प्रतिच्छेदी संख्या: Difference between revisions
(minor changes) |
(first para edited) |
||
Line 1: | Line 1: | ||
{{Short description|Generalized notion of counting curve intersections}} | {{Short description|Generalized notion of counting curve intersections}} | ||
{{about|बीजगणितीय ज्यामिति|ग्राफ सिद्धांत में अवधारणा|प्रतिच्छेदन संख्या (ग्राफ सिद्धांत)}} | {{about|बीजगणितीय ज्यामिति|ग्राफ सिद्धांत में अवधारणा|प्रतिच्छेदन संख्या (ग्राफ सिद्धांत)}} | ||
गणित में, और विशेष रूप से [[बीजगणितीय ज्यामिति]] में, प्रतिच्छेदन संख्या | गणित में, और विशेष रूप से [[बीजगणितीय ज्यामिति]] में, '''प्रतिच्छेदन संख्या''' उच्च विमाओं, एकाधिक (2 से अधिक) वक्रों, और [[स्पर्शरेखा|स्पर्शिता]] के लिए उचित रूप से लेखांकन के लिए दो वक्रों के प्रतिच्छेदन की संख्या की गणना करने की सहज धारणा को सामान्यीकृत करती है। बेज़ाउट के प्रमेय जैसे परिणामों को निर्धारित करने के लिए, प्रतिच्छेदन संख्या की परिभाषा की आवश्यकता होती है। | ||
कुछ | कुछ स्थितियों में प्रतिच्छेदन संख्या स्पष्ट होती है, प्रथम स्थिति जैसे की ''x''-अक्ष तथा ''y''-अक्ष का प्रतिच्छेदन। स्पर्शिता के प्रतिच्छेदन बिंदु और सुनिश्चित विमीय समुच्चय के साथ प्रतिच्छेदन के गणना करते समय जटिलता प्रवेश करती है। उदाहरण के लिए, यदि कोई समतल किसी रेखा के अनुदिश किसी पृष्ठ पर स्पर्शी होता है, अतः रेखा के साथ प्रतिच्छेदन संख्या कम से कम दो होनी चाहिए। [[प्रतिच्छेदन सिद्धांत]] में इन प्रश्नों पर व्यवस्थित रूप से चर्चा की जाती है। | ||
== रीमैन | == रीमैन पृष्ठों के लिए परिभाषा == | ||
{{main|रीमैन सतह पर विभेदक रूप#1-रूपों और बंद वक्रों के बीच द्वंद्व}} | {{main|रीमैन सतह पर विभेदक रूप#1-रूपों और बंद वक्रों के बीच द्वंद्व}} | ||
मान लीजिए कि X एक [[रीमैन सतह]] है। तब X पर दो | मान लीजिए कि ''X'' एक [[रीमैन सतह|रीमैन पृष्ठ]] है। तब ''X'' पर दो संवृत वक्रों के प्रतिच्छेदन संख्या की समाकलन के संदर्भ में एक सरल परिभाषा है। ''X'' (अर्थात, स्मूथ फलन <math>c : S^1 \to X</math>) पर प्रत्येक संवृत वक्र ''c'' के लिए, हम गुण धर्म के साथ सघन आश्रय के अवकल रूप <math>\eta_c</math> को संबद्ध कर सकते हैं, जो कि ''c'' के अनुदिश इंटीग्रल X पर समाकल द्वारा गणना की जा सकती है: | ||
:<math>\int_c \alpha = -\iint_X \alpha \wedge \eta_c = (\alpha, *\eta_c)</math>, हर | :<math>\int_c \alpha = -\iint_X \alpha \wedge \eta_c = (\alpha, *\eta_c)</math>, हर संवृत (1-)अंतर के लिए ''X'' पर <math>\alpha</math>, | ||
जहां <math>\wedge</math> | जहां <math>\wedge</math> अवकल का [[कील उत्पाद|वेज गुणन]] है और <math>*</math> [[हॉज स्टार]] है। फिर ''X'' पर दो संवृत वक्रों, ''a'' और ''b'' की प्रतिच्छेदन संख्या को निम्न रूप में परिभाषित किया गया है। | ||
:<math>a \cdot b := \iint_X \eta_a \wedge \eta_b = (\eta_a, -*\eta_b) = -\int_b \eta_a</math> | :<math>a \cdot b := \iint_X \eta_a \wedge \eta_b = (\eta_a, -*\eta_b) = -\int_b \eta_a</math> | ||
<math>\eta_c</math> की सहज परिभाषा निम्नानुसार है। वे वक्र c के साथ एक प्रकार का [[डायराक डेल्टा]] हैं, जो एक यूनिट स्टेप | <math>\eta_c</math> की सहज परिभाषा निम्नानुसार है। वे वक्र ''c'' के साथ एक प्रकार का [[डायराक डेल्टा]] हैं, जो एक यूनिट स्टेप फलन के अंतर को पूरा करके पूरा किया जाता है जो 1 से 0 तक c तक गिरता है। अधिक औपचारिक रूप से, हम X पर एक साधारण संवृत वक्र सी के लिए परिभाषित करते हुए शुरू करते हैं, एक समारोह एफसी <math>\Omega</math> को एनलस के आकार में c के चारों ओर एक छोटी सी पट्टी होने के द्वारा। <math>\Omega \setminus c</math> के बाएँ और दाएँ भागों को <math>\Omega^{+}</math> और <math>\Omega^{-}</math> के रूप में नाम दें। फिर c, <math>\Omega_0</math> के चारों ओर एक छोटी उप-पट्टी लें, जिसमें बाएँ और दाएँ भाग <math>\Omega_0^{-}</math> और <math>\Omega_0^{+}</math> हों। फिर fc को परिभाषित करें | ||
:<math>f_c(x) = \begin{cases} 1, & x \in \Omega_0^{-} \\ 0, & x \in X \setminus \Omega^{-} \\ \mbox{smooth interpolation}, & x \in \Omega^{-} \setminus \Omega_0^{-} \end{cases}</math>. | :<math>f_c(x) = \begin{cases} 1, & x \in \Omega_0^{-} \\ 0, & x \in X \setminus \Omega^{-} \\ \mbox{smooth interpolation}, & x \in \Omega^{-} \setminus \Omega_0^{-} \end{cases}</math>. | ||
