सांख्यिकीय यांत्रिकी: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Physics of large number of particles' statistical behavior}} {{merging|Statistical physics|discuss=Talk:Statistical physics#Merger proposal|date=February 2...")
 
No edit summary
Line 1: Line 1:
{{Short description|Physics of large number of particles' statistical behavior}}
{{Short description|Physics of large number of particles' statistical behavior}}
{{merging|Statistical physics|discuss=Talk:Statistical physics#Merger proposal|date=February 2022|dir=to}}
 
{{use mdy dates|date=January 2019}}
{{Statistical mechanics}}
{{Statistical mechanics}}
भौतिकी में, सांख्यिकीय यांत्रिकी एक गणितीय ढांचा है जो सूक्ष्म संस्थाओं की बड़ी विधानसभाओं के लिए सांख्यिकी और संभाव्यता सिद्धांत को लागू करता है। यह किसी भी प्राकृतिक नियम को ग्रहण या अभिगृहीत नहीं करता है, बल्कि इस तरह के समूहों के व्यवहार से प्रकृति के स्थूल व्यवहार की व्याख्या करता है।
भौतिकी में, सांख्यिकीय यांत्रिकी एक गणितीय ढांचा है जो सूक्ष्म संस्थाओं की बड़ी विधानसभाओं के लिए सांख्यिकी और संभाव्यता सिद्धांत को लागू करता है। यह किसी भी प्राकृतिक नियम को ग्रहण या अभिगृहीत नहीं करता है, बल्कि इस तरह के समूहों के व्यवहार से प्रकृति के स्थूल व्यवहार की व्याख्या करता है।
Line 189: Line 188:


1859 में, [[रुडोल्फ क्लॉसियस]] द्वारा अणुओं के प्रसार पर एक पेपर पढ़ने के बाद, स्कॉटिश भौतिक विज्ञानी जेम्स क्लर्क मैक्सवेल ने आणविक वेगों का [[मैक्सवेल वितरण]] तैयार किया, जिसने एक विशिष्ट श्रेणी में एक निश्चित वेग वाले अणुओं का अनुपात दिया।<ref>See:
1859 में, [[रुडोल्फ क्लॉसियस]] द्वारा अणुओं के प्रसार पर एक पेपर पढ़ने के बाद, स्कॉटिश भौतिक विज्ञानी जेम्स क्लर्क मैक्सवेल ने आणविक वेगों का [[मैक्सवेल वितरण]] तैयार किया, जिसने एक विशिष्ट श्रेणी में एक निश्चित वेग वाले अणुओं का अनुपात दिया।<ref>See:
* Maxwell, J.C. (1860) [https://books.google.com/books?id=-YU7AQAAMAAJ&pg=PA19#v=onepage&q&f=false "Illustrations of the dynamical theory of gases. Part I. On the motions and collisions of perfectly elastic spheres,"] ''Philosophical Magazine'', 4th series, '''19''' : 19–32.  
*Maxwell, J.C. (1860) [https://books.google.com/books?id=-YU7AQAAMAAJ&pg=PA19#v=onepage&q&f=false "Illustrations of the dynamical theory of gases. Part I. On the motions and collisions of perfectly elastic spheres,"] ''Philosophical Magazine'', 4th series, '''19''' : 19–32.
* Maxwell, J.C. (1860) [https://books.google.com/books?id=DIc7AQAAMAAJ&pg=PA21#v=onepage&q&f=false "Illustrations of the dynamical theory of gases. Part II. On the process of diffusion of two or more kinds of moving particles among one another,"] ''Philosophical Magazine'', 4th series, '''20''' : 21–37.</ref> यह भौतिकी का पहला सांख्यिकीय नियम था।<ref>{{cite book |last = Mahon |first = Basil |title=द मैन हू चेंज्ड एवरीथिंग - द लाइफ ऑफ जेम्स क्लर्क मैक्सवेल|location=Hoboken, NJ |publisher=Wiley |year=2003 |isbn=978-0-470-86171-4 |oclc=52358254}}</ref> मैक्सवेल ने पहला यांत्रिक तर्क भी दिया कि आण्विक संघट्टों के लिए तापमान की समानता आवश्यक है और इसलिए संतुलन की ओर एक प्रवृत्ति है।<ref>{{cite journal | last = Gyenis | first = Balazs | doi = 10.1016/j.shpsb.2017.01.001 | title = मैक्सवेल और सामान्य वितरण: संभाव्यता, स्वतंत्रता और संतुलन की प्रवृत्ति की रंगीन कहानी| journal = Studies in History and Philosophy of Modern Physics | volume = 57 | pages = 53–65 | year = 2017| arxiv = 1702.01411 | bibcode = 2017SHPMP..57...53G | s2cid = 38272381 }}</ref> पांच साल बाद, 1864 में, लुडविग बोल्ट्जमैन, वियना में एक युवा छात्र, मैक्सवेल के पेपर पर आए और उन्होंने अपने जीवन का अधिकांश समय इस विषय को विकसित करने में बिताया।
*Maxwell, J.C. (1860) [https://books.google.com/books?id=DIc7AQAAMAAJ&pg=PA21#v=onepage&q&f=false "Illustrations of the dynamical theory of gases. Part II. On the process of diffusion of two or more kinds of moving particles among one another,"] ''Philosophical Magazine'', 4th series, '''20''' : 21–37.</ref> यह भौतिकी का पहला सांख्यिकीय नियम था।<ref>{{cite book |last = Mahon |first = Basil |title=द मैन हू चेंज्ड एवरीथिंग - द लाइफ ऑफ जेम्स क्लर्क मैक्सवेल|location=Hoboken, NJ |publisher=Wiley |year=2003 |isbn=978-0-470-86171-4 |oclc=52358254}}</ref> मैक्सवेल ने पहला यांत्रिक तर्क भी दिया कि आण्विक संघट्टों के लिए तापमान की समानता आवश्यक है और इसलिए संतुलन की ओर एक प्रवृत्ति है।<ref>{{cite journal | last = Gyenis | first = Balazs | doi = 10.1016/j.shpsb.2017.01.001 | title = मैक्सवेल और सामान्य वितरण: संभाव्यता, स्वतंत्रता और संतुलन की प्रवृत्ति की रंगीन कहानी| journal = Studies in History and Philosophy of Modern Physics | volume = 57 | pages = 53–65 | year = 2017| arxiv = 1702.01411 | bibcode = 2017SHPMP..57...53G | s2cid = 38272381 }}</ref> पांच साल बाद, 1864 में, लुडविग बोल्ट्जमैन, वियना में एक युवा छात्र, मैक्सवेल के पेपर पर आए और उन्होंने अपने जीवन का अधिकांश समय इस विषय को विकसित करने में बिताया।


