अवमुख समुच्चय: Difference between revisions
No edit summary |
No edit summary |
||
Line 11: | Line 11: | ||
== परिभाषाएँ == | == परिभाषाएँ == | ||
[[File:Convex supergraph.svg|right|thumb|एक उत्तल फलन उत्तल होता है यदि और केवल यदि इसका एपीग्राफ (गणित), इसके फलन के ग्राफ़ के ऊपर का क्षेत्र (हरे रंग में) एक उत्तल समुच्चय है।]]मान लीजिए कि {{mvar|S}} सदिश समष्टि हो या वास्तविक संख्याओं के ऊपर एक संबंद्ध स्थान हो, या, सामान्यतः, कुछ [[आदेशित क्षेत्र]] पर। इसमें यूक्लिडियन स्पेस सम्मलित हैं, जो एफ़िन स्पेस हैं। उपसमुच्चय {{mvar|C}} का {{mvar|S}} उत्तल है यदि, सभी के लिए {{mvar|x}} तथा {{mvar|y}} में {{mvar|C}}, जोड़ने वाला रेखा खंड {{mvar|x}} तथा {{mvar|y}} में सम्मलित है {{mvar|C}}. इसका मतलब है कि एफ़िन संयोजन {{math|(1 − ''t'')''x'' + ''ty''}} का है {{mvar|C}}, सभी के लिए {{mvar|x}} तथा {{mvar|y}} में {{mvar|C}}, तथा {{mvar|t}} अंतराल में (गणित) {{math|[0, 1]}}. इसका तात्पर्य है कि उत्तलता (उत्तल होने की संपत्ति) [[affine परिवर्तन|एफ़िन परिवर्तन]]ों के अंतर्गत अपरिवर्तनीय है। इसका तात्पर्य यह भी है कि वास्तविक संख्या या [[जटिल संख्या]] [[टोपोलॉजिकल वेक्टर स्पेस|सांस्थितिक | [[File:Convex supergraph.svg|right|thumb|एक उत्तल फलन उत्तल होता है यदि और केवल यदि इसका एपीग्राफ (गणित), इसके फलन के ग्राफ़ के ऊपर का क्षेत्र (हरे रंग में) एक उत्तल समुच्चय है।]]मान लीजिए कि {{mvar|S}} सदिश समष्टि हो या वास्तविक संख्याओं के ऊपर एक संबंद्ध स्थान हो, या, सामान्यतः, कुछ [[आदेशित क्षेत्र]] पर। इसमें यूक्लिडियन स्पेस सम्मलित हैं, जो एफ़िन स्पेस हैं। उपसमुच्चय {{mvar|C}} का {{mvar|S}} उत्तल है यदि, सभी के लिए {{mvar|x}} तथा {{mvar|y}} में {{mvar|C}}, जोड़ने वाला रेखा खंड {{mvar|x}} तथा {{mvar|y}} में सम्मलित है {{mvar|C}}. इसका मतलब है कि एफ़िन संयोजन {{math|(1 − ''t'')''x'' + ''ty''}} का है {{mvar|C}}, सभी के लिए {{mvar|x}} तथा {{mvar|y}} में {{mvar|C}}, तथा {{mvar|t}} अंतराल में (गणित) {{math|[0, 1]}}. इसका तात्पर्य है कि उत्तलता (उत्तल होने की संपत्ति) [[affine परिवर्तन|एफ़िन परिवर्तन]]ों के अंतर्गत अपरिवर्तनीय है। इसका तात्पर्य यह भी है कि वास्तविक संख्या या [[जटिल संख्या]] [[टोपोलॉजिकल वेक्टर स्पेस|सांस्थितिक सदिश स्पेस]] में एक उत्तल समुच्चय [[पथ से जुड़ा हुआ]] है, इस प्रकार [[जुड़ा हुआ स्थान]] है। | ||
एक समुच्चय {{mvar|C}} {{visible anchor|सख्ती से उत्तल}} है यदि प्रत्येक बिंदु जुड़ा हुआ है रेखा खंड पर {{mvar|x}} तथा {{mvar|y}} अंतिमबिंदु के अतिरिक्त अन्य की आंतरिक सांस्थिति के अंदर है {{mvar|C}}. एक बंद उत्तल उपसमुच्चय सख्ती से उत्तल होता है यदि और केवल यदि इसकी प्रत्येक सीमा एक [[चरम बिंदु]] है।<ref>{{Halmos A Hilbert Space Problem Book 1982|p=5}}</ref> | एक समुच्चय {{mvar|C}} {{visible anchor|सख्ती से उत्तल}} है यदि प्रत्येक बिंदु जुड़ा हुआ है रेखा खंड पर {{mvar|x}} तथा {{mvar|y}} अंतिमबिंदु के अतिरिक्त अन्य की आंतरिक सांस्थिति के अंदर है {{mvar|C}}. एक बंद उत्तल उपसमुच्चय सख्ती से उत्तल होता है यदि और केवल यदि इसकी प्रत्येक सीमा एक [[चरम बिंदु]] है।<ref>{{Halmos A Hilbert Space Problem Book 1982|p=5}}</ref> | ||
Line 33: | Line 33: | ||
=== चौराहे और संघ === | === चौराहे और संघ === | ||