फिर परिभाषा को मनमाना | फिर परिभाषा को मनमाना संवृत वक्रों तक विस्तारित किया जाता है। X पर प्रत्येक संवृत वक्र c कुछ सरल संवृत वक्र c<sub>i</sub> के लिए <math>\sum_{i=1}^N k_i c_i</math> के [[समरूपता (गणित)|समरूप]] है, अर्थात | ||
:<math>\int_c \omega = \int_{\sum_i k_i c_i} \omega = \sum_{i=1}^N k_i \int_{c_i} \omega</math>, हर अंतर के लिए <math>\omega</math>. | :<math>\int_c \omega = \int_{\sum_i k_i c_i} \omega = \sum_{i=1}^N k_i \int_{c_i} \omega</math>, हर अंतर के लिए <math>\omega</math>. | ||
Line 30: | Line 30: | ||
बीजीय किस्मों के मामले में सामान्य रचनात्मक परिभाषा चरणों में होती है। नीचे दी गई परिभाषा एक गैर-एकवचन किस्म X पर [[भाजक (बीजीय ज्यामिति)|विभाजकों]] की प्रतिच्छेदन संख्या के लिए है। | बीजीय किस्मों के मामले में सामान्य रचनात्मक परिभाषा चरणों में होती है। नीचे दी गई परिभाषा एक गैर-एकवचन किस्म X पर [[भाजक (बीजीय ज्यामिति)|विभाजकों]] की प्रतिच्छेदन संख्या के लिए है। | ||
1. एकमात्र प्रतिच्छेदन संख्या जिसकी सीधे परिभाषा से गणना की जा सकती है, हाइपरसर्फ्स (कोडिमेंशन एक के | 1. एकमात्र प्रतिच्छेदन संख्या जिसकी सीधे परिभाषा से गणना की जा सकती है, हाइपरसर्फ्स (कोडिमेंशन एक के X की उप-किस्म) का प्रतिच्छेदन है जो x पर सामान्य स्थिति में हैं। विशेष रूप से, मान लें कि हमारे पास एक विलक्षण किस्म X है, और n हाइपरसर्फ्स Z1, ..., Zn जिसमें बहुपद fi(t1, ..., tn) के लिए x के पास स्थानीय समीकरण f1, ..., fn हैं, जैसे कि निम्नलिखित पकड़: | ||
* <math>n = \dim_k X</math>. | * <math>n = \dim_k X</math>. | ||
Line 37: | Line 37: | ||
* <math>f_i</math> h> x पर विलक्षण हैं। | * <math>f_i</math> h> x पर विलक्षण हैं। | ||
तब बिंदु x पर प्रतिच्छेदन संख्या (जिसे x पर ' | तब बिंदु x पर प्रतिच्छेदन संख्या (जिसे x पर 'प्रतिच्छेदन बहुलता' कहा जाता है) है | ||
:<math>(Z_1 \cdots Z_n)_x := \dim_k \mathcal{O}_{X, x} / (f_1, \dots, f_n)</math>, | :<math>(Z_1 \cdots Z_n)_x := \dim_k \mathcal{O}_{X, x} / (f_1, \dots, f_n)</math>, | ||
जहाँ <math>\mathcal{O}_{X, x}</math> x पर X का स्थानीय वलय है, और | जहाँ <math>\mathcal{O}_{X, x}</math> x पर X का स्थानीय वलय है, और विमा k-वेक्टर स्थान के रूप में विमा है। इसकी गणना स्थानीयकरण <math>k[U]_{\mathfrak{m}_x}</math> के रूप में की जा सकती है, जहां <math>\mathfrak{m}_x</math> x पर लुप्त होने वाले बहुपदों का अधिकतम आदर्श है, और U एक खुला संबधित समूह है जिसमें x है और इसमें fi की कोई भी विलक्षणता नहीं है। | ||
2. सामान्य स्थिति में हाइपरसर्फ्स की प्रतिच्छेदन संख्या को तब प्रतिच्छेदन के प्रत्येक बिंदु पर प्रतिच्छेदन संख्याओं के योग के रूप में परिभाषित किया जाता है। | 2. सामान्य स्थिति में हाइपरसर्फ्स की प्रतिच्छेदन संख्या को तब प्रतिच्छेदन के प्रत्येक बिंदु पर प्रतिच्छेदन संख्याओं के योग के रूप में परिभाषित किया जाता है। | ||
Line 60: | Line 60: | ||
== सेरे का टोर फॉर्मूला == | == सेरे का टोर फॉर्मूला == | ||
V और W को एक गैर-एकवचन [[प्रक्षेपी विमान|प्रक्षेपी किस्म]] X की दो उप-किस्में होने दें जैसे कि मंद(V)+मंद(W)=मंद(X)। तब हम अपेक्षा करते हैं कि प्रतिच्छेदन V∩W बिंदुओं का एक परिमित समूह होगा। यदि हम इनकी गणना करने का प्रयास करें तो दो प्रकार की समस्याएँ उत्पन्न हो सकती हैं। पहला, भले ही V∩W का अपेक्षित | V और W को एक गैर-एकवचन [[प्रक्षेपी विमान|प्रक्षेपी किस्म]] X की दो उप-किस्में होने दें जैसे कि मंद(V)+मंद(W)=मंद(X)। तब हम अपेक्षा करते हैं कि प्रतिच्छेदन V∩W बिंदुओं का एक परिमित समूह होगा। यदि हम इनकी गणना करने का प्रयास करें तो दो प्रकार की समस्याएँ उत्पन्न हो सकती हैं। पहला, भले ही V∩W का अपेक्षित विमा शून्य हो, वास्तविक प्रतिच्छेदन एक बड़े विमा का हो सकता है। उदाहरण के लिए, हम एक प्रक्षेपी तल में एक प्रक्षेपी रेखा के स्वयं-प्रतिच्छेदन संख्या को खोजने का प्रयास कर सकते हैं। दूसरी संभावित समस्या यह है कि यदि प्रतिच्छेदन शून्य-विमीय है, तो भी यह गैर-अनुप्रस्थ हो सकता है। उदाहरण के लिए, V समतल वक्र W के लिए एक स्पर्श रेखा हो सकती है। | ||