सांख्यिकीय यांत्रिकी की शुरुआत 1870 के दशक में बोल्ट्जमैन के काम से हुई थी, जिनमें से अधिकांश सामूहिक रूप से गैस थ्योरी पर उनके 1896 के व्याख्यान में प्रकाशित हुए थे।<ref>{{cite book |title = स्टैटिस्टिकल थर्मोडायनामिक्स एंड स्टोचैस्टिक थ्योरी ऑफ़ नोनक्विलिब्रियम सिस्टम्स|editor1=Ebeling Werner|editor2=Sokolov Igor M.|publisher=World Scientific Press |volume=8 |last1=Ebeling |first1=Werner |last2=Sokolov |first2=Igor M. |year=2005 |isbn=978-90-277-1674-3 |pages=3–12 |url = https://books.google.com/books?id=KUjFHbid8A0C|bibcode=2005stst.book.....E |doi=10.1142/2012 |series = Series on Advances in Statistical Mechanics }} (section 1.2)</ref> ऊष्मप्रवैगिकी, [[एच-प्रमेय]], [[परिवहन सिद्धांत (सांख्यिकीय भौतिकी)]], थर्मल संतुलन, गैसों की स्थिति का समीकरण, और इसी तरह के विषयों की सांख्यिकीय व्याख्या पर बोल्ट्जमैन के मूल कागजात, वियना अकादमी और अन्य समाजों की कार्यवाही में लगभग 2,000 पृष्ठों पर कब्जा करते हैं। . बोल्ट्जमैन ने एक संतुलन सांख्यिकीय समुच्चय की अवधारणा पेश की और अपने एच-प्रमेय|एच-प्रमेय के साथ पहली बार गैर-संतुलन सांख्यिकीय यांत्रिकी की जांच भी की।
सांख्यिकीय यांत्रिकी की शुरुआत 1870 के दशक में बोल्ट्जमैन के काम से हुई थी, जिनमें से अधिकांश सामूहिक रूप से गैस थ्योरी पर उनके 1896 के व्याख्यान में प्रकाशित हुए थे।<ref>{{cite book |title = स्टैटिस्टिकल थर्मोडायनामिक्स एंड स्टोचैस्टिक थ्योरी ऑफ़ नोनक्विलिब्रियम सिस्टम्स|editor1=Ebeling Werner|editor2=Sokolov Igor M.|publisher=World Scientific Press |volume=8 |last1=Ebeling |first1=Werner |last2=Sokolov |first2=Igor M. |year=2005 |isbn=978-90-277-1674-3 |pages=3–12 |url = https://books.google.com/books?id=KUjFHbid8A0C|bibcode=2005stst.book.....E |doi=10.1142/2012 |series = Series on Advances in Statistical Mechanics }} (section 1.2)</ref> ऊष्मप्रवैगिकी, [[एच-प्रमेय]], [[परिवहन सिद्धांत (सांख्यिकीय भौतिकी)]], थर्मल संतुलन, गैसों की स्थिति का समीकरण, और इसी तरह के विषयों की सांख्यिकीय व्याख्या पर बोल्ट्जमैन के मूल कागजात, वियना अकादमी और अन्य समाजों की कार्यवाही में लगभग 2,000 पृष्ठों पर कब्जा करते हैं। . बोल्ट्जमैन ने एक संतुलन सांख्यिकीय समुच्चय की अवधारणा पेश की और अपने एच-प्रमेय|एच-प्रमेय के साथ पहली बार गैर-संतुलन सांख्यिकीय यांत्रिकी की जांच भी की।

Revision as of 17:11, 15 December 2022

भौतिकी में, सांख्यिकीय यांत्रिकी एक गणितीय ढांचा है जो सूक्ष्म संस्थाओं की बड़ी विधानसभाओं के लिए सांख्यिकी और संभाव्यता सिद्धांत को लागू करता है। यह किसी भी प्राकृतिक नियम को ग्रहण या अभिगृहीत नहीं करता है, बल्कि इस तरह के समूहों के व्यवहार से प्रकृति के स्थूल व्यवहार की व्याख्या करता है।

शास्त्रीय ऊष्मप्रवैगिकी के विकास से सांख्यिकीय यांत्रिकी उत्पन्न हुई, एक ऐसा क्षेत्र जिसके लिए यह मैक्रोस्कोपिक भौतिक गुणों को समझाने में सफल रहा - जैसे तापमान, दबाव और ताप क्षमता - सूक्ष्म मापदंडों के संदर्भ में जो औसत मूल्यों के बारे में उतार-चढ़ाव करते हैं और संभाव्यता वितरण की विशेषता है। . इसने सांख्यिकीय ऊष्मप्रवैगिकी और सांख्यिकीय भौतिकी के क्षेत्र स्थापित किए।

