हेस्सियन आव्यूह: Difference between revisions
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
== परिभाषाएँ और गुण == | == परिभाषाएँ और गुण == | ||
मान लीजिए <math>f : \R^n \to \R</math> इनपुट के रूप में एक वेक्टर लेने वाला एक | मान लीजिए <math>f : \R^n \to \R</math> इनपुट के रूप में एक वेक्टर लेने वाला एक फलन है <math>\mathbf{x} \in \R^n</math> और एक स्केलर आउटपुट करना <math> f(\mathbf{x}) \in \R.</math> यदि सभी दूसरे क्रम के आंशिक डेरिवेटिव <math>f</math> सम्मिलित है, तो हेस्सियन मैट्रिक्स <math>\mathbf{H}</math> का <math>f</math> एक वर्ग है <math>n \times n</math> मैट्रिक्स, सामान्यतः निम्नानुसार परिभाषित और व्यवस्थित किया जाता है: | ||
<math display=block>\mathbf H_f= \begin{bmatrix} | <math display=block>\mathbf H_f= \begin{bmatrix} | ||
\dfrac{\partial^2 f}{\partial x_1^2} & \dfrac{\partial^2 f}{\partial x_1\,\partial x_2} & \cdots & \dfrac{\partial^2 f}{\partial x_1\,\partial x_n} \\[2.2ex] | \dfrac{\partial^2 f}{\partial x_1^2} & \dfrac{\partial^2 f}{\partial x_1\,\partial x_2} & \cdots & \dfrac{\partial^2 f}{\partial x_1\,\partial x_n} \\[2.2ex] | ||
Line 14: | Line 14: | ||
या, सूचकांकों i और j का उपयोग करके गुणांकों के लिए एक समीकरण बताकर, | या, सूचकांकों i और j का उपयोग करके गुणांकों के लिए एक समीकरण बताकर, | ||
<math display=block>(\mathbf H_f)_{i,j} = \frac{\partial^2 f}{\partial x_i \, \partial x_j}.</math> | <math display=block>(\mathbf H_f)_{i,j} = \frac{\partial^2 f}{\partial x_i \, \partial x_j}.</math> | ||
यदि इसके | यदि इसके अतिरिक्त दूसरे आंशिक डेरिवेटिव सभी निरंतर हैं, हेस्सियन मैट्रिक्स [[दूसरे डेरिवेटिव की समरूपता]] द्वारा एक [[सममित मैट्रिक्स]] है। | ||
हेसियन मैट्रिक्स के निर्धारक को कहा जाता है {{em|Hessian determinant}}.<ref>{{cite book|last1=Binmore|first1=Ken|author-link1=Kenneth Binmore|last2=Davies|first2=Joan|year=2007|title=कैलकुलस कॉन्सेप्ट्स एंड मेथड्स|oclc=717598615|isbn=978-0-521-77541-0|publisher=Cambridge University Press|page=190}}</ref> | हेसियन मैट्रिक्स के निर्धारक को कहा जाता है {{em|Hessian determinant}}.<ref>{{cite book|last1=Binmore|first1=Ken|author-link1=Kenneth Binmore|last2=Davies|first2=Joan|year=2007|title=कैलकुलस कॉन्सेप्ट्स एंड मेथड्स|oclc=717598615|isbn=978-0-521-77541-0|publisher=Cambridge University Press|page=190}}</ref> | ||