पहली समस्या के लिए प्रतिच्छेदन सिद्धांत की मशीनरी की आवश्यकता होती है, जिसकी ऊपर विस्तार से चर्चा की गई है। आवश्यक विचार यह है कि [[चलती लेम्मा|मूविंग लेम्मा]] का उपयोग करके वी और डब्ल्यू को अधिक सुविधाजनक उप-किस्मों से प्रतिस्थापित किया जाए। दूसरी ओर, दूसरी समस्या को सीधे V या W को स्थानांतरित किए बिना हल किया जा सकता है। 1965 में [[जीन पियरे सेरे]] ने वर्णन किया कि कैसे क्रमविनिमेय बीजगणित और समरूप बीजगणित के तरीकों से प्रत्येक चौराहे बिंदु की बहुलता को खोजा जाए।<ref>{{cite book| first = Jean-Pierre | last = Serre | author-link = Jean-Pierre Serre| title=स्थानीय बीजगणित, गुणक| series= Lecture Notes in Mathematics | volume = 11 | publisher = Springer-Verlag | year = 1965 | pages = x+160 }}</ref> प्रतिच्छेदन की एक ज्यामितीय धारणा और एक व्युत्पन्न टेन्सर उत्पाद की एक समरूप धारणा के बीच यह संबंध प्रभावशाली रहा है और विशेष रूप से कम्यूटेटिव बीजगणित में कई समरूप अनुमानों का नेतृत्व किया। | पहली समस्या के लिए प्रतिच्छेदन सिद्धांत की मशीनरी की आवश्यकता होती है, जिसकी ऊपर विस्तार से चर्चा की गई है। आवश्यक विचार यह है कि [[चलती लेम्मा|मूविंग लेम्मा]] का उपयोग करके वी और डब्ल्यू को अधिक सुविधाजनक उप-किस्मों से प्रतिस्थापित किया जाए। दूसरी ओर, दूसरी समस्या को सीधे V या W को स्थानांतरित किए बिना हल किया जा सकता है। 1965 में [[जीन पियरे सेरे]] ने वर्णन किया कि कैसे क्रमविनिमेय बीजगणित और समरूप बीजगणित के तरीकों से प्रत्येक चौराहे बिंदु की बहुलता को खोजा जाए।<ref>{{cite book| first = Jean-Pierre | last = Serre | author-link = Jean-Pierre Serre| title=स्थानीय बीजगणित, गुणक| series= Lecture Notes in Mathematics | volume = 11 | publisher = Springer-Verlag | year = 1965 | pages = x+160 }}</ref> प्रतिच्छेदन की एक ज्यामितीय धारणा और एक व्युत्पन्न टेन्सर उत्पाद की एक समरूप धारणा के बीच यह संबंध प्रभावशाली रहा है और विशेष रूप से कम्यूटेटिव बीजगणित में कई समरूप अनुमानों का नेतृत्व किया। | ||
सेर्रे का टोर सूत्र निम्नलिखित परिणाम है। बता दें कि X एक नियमित किस्म है, V और W दो पूरक | सेर्रे का टोर सूत्र निम्नलिखित परिणाम है। बता दें कि X एक नियमित किस्म है, V और W दो पूरक विमा की उप-किस्में हैं जैसे V∩W शून्य-विमीय है। किसी भी बिंदु x∈V∩W के लिए, A को x का स्थानीय रिंग <math>\mathcal{O}_{X, x}</math> होने दें। X पर वी और डब्ल्यू की [[संरचना शीफ]] आदर्श I, जे⊆ए के अनुरूप है। फिर बिंदु X पर V∩W की बहुलता है | ||
:<math>e(X; V, W; x) = \sum_{i=0}^{\infty} (-1)^i \mathrm{length}_A(\operatorname{Tor}_i^A(A/I, A/J))</math> | :<math>e(X; V, W; x) = \sum_{i=0}^{\infty} (-1)^i \mathrm{length}_A(\operatorname{Tor}_i^A(A/I, A/J))</math> | ||
जहां लंबाई एक स्थानीय रिंग के ऊपर एक मॉड्यूल की लंबाई है, और टोर टोर फंक्शनल है। जब वी और डब्ल्यू को एक अनुप्रस्थ स्थिति में स्थानांतरित किया जा सकता है, तो यह होमोलॉजिकल फॉर्मूला अपेक्षित उत्तर उत्पन्न करता है। इसलिए, उदाहरण के लिए, यदि V और W x पर आड़े-तिरछे मिलते हैं, तो गुणन 1 है। यदि V एक बिंदु x पर एक [[परवलय]] W पर एक बिंदु x पर एक स्पर्श रेखा है, तो x पर गुणन 2 है। | जहां लंबाई एक स्थानीय रिंग के ऊपर एक मॉड्यूल की लंबाई है, और टोर टोर फंक्शनल है। जब वी और डब्ल्यू को एक अनुप्रस्थ स्थिति में स्थानांतरित किया जा सकता है, तो यह होमोलॉजिकल फॉर्मूला अपेक्षित उत्तर उत्पन्न करता है। इसलिए, उदाहरण के लिए, यदि V और W x पर आड़े-तिरछे मिलते हैं, तो गुणन 1 है। यदि V एक बिंदु x पर एक [[परवलय]] W पर एक बिंदु x पर एक स्पर्श रेखा है, तो x पर गुणन 2 है। | ||
Line 74: | Line 74: | ||
परिभाषा को व्यापक रूप से सामान्यीकृत किया जा सकता है, उदाहरण के लिए केवल बिंदुओं के बजाय उप-किस्मों के साथ चौराहों पर, या पूरी तरह से मनमाना करने के लिए। | परिभाषा को व्यापक रूप से सामान्यीकृत किया जा सकता है, उदाहरण के लिए केवल बिंदुओं के बजाय उप-किस्मों के साथ चौराहों पर, या पूरी तरह से मनमाना करने के लिए। | ||
बीजगणितीय टोपोलॉजी में, प्रतिच्छेदन संख्या [[कप उत्पाद]] के पोंकारे दोहरे के रूप में प्रकट होती है। विशेष रूप से, यदि दो कई गुना, | बीजगणितीय टोपोलॉजी में, प्रतिच्छेदन संख्या [[कप उत्पाद]] के पोंकारे दोहरे के रूप में प्रकट होती है। विशेष रूप से, यदि दो कई गुना, X और वाई, कई गुना एम में अनुप्रस्थ रूप से प्रतिच्छेद करते हैं, तो प्रतिच्छेदन का समरूपता वर्ग X और वाई के पोंकारे दोहरे के कप उत्पाद <math>D_M X \smile D_M Y</math> का पोंकारे दोहरा है। | ||