सांख्यिकीय यांत्रिकी के क्षेत्र की स्थापना का श्रेय आमतौर पर तीन भौतिकविदों को दिया जाता है:

जबकि शास्त्रीय ऊष्मप्रवैगिकी मुख्य रूप से ऊष्मप्रवैगिकी संतुलन से संबंधित है, सांख्यिकीय यांत्रिकी को गैर-संतुलन सांख्यिकीय यांत्रिकी में सूक्ष्म रूप से अपरिवर्तनीय प्रक्रियाओं की गति के मुद्दों पर लागू किया गया है जो असंतुलन से प्रेरित हैं। ऐसी प्रक्रियाओं के उदाहरणों में रासायनिक प्रतिक्रियाएं और कणों और गर्मी का प्रवाह शामिल है। उतार-चढ़ाव-अपव्यय प्रमेय गैर-संतुलन सांख्यिकीय यांत्रिकी को लागू करने से प्राप्त बुनियादी ज्ञान है जो कई कणों की प्रणाली में स्थिर राज्य प्रवाह की सरलतम गैर-संतुलन स्थिति का अध्ययन करता है।

सिद्धांत: यांत्रिकी और पहनावा

भौतिकी में, आमतौर पर दो प्रकार के यांत्रिकी की जांच की जाती है: शास्त्रीय यांत्रिकी और क्वांटम यांत्रिकी। दोनों प्रकार के यांत्रिकी के लिए, मानक गणितीय दृष्टिकोण दो अवधारणाओं पर विचार करना है:

  • एक निश्चित समय पर यांत्रिक प्रणाली की पूर्ण स्थिति, गणितीय रूप से एक चरण स्थान (शास्त्रीय यांत्रिकी) या एक शुद्ध क्वांटम राज्य वेक्टर (क्वांटम यांत्रिकी) के रूप में एन्कोडेड।
  • गति का एक समीकरण जो राज्य को समय में आगे बढ़ाता है: हैमिल्टनियन यांत्रिकी | हैमिल्टन के समीकरण (शास्त्रीय यांत्रिकी) या श्रोडिंगर समीकरण (क्वांटम यांत्रिकी)

इन दो अवधारणाओं का उपयोग करके, किसी अन्य समय, अतीत या भविष्य में राज्य की गणना सैद्धांतिक रूप से की जा सकती है। हालांकि, इन कानूनों और दैनिक जीवन के अनुभवों के बीच एक संबंध नहीं है, क्योंकि हमें यह आवश्यक नहीं लगता (न ही सैद्धांतिक रूप से संभव है) सूक्ष्म स्तर पर सटीक रूप से जानने के लिए कि मानव स्तर पर प्रक्रियाओं को पूरा करते समय प्रत्येक अणु की एक साथ स्थिति और वेग ( उदाहरण के लिए, रासायनिक प्रतिक्रिया करते समय)। सांख्यिकीय यांत्रिकी यांत्रिकी के नियमों और अधूरे ज्ञान के व्यावहारिक अनुभव के बीच इस वियोग को भरती है, इस बारे में कुछ अनिश्चितता जोड़कर कि प्रणाली किस स्थिति में है।

जबकि सामान्य यांत्रिकी केवल एक राज्य के व्यवहार पर विचार करता है, सांख्यिकीय यांत्रिकी सांख्यिकीय समेकन (गणितीय भौतिकी) का परिचय देता है, जो विभिन्न राज्यों में प्रणाली की आभासी, स्वतंत्र प्रतियों का एक बड़ा संग्रह है। सांख्यिकीय पहनावा सिस्टम के सभी संभावित राज्यों पर एक संभाव्यता वितरण है। शास्त्रीय सांख्यिकीय यांत्रिकी में, पहनावा चरण बिंदुओं पर एक संभाव्यता वितरण है (साधारण यांत्रिकी में एकल चरण बिंदु के विपरीत), आमतौर पर विहित निर्देशांक अक्षों के साथ एक चरण स्थान में वितरण के रूप में दर्शाया जाता है। क्वांटम सांख्यिकीय यांत्रिकी में, पहनावा शुद्ध राज्यों पर संभाव्यता वितरण है,[note 1] और घनत्व मैट्रिक्स के रूप में संक्षिप्त रूप से संक्षेपित किया जा सकता है।