किसी | किसी फलन का हेसियन मैट्रिक्स <math>f</math> फलन के [[ढाल]] का [[जैकबियन मैट्रिक्स]] है <math>f</math>; वह है: <math>\mathbf{H}(f(\mathbf{x})) = \mathbf{J}(\nabla f(\mathbf{x})).</math> | ||
Revision as of 11:11, 30 November 2022
के बारे में लेखों की एक श्रृंखला का हिस्सा |
पथरी |
---|
गणित में, हेसियन मैट्रिक्स या हेसियन एक स्केलर-वैल्यूड फ़ंक्शन (गणित), या अदिश क्षेत्र के दूसरे क्रम के आंशिक डेरिवेटिव का एक वर्ग मैट्रिक्स है। यह कई चरों के एक समारोह के स्थानीय वक्रता का वर्णन करता है। हेसियन मैट्रिक्स को 19वीं शताब्दी में जर्मन गणितज्ञ ओटो हेस्से द्वारा विकसित किया गया था और बाद में उनके नाम पर इसका नाम रखा गया। हेसे ने मूल रूप से कार्यात्मक निर्धारक शब्द का प्रयोग किया था।
परिभाषाएँ और गुण
मान लीजिए इनपुट के रूप में एक वेक्टर लेने वाला एक फलन है और एक स्केलर आउटपुट करना यदि सभी दूसरे क्रम के आंशिक डेरिवेटिव सम्मिलित है, तो हेस्सियन मैट्रिक्स का एक वर्ग है मैट्रिक्स, सामान्यतः निम्नानुसार परिभाषित और व्यवस्थित किया जाता है:
हेसियन मैट्रिक्स के निर्धारक को कहा जाता है Hessian determinant.[1] किसी फलन का हेसियन मैट्रिक्स फलन के ढाल का जैकबियन मैट्रिक्स है ; वह है:
अनुप्रयोग
मोड़ बिंदु
यदि तीन चर, समीकरण में एक सजातीय बहुपद है समतल प्रक्षेपी वक्र का निहित समीकरण है। वक्र के विभक्ति बिंदु बिल्कुल गैर-एकवचन बिंदु हैं जहां हेस्सियन निर्धारक शून्य है। यह बेज़ाउट के प्रमेय द्वारा अनुसरण करता है कि एक क्यूबिक समतल वक्र में अधिकतम होता है विभक्ति बिंदु, चूंकि हेसियन निर्धारक डिग्री का बहुपद है
द्वितीय-व्युत्पन्न परीक्षण
उत्तल फ़ंक्शन का हेस्सियन मैट्रिक्स सकारात्मक अर्ध-निश्चित मैट्रिक्स | सकारात्मक अर्ध-निश्चित है। इस संपत्ति को परिष्कृत करने से हमें यह परीक्षण करने की अनुमति मिलती है कि क्या एक महत्वपूर्ण बिंदु (गणित) एक स्थानीय अधिकतम, स्थानीय न्यूनतम, या एक काठी बिंदु निम्नानुसार है:
यदि हेस्सियन सकारात्मक-निश्चित मैट्रिक्स | सकारात्मक-निश्चित है फिर पर एक पृथक स्थानीय न्यूनतम प्राप्त करता है यदि हेसियन सकारात्मक-निश्चित मैट्रिक्स # नकारात्मक-निश्चित, अर्ध-निश्चित और अनिश्चित मैट्रिक्स है। नकारात्मक-निश्चित फिर पर एक पृथक स्थानीय अधिकतम प्राप्त करता है यदि हेस्सियन के पास सकारात्मक और नकारात्मक दोनों eigenvalues हैं, तो के लिए एक काठी बिंदु है अन्यथा परीक्षण अनिर्णायक है। इसका तात्पर्य है कि स्थानीय न्यूनतम पर हेस्सियन धनात्मक-अर्ध-परिमित है, और स्थानीय अधिकतम पर हेस्सियन ऋणात्मक-अर्द्ध-परिमित है।