== स्नैपर-क्लेमन प्रतिच्छेदन संख्या की परिभाषा == | == स्नैपर-क्लेमन प्रतिच्छेदन संख्या की परिभाषा == | ||
1959-60 में स्नैपर द्वारा पेश किया गया और बाद में कार्टियर और क्लेमन द्वारा विकसित, प्रतिच्छेदन संख्या के लिए एक दृष्टिकोण है, जो एक चौराहे संख्या को यूलर विशेषता के रूप में परिभाषित करता है। | 1959-60 में स्नैपर द्वारा पेश किया गया और बाद में कार्टियर और क्लेमन द्वारा विकसित, प्रतिच्छेदन संख्या के लिए एक दृष्टिकोण है, जो एक चौराहे संख्या को यूलर विशेषता के रूप में परिभाषित करता है। | ||
X को एक योजना एस, पीआईसी (X) X और जी के [[पिकार्ड समूह]] पर X पर [[सुसंगत शीफ]] की श्रेणी के ग्रोथेंडिक समूह पर एक योजना होने दें, जिसका समर्थन एस के एक आर्टिनियन सबस्कैम पर उचित है। | |||
Pic(X) में प्रत्येक L के लिए, G के एंडोमोर्फिज्म c1(L) को परिभाषित करें (जिसे L का पहला चेर्न वर्ग कहा जाता है) | Pic(X) में प्रत्येक L के लिए, G के एंडोमोर्फिज्म c1(L) को परिभाषित करें (जिसे L का पहला चेर्न वर्ग कहा जाता है) | ||
Line 87: | Line 87: | ||
*<math>c_1(L)c_1(L^{-1}) = c_1(L) + c_1(L^{-1}).</math> | *<math>c_1(L)c_1(L^{-1}) = c_1(L) + c_1(L^{-1}).</math> | ||
*<math>\dim \operatorname{supp} c_1(L)F \le \dim \operatorname{supp} F - 1</math> (यह गैर-तुच्छ है और एक विचलन तर्क से आता है।) | *<math>\dim \operatorname{supp} c_1(L)F \le \dim \operatorname{supp} F - 1</math> (यह गैर-तुच्छ है और एक विचलन तर्क से आता है।) | ||
प्रतिच्छेदन संख्या | |||
:<math>L_1 \cdot {\dots} \cdot L_r</math> | :<math>L_1 \cdot {\dots} \cdot L_r</math> | ||
लाइन बंडलों की एल<sub>''i''</sub>इसके द्वारा परिभाषित किया गया है: | लाइन बंडलों की एल<sub>''i''</sub>इसके द्वारा परिभाषित किया गया है: | ||
Line 97: | Line 97: | ||
अगर एल<sub>''i''</sub> = द<sub>''X''</sub>(डी<sub>''i''</sub>) कुछ कार्टियर विभाजकों के लिए डी<sub>''i''</sub>है, तो हम लिखेंगे <math>D_1 \cdot {\dots } \cdot D_r</math> चौराहे संख्या के लिए। | अगर एल<sub>''i''</sub> = द<sub>''X''</sub>(डी<sub>''i''</sub>) कुछ कार्टियर विभाजकों के लिए डी<sub>''i''</sub>है, तो हम लिखेंगे <math>D_1 \cdot {\dots } \cdot D_r</math> चौराहे संख्या के लिए। | ||
होने देना <math>f:X \to Y</math> एस-योजनाओं का एक रूपवाद हो, <math>L_i, 1 \le i \le m</math> के साथ 'जी' में | होने देना <math>f:X \to Y</math> एस-योजनाओं का एक रूपवाद हो, <math>L_i, 1 \le i \le m</math> के साथ 'जी' में X और एफ पर लाइन बंडल <math>m \ge \dim \operatorname{supp}F</math>. फिर | ||
:<math>f^*L_1 \cdots f^* L_m \cdot F = L_1 \cdots L_m \cdot f_* F</math>.<ref>{{harvnb|Kollár|1996|loc=Ch VI. Proposition 2.11}}</ref> | :<math>f^*L_1 \cdots f^* L_m \cdot F = L_1 \cdots L_m \cdot f_* F</math>.<ref>{{harvnb|Kollár|1996|loc=Ch VI. Proposition 2.11}}</ref> | ||
Line 113: | Line 113: | ||
यद्यपि ये गुण पूरी तरह से प्रतिच्छेदन बहुलता की विशेषता रखते हैं, व्यवहार में इसे कई अलग-अलग तरीकों से महसूस किया जाता है। | यद्यपि ये गुण पूरी तरह से प्रतिच्छेदन बहुलता की विशेषता रखते हैं, व्यवहार में इसे कई अलग-अलग तरीकों से महसूस किया जाता है। | ||
प्रतिच्छेदन बहुलता का एक बोध शक्ति श्रृंखला वलय <math>K[[x,y]]</math> के एक निश्चित भागफल स्थान के | प्रतिच्छेदन बहुलता का एक बोध शक्ति श्रृंखला वलय <math>K[[x,y]]</math> के एक निश्चित भागफल स्थान के विमा के माध्यम से होता है। यदि आवश्यक हो तो चर में परिवर्तन करके, हम <math>p = (0,0)</math> मान सकते हैं। <math>P(x,y)</math> और <math>Q(x,y)</math> को बीजगणितीय वक्रों को परिभाषित करने वाले बहुपदों में रुचि रखते हैं। यदि मूल समीकरण सजातीय रूप में दिए गए हैं, तो इन्हें <math>z = 1</math> सेट करके प्राप्त किया जा सकता है। मान लीजिए कि <math>I = (P,Q)</math> <math>P</math> और <math>Q</math> द्वारा उत्पन्न <math>K[[x,y]]</math> के आदर्श को दर्शाता है। प्रतिच्छेदन बहुलता <math>K</math> से अधिक सदिश स्थान के रूप में <math>K[[x,y]]/I</math> का विमा है। | ||