सदिश स्पेस, एफाइन स्पेस या यूक्लिडियन स्पेस के उत्तल उपसमुच्चय के संग्रह में निम्नलिखित गुण होते हैं:<ref name="Soltan" >Soltan, Valeriu, ''Introduction to the Axiomatic Theory of Convexity'', Ştiinţa, [[Chişinău]], 1984 (in Russian). | |||
</ref><ref name="Singer" >{{cite book|last=Singer|first=Ivan|title=सार उत्तल विश्लेषण|series=Canadian Mathematical Society series of monographs and advanced texts|publisher=John Wiley & Sons, Inc.|location=New York|year= 1997|pages=xxii+491|isbn=0-471-16015-6|mr=1461544}}</ref> | </ref><ref name="Singer" >{{cite book|last=Singer|first=Ivan|title=सार उत्तल विश्लेषण|series=Canadian Mathematical Society series of monographs and advanced texts|publisher=John Wiley & Sons, Inc.|location=New York|year= 1997|pages=xxii+491|isbn=0-471-16015-6|mr=1461544}}</ref> | ||
# [[खाली सेट|खाली समुच्चय]] और पूरा स्थान उत्तल है। | # [[खाली सेट|खाली समुच्चय]] और पूरा स्थान उत्तल है। | ||
Line 74: | Line 74: | ||
उत्तल समुच्चय के समुच्चय को a बनाने के लिए उत्तल-पतवार ऑपरेशन की आवश्यकता होती है <!-- complete -->जाली (क्रम), जिसमें जुड़ना और मिलना | ज्वाइन ऑपरेशन दो उत्तल समूह के मिलन का उत्तल पतवार है | उत्तल समुच्चय के समुच्चय को a बनाने के लिए उत्तल-पतवार ऑपरेशन की आवश्यकता होती है <!-- complete -->जाली (क्रम), जिसमें जुड़ना और मिलना | ज्वाइन ऑपरेशन दो उत्तल समूह के मिलन का उत्तल पतवार है | ||
<math display=block>\operatorname{Conv}(S)\vee\operatorname{Conv}(T) = \operatorname{Conv}(S\cup T) = \operatorname{Conv}\bigl(\operatorname{Conv}(S)\cup\operatorname{Conv}(T)\bigr).</math> | <math display=block>\operatorname{Conv}(S)\vee\operatorname{Conv}(T) = \operatorname{Conv}(S\cup T) = \operatorname{Conv}\bigl(\operatorname{Conv}(S)\cup\operatorname{Conv}(T)\bigr).</math> | ||
उत्तल समूह के किसी भी संग्रह का प्रतिच्छेदन स्वयं उत्तल होता है, इसलिए एक (वास्तविक या जटिल) | उत्तल समूह के किसी भी संग्रह का प्रतिच्छेदन स्वयं उत्तल होता है, इसलिए एक (वास्तविक या जटिल) सदिश स्थान के उत्तल उपसमुच्चय एक पूर्ण जाली (क्रम) बनाते हैं। | ||
=== मिन्कोव्स्की जोड़ === | === मिन्कोव्स्की जोड़ === | ||
{{Main| | {{Main| | ||
मिन्कोव्स्की अतिरिक्त}} | मिन्कोव्स्की अतिरिक्त}} | ||
[[File:Minkowski sum graph - vector version.svg|thumb|alt=Three squares are shown in the nonnegative quadrant of the Cartesian plane. चौराहा {{math|''Q''<sub>1</sub> {{=}} [0, 1] × [0, 1]}} हरा है। चौराहा {{math|''Q''<sub>2</sub> {{=}} [1, 2] × [1, 2]}} भूरा है, और यह फ़िरोज़ा वर्ग के अंदर बैठता है {{math|1=Q<sub>1</sub>+Q<sub>2</sub>{{=}}[1,3]×[1,3]}}. सेट का। <!-- [[Minkowski addition|Minkowski]] -->-->वर्गों का योग Q<sub>1</sub>=[0,1]<sup>2</sup> और Q<sub>2</sub>=[1,2]<sup>2</sup> वर्ग Q है<sub>1</sub>+ क्यू<sub>2</sub>=[1,3]<sup>2</उप>।]]एक वास्तविक | [[File:Minkowski sum graph - vector version.svg|thumb|alt=Three squares are shown in the nonnegative quadrant of the Cartesian plane. चौराहा {{math|''Q''<sub>1</sub> {{=}} [0, 1] × [0, 1]}} हरा है। चौराहा {{math|''Q''<sub>2</sub> {{=}} [1, 2] × [1, 2]}} भूरा है, और यह फ़िरोज़ा वर्ग के अंदर बैठता है {{math|1=Q<sub>1</sub>+Q<sub>2</sub>{{=}}[1,3]×[1,3]}}. सेट का। <!