सकारात्मक-अर्ध-निश्चित और नकारात्मक-अर्ध-अर्ध-अर्ध हेसियन के लिए परीक्षण अनिर्णायक है (एक महत्वपूर्ण बिंदु जहां हेसियन अर्ध-निश्चित है लेकिन निश्चित नहीं है, स्थानीय चरम या काठी बिंदु हो सकता है)। हालाँकि, मोर्स सिद्धांत के दृष्टिकोण से अधिक कहा जा सकता है।
सामान्य मामले की तुलना में एक और दो चर के कार्यों के लिए दूसरा-व्युत्पन्न परीक्षण सरल है। एक चर में, हेसियन में ठीक एक सेकंड का व्युत्पन्न होता है; अगर यह सकारात्मक है, तो एक स्थानीय न्यूनतम है, और यदि यह ऋणात्मक है, तो एक स्थानीय अधिकतम है; यदि यह शून्य है, तो परीक्षण अनिर्णायक है। दो चरों में, निर्धारक का उपयोग किया जा सकता है, क्योंकि निर्धारक eigenvalues का उत्पाद है। यदि यह धनात्मक है, तो आइगेनमान दोनों धनात्मक या दोनों ऋणात्मक होते हैं। यदि यह ऋणात्मक है, तो दो eigenvalues के अलग-अलग संकेत हैं। यदि यह शून्य है, तो दूसरा-व्युत्पन्न परीक्षण अनिर्णायक है।
समतुल्य रूप से, दूसरे क्रम की शर्तें जो स्थानीय न्यूनतम या अधिकतम के लिए पर्याप्त हैं, हेसियन के प्रिंसिपल (ऊपरी-बाएं) माइनर (रैखिक बीजगणित) (उप-मैट्रिसेस के निर्धारक) के अनुक्रम के संदर्भ में व्यक्त की जा सकती हैं; ये स्थितियाँ उन स्थितियों का एक विशेष मामला हैं जो अगले खंड में विवश अनुकूलन के लिए सीमाबद्ध हेसियन के लिए दी गई हैं - ऐसे मामले जिनमें बाधाओं की संख्या शून्य है। विशेष रूप से, न्यूनतम के लिए पर्याप्त शर्त यह है कि ये सभी प्रमुख नाबालिग सकारात्मक हों, जबकि अधिकतम के लिए पर्याप्त शर्त यह है कि नाबालिग वैकल्पिक रूप से साइन इन करें माइनर नेगेटिव है।
महत्वपूर्ण बिंदु
यदि किसी फ़ंक्शन का ग्रेडिएंट (आंशिक डेरिवेटिव का वेक्टर)। किसी बिंदु पर शून्य है फिर एक critical point (या stationary point) पर हेस्सियन के निर्धारक पर कुछ संदर्भों में, एक विवेकशील कहा जाता है। यदि यह निर्धारक शून्य है तो ए कहा जाता है degenerate critical point का या ए non-Morse critical point का अन्यथा यह गैर-पतित है, और कहा जाता है Morse critical point का हेस्सियन मैट्रिक्स मोर्स सिद्धांत और तबाही सिद्धांत में एक महत्वपूर्ण भूमिका निभाता है, क्योंकि इसके मैट्रिक्स और आइगेनवैल्यू के कर्नेल महत्वपूर्ण बिंदुओं के वर्गीकरण की अनुमति देते हैं।[2][3][4] हेसियन मैट्रिक्स का निर्धारक, जब किसी फ़ंक्शन के महत्वपूर्ण बिंदु पर मूल्यांकन किया जाता है, तो फ़ंक्शन के गॉसियन वक्रता के बराबर होता है जिसे कई गुना माना जाता है। उस बिंदु पर हेसियन के eigenvalues फ़ंक्शन के प्रमुख वक्रता हैं, और eigenvectors वक्रता की प्रमुख दिशाएँ हैं। (देखना Gaussian curvature § Relation to principal curvatures.)