प्रतिच्छेदन बहुलता का एक अन्य बोध दो बहुपदों <math>P</math> और <math>Q</math> के परिणाम से आता है। निर्देशांक में जहां <math>p = (0,0)</math>, | प्रतिच्छेदन बहुलता का एक अन्य बोध दो बहुपदों <math>P</math> और <math>Q</math> के परिणाम से आता है। निर्देशांक में जहां <math>p = (0,0)</math>, वक्रों में <math>y = 0</math> के साथ कोई अन्य प्रतिच्छेदन नहीं है, और <math>x</math> के संबंध में <math>P</math> की डिग्री <math>P</math> की कुल डिग्री के बराबर है, <math>I_p(P,Q)</math> को <math>y</math> की उच्चतम शक्ति के रूप में परिभाषित किया जा सकता है जो <math>P</math> और <math>Q</math> के परिणाम को विभाजित करता है (<math>P</math> और <math>Q</math> के साथ <math>K[x]</math> से अधिक बहुपदों के रूप में देखा जाता है)। | ||
चौराहों की बहुलता को अलग-अलग चौराहों की संख्या के रूप में भी महसूस किया जा सकता है जो | चौराहों की बहुलता को अलग-अलग चौराहों की संख्या के रूप में भी महसूस किया जा सकता है जो वक्रों थोड़ा परेशान हो। अधिक विशेष रूप से, यदि <math>P</math> और <math>Q</math> वक्र परिभाषित करते हैं जो एक खुले सेट <math>U</math> के [[समापन (गणित)|समापन]] होने पर केवल एक बार प्रतिच्छेद करते हैं, फिर <math>(\epsilon,\delta) \in K^2</math>, <math>P - \epsilon</math> और <math>Q - \delta</math> के एक सघन सेट के लिए चिकने होते हैं और अनुप्रस्थ रूप से प्रतिच्छेद करते हैं (अर्थात अलग-अलग स्पर्श रेखाएँ हैं) <math>n</math> में ठीक <math>U</math> बिंदुओं पर। हम कहते हैं कि <math>I_p(P,Q) = n</math>। | ||
=== उदाहरण === | === उदाहरण === | ||
Line 142: | Line 142: | ||
प्रतिच्छेदन संख्या आंशिक रूप से बेजाउट के प्रमेय को संतुष्ट करने के लिए प्रतिच्छेदन को परिभाषित करने की इच्छा से प्रेरित है। | प्रतिच्छेदन संख्या आंशिक रूप से बेजाउट के प्रमेय को संतुष्ट करने के लिए प्रतिच्छेदन को परिभाषित करने की इच्छा से प्रेरित है। | ||
प्रतिच्छेदन संख्या [[निश्चित बिंदु (गणित)|निश्चित बिंदुओं]] के अध्ययन में उत्पन्न होती है, जिसे चतुराई से एक [[विकर्ण]] के साथ | प्रतिच्छेदन संख्या [[निश्चित बिंदु (गणित)|निश्चित बिंदुओं]] के अध्ययन में उत्पन्न होती है, जिसे चतुराई से एक [[विकर्ण]] के साथ फलन ग्राफ़ के चौराहों के रूप में परिभाषित किया जा सकता है। नियत बिंदुओं पर प्रतिच्छेदन संख्याओं की गणना बहुलता के साथ नियत बिंदुओं को गिनता है, और मात्रात्मक रूप में Lefschetz नियत-बिंदु प्रमेय की ओर जाता है। | ||
== टिप्पणियाँ == | == टिप्पणियाँ == |
Revision as of 11:23, 2 December 2022
गणित में, और विशेष रूप से बीजगणितीय ज्यामिति में, प्रतिच्छेदन संख्या उच्च विमाओं, एकाधिक (2 से अधिक) वक्रों, और स्पर्शिता के लिए उचित रूप से लेखांकन के लिए दो वक्रों के प्रतिच्छेदन की संख्या की गणना करने की सहज धारणा को सामान्यीकृत करती है। बेज़ाउट के प्रमेय जैसे परिणामों को निर्धारित करने के लिए, प्रतिच्छेदन संख्या की परिभाषा की आवश्यकता होती है।
कुछ स्थितियों में प्रतिच्छेदन संख्या स्पष्ट होती है, प्रथम स्थिति जैसे की x-अक्ष तथा y-अक्ष का प्रतिच्छेदन। स्पर्शिता के प्रतिच्छेदन बिंदु और सुनिश्चित विमीय समुच्चय के साथ प्रतिच्छेदन के गणना करते समय जटिलता प्रवेश करती है। उदाहरण के लिए, यदि कोई समतल किसी रेखा के अनुदिश किसी पृष्ठ पर स्पर्शी होता है, अतः रेखा के साथ प्रतिच्छेदन संख्या कम से कम दो होनी चाहिए। प्रतिच्छेदन सिद्धांत में इन प्रश्नों पर व्यवस्थित रूप से चर्चा की जाती है।
रीमैन पृष्ठों के लिए परिभाषा
मान लीजिए कि X एक रीमैन पृष्ठ है। तब X पर दो संवृत वक्रों के प्रतिच्छेदन संख्या की समाकलन के संदर्भ में एक सरल परिभाषा है। X (अर्थात, स्मूथ फलन ) पर प्रत्येक संवृत वक्र c के लिए, हम गुण धर्म के साथ सघन आश्रय के अवकल रूप को संबद्ध कर सकते हैं, जो कि c के अनुदिश इंटीग्रल X पर समाकल द्वारा गणना की जा सकती है:
- , हर संवृत (1-)अंतर के लिए X पर ,
जहां अवकल का वेज गुणन है और हॉज स्टार है। फिर X पर दो संवृत वक्रों, a और b की प्रतिच्छेदन संख्या को निम्न रूप में परिभाषित किया गया है।
की सहज परिभाषा निम्नानुसार है। वे वक्र c के साथ एक प्रकार का डायराक डेल्टा हैं, जो एक यूनिट स्टेप फलन के अंतर को पूरा करके पूरा किया जाता है जो 1 से 0 तक c तक गिरता है। अधिक औपचारिक रूप से, हम X पर एक साधारण संवृत वक्र सी के लिए परिभाषित करते हुए शुरू करते हैं, एक समारोह एफसी को एनलस के आकार में c के चारों ओर एक छोटी सी पट्टी होने के द्वारा। के बाएँ और दाएँ भागों को और के रूप में नाम दें। फिर c, के चारों ओर एक छोटी उप-पट्टी लें, जिसमें बाएँ और दाएँ भाग और हों। फिर fc को परिभाषित करें
- .