संभावनाओं के लिए हमेशा की तरह, पहनावा अलग-अलग तरीकों से व्याख्या किया जा सकता है:[1]* विभिन्न संभावित राज्यों का प्रतिनिधित्व करने के लिए एक पहनावा लिया जा सकता है जो एक प्रणाली में हो सकता है (महामारी की संभावना, ज्ञान का एक रूप), या

  • पहनावा के सदस्यों को स्वतंत्र प्रणालियों पर दोहराए गए प्रयोगों में प्रणालियों की अवस्थाओं के रूप में समझा जा सकता है जो एक समान लेकिन अपूर्ण रूप से नियंत्रित तरीके (अनुभवजन्य संभाव्यता) में तैयार किए गए हैं, अनंत संख्या में परीक्षणों की सीमा में।

ये दो अर्थ कई उद्देश्यों के लिए समान हैं, और इस लेख में एक दूसरे के स्थान पर उपयोग किए जाएंगे।

हालांकि संभाव्यता की व्याख्या की जाती है, समेकन में प्रत्येक राज्य गति के समीकरण के अनुसार समय के साथ विकसित होता है। इस प्रकार, समेकन स्वयं (राज्यों पर संभाव्यता वितरण) भी विकसित होता है, क्योंकि समेकन में वर्चुअल सिस्टम लगातार एक राज्य छोड़ देता है और दूसरे में प्रवेश करता है। पहनावा विकास लिउविले के प्रमेय (हैमिल्टनियन) (शास्त्रीय यांत्रिकी) या वॉन न्यूमैन समीकरण (क्वांटम यांत्रिकी) द्वारा दिया गया है। इन समीकरणों को केवल गति के यांत्रिक समीकरण के अनुप्रयोग द्वारा अलग-अलग प्रत्येक वर्चुअल सिस्टम में शामिल किया जाता है, जिसमें वर्चुअल सिस्टम की संभावना समय के साथ संरक्षित होती है क्योंकि यह एक राज्य से दूसरे राज्य में विकसित होती है।

पहनावा का एक विशेष वर्ग वे समूह हैं जो समय के साथ विकसित नहीं होते हैं। इन समूहों को संतुलन समुच्चय के रूप में जाना जाता है और उनकी स्थिति को सांख्यिकीय संतुलन के रूप में जाना जाता है। सांख्यिकीय संतुलन तब होता है, जब पहनावा में प्रत्येक राज्य के लिए, पहनावा में उसके भविष्य और अतीत के सभी राज्य शामिल होते हैं, जिसमें उस राज्य में होने की संभावना के बराबर संभावनाएं होती हैं।[note 2] पृथक प्रणालियों के समतोल समेकन का अध्ययन सांख्यिकीय ऊष्मप्रवैगिकी का फोकस है। गैर-संतुलन सांख्यिकीय यांत्रिकी समेकन के अधिक सामान्य मामले को संबोधित करती है जो समय के साथ बदलती है, और/या गैर-पृथक प्रणालियों के समेकन।

सांख्यिकीय ऊष्मप्रवैगिकी

सांख्यिकीय ऊष्मप्रवैगिकी (जिसे संतुलन सांख्यिकीय यांत्रिकी के रूप में भी जाना जाता है) का प्राथमिक लक्ष्य सामग्री के शास्त्रीय ऊष्मप्रवैगिकी को उनके घटक कणों के गुणों और उनके बीच की बातचीत के संदर्भ में प्राप्त करना है। दूसरे शब्दों में, सांख्यिकीय ऊष्मप्रवैगिकी थर्मोडायनामिक संतुलन में सामग्री के मैक्रोस्कोपिक गुणों और सामग्री के अंदर होने वाले सूक्ष्म व्यवहार और गति के बीच एक संबंध प्रदान करती है।