अनुकूलन में उपयोग
हेसियन मेट्रिसेस का उपयोग अनुकूलन-प्रकार के तरीकों में न्यूटन की पद्धति के भीतर बड़े पैमाने पर गणितीय अनुकूलन समस्याओं में किया जाता है क्योंकि वे किसी फ़ंक्शन के स्थानीय टेलर विस्तार के द्विघात पद के गुणांक हैं। वह है,
विशेष रूप से रैंडमाइज्ड सर्च ह्यूरिस्टिक्स के संबंध में, विकास रणनीति का सहप्रसरण मैट्रिक्स एक स्केलर कारक और छोटे यादृच्छिक उतार-चढ़ाव तक हेस्सियन मैट्रिक्स के व्युत्क्रम के लिए अनुकूल होता है। यह परिणाम औपचारिक रूप से एकल-अभिभावक रणनीति और एक स्थिर मॉडल के लिए सिद्ध किया गया है, क्योंकि जनसंख्या का आकार बढ़ता है, द्विघात सन्निकटन पर निर्भर करता है।[7]
अन्य अनुप्रयोग
हेस्सियन मैट्रिक्स का उपयोग आमतौर पर मूर्ति प्रोद्योगिकी ऑपरेटरों को इमेज प्रोसेसिंग और कंप्यूटर दृष्टी में व्यक्त करने के लिए किया जाता है (गॉसियन (LoG) ब्लॉब डिटेक्टर के लाप्लासियन देखें, ब्लॉब डिटेक्शन # हेस्सियन के निर्धारक | हेस्सियन (DoH) ब्लॉब डिटेक्टर और स्केल स्पेस के निर्धारक ). अवरक्त स्पेक्ट्रोस्कोपी में विभिन्न आणविक आवृत्तियों की गणना करने के लिए हेसियन मैट्रिक्स का उपयोग सामान्य मोड विश्लेषण में भी किया जा सकता है।[8]
सामान्यीकरण
सीमायुक्त हेसियन
एbordered Hessianकुछ विवश अनुकूलन समस्याओं में दूसरे-व्युत्पन्न परीक्षण के लिए उपयोग किया जाता है। समारोह दिया पहले माना जाता था, लेकिन एक बाधा कार्य जोड़ना ऐसा है कि सीमावर्ती हेस्सियन लैग्रेंज गुणक का हेसियन है [9]
उपरोक्त नियम बताते हैं कि एक्स्ट्रेमा को एक सकारात्मक-निश्चित या नकारात्मक-निश्चित हेसियन द्वारा वर्णित किया गया है (एक गैर-एकवचन हेसियन के साथ महत्वपूर्ण बिंदुओं के बीच) यहां लागू नहीं हो सकता है क्योंकि एक सीमावर्ती हेसियन न तो नकारात्मक-निश्चित और न ही सकारात्मक-निश्चित हो सकता है, जैसा कि यदि कोई सदिश है जिसकी एकमात्र गैर-शून्य प्रविष्टि इसकी पहली है।
दूसरे व्युत्पन्न परीक्षण में एक निश्चित सेट के निर्धारकों के संकेत प्रतिबंध शामिल हैं सीमावर्ती हेसियन की उपमात्रियाँ।[10] सहज रूप से, बाधाओं को समस्या को कम करने के रूप में सोचा जा सकता है मुक्त चर। (उदाहरण के लिए, का अधिकतमकरण प्रतिबंध के अधीन अधिकतम करने के लिए कम किया जा सकता है बिना किसी बाधा के।)
विशेष रूप से, सीमावर्ती हेस्सियन के प्रमुख प्रमुख नाबालिगों (ऊपरी-बाएं-न्यायसंगत उप-मैट्रिसेस के निर्धारक) के अनुक्रम पर संकेत शर्तें लगाई जाती हैं, जिसके लिए पहले प्रमुख प्रमुख नाबालिगों की उपेक्षा की जाती है, सबसे छोटे नाबालिगों में पहले काट दिया जाता है पंक्तियाँ और स्तंभ, अगले में पहले काट दिया गया है पंक्तियों और स्तंभों, और इसी तरह, अंतिम सीमा वाले हेस्सियन के साथ; यदि से बड़ा है तो सबसे छोटा अग्रणी प्रमुख नाबालिग हेस्सियन ही है।[11] इस प्रकार हैं नाबालिगों पर विचार करने के लिए, प्रत्येक का मूल्यांकन विशिष्ट बिंदु पर एक उम्मीदवार समाधान # कैलकुलस के रूप में माना जाता है। एक स्थानीय के लिए एक पर्याप्त शर्त maximum यह है कि ये अवयस्क सबसे छोटे चिन्ह वाले हस्ताक्षर के साथ वैकल्पिक रूप से हस्ताक्षर करते हैं एक स्थानीय के लिए एक पर्याप्त शर्त minimum यह है कि इन सभी नाबालिगों के हस्ताक्षर हैं (अप्रतिबंधित मामले में ये स्थितियाँ गैर-सीमारहित हेस्सियन के क्रमशः नकारात्मक निश्चित या सकारात्मक निश्चित होने की शर्तों के साथ मेल खाती हैं)।