फिर परिभाषा को मनमाना संवृत वक्रों तक विस्तारित किया जाता है। X पर प्रत्येक संवृत वक्र c कुछ सरल संवृत वक्र ci के लिए के समरूप है, अर्थात
- , हर अंतर के लिए .
को परिभाषित करो द्वारा
- .
बीजगणितीय किस्मों के लिए परिभाषा
बीजीय किस्मों के मामले में सामान्य रचनात्मक परिभाषा चरणों में होती है। नीचे दी गई परिभाषा एक गैर-एकवचन किस्म X पर विभाजकों की प्रतिच्छेदन संख्या के लिए है।
1. एकमात्र प्रतिच्छेदन संख्या जिसकी सीधे परिभाषा से गणना की जा सकती है, हाइपरसर्फ्स (कोडिमेंशन एक के X की उप-किस्म) का प्रतिच्छेदन है जो x पर सामान्य स्थिति में हैं। विशेष रूप से, मान लें कि हमारे पास एक विलक्षण किस्म X है, और n हाइपरसर्फ्स Z1, ..., Zn जिसमें बहुपद fi(t1, ..., tn) के लिए x के पास स्थानीय समीकरण f1, ..., fn हैं, जैसे कि निम्नलिखित पकड़:
- .
- सभी के लिए मैं (अर्थात, x हाइपरसर्फ्स के चौराहे पर है।)
- (अर्थात भाजक सामान्य स्थिति में हैं।)
- h> x पर विलक्षण हैं।
तब बिंदु x पर प्रतिच्छेदन संख्या (जिसे x पर 'प्रतिच्छेदन बहुलता' कहा जाता है) है
- ,
जहाँ x पर X का स्थानीय वलय है, और विमा k-वेक्टर स्थान के रूप में विमा है। इसकी गणना स्थानीयकरण के रूप में की जा सकती है, जहां x पर लुप्त होने वाले बहुपदों का अधिकतम आदर्श है, और U एक खुला संबधित समूह है जिसमें x है और इसमें fi की कोई भी विलक्षणता नहीं है।
2. सामान्य स्थिति में हाइपरसर्फ्स की प्रतिच्छेदन संख्या को तब प्रतिच्छेदन के प्रत्येक बिंदु पर प्रतिच्छेदन संख्याओं के योग के रूप में परिभाषित किया जाता है।
3. रैखिकता द्वारा प्रभावी विभाजकों की परिभाषा का विस्तार करें, अर्थात
- तथा .
