्णन किया कि कैसे कम्यूटेटिव बीजगणित और होमोलॉजिकल बीजगणित के तरीकों से प्रत्येक चौराहे बिंदु की बहुलता का पता लगाया जाए।[1] प्रतिच्छेदन की एक ज्यामितीय धारणा और एक टोर काम करता है की एक होमोलॉजिकल धारणा के बीच यह संबंध प्रभावशाली रहा है और विशेष रूप से कम्यूटेटिव बीजगणित में कई होमोलॉजिकल अनुमानों का नेतृत्व किया।
Serre's Tor सूत्र निम्न परिणाम है। बता दें कि X एक नियमित स्थानीय रिंग किस्म है, V और W पूरक आयाम की दो उप-किस्में हैं जैसे कि V∩W शून्य-आयामी है। किसी भी बिंदु x∈V∩W के लिए, A को स्थानीय रिंग होने दें एक्स का। एक्स पर वी और डब्ल्यू की संरचना शीफ आदर्श I, जे⊆ए के अनुरूप है। फिर बिंदु x पर V∩W की बहुलता है
जहां लंबाई स्थानीय अंगूठी पर मॉड्यूल की लंबाई है, और टोर टोर फ़ैक्टर है। जब वी और डब्ल्यू को अनुप्रस्थ स्थिति में ले जाया जा सकता है, तो यह समरूप सूत्र अपेक्षित उत्तर उत्पन्न करता है। इसलिए, उदाहरण के लिए, यदि V और W x पर आड़े-तिरछे मिलते हैं, तो बहुलता 1 है। यदि V एक बिंदु x पर एक परवलय W पर एक बिंदु x पर एक स्पर्श रेखा है, तो x पर बहुलता 2 है।
यदि वी और डब्ल्यू दोनों नियमित अनुक्रमों द्वारा स्थानीय रूप से काट दिए जाते हैं, उदाहरण के लिए यदि वे गैर-एकवचन विविधता हैं, तो उपरोक्त सूत्र में सभी उच्च टोर गायब हो जाते हैं, इसलिए बहुलता सकारात्मक है। मनमाने मामले में सकारात्मकता सेरे के बहुलता अनुमानों में से एक है।
आगे की परिभाषाएँ
परिभाषा को व्यापक रूप से सामान्यीकृत किया जा सकता है, उदाहरण के लिए केवल बिंदुओं के बजाय उप-किस्मों के साथ चौराहों पर, या मनमाना पूर्ण किस्मों के लिए।
बीजगणितीय टोपोलॉजी में, प्रतिच्छेदन संख्या कप उत्पाद के पॉइनकेयर दोहरे के रूप में दिखाई देती है। विशेष रूप से, यदि दो मैनिफोल्ड, X और Y, एक मैनिफोल्ड M में अनुप्रस्थ रूप से प्रतिच्छेद करते हैं, तो प्रतिच्छेदन का होमोलॉजी वर्ग कप उत्पाद का पॉइंकेयर डुअल है। X और Y के पोंकारे दोहरे।
स्नैपर-क्लेमन प्रतिच्छेदन संख्या की परिभाषा
1959-60 में स्नैपर द्वारा पेश किया गया और बाद में कार्टियर और क्लेमन द्वारा विकसित, प्रतिच्छेदन संख्या के लिए एक दृष्टिकोण है, जो एक प्रतिच्छेदन संख्या को एक यूलर विशेषता के रूप में परिभाषित करता है।
एक्स को एक योजना एस, पीआईसी (एक्स) एक्स के पिकार्ड समूह और 'जी' के एक्स पर सुसंगत शीफ की श्रेणी के ग्रोथेंडिक समूह पर एक योजना होने दें, जिसका समर्थन एस के आर्टिनियन उप-योजना पर उचित आकारिकी है।
तस्वीर (एक्स) में प्रत्येक एल के लिए, एंडोमोर्फिज्म सी परिभाषित करें1(एल) 'जी' (एल की पहली चेर्न क्लास कहा जाता है) द्वारा
यह 'जी' पर योज्य है क्योंकि लाइन बंडल के साथ टेंसरिंग सटीक है। एक के पास भी है:
- ; विशेष रूप से, तथा आना-जाना।
- (यह गैर-तुच्छ है और एक विचलन तर्क से आता है।)
चौराहा संख्या
लाइन बंडलों की एलiइसके द्वारा परिभाषित किया गया है:
जहां χ यूलर विशेषता को दर्शाता है। वैकल्पिक रूप से, किसी के पास प्रेरण है:
हर बार F नियत होता है, एल में एक सममित कार्यात्मक हैi'एस।
अगर एलi = दX(डीi) कुछ कार्टियर विभाजकों के लिए डीiहै, तो हम लिखेंगे चौराहे संख्या के लिए।
होने देना एस-योजनाओं का एक रूपवाद हो, के साथ 'जी' में एक्स और एफ पर लाइन बंडल . फिर
- .[2]
प्लेन कर्व्स के लिए इंटरसेक्शन मल्टीप्लिसिटी
प्रत्येक ट्रिपलेट को असाइन करने वाला एक अनूठा कार्य है प्रोजेक्टिव कर्व्स की एक जोड़ी से मिलकर, तथा , में और एक बिंदु , एक संख्या की प्रतिच्छेदन बहुलता कहलाती है तथा पर जो निम्नलिखित गुणों को संतुष्ट करता है:
- अगर और केवल अगर तथा एक सामान्य कारक है जो शून्य है
- अगर और केवल अगर में से एक या गैर-शून्य है (अर्थात बिंदु एक वक्र से बाहर है)
- कहाँ पे
- किसी के लिए
हालांकि ये गुण पूरी तरह से प्रतिच्छेदन बहुलता को चित्रित करते हैं, व्यवहार में इसे कई अलग-अलग तरीकों से महसूस किया जाता है।
प्रतिच्छेदन बहुलता का एक बोध शक्ति श्रृंखला वलय के एक निश्चित भागफल स्थान के आयाम के माध्यम से होता है . यदि आवश्यक हो तो चरों में परिवर्तन करके, हम यह मान सकते हैं . होने देना तथा बीजगणितीय वक्रों को परिभाषित करने वाले बहुपद बनें जिनमें हम रुचि रखते हैं। यदि मूल समीकरण सजातीय रूप में दिए गए हैं, तो इन्हें सेट करके प्राप्त किया जा सकता है . होने देना के आदर्श को दर्शाता है द्वारा उत्पन्न तथा . प्रतिच्छेदन बहुलता का आयाम है सदिश स्थान के रूप में .