-- [[Minkowski addition|Minkowski]] -->-->वर्गों का योग Q<sub>1</sub>=[0,1]<sup>2</sup> और Q<sub>2</sub>=[1,2]<sup>2</sup> वर्ग Q है<sub>1</sub>+ क्यू<sub>2</sub>=[1,3]<sup>2</उप>।]]एक वास्तविक सदिश-स्पेस में, दो (गैर-खाली) समूह का मिन्कोव्स्की जोड़, {{math|''S''<sub>1</sub>}} तथा {{math|''S''<sub>2</sub>}}, सारांश के रूप में परिभाषित किया गया है {{math|''S''<sub>1</sub> + ''S''<sub>2</sub>}} सारांश-समुच्चय से तत्व-वार वैक्टर के योग से बनता है | ||
<math display=block>S_1+S_2=\{x_1+x_2: x_1\in S_1, x_2\in S_2\}.</math> | <math display=block>S_1+S_2=\{x_1+x_2: x_1\in S_1, x_2\in S_2\}.</math> | ||
अधिक सामान्यतः, (गैर-रिक्त) समूह के परिमित परिवार का मिन्कोव्स्की योग {{math|''S<sub>n</sub>''}} है <!-- defined to be --> समुच्चय <!-- of vectors --> वैक्टर के तत्व-वार जोड़ से बनता है<!-- from the summand-sets --> | अधिक सामान्यतः, (गैर-रिक्त) समूह के परिमित परिवार का मिन्कोव्स्की योग {{math|''S<sub>n</sub>''}} है <!-- defined to be --> समुच्चय <!-- of vectors --> वैक्टर के तत्व-वार जोड़ से बनता है<!-- from the summand-sets --> | ||
<math display=block> \sum_n S_n = \left \{ \sum_n x_n : x_n \in S_n \right \}.</math> | <math display=block> \sum_n S_n = \left \{ \sum_n x_n : x_n \in S_n \right \}.</math> | ||
मिन्कोव्स्की योग के लिए, शून्य समुच्चय{{math|{0} }} जिसमें केवल शून्य | मिन्कोव्स्की योग के लिए, शून्य समुच्चय{{math|{0} }} जिसमें केवल शून्य सदिश| शून्य सदिश हो {{math|0}} [[पहचान तत्व]] है: सदिश स्थान के प्रत्येक गैर-रिक्त उपसमुच्चय S के लिए | ||
<math display=block>S+\{0\}=S;</math> | <math display=block>S+\{0\}=S;</math> | ||
बीजीय शब्दावली में, {{math|{0} }}मिन्कोव्स्की जोड़ का पहचान तत्व है (गैर-खाली समूह के संग्रह पर)।<ref>The [[empty set]] is important in Minkowski addition, because the empty set annihilates every other subset: For every subset {{mvar|S}} of a vector space, its sum with the empty set is empty: <math>S+\emptyset=\emptyset</math>.</ref> | बीजीय शब्दावली में, {{math|{0} }}मिन्कोव्स्की जोड़ का पहचान तत्व है (गैर-खाली समूह के संग्रह पर)।<ref>The [[empty set]] is important in Minkowski addition, because the empty set annihilates every other subset: For every subset {{mvar|S}} of a vector space, its sum with the empty set is empty: <math>S+\emptyset=\emptyset</math>.</ref> | ||
Line 104: | Line 104: | ||
जहां यह समुच्चय [[उत्तल शंकु]] युक्त है <math>0 \in X </math> और संतोषजनक <math>S + \operatorname{rec} S = S</math>. ध्यान दें कि यदि S बंद है और तब उत्तल है <math>\operatorname{rec} S</math> बंद है और सभी के लिए है <math>s_0 \in S</math>, | जहां यह समुच्चय [[उत्तल शंकु]] युक्त है <math>0 \in X </math> और संतोषजनक <math>S + \operatorname{rec} S = S</math>. ध्यान दें कि यदि S बंद है और तब उत्तल है <math>\operatorname{rec} S</math> बंद है और सभी के लिए है <math>s_0 \in S</math>, | ||