4. प्रत्येक विभाजक को कुछ प्रभावी विभाजक P और N के लिए D = P - N के रूप में एक अद्वितीय अभिव्यक्ति की सूचना देकर सामान्य स्थिति में मनमाना भाजक की परिभाषा का विस्तार करें। इसलिए Di = Pi - Ni, और फॉर्म के नियमों का उपयोग करें
चौराहे को बदलने के लिए।
5. मनमाने विभाजकों की प्रतिच्छेदन संख्या को "चाउ की चलती लेम्मा" का उपयोग करके परिभाषित किया जाता है, जो गारंटी देता है कि हम सामान्य स्थिति में रैखिक रूप से समतुल्य विभाजक पा सकते हैं, जिसे हम फिर से काट सकते हैं।
ध्यान दें कि प्रतिच्छेदन संख्या की परिभाषा उस क्रम पर निर्भर नहीं करती है जिसमें विभाजक इस संख्या की गणना में दिखाई देते हैं।
सेरे का टोर फॉर्मूला
V और W को एक गैर-एकवचन प्रक्षेपी किस्म X की दो उप-किस्में होने दें जैसे कि मंद(V)+मंद(W)=मंद(X)। तब हम अपेक्षा करते हैं कि प्रतिच्छेदन V∩W बिंदुओं का एक परिमित समूह होगा। यदि हम इनकी गणना करने का प्रयास करें तो दो प्रकार की समस्याएँ उत्पन्न हो सकती हैं। पहला, भले ही V∩W का अपेक्षित विमा शून्य हो, वास्तविक प्रतिच्छेदन एक बड़े विमा का हो सकता है। उदाहरण के लिए, हम एक प्रक्षेपी तल में एक प्रक्षेपी रेखा के स्वयं-प्रतिच्छेदन संख्या को खोजने का प्रयास कर सकते हैं। दूसरी संभावित समस्या यह है कि यदि प्रतिच्छेदन शून्य-विमीय है, तो भी यह गैर-अनुप्रस्थ हो सकता है। उदाहरण के लिए, V समतल वक्र W के लिए एक स्पर्श रेखा हो सकती है।
पहली समस्या के लिए प्रतिच्छेदन सिद्धांत की मशीनरी की आवश्यकता होती है, जिसकी ऊपर विस्तार से चर्चा की गई है। आवश्यक विचार यह है कि मूविंग लेम्मा का उपयोग करके वी और डब्ल्यू को अधिक सुविधाजनक उप-किस्मों से प्रतिस्थापित किया जाए। दूसरी ओर, दूसरी समस्या को सीधे V या W को स्थानांतरित किए बिना हल किया जा सकता है। 1965 में जीन पियरे सेरे ने वर्णन किया कि कैसे क्रमविनिमेय बीजगणित और समरूप बीजगणित के तरीकों से प्रत्येक चौराहे बिंदु की बहुलता को खोजा जाए।[1] प्रतिच्छेदन की एक ज्यामितीय धारणा और एक व्युत्पन्न टेन्सर उत्पाद की एक समरूप धारणा के बीच यह संबंध प्रभावशाली रहा है और विशेष रूप से कम्यूटेटिव बीजगणित में कई समरूप अनुमानों का नेतृत्व किया।
सेर्रे का टोर सूत्र निम्नलिखित परिणाम है। बता दें कि X एक नियमित किस्म है, V और W दो पूरक विमा की उप-किस्में हैं जैसे V∩W शून्य-विमीय है। किसी भी बिंदु x∈V∩W के लिए, A को x का स्थानीय रिंग होने दें। X पर वी और डब्ल्यू की संरचना शीफ आदर्श I, जे⊆ए के अनुरूप है। फिर बिंदु X पर V∩W की बहुलता है
जहां लंबाई एक स्थानीय रिंग के ऊपर एक मॉड्यूल की लंबाई है, और टोर टोर फंक्शनल है। जब वी और डब्ल्यू को एक अनुप्रस्थ स्थिति में स्थानांतरित किया जा सकता है, तो यह होमोलॉजिकल फॉर्मूला अपेक्षित उत्तर उत्पन्न करता है। इसलिए, उदाहरण के लिए, यदि V और W x पर आड़े-तिरछे मिलते हैं, तो गुणन 1 है। यदि V एक बिंदु x पर एक परवलय W पर एक बिंदु x पर एक स्पर्श रेखा है, तो x पर गुणन 2 है।
यदि वी और डब्ल्यू दोनों नियमित अनुक्रमों द्वारा स्थानीय रूप से काट दिए जाते हैं, उदाहरण के लिए यदि वे गैर-एकवचन हैं, तो सभी उच्च टोर के ऊपर के सूत्र में गायब हो जाते हैं, इसलिए बहुलता सकारात्मक है। स्वेच्छिक मामले में सकारात्मकता सेरे के बहुलता अनुमानों में से एक है।
आगे की परिभाषाएँ
परिभाषा को व्यापक रूप से सामान्यीकृत किया जा सकता है, उदाहरण के लिए केवल बिंदुओं के बजाय उप-किस्मों के साथ चौराहों पर, या पूरी तरह से मनमाना करने के लिए।
बीजगणितीय टोपोलॉजी में, प्रतिच्छेदन संख्या कप उत्पाद के पोंकारे दोहरे के रूप में प्रकट होती है। विशेष रूप से, यदि दो कई गुना, X और वाई, कई गुना एम में अनुप्रस्थ रूप से प्रतिच्छेद करते हैं, तो प्रतिच्छेदन का समरूपता वर्ग X और वाई के पोंकारे दोहरे के कप उत्पाद का पोंकारे दोहरा है।
स्नैपर-क्लेमन प्रतिच्छेदन संख्या की परिभाषा
1959-60 में स्नैपर द्वारा पेश किया गया और बाद में कार्टियर और क्लेमन द्वारा विकसित, प्रतिच्छेदन संख्या के लिए एक दृष्टिकोण है, जो एक चौराहे संख्या को यूलर विशेषता के रूप में परिभाषित करता है।
X को एक योजना एस, पीआईसी (X) X और जी के पिकार्ड समूह पर X पर सुसंगत शीफ की श्रेणी के ग्रोथेंडिक समूह पर एक योजना होने दें, जिसका समर्थन एस के एक आर्टिनियन सबस्कैम पर उचित है।
Pic(X) में प्रत्येक L के लिए, G के एंडोमोर्फिज्म c1(L) को परिभाषित करें (जिसे L का पहला चेर्न वर्ग कहा जाता है)
यह G पर योज्य है क्योंकि एक लाइन बंडल के साथ टेंसरिंग सटीक है। एक के पास भी है:
- ; विशेष रूप से, तथा आना-जाना।
- (यह गैर-तुच्छ है और एक विचलन तर्क से आता है।)
प्रतिच्छेदन संख्या
लाइन बंडलों की एलiइसके द्वारा परिभाषित किया गया है:
जहां χ यूलर विशेषता को दर्शाता है। वैकल्पिक रूप से, किसी के पास प्रेरण है:
हर बार F नियत होता है, एल में एक सममित कार्यात्मक हैi'एस।
