समय अवकलन: Difference between revisions
No edit summary |
|||
Line 24: | Line 24: | ||
== भौतिकी में प्रयोग करें == | == भौतिकी में प्रयोग करें == | ||
[[भौतिक विज्ञान]] में | [[भौतिक विज्ञान]] में समय अवकलज एक महत्वपूर्ण अवधारणा है। उदाहरण के लिए, बदलती स्थिति <math>x</math> (सदिश) के लिए , इसका समय अवकलज <math>\dot{x}</math> इसका [[वेग]] है, और समय के संबंध में इसका दूसरा अवकलज, <math>\ddot{x}</math> इसका [[त्वरण]] है। यहां तक कि कभी-कभी उच्च अवकलज स्थिति का भी उपयोग किया जाता है, और समय के संबंध में का तीसरे अवकलज को जर्क (भौतिकी) के रूप में जाना जाता है। [[[[गति]] रेखांकन और अवकलज]] देखें। | ||
भौतिकी में बड़ी संख्या में मौलिक समीकरणों में मात्राओं का पहली या दूसरी बार | भौतिकी में बड़ी संख्या में मौलिक समीकरणों में मात्राओं का पहली या दूसरी बार अवकलज शामिल होता है। विज्ञान में कई अन्य मौलिक मात्राएँ एक दूसरे की समय अवकलज हैं: | ||
* बल संवेग का समय अवकलज है | * बल संवेग का समय अवकलज है | ||
* [[शक्ति (भौतिकी)]] [[ऊर्जा]] का समय अवकलज है | * [[शक्ति (भौतिकी)]] [[ऊर्जा]] का समय अवकलज है | ||
Line 64: | Line 64: | ||
== [[अंतर ज्यामिति]] में == | == [[अंतर ज्यामिति]] में == | ||
विभेदक ज्यामिति में, मात्राएँ अक्सर स्थानीय वक्रीय निर्देशांक#सहपरिवर्ती और प्रतिपरिवर्ती आधारों के संबंध में व्यक्त की जाती हैं, <math>\mathbf{e}_i </math>, जहां i आयामों की संख्या से अधिक है। एक सदिश के घटक <math>\mathbf{U} </math> अभिव्यक्ति में दिखाए गए अनुसार, इस तरह व्यक्त एक प्रतिवर्ती [[टेन्सर क्षेत्र]] के रूप में परिवर्तित होता है <math>\mathbf{U}=U^i\mathbf{e}_i </math>, [[आइंस्टीन योग सम्मेलन]] का आह्वान। यदि हम एक प्रक्षेपवक्र के साथ इन घटकों के समय के | विभेदक ज्यामिति में, मात्राएँ अक्सर स्थानीय वक्रीय निर्देशांक#सहपरिवर्ती और प्रतिपरिवर्ती आधारों के संबंध में व्यक्त की जाती हैं, <math>\mathbf{e}_i </math>, जहां i आयामों की संख्या से अधिक है। एक सदिश के घटक <math>\mathbf{U} </math> अभिव्यक्ति में दिखाए गए अनुसार, इस तरह व्यक्त एक प्रतिवर्ती [[टेन्सर क्षेत्र]] के रूप में परिवर्तित होता है <math>\mathbf{U}=U^i\mathbf{e}_i </math>, [[आइंस्टीन योग सम्मेलन]] का आह्वान। यदि हम एक प्रक्षेपवक्र के साथ इन घटकों के समय के अवकलज की गणना करना चाहते हैं, तो हमारे पास है <math>\mathbf{U}(t)=U^i(t)\mathbf{e}_i(t) </math>, हम एक नए ऑपरेटर, अपरिवर्तनीय अवकलज को परिभाषित कर सकते हैं <math>\delta </math>, जो प्रतिपरिवर्ती टेन्सर देना जारी रखेगा:<ref>{{cite web|last1=Grinfeld|first1=Pavel|title=टेंसर कैलकुलस 6d: वेग, त्वरण, झटका और नया δ/δt-व्युत्पन्न|website=[[YouTube]] |url=https://www.youtube.com/watch?v=yx0oql3LIiU&list=PLlXfTHzgMRULkodlIEqfgTS-H1AY_bNtq&index=19 |archive-url=https://ghostarchive.org/varchive/youtube/20211213/yx0oql3LIiU |archive-date=2021-12-13 |url-status=live}}{{cbignore}}</ref> | ||
:<math>\begin{align} | :<math>\begin{align} | ||
\frac{\delta U^i}{\delta t} | \frac{\delta U^i}{\delta t} | ||
Line 102: | Line 102: | ||