<math display=block>\operatorname{rec} S = \bigcap_{t > 0} t (S - s_0).</math> | <math display=block>\operatorname{rec} S = \bigcap_{t > 0} t (S - s_0).</math> | ||
प्रमेय (डाययूडोने)। चलो 'a' और 'b' गैर-खाली, बंद, और [[स्थानीय रूप से उत्तल टोपोलॉजिकल वेक्टर स्पेस]] के उत्तल उपसमुच्चय हैं जैसे कि <math>\operatorname{rec} A \cap \operatorname{rec} B</math> एक रेखीय उपसमष्टि है। यदि ए या बी [[स्थानीय रूप से कॉम्पैक्ट]] है तो a − b बंद है। | प्रमेय (डाययूडोने)। चलो 'a' और 'b' गैर-खाली, बंद, और [[स्थानीय रूप से उत्तल टोपोलॉजिकल वेक्टर स्पेस|स्थानीय रूप से उत्तल टोपोलॉजिकल सदिश स्पेस]] के उत्तल उपसमुच्चय हैं जैसे कि <math>\operatorname{rec} A \cap \operatorname{rec} B</math> एक रेखीय उपसमष्टि है। यदि ए या बी [[स्थानीय रूप से कॉम्पैक्ट]] है तो a − b बंद है। | ||
== उत्तलता के लिए सामान्यीकरण और विस्तार == | == उत्तलता के लिए सामान्यीकरण और विस्तार == |
Revision as of 21:08, 3 December 2022
ज्यामिति में, एक यूक्लिडियन अंतरिक्ष का एक उपसमुच्चय, या अधिक सामान्यतः वास्तविक संख्या पर एक संबधित स्थान उत्तल होता है, यदि उपसमुच्चय में कोई दो बिंदु दिए गए हों, तो उपसमुच्चय में उनसे जुड़ने वाला संपूर्ण रेखा खंड होता है। समतुल्य रूप से, उत्तल समुच्चय या उत्तल क्षेत्र एक उपसमुच्चय है जो प्रत्येक रेखा (ज्यामिति) को एक रेखा खंड (संभवतः खाली) में प्रतिच्छेद करता है।[1][2]
उदाहरण के लिए, एक ठोस घन (ज्यामिति) एक उत्तल समुच्चय है, लेकिन कुछ भी जो खोखला या मांगपत्र है, उदाहरण के लिए, एक वर्धमान आकार, उत्तल नहीं है।
उत्तल समुच्चय की सीमा (सांस्थिति) हमेशा एक उत्तल वक्र होती है। दिए गए सबसमुच्चय वाले सभी उत्तल समूह का प्रतिच्छेदन A यूक्लिडियन अंतरिक्ष की उत्तल पतवार कहा जाता है A. यह युक्त सबसे छोटा उत्तल समुच्चय है A.
एक उत्तल फलन एक वास्तविक-मूल्यवान फलन है जो एक अंतराल पर इस गुण के साथ परिभाषित होता है कि इसका पुरालेख (फलन के किसी फलन के ग्राफ़ पर या उसके ऊपर बिंदुओं का समुच्चय) एक उत्तल समुच्चय है। उत्तल न्यूनीकरण गणितीय अनुकूलन का एक उपक्षेत्र है जो उत्तल समूह पर उत्तल कार्यों को कम करने की समस्या का अध्ययन करता है। उत्तल समुच्चय और कार्यों के गुणों के अध्ययन के लिए समर्पित गणित की शाखा उत्तल विश्लेषण कहलाती है।
उत्तल समुच्चय की धारणा को नीचे वर्णित के अनुसार सामान्यीकृत किया जा सकता है।
परिभाषाएँ
मान लीजिए कि S सदिश समष्टि हो या वास्तविक संख्याओं के ऊपर एक संबंद्ध स्थान हो, या, सामान्यतः, कुछ आदेशित क्षेत्र पर। इसमें यूक्लिडियन स्पेस सम्मलित हैं, जो एफ़िन स्पेस हैं। उपसमुच्चय C का S उत्तल है यदि, सभी के लिए x तथा y में C, जोड़ने वाला रेखा खंड x तथा y में सम्मलित है C. इसका मतलब है कि एफ़िन संयोजन (1 − t)x + ty का है C, सभी के लिए x तथा y में C, तथा t अंतराल में (गणित) [0, 1]. इसका तात्पर्य है कि उत्तलता (उत्तल होने की संपत्ति) एफ़िन परिवर्तनों के अंतर्गत अपरिवर्तनीय है। इसका तात्पर्य यह भी है कि वास्तविक संख्या या जटिल संख्या सांस्थितिक सदिश स्पेस में एक उत्तल समुच्चय पथ से जुड़ा हुआ है, इस प्रकार जुड़ा हुआ स्थान है।
एक समुच्चय C सख्ती से उत्तल है यदि प्रत्येक बिंदु जुड़ा हुआ है रेखा खंड पर x तथा y अंतिमबिंदु के अतिरिक्त अन्य की आंतरिक सांस्थिति के अंदर है C. एक बंद उत्तल उपसमुच्चय सख्ती से उत्तल होता है यदि और केवल यदि इसकी प्रत्येक सीमा एक चरम बिंदु है।[3]