प्रतिच्छेदन बहुलता का एक और अहसास दो बहुपदों के परिणाम से आता है तथा . निर्देशांक में जहां , वक्रों के साथ कोई अन्य प्रतिच्छेदन नहीं है , और बहुपद की डिग्री इसके संबंध में की कुल डिग्री के बराबर है , की उच्चतम शक्ति के रूप में परिभाषित किया जा सकता है जो परिणामी को विभाजित करता है तथा (साथ तथा बहुपदों के रूप में देखा जाता है ).
चौराहों की बहुलता को अलग-अलग चौराहों की संख्या के रूप में भी महसूस किया जा सकता है, अगर घटता थोड़ा परेशान हो। अधिक विशेष रूप से, अगर तथा वक्रों को परिभाषित करें जो एक खुले सेट के समापन (गणित) में केवल एक बार प्रतिच्छेद करते हैं , फिर के घने सेट के लिए , तथा चिकने होते हैं और बिल्कुल किसी संख्या पर तिर्यक रूप से प्रतिच्छेद करते हैं (अर्थात अलग-अलग स्पर्श रेखाएँ होती हैं)। में इंगित करता है . हम तब कहते हैं .
उदाहरण
परवलय के साथ x-अक्ष के प्रतिच्छेदन पर विचार करें
फिर
तथा
इसलिए
इस प्रकार, प्रतिच्छेदन की डिग्री दो है; यह एक साधारण स्पर्शरेखा है।
स्व-चौराहे
गणना करने के लिए सबसे दिलचस्प चौराहे संख्याओं में से कुछ स्व-प्रतिच्छेदन संख्याएँ हैं। इसे हल्के अर्थों में नहीं लिया जाना चाहिए। इसका मतलब यह है कि, किसी विशिष्ट प्रकार के विभाजक (बीजीय ज्यामिति) के समतुल्य वर्ग में, दो प्रतिनिधि प्रतिच्छेदित होते हैं जो एक दूसरे के संबंध में सामान्य स्थिति में होते हैं। इस तरह, स्व-प्रतिच्छेदन संख्याएं अच्छी तरह से परिभाषित हो सकती हैं, और यहां तक कि नकारात्मक भी।
अनुप्रयोग
चौराहे की संख्या आंशिक रूप से बेज़ाउट के प्रमेय को संतुष्ट करने के लिए चौराहे को परिभाषित करने की इच्छा से प्रेरित है।
प्रतिच्छेदन संख्या निश्चित बिंदु (गणित) के अध्ययन में उत्पन्न होती है, जिसे एक विकर्ण के साथ एक फ़ंक्शन के फ़ंक्शन ग्राफ़ के चौराहों के रूप में चतुराई से परिभाषित किया जा सकता है। नियत बिन्दुओं पर प्रतिच्छेदन संख्या की गणना बहुलता के साथ नियत बिन्दुओं की गणना करती है, और मात्रात्मक रूप में Lefschetz नियत-बिंदु प्रमेय की ओर ले जाती है।
टिप्पणियाँ
- ↑ Serre, Jean-Pierre (1965). स्थानीय बीजगणित, गुणक. Lecture Notes in Mathematics. Vol. 11. Springer-Verlag. pp. x+160.
- ↑ Kollár 1996, Ch VI. Proposition 2.11
संदर्भ
- William Fulton (1974). Algebraic Curves. Mathematics Lecture Note Series. W.A. Benjamin. pp. 74–83. ISBN 0-8053-3082-8.
- Robin Hartshorne (1977). Algebraic Geometry. Graduate Texts in Mathematics. Vol. 52. ISBN 0-387-90244-9. Appendix A.
- William Fulton (1998). Intersection Theory (2nd ed.). Springer. ISBN 9780387985497.
- Algebraic Curves: An Introduction To Algebraic Geometry, by William Fulton with Richard Weiss. New York: Benjamin, 1969. Reprint ed.: Redwood City, CA, USA: Addison-Wesley, Advanced Book Classics, 1989. ISBN 0-201-51010-3. Full text online.
- Hershel M. Farkas; Irwin Kra (1980). Riemann Surfaces. Graduate Texts in Mathematics. Vol. 71. pp. 40–41, 55–56. ISBN 0-387-90465-4.
- Kleiman, Steven L. (2005), "The Picard scheme: Appendix B.", Fundamental algebraic geometry, Math. Surveys Monogr., vol. 123, Providence, R.I.: American Mathematical Society, arXiv:math/0504020, Bibcode:2005math......4020K, MR 2223410
- Kollár, János (1996), Rational Curves on Algebraic Varieties, Berlin, Heidelberg: Springer-Verlag, doi:10.1007/978-3-662-03276-3, ISBN 978-3-642-08219-1, MR 1440180