वेक्टर-मूल्यवान कार्य
यदि इसके बजाय एक सदिश क्षेत्र है वह है,
जटिल मामले का सामान्यीकरण
कई जटिल चरों के संदर्भ में, हेस्सियन को सामान्यीकृत किया जा सकता है। मान लीजिए और लिखा फिर सामान्यीकृत हेस्सियन है यदि एन-डायमेंशनल कॉची-रीमैन समीकरण | कॉची-रीमैन शर्तों को संतुष्ट करता है, तो जटिल हेस्सियन मैट्रिक्स समान रूप से शून्य है।
रीमानियन मैनिफोल्ड्स के लिए सामान्यीकरण
होने देना एक Riemannian कई गुना हो और इसका लेवी-Civita कनेक्शन होने देना एक सुचारू कार्य हो। हेस्सियन टेन्सर को परिभाषित कीजिए
यह भी देखें
- हेस्सियन मैट्रिक्स का निर्धारक एक सहसंयोजक है; बाइनरी फॉर्म का इनवेरिएंट देखें
- ध्रुवीकरण पहचान, हेस्सियन को शामिल करते हुए तेजी से गणना के लिए उपयोगी।
- Jacobian matrix
- Hessian equation
टिप्पणियाँ
- ↑ Binmore, Ken; Davies, Joan (2007). कैलकुलस कॉन्सेप्ट्स एंड मेथड्स. Cambridge University Press. p. 190. ISBN 978-0-521-77541-0. OCLC 717598615.
- ↑ Callahan, James J. (2010). उन्नत कलन: एक ज्यामितीय दृश्य (in English). Springer Science & Business Media. p. 248. ISBN 978-1-4419-7332-0.
- ↑ Casciaro, B.; Fortunato, D.; Francaviglia, M.; Masiello, A., eds. (2011). सामान्य सापेक्षता में हालिया विकास (in English). Springer Science & Business Media. p. 178. ISBN 9788847021136.
- ↑ Domenico P. L. Castrigiano; Sandra A. Hayes (2004). आपदा सिद्धांत. Westview Press. p. 18. ISBN 978-0-8133-4126-2.
- ↑ Nocedal, Jorge; Wright, Stephen (2000). संख्यात्मक अनुकूलन. Springer Verlag. ISBN 978-0-387-98793-4.
- ↑ Pearlmutter, Barak A. (1994). "हेस्सियन द्वारा तेजी से सटीक गुणा" (PDF). Neural Computation. 6 (1): 147–160. doi:10.1162/neco.1994.6.1.147. S2CID 1251969.
- ↑ Shir, O.M.; A. Yehudayoff (2020). "विकास रणनीतियों में सहप्रसरण-हेस्सियन संबंध पर". Theoretical Computer Science. Elsevier. 801: 157–174. doi:10.1016/j.tcs.2019.09.002.
- ↑ Mott, Adam J.; Rez, Peter (December 24, 2014). "प्रोटीन के इन्फ्रारेड स्पेक्ट्रा की गणना". European Biophysics Journal (in English). 44 (3): 103–112. doi:10.1007/s00249-014-1005-6. ISSN 0175-7571. PMID 25538002. S2CID 2945423.
- ↑ Hallam, Arne (October 7, 2004). "Econ 500: आर्थिक विश्लेषण I में मात्रात्मक तरीके" (PDF). Iowa State.
- ↑ Neudecker, Heinz; Magnus, Jan R. (1988). सांख्यिकी और अर्थमिति में अनुप्रयोगों के साथ मैट्रिक्स डिफरेंशियल कैलकुलस. New York: John Wiley & Sons. p. 136. ISBN 978-0-471-91516-4.
- ↑ Chiang, Alpha C. (1984). गणितीय अर्थशास्त्र के मौलिक तरीके (Third ed.). McGraw-Hill. p. 386. ISBN 978-0-07-010813-4.
अग्रिम पठन
- Lewis, David W. (1991). Matrix Theory. Singapore: World Scientific. ISBN 978-981-02-0689-5.
- Magnus, Jan R.; Neudecker, Heinz (1999). "The Second Differential". Matrix Differential Calculus : With Applications in Statistics and Econometrics (Revised ed.). New York: Wiley. pp. 99–115. ISBN 0-471-98633-X.