एक समुच्चय C उत्तल और संतुलित समुच्चय होने पर बिल्कुल उत्तल है।
R का उत्तल उपसमुच्चय (वास्तविक संख्याओं का समुच्चय) अंतराल और R के बिंदु हैं . यूक्लिडियन विमान के उत्तल उपसमुच्चय के कुछ उदाहरण ठोस नियमित बहुभुज, ठोस त्रिकोण और ठोस त्रिकोण के चौराहे हैं। यूक्लिडियन अंतरिक्ष के उत्तल उपसमुच्चय के कुछ उदाहरण| यूक्लिडियन-3 आयामी अंतरिक्ष आर्किमिडीयन ठोस और प्लेटोनिक ठोस हैं। केप्लर-पॉइन्सॉट पॉलीहेड्रा गैर-उत्तल समुच्चय के उदाहरण हैं।
गैर-उत्तल समुच्चय
एक समुच्चय जो उत्तल नहीं होता है उसे गैर-उत्तल समुच्चय कहा जाता है। एक बहुभुज जो उत्तल बहुभुज नहीं है, उसे कभी-कभी अवतल बहुभुज कहा जाता है,[4] और कुछ स्रोत अधिक सामान्यतः अवतल समुच्चय शब्द का उपयोग गैर-उत्तल समुच्चय के लिए करते हैं,[5] लेकिन अधिकांश अधिकारी इस प्रयोग पर रोक लगाते हैं।[6][7] एक उत्तल समुच्चय का पूरक (समुच्चय सिद्धांत), जैसे एक अवतल फलन के एपिग्राफ, को कभी-कभी रिवर्स उत्तल समुच्चय कहा जाता है, विशेष रूप से गणितीय अनुकूलन के संदर्भ में।[8]
गुण
दिया गया r अंक u1, ..., ur उत्तल समुच्चय में S, तथा r नकारात्मक संख्या λ1, ..., λr ऐसा है कि λ1 + ... + λr = 1, एफाइन संयोजन
इस तरह के एक एफाइन संयोजन को एक उत्तल संयोजन कहा जाता है u1, ..., ur.
चौराहे और संघ
सदिश स्पेस, एफाइन स्पेस या यूक्लिडियन स्पेस के उत्तल उपसमुच्चय के संग्रह में निम्नलिखित गुण होते हैं:[9][10]
- खाली समुच्चय और पूरा स्थान उत्तल है।
- उत्तल समूह के किसी भी संग्रह का प्रतिच्छेदन उत्तल है।
- उत्तल समूह के एक अनुक्रम का संघ (समुच्चय) उत्तल है, यदि वे समावेशन के लिए कुल क्रम चेन| गैर-घटती श्रृंखला बनाते हैं। इस संपत्ति के लिए, जंजीरों पर प्रतिबंध महत्वपूर्ण है, क्योंकि दो उत्तल समूह के मिलन को उत्तल होने की आवश्यकता नहीं है।
बंद उत्तल समुच्चय
बंद समुच्चय उत्तल समुच्चय होते हैं जिनमें उनके सभी सीमा बिंदु होते हैं। उन्हें बंद आधे स्थान के इंटरसेक्शन के रूप में चित्रित किया जा सकता है।
अभी जो कहा गया है, उससे यह स्पष्ट है कि ऐसे चौराहे उत्तल हैं, और वे बंद समुच्चय भी होंगे। उलटा सिद्ध करने के लिए, अर्थात, प्रत्येक बंद उत्तल समुच्चय को इस तरह के चौराहे के रूप में प्रदर्शित किया जा सकता है, किसी को अधिसमतल प्रमेय को इस रूप में समर्थन देने की आवश्यकता होती है कि किसी दिए गए बंद उत्तल समुच्चय के लिए C और बिंदु P इसके बाहर एक बंद अर्ध-आकाश है H उसमें सम्मिलित है C और नहीं P. सहायक अधिसमतल प्रमेय कार्यात्मक विश्लेषण के हन-बनाक प्रमेय का एक विशेष मामला है।
उत्तल समुच्चय और आयत
होने देना C विमान में एक उत्तल शरीर हो (एक उत्तल समुच्चय जिसका आंतरिक खाली नहीं है)। हम एक आयत r को अंदर अंकित कर सकते हैं C जैसे कि r की एक होमोथेटिक परिवर्तन कॉपी R के बारे में बताया गया है C. धनात्मक समरूपता अनुपात अधिक से अधिक 2 है और:[11]
ब्लाश्के-संतालो आरेख
समुच्चय उत्तल शरीर व्यास सामान्यीकरण d, इसके अंतःत्रिज्या r (उत्तल शरीर में निहित सबसे बड़ा वृत्त) और इसकी परिधि r (उत्तल शरीर वाला सबसे छोटा वृत्त) के संदर्भ में सभी तलीय उत्तल पिंडों को परिचालित किया जा सकता है। वास्तव में, इस समुच्चय को असमानताओं के समुच्चय द्वारा वर्णित किया जा सकता है[12][13]
अन्य गुण
मान लीजिए कि X एक सांस्थितिक सदिश समष्टि है और उत्तल हो।
- तथा दोनों उत्तल हैं (अर्थात उत्तल समुच्चय का संवरण और आंतरिक भाग उत्तल हैं)।
- यदि तथा फिर (कहाँ पे ).