और कभी-कभी एक चर का समय अवकलज दिखाई देता है, जो ऊपर के उदाहरणों के विपरीत, मुद्रा की इकाइयों में नहीं मापा जाता है: | और कभी-कभी एक चर का समय अवकलज दिखाई देता है, जो ऊपर के उदाहरणों के विपरीत, मुद्रा की इकाइयों में नहीं मापा जाता है: | ||
* एक प्रमुख [[ब्याज दर]] का समय अवकलज दिखाई दे सकता है। | * एक प्रमुख [[ब्याज दर]] का समय अवकलज दिखाई दे सकता है। | ||
* मुद्रास्फीति की दर [[मूल्य स्तर]] की वृद्धि दर है - अर्थात, मूल्य स्तर के | * मुद्रास्फीति की दर [[मूल्य स्तर]] की वृद्धि दर है - अर्थात, मूल्य स्तर के अवकलज को मूल्य स्तर से विभाजित करके। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 09:42, 10 December 2022
एक समय अवकलज समय के संबंध में एक फलन का अवकलज है, जिसकी आमतौर पर फलन के मान के परिवर्तन की दर के रूप में व्याख्या कि जाती है।[1] चर निरूपण समय को आमतौर पर के रूप में लिखा जाता है।
संकेतन
समय अवकलज को निरूपित करने के लिए विभिन्न प्रकार के संकेतन का उपयोग किया जाता है। सामान्य (लीबनिज संकेतन) संकेतन के अतिरिक्त,
विशेष रूप से भौतिकी में उपयोग किया जाने वाला एक बहुत ही सामान्य शॉर्ट-हैंड नोटेशन 'ओवर-डॉट' है। अर्थात।
(इसे न्यूटन का संकेतन कहते हैं)
उच्च समय के अवकलज का भी उपयोग किया जाता है, तथा समय के संबंध में दूसरा अवकलज के संगत आशुलिपि के साथ
के रूप में लिखा जाता है।
इसे एक सामान्यीकरण के रूप में, सदिश का समय अवकलज,कहते हैं,
इस समीकरण को सदिश के रूप में परिभाषित किया गया है, जिसके घटक मूल सदिश के घटकों के अवकलज हैं। जोकि है,
भौतिकी में प्रयोग करें
भौतिक विज्ञान में समय अवकलज एक महत्वपूर्ण अवधारणा है। उदाहरण के लिए, बदलती स्थिति (सदिश) के लिए , इसका समय अवकलज इसका वेग है, और समय के संबंध में इसका दूसरा अवकलज, इसका त्वरण है। यहां तक कि कभी-कभी उच्च अवकलज स्थिति का भी उपयोग किया जाता है, और समय के संबंध में का तीसरे अवकलज को जर्क (भौतिकी) के रूप में जाना जाता है। [[गति रेखांकन और अवकलज]] देखें।
भौतिकी में बड़ी संख्या में मौलिक समीकरणों में मात्राओं का पहली या दूसरी बार अवकलज शामिल होता है। विज्ञान में कई अन्य मौलिक मात्राएँ एक दूसरे की समय अवकलज हैं:
- बल संवेग का समय अवकलज है
- शक्ति (भौतिकी) ऊर्जा का समय अवकलज है
- विद्युत धारा विद्युत आवेश का समय अवकलज है
और इसी तरह।
भौतिकी में एक सामान्य घटना एक सदिश (ज्यामितीय) का समय अवकलज है, जैसे वेग या विस्थापन। इस तरह के अवकलज से निपटने में परिमाण और अभिविन्यास दोनों समय पर निर्भर हो सकते हैं।
उदाहरण: वर्तुल गति
उदाहरण के लिए, एक कण को एक वृत्ताकार पथ में गतिमान मानें। इसकी स्थिति विस्थापन सदिश द्वारा दी गई है , कोण, θ, और रेडियल दूरी, r से संबंधित है, जैसा कि चित्र में परिभाषित किया गया है:
इस उदाहरण के लिए, हम यह मानते हैं θ = t. इसलिए, किसी समय t पर विस्थापन (स्थिति) द्वारा दिया जाता है
यह प्रपत्र दर्शाता है कि r(t) द्वारा वर्णित गति r त्रिज्या के एक वृत्त में है क्योंकि r(t) का परिमाण इसके द्वारा दिया गया है
त्रिकोणमितीय पहचान का उपयोग करना sin2(t) + cos2(t) = 1 और कहाँ सामान्य यूक्लिडियन डॉट उत्पाद है।
विस्थापन के इस रूप से अब वेग ज्ञात होता है। विस्थापन सदिश का समय अवकलज वेग सदिश है। सामान्य तौर पर, एक सदिश का अवकलज एक सदिश होता है जो घटकों से बना होता है, जिनमें से प्रत्येक मूल सदिश के संबंधित घटक का अवकलज होता है। इस प्रकार, इस मामले में वेग सदिश है:
इस प्रकार स्थिति का परिमाण (अर्थात् पथ की त्रिज्या) स्थिर होने पर भी कण का वेग अशून्य है। वेग को विस्थापन के लंबवत निर्देशित किया जाता है, जैसा कि डॉट उत्पाद का उपयोग करके स्थापित किया जा सकता है:
त्वरण तो वेग का समय-अवकलज है:
त्वरण को अंदर की ओर निर्देशित किया जाता है, रोटेशन के अक्ष की ओर। यह स्थिति सदिश के विपरीत और वेग सदिश के लंबवत है। इस अंतर्मुखी त्वरण को अभिकेन्द्री बल कहते हैं।
अंतर ज्यामिति में
विभेदक ज्यामिति में, मात्राएँ अक्सर स्थानीय वक्रीय निर्देशांक#सहपरिवर्ती और प्रतिपरिवर्ती आधारों के संबंध में व्यक्त की जाती हैं, , जहां i आयामों की संख्या से अधिक है। एक सदिश के घटक अभिव्यक्ति में दिखाए गए अनुसार, इस तरह व्यक्त एक प्रतिवर्ती टेन्सर क्षेत्र के रूप में परिवर्तित होता है , आइंस्टीन योग सम्मेलन का आह्वान। यदि हम एक प्रक्षेपवक्र के साथ इन घटकों के समय के अवकलज की गणना करना चाहते हैं, तो हमारे पास है , हम एक नए ऑपरेटर, अपरिवर्तनीय अवकलज को परिभाषित कर सकते हैं , जो प्रतिपरिवर्ती टेन्सर देना जारी रखेगा:[2]
कहाँ पे (साथ jth निर्देशांक होने के नाते) स्थानीय सहसंयोजक आधार में वेग के घटकों को पकड़ता है, और समन्वय प्रणाली के लिए क्रिस्टोफेल प्रतीक हैं। ध्यान दें कि नोटेशन में टी पर स्पष्ट निर्भरता को दबा दिया गया है। हम तब लिख सकते हैं:
साथ ही:
सहसंयोजक अवकलज के संदर्भ में, , अपने पास:
अर्थशास्त्र में प्रयोग
अर्थशास्त्र में, विभिन्न आर्थिक चरों के विकास के कई सैद्धांतिक मॉडल निरंतर समय में निर्मित होते हैं और इसलिए समय अवकलजों को नियोजित करते हैं।[3]: ch. 1-3 एक स्थिति में एक स्टॉक और प्रवाह और उसका समय अवकलज, एक स्टॉक और प्रवाह शामिल है। उदाहरणों में शामिल:
- शुद्ध निश्चित निवेश का प्रवाह पूंजीगत स्टॉक का समय अवकलज है।
- माल निवेश का प्रवाह इन्वेंटरी के स्टॉक का समय अवकलज है।
- पैसे की आपूर्ति की वृद्धि दर पैसे की आपूर्ति से विभाजित पैसे की आपूर्ति का समय अवकलज है।
कभी-कभी एक प्रवाह चर का समय अवकलज एक मॉडल में प्रकट हो सकता है:
- आउटपुट (अर्थशास्त्र) की विकास दर आउटपुट के प्रवाह का समय अवकलज है जो आउटपुट से ही विभाजित होता है।
- श्रम बल की वृद्धि दर श्रम बल द्वारा विभाजित श्रम बल का समय अवकलज है।
और कभी-कभी एक चर का समय अवकलज दिखाई देता है, जो ऊपर के उदाहरणों के विपरीत, मुद्रा की इकाइयों में नहीं मापा जाता है:
- एक प्रमुख ब्याज दर का समय अवकलज दिखाई दे सकता है।
- मुद्रास्फीति की दर मूल्य स्तर की वृद्धि दर है - अर्थात, मूल्य स्तर के अवकलज को मूल्य स्तर से विभाजित करके।
यह भी देखें
- अंतर कलन
- विभेदीकरण के लिए संकेतन
- घूर्नन गति
- केन्द्राभिमुख शक्ति
- स्थानिक अवकलज
- लौकिक दर
संदर्भ
- ↑ Chiang, Alpha C., Fundamental Methods of Mathematical Economics, McGraw-Hill, third edition, 1984, ch. 14, 15, 18.
- ↑ Grinfeld, Pavel. "टेंसर कैलकुलस 6d: वेग, त्वरण, झटका और नया δ/δt-व्युत्पन्न". YouTube. Archived from the original on 2021-12-13.
- ↑ See for example Romer, David (1996). Advanced Macroeconomics. McGraw-Hill. ISBN 0-07-053667-8.