जबकि सांख्यिकीय यांत्रिकी में गतिशीलता शामिल है, यहाँ ध्यान सांख्यिकीय संतुलन (स्थिर अवस्था) पर केंद्रित है। सांख्यिकीय संतुलन का मतलब यह नहीं है कि कणों ने गति करना बंद कर दिया है (यांत्रिक संतुलन), बल्कि, केवल यह कि पहनावा विकसित नहीं हो रहा है।

मौलिक अभिधारणा

एक पृथक प्रणाली के साथ सांख्यिकीय संतुलन के लिए एक पर्याप्त स्थिति (लेकिन आवश्यक नहीं) यह है कि संभाव्यता वितरण केवल संरक्षित गुणों (कुल ऊर्जा, कुल कण संख्या, आदि) का एक कार्य है।[1]ऐसे कई अलग-अलग समतोल समूह हैं जिन पर विचार किया जा सकता है, और उनमें से केवल कुछ थर्मोडायनामिक्स के अनुरूप हैं।[1]यह प्रेरित करने के लिए अतिरिक्त अवधारणाएँ आवश्यक हैं कि किसी दिए गए सिस्टम के पहनावे का एक या दूसरा रूप क्यों होना चाहिए।

कई पाठ्यपुस्तकों में पाया जाने वाला एक सामान्य तरीका यह है कि समान को प्राथमिकता संभाव्यता अभिधारणा के रूप में लिया जाए।[2]यह अभिधारणा बताती है कि

एक सटीक ज्ञात ऊर्जा और सटीक ज्ञात संरचना के साथ एक पृथक प्रणाली के लिए, सिस्टम को उस ज्ञान के अनुरूप किसी भी माइक्रोस्टेट (सांख्यिकीय यांत्रिकी) में समान संभावना के साथ पाया जा सकता है।

इसलिए समान प्राथमिकता संभाव्यता अभिधारणा नीचे वर्णित माइक्रोकैनोनिकल समेकन के लिए एक प्रेरणा प्रदान करती है। समान प्राथमिकता संभाव्यता अभिधारणा के पक्ष में विभिन्न तर्क हैं:

  • एर्गोडिक परिकल्पना: एक एर्गोडिक प्रणाली वह है जो समय के साथ सभी सुलभ अवस्थाओं का पता लगाने के लिए विकसित होती है: वे सभी जिनमें समान ऊर्जा और संरचना होती है। एक एर्गोडिक प्रणाली में, माइक्रोकैनोनिकल पहनावा निश्चित ऊर्जा के साथ एकमात्र संभव संतुलन है। इस दृष्टिकोण की सीमित प्रयोज्यता है, क्योंकि अधिकांश प्रणालियाँ एर्गोडिक नहीं हैं।
  • उदासीनता का सिद्धांत: किसी और जानकारी के अभाव में, हम प्रत्येक संगत स्थिति को केवल समान संभावनाएँ प्रदान कर सकते हैं।
  • अधिकतम एन्ट्रापी ऊष्मप्रवैगिकी: उदासीनता के सिद्धांत का एक अधिक विस्तृत संस्करण बताता है कि सही पहनावा वह पहनावा है जो ज्ञात जानकारी के अनुकूल है और जिसमें सबसे बड़ा गिब्स एंट्रॉपी (सूचना एन्ट्रापी) है।[3]