- यदि फिर:
- , तथा
- , कहाँ पे C का बीजगणितीय आंतरिक भाग है।
उत्तल हल्स और मिन्कोव्स्की रकम
उत्तल पतवार
हर उपसमुच्चय A सदिश स्थान का एक सबसे छोटा उत्तल समुच्चय (जिसे उत्तल पतवार कहा जाता है) के भीतर समाहित है A), अर्थात् सभी उत्तल समूह का चौराहा A. उत्तल-पतवार ऑपरेटर कनव () में बंद करने वाला ऑपरेटर के विशिष्ट गुण हैं:
- बहुत बड़ा: S ⊆ Conv(S),
- मोनोटोन फलन # क्रम सिद्धांत में एकरसता | गैर-घटता: S ⊆ T इसका आशय है Conv(S) ⊆ Conv(T), तथा
- आलस्य : Conv(Conv(S)) = Conv(S).
उत्तल समुच्चय के समुच्चय को a बनाने के लिए उत्तल-पतवार ऑपरेशन की आवश्यकता होती है जाली (क्रम), जिसमें जुड़ना और मिलना | ज्वाइन ऑपरेशन दो उत्तल समूह के मिलन का उत्तल पतवार है
मिन्कोव्स्की जोड़
एक वास्तविक सदिश-स्पेस में, दो (गैर-खाली) समूह का मिन्कोव्स्की जोड़, S1 तथा S2, सारांश के रूप में परिभाषित किया गया है S1 + S2 सारांश-समुच्चय से तत्व-वार वैक्टर के योग से बनता है
मिन्कोव्स्की रकम के उत्तल हल
उत्तल हल्स लेने की संक्रिया के संबंध में मिन्कोवस्की योग अच्छा व्यवहार करता है, जैसा कि निम्नलिखित प्रस्ताव द्वारा दिखाया गया है:
मान लीजिए S1, S2 एक वास्तविक सदिश-स्थान के उपसमुच्चय हों, उनके मिन्कोव्स्की योग का उत्तल हल उनके उत्तल हलों का मिन्कोव्स्की योग है
उत्तल समूह के मिन्कोवस्की योग
दो सघन उत्तल समुच्चयों का मिन्कोव्स्की योग संहत है। एक कॉम्पैक्ट उत्तल समुच्चय और एक बंद उत्तल समुच्चय का योग बंद है।[17] निम्नलिखित प्रसिद्ध प्रमेय, 1966 में डियूडोने द्वारा सिद्ध किया गया, दो बंद उत्तल उपसमुच्चय के अंतर को बंद करने के लिए पर्याप्त स्थिति देता है।[18] यह एक गैर-खाली उत्तल उपसमुच्चय S के मंदी शंकु की अवधारणा का उपयोग करता है, जिसे इस प्रकार परिभाषित किया गया है:
उत्तलता के लिए सामान्यीकरण और विस्तार
कुछ या अन्य पहलुओं में परिभाषा को संशोधित करके यूक्लिडियन अंतरिक्ष में उत्तलता की धारणा को सामान्यीकृत किया जा सकता है। सामान्य नाम सामान्यीकृत उत्तलता का उपयोग किया जाता है, क्योंकि परिणामी वस्तुएं उत्तल समुच्चय के कुछ गुणों को बनाए रखती हैं।
स्टार-उत्तल (स्टार के आकार का) समुच्चय
मान लीजिए C वास्तविक या जटिल सदिश समष्टि में समुच्चय हो। C तारा उत्तल (तारा-आकार) है यदि कोई सम्मलित है x0 में C जैसे कि रेखा खंड से x0 किसी भी बिंदु पर y में C में निहित है C. इसलिए एक गैर-रिक्त उत्तल समुच्चय हमेशा स्टार-उत्तल होता है लेकिन एक स्टार-उत्तल समुच्चय हमेशा उत्तल नहीं होता है।
लम्बवत उत्तलता
सामान्यीकृत उत्तलता का एक उदाहरण ओर्थोगोनल उत्तलता है।[19]एक समुच्चय S यूक्लिडियन अंतरिक्ष में ऑर्थोगोनली उत्तल या ऑर्थो-उत्तल कहा जाता है, यदि कोई खंड किसी भी समन्वय अक्ष के समानांतर दो बिंदुओं को जोड़ता है S पूरी तरह भीतर है S. यह सिद्ध करना आसान है कि ऑर्थोकोनवेक्स समुच्चय के किसी भी संग्रह का इंटरसेक्शन ऑर्थोकॉन्वेक्स है। उत्तल समुच्चय के कुछ अन्य गुण भी मान्य हैं।
गैर-यूक्लिडियन ज्यामिति
एक उत्तल समुच्चय और एक उत्तल पतवार की परिभाषा स्वाभाविक रूप से उन ज्यामितीयों तक फैली हुई है जो एक जियोडेसिक उत्तलता को परिभाषित करके यूक्लिडियन नहीं हैं, जिसमें समुच्चय में किसी भी दो बिंदुओं में सम्मलित होने वाले जियोडेसिक्स सम्मलित हैं।
ऑर्डर सांस्थिति
पूरी तरह से ऑर्डर किए गए समुच्चय के लिए उत्तलता को बढ़ाया जा सकता है X आदेश सांस्थिति के साथ संपन्न।[20]होने देना Y ⊆ X. उपस्थान Y एक उत्तल समुच्चय है यदि प्रत्येक जोड़ी बिंदुओं के लिए a, b में Y ऐसा है कि a ≤ b, अंतराल [a, b] = {x ∈ X | a ≤ x ≤ b} में निहित है Y. वह है, Y उत्तल है यदि और केवल यदि सभी के लिए a, b में Y, a ≤ b तात्पर्य [a, b] ⊆ Y.