अगर एलi = दX(डीi) कुछ कार्टियर विभाजकों के लिए डीiहै, तो हम लिखेंगे चौराहे संख्या के लिए।
होने देना एस-योजनाओं का एक रूपवाद हो, के साथ 'जी' में X और एफ पर लाइन बंडल . फिर
- .[2]
प्लेन कर्व्स के लिए इंटरसेक्शन मल्टीप्लिसिटी
प्रक्षेप्य वक्रों की एक जोड़ी, और , में और एक बिंदु , एक संख्या , जिसे पर और की प्रतिच्छेदन बहुलता कहा जाता है, जो निम्नलिखित गुणों को संतुष्ट करता है, प्रत्येक ट्रिपलेट को निर्दिष्ट करने वाला एक अनूठा कार्य है:
- अगर और केवल अगर तथा एक सामान्य कारक है जो शून्य है
- अगर और केवल अगर में से एक या गैर-शून्य है (अर्थात बिंदु एक वक्र से बाहर है)
- कहाँ पे
- किसी के लिए
यद्यपि ये गुण पूरी तरह से प्रतिच्छेदन बहुलता की विशेषता रखते हैं, व्यवहार में इसे कई अलग-अलग तरीकों से महसूस किया जाता है।
प्रतिच्छेदन बहुलता का एक बोध शक्ति श्रृंखला वलय के एक निश्चित भागफल स्थान के विमा के माध्यम से होता है। यदि आवश्यक हो तो चर में परिवर्तन करके, हम मान सकते हैं। और को बीजगणितीय वक्रों को परिभाषित करने वाले बहुपदों में रुचि रखते हैं। यदि मूल समीकरण सजातीय रूप में दिए गए हैं, तो इन्हें सेट करके प्राप्त किया जा सकता है। मान लीजिए कि और द्वारा उत्पन्न के आदर्श को दर्शाता है। प्रतिच्छेदन बहुलता से अधिक सदिश स्थान के रूप में का विमा है।
प्रतिच्छेदन बहुलता का एक अन्य बोध दो बहुपदों और के परिणाम से आता है। निर्देशांक में जहां , वक्रों में के साथ कोई अन्य प्रतिच्छेदन नहीं है, और के संबंध में की डिग्री की कुल डिग्री के बराबर है, को की उच्चतम शक्ति के रूप में परिभाषित किया जा सकता है जो और के परिणाम को विभाजित करता है ( और के साथ से अधिक बहुपदों के रूप में देखा जाता है)।
चौराहों की बहुलता को अलग-अलग चौराहों की संख्या के रूप में भी महसूस किया जा सकता है जो वक्रों थोड़ा परेशान हो। अधिक विशेष रूप से, यदि और वक्र परिभाषित करते हैं जो एक खुले सेट के समापन होने पर केवल एक बार प्रतिच्छेद करते हैं, फिर , और के एक सघन सेट के लिए चिकने होते हैं और अनुप्रस्थ रूप से प्रतिच्छेद करते हैं (अर्थात अलग-अलग स्पर्श रेखाएँ हैं) में ठीक बिंदुओं पर। हम कहते हैं कि ।
उदाहरण
परवलय के साथ x-अक्ष के प्रतिच्छेदन पर विचार करें
फिर
तथा
इसलिए
इस प्रकार, प्रतिच्छेदन की डिग्री दो है; यह एक साधारण स्पर्शरेखा है।
स्व-चौराहे
गणना करने के लिए सबसे दिलचस्प चौराहे संख्याओं में से कुछ स्वयं-प्रतिच्छेदन संख्याएं हैं I इसे भोले भाव में नहीं लेना चाहिए। इसका अर्थ यह है कि, किसी विशिष्ट प्रकार के विभाजकों के एक समतुल्य वर्ग में, दो प्रतिनिधि प्रतिच्छेदित होते हैं जो एक दूसरे के संबंध में सामान्य स्थिति में होते हैं। इस तरह, स्व-प्रतिच्छेदन संख्या अच्छी तरह से परिभाषित हो सकती है, और यहां तक कि नकारात्मक भी हो सकती है।
अनुप्रयोग
प्रतिच्छेदन संख्या आंशिक रूप से बेजाउट के प्रमेय को संतुष्ट करने के लिए प्रतिच्छेदन को परिभाषित करने की इच्छा से प्रेरित है।
प्रतिच्छेदन संख्या निश्चित बिंदुओं के अध्ययन में उत्पन्न होती है, जिसे चतुराई से एक विकर्ण के साथ फलन ग्राफ़ के चौराहों के रूप में परिभाषित किया जा सकता है। नियत बिंदुओं पर प्रतिच्छेदन संख्याओं की गणना बहुलता के साथ नियत बिंदुओं को गिनता है, और मात्रात्मक रूप में Lefschetz नियत-बिंदु प्रमेय की ओर जाता है।
टिप्पणियाँ
- ↑ Serre, Jean-Pierre (1965). स्थानीय बीजगणित, गुणक. Lecture Notes in Mathematics. Vol. 11. Springer-Verlag. pp. x+160.
- ↑ Kollár 1996, Ch VI. Proposition 2.11
संदर्भ
- William Fulton (1974). Algebraic Curves. Mathematics Lecture Note Series. W.A. Benjamin. pp. 74–83. ISBN 0-8053-3082-8.
- Robin Hartshorne (1977). Algebraic Geometry. Graduate Texts in Mathematics. Vol. 52. ISBN 0-387-90244-9. Appendix A.
- William Fulton (1998). Intersection Theory (2nd ed.). Springer. ISBN 9780387985497.
- Algebraic Curves: An Introduction To Algebraic Geometry, by William Fulton with Richard Weiss. New York: Benjamin, 1969. Reprint ed.: Redwood City, CA, USA: Addison-Wesley, Advanced Book Classics, 1989. ISBN 0-201-51010-3. Full text online.
- Hershel M. Farkas; Irwin Kra (1980). Riemann Surfaces. Graduate Texts in Mathematics. Vol. 71. pp. 40–41, 55–56. ISBN 0-387-90465-4.
- Kleiman, Steven L. (2005), "The Picard scheme: Appendix B.", Fundamental algebraic geometry, Math. Surveys Monogr., vol. 123, Providence, R.I.: American Mathematical Society, arXiv:math/0504020, Bibcode:2005math......4020K, MR 2223410
- Kollár, János (1996), Rational Curves on Algebraic Varieties, Berlin, Heidelberg: Springer-Verlag, doi:10.1007/978-3-662-03276-3, ISBN 978-3-642-08219-1, MR 1440180