एक उत्तल समुच्चय सामान्य रूप से जुड़ा नहीं है: उप-उदाहरण {1,2,3} द्वारा एक प्रति-उदाहरण दिया गया है Z, जो दोनों उत्तल है और जुड़ा नहीं है।
उत्तल स्थान
उत्तलता की धारणा को अन्य वस्तुओं के लिए सामान्यीकृत किया जा सकता है, यदि उत्तलता के कुछ गुणों को स्वयंसिद्ध के रूप में चुना जाता है।
एक समुच्चय दिया X, एक उत्तलता X एक संग्रह है c के सबसमुच्चय का X निम्नलिखित स्वयंसिद्धों को संतुष्ट करना:[9][10][21]
- खाली सेट और X में हैं c
- c से किसी भी संग्रह का प्रतिच्छेदन c
में है c
- तत्वों के कुल आदेश (समावेशी संबंध के संबंध में) का संघ c में है c.
के तत्व c उत्तल समुच्चय और युग्म कहलाते हैं (X, c) उत्तल स्थान कहा जाता है। साधारण उत्तलता के लिए, पहले दो स्वयंसिद्ध हैं, और तीसरा तुच्छ है।
अमूर्त उत्तलता की एक वैकल्पिक परिभाषा के लिए, असतत ज्यामिति के लिए अधिक अनुकूल, एंटीमैट्रोइड से जुड़े उत्तल ज्यामिति देखें।
यह भी देखें
- शोषक सेट
- परिबद्ध सेट (टोपोलॉजिकल वेक्टर स्पेस)
- ब्रोवर फिक्स्ड-पॉइंट प्रमेय
- जटिल उत्तलता
- उत्तल पतवार
- उत्तल श्रृंखला
- उत्तल मीट्रिक स्थान
- कैराथोडोरी का प्रमेय (उत्तल पतवार)
- चॉकेट सिद्धांत
- हेली की प्रमेय
- होलोमॉर्फिक रूप से उत्तल पतवार
- इंटीग्रेटेड-उत्तल सेट
- जॉन इलिप्सिड
- स्यूडोकोन्वेक्सिटी
- रैडॉन की प्रमेय
- शेपले-फोकमैन लेम्मा
- सममित सेट
संदर्भ
- ↑ Morris, Carla C.; Stark, Robert M. (24 August 2015). परिमित गणित: मॉडल और अनुप्रयोग (in English). John Wiley & Sons. p. 121. ISBN 9781119015383. Retrieved 5 April 2017.
- ↑ Kjeldsen, Tinne Hoff. "उत्तलता और गणितीय प्रोग्रामिंग का इतिहास" (PDF). Proceedings of the International Congress of Mathematicians (ICM 2010): 3233–3257. doi:10.1142/9789814324359_0187. Archived from the original (PDF) on 2017-08-11. Retrieved 5 April 2017.
- ↑ Halmos, Paul R. (8 November 1982). A Hilbert Space Problem Book. Graduate Texts in Mathematics. Vol. 19 (2nd ed.). New York: Springer-Verlag. p. 5. ISBN 978-0-387-90685-0. OCLC 8169781.
- ↑ McConnell, Jeffrey J. (2006). कंप्यूटर ग्राफिक्स: व्यवहार में सिद्धांत. p. 130. ISBN 0-7637-2250-2..
- ↑ Weisstein, Eric W. "Concave". MathWorld.
- ↑ Takayama, Akira (1994). अर्थशास्त्र में विश्लेषणात्मक तरीके. University of Michigan Press. p. 54. ISBN 9780472081356.
अक्सर देखा जाने वाला भ्रम एक "अवतल सेट" है। अवतल और उत्तल कार्य कुछ वर्गों के कार्यों को निर्दिष्ट करते हैं, सेटों के नहीं, जबकि उत्तल सेट सेटों के एक निश्चित वर्ग को निर्दिष्ट करते हैं, न कि कार्यों के वर्ग को। एक "अवतल सेट" कार्यों के साथ सेट को भ्रमित करता है।
- ↑ Corbae, Dean; Stinchcombe, Maxwell B.; Zeman, Juraj (2009). आर्थिक सिद्धांत और अर्थमिति के लिए गणितीय विश्लेषण का परिचय. Princeton University Press. p. 347. ISBN 9781400833085.
अवतल समुच्चय जैसी कोई चीज़ नहीं होती।
- ↑ Meyer, Robert (1970). "अनुकूलन विधियों के एक परिवार की वैधता" (PDF). SIAM Journal on Control and Optimization. 8: 41–54. doi:10.1137/0308003. MR 0312915..
- ↑ 9.0 9.1 Soltan, Valeriu, Introduction to the Axiomatic Theory of Convexity, Ştiinţa, Chişinău, 1984 (in Russian).
- ↑ 10.0 10.1 Singer, Ivan (1997). सार उत्तल विश्लेषण. Canadian Mathematical Society series of monographs and advanced texts. New York: John Wiley & Sons, Inc. pp. xxii+491. ISBN 0-471-16015-6. MR 1461544.
- ↑ Lassak, M. (1993). "आयतों द्वारा उत्तल पिंडों का सन्निकटन". Geometriae Dedicata. 47: 111–117. doi:10.1007/BF01263495. S2CID 119508642.
- ↑ 12.0 12.1 Santaló, L. (1961). "समतल उत्तल आकृति के तीन तत्वों के बीच असमानताओं की पूरी प्रणाली पर". Mathematicae Notae. 17: 82–104.
- ↑ 13.0 13.1 13.2 Brandenberg, René; González Merino, Bernardo (2017). "एक पूर्ण 3-आयामी ब्लाश्के-सैंटलो आरेख". Mathematical Inequalities & Applications (in English) (2): 301–348. doi:10.7153/mia-20-22. ISSN 1331-4343.
- ↑ The empty set is important in Minkowski addition, because the empty set annihilates every other subset: For every subset S of a vector space, its sum with the empty set is empty: .
- ↑ Theorem 3 (pages 562–563): Krein, M.; Šmulian, V. (1940). "On regularly convex sets in the space conjugate to a Banach space". Annals of Mathematics. Second Series. 41 (3): 556–583. doi:10.2307/1968735. JSTOR 1968735.
- ↑ For the commutativity of Minkowski addition and convexification, see Theorem 1.1.2 (pages 2–3) in Schneider; this reference discusses much of the literature on the convex hulls of Minkowski sumsets in its "Chapter 3 Minkowski addition" (pages 126–196): Schneider, Rolf (1993). Convex bodies: The Brunn–Minkowski theory. Encyclopedia of mathematics and its applications. Vol. 44. Cambridge: Cambridge University Press. pp. xiv+490. ISBN 0-521-35220-7. MR 1216521.
- ↑ Lemma 5.3: Aliprantis, C.D.; Border, K.C. (2006). Infinite Dimensional Analysis, A Hitchhiker's Guide. Berlin: Springer. ISBN 978-3-540-29587-7.
- ↑ Zălinescu, C. (2002). सामान्य सदिश स्थानों में उत्तल विश्लेषण. River Edge, NJ: World Scientific Publishing Co., Inc. p. 7. ISBN 981-238-067-1. MR 1921556.
- ↑ Rawlins G.J.E. and Wood D, "Ortho-convexity and its generalizations", in: Computational Morphology, 137-152. Elsevier, 1988.
- ↑ Munkres, James; Topology, Prentice Hall; 2nd edition (December 28, 1999). ISBN 0-13-181629-2.
- ↑ van De Vel, Marcel L. J. (1993). उत्तल संरचनाओं का सिद्धांत. North-Holland Mathematical Library. Amsterdam: North-Holland Publishing Co. pp. xvi+540. ISBN 0-444-81505-8. MR 1234493.
इस पेज में लापता आंतरिक लिंक की सूची
- affine अंतरिक्ष
- उत्तल समारोह
- वास्तविक मूल्यवान समारोह
- एक समारोह का ग्राफ
- सदिश स्थल
- सबसमुच्चय
- एफ़िन संयोजन
- इंटीरियर (सांस्थिति)
- आर्किमिडीज़ ठोस
- अवतल समारोह
- ऋणात्मक संख्या
- अधिसमतल प्रमेय का समर्थन करना
- सीमा अंक
- आधा स्थान (ज्यामिति)
- रेलेक्स त्रिकोण
- बीजगणितीय इंटीरियर
- जाली (आदेश)
- मिन्कोव्स्की जोड़
- sumset
- जियोडेसिक उत्तलता
- पूरी तरह से आदेशित समुच्चय
- समावेशन संबंध
- एकीकृत-उत्तल समुच्चय
- चॉक्लेट सिद्धांत
बाहरी संबंध
- "Convex subset". Encyclopedia of Mathematics. EMS Press. 2001 [1994].
- Lectures on Convex Sets, notes by Niels Lauritzen, at Aarhus University, March 2010.