सांख्यिकीय यांत्रिकी के लिए अन्य मौलिक सिद्धांत भी प्रस्तावित किए गए हैं।[4][5][6]उदाहरण के लिए, हाल के अध्ययनों से पता चलता है कि सांख्यिकीय यांत्रिकी के सिद्धांत को समान प्राथमिकता संभाव्यता अभिधारणा के बिना बनाया जा सकता है।[5][6] इस तरह की एक औपचारिकता मौलिक उष्मागतिकीय संबंध पर आधारित है, साथ ही निम्नलिखित अभिधारणाओं के सेट के साथ:[5]

  1. The probability density function is proportional to some function of the ensemble parameters and random variables.
  2. Thermodynamic state functions are described by ensemble averages of random variables.
  3. The entropy as defined by Gibbs entropy formula matches with the entropy as defined in classical thermodynamics.

जहां तीसरे अभिधारणा को निम्नलिखित द्वारा प्रतिस्थापित किया जा सकता है:[6]

  1. At infinite temperature, all the microstates have the same probability.


तीन थर्मोडायनामिक पहनावा

एक साधारण रूप के साथ तीन समतोल समेकन होते हैं जिन्हें परिमित मात्रा के भीतर बंधे किसी भी पृथक प्रणाली के लिए परिभाषित किया जा सकता है।[1]ये सांख्यिकीय ऊष्मप्रवैगिकी में सबसे अधिक बार चर्चित समूह हैं। मैक्रोस्कोपिक सीमा (नीचे परिभाषित) में वे सभी शास्त्रीय ऊष्मप्रवैगिकी के अनुरूप हैं।

माइक्रोकैनोनिकल पहनावा
सटीक रूप से दी गई ऊर्जा और निश्चित संरचना (कणों की सटीक संख्या) के साथ एक प्रणाली का वर्णन करता है। माइक्रोकैनोनिकल पहनावा में प्रत्येक संभावित स्थिति की समान संभावना होती है जो उस ऊर्जा और संरचना के अनुरूप होती है।
कैननिकल पहनावा
निश्चित संरचना की एक प्रणाली का वर्णन करता है जो थर्मल संतुलन में है[note 3] एक सटीक थर्मोडायनामिक तापमान के ताप स्नान के साथ। विहित पहनावा में अलग-अलग ऊर्जा लेकिन समान संरचना वाले राज्य होते हैं; पहनावा में अलग-अलग राज्यों को उनकी कुल ऊर्जा के आधार पर अलग-अलग संभावनाएँ दी जाती हैं।
भव्य विहित पहनावा
गैर-निश्चित संरचना (अनिश्चित कण संख्या) वाली एक प्रणाली का वर्णन करता है जो थर्मोडायनामिक जलाशय के साथ थर्मल और रासायनिक संतुलन में है। जलाशय में विभिन्न प्रकार के कणों के लिए सटीक तापमान और सटीक रासायनिक क्षमता होती है। भव्य विहित पहनावा में अलग-अलग ऊर्जा और अलग-अलग कणों की संख्या होती है; पहनावा में अलग-अलग राज्यों को उनकी कुल ऊर्जा और कुल कण संख्या के आधार पर अलग-अलग संभावनाएं दी जाती हैं।

कई कणों (थर्मोडायनामिक सीमा) वाले सिस्टम के लिए, ऊपर सूचीबद्ध सभी तीन समेकन समान व्यवहार देते हैं। यह तो केवल गणितीय सुविधा की बात है जो पहनावा प्रयोग किया जाता है।[7] पहनावा की समानता के बारे में गिब्स प्रमेय[8] माप घटना की एकाग्रता के सिद्धांत में विकसित किया गया था,[9] जिसमें कार्यात्मक विश्लेषण से लेकर कृत्रिम बुद्धि और बड़ी डेटा प्रौद्योगिकी के तरीकों तक विज्ञान के कई क्षेत्रों में अनुप्रयोग हैं।[10] महत्वपूर्ण मामले जहां थर्मोडायनामिक पहनावा समान परिणाम नहीं देते हैं उनमें शामिल हैं:

  • सूक्ष्म प्रणाली।
  • एक चरण संक्रमण पर बड़ी प्रणालियाँ।
  • लंबी दूरी की बातचीत के साथ बड़े सिस्टम।

इन मामलों में सही ऊष्मप्रवैगिकी पहनावा चुना जाना चाहिए क्योंकि न केवल उतार-चढ़ाव के आकार में, बल्कि कणों के वितरण जैसे औसत मात्रा में भी इन पहनावाओं के बीच देखने योग्य अंतर हैं। सही पहनावा वह है जो उस तरीके से मेल खाता है जिस तरह से सिस्टम को तैयार किया गया है और इसकी विशेषता है- दूसरे शब्दों में, पहनावा जो उस सिस्टम के बारे में ज्ञान को दर्शाता है।[2]

Thermodynamic ensembles[1]
Microcanonical Canonical Grand canonical
Fixed variables
Microscopic features Number of microstates Canonical partition function Grand partition function
Macroscopic function Boltzmann entropy Helmholtz free energy Grand potential


गणना के तरीके

एक बार किसी पहनावा के लिए विशिष्ट राज्य फ़ंक्शन की गणना किसी दिए गए सिस्टम के लिए की जाती है, तो वह सिस्टम 'हल' हो जाता है (मैक्रोस्कोपिक वेधशालाओं को विशेषता राज्य फ़ंक्शन से निकाला जा सकता है)। एक थर्मोडायनामिक पहनावा के विशिष्ट राज्य समारोह की गणना करना एक सरल कार्य नहीं है, हालांकि, इसमें सिस्टम की हर संभव स्थिति पर विचार करना शामिल है। हालांकि कुछ काल्पनिक प्रणालियां पूरी तरह से हल हो गई हैं, सबसे सामान्य (और यथार्थवादी) मामला एक सटीक समाधान के लिए बहुत जटिल है। वास्तविक पहनावा का अनुमान लगाने और औसत मात्रा की गणना करने के लिए विभिन्न दृष्टिकोण मौजूद हैं।

सटीक

ऐसे कुछ मामले हैं जो सटीक समाधान की अनुमति देते हैं।

  • बहुत छोटे सूक्ष्म प्रणालियों के लिए, सिस्टम के सभी संभावित राज्यों (क्वांटम यांत्रिकी में सटीक विकर्णीकरण का उपयोग करके, या शास्त्रीय यांत्रिकी में सभी चरण स्थान पर अभिन्न) की गणना करके सीधे पहनावा की गणना की जा सकती है।
  • कुछ बड़ी प्रणालियों में कई वियोज्य सूक्ष्मदर्शी प्रणालियाँ होती हैं, और प्रत्येक उपप्रणाली का स्वतंत्र रूप से विश्लेषण किया जा सकता है। विशेष रूप से, गैर-अंतःक्रियात्मक कणों के आदर्श गैसों में यह गुण होता है, जिससे मैक्सवेल-बोल्ट्जमैन सांख्यिकी, फर्मी-डिराक सांख्यिकी और बोस-आइंस्टीन सांख्यिकी की सटीक व्युत्पत्ति की अनुमति मिलती है।[2]* सहभागिता वाली कुछ बड़ी प्रणालियाँ हल की गई हैं। सूक्ष्म गणितीय तकनीकों के उपयोग से, कुछ खिलौनों के मॉडल के लिए सटीक समाधान खोजे गए हैं।[11] कुछ उदाहरणों में शामिल हैं Bethe ansatz, शून्य क्षेत्र में वर्ग-जाली आइसिंग मॉडल, कठोर षट्भुज मॉडल।

मोंटे कार्लो

एक अनुमानित दृष्टिकोण जो कंप्यूटर के लिए विशेष रूप से अच्छी तरह से अनुकूल है, मोंटे कार्लो विधि है, जो सिस्टम के संभावित राज्यों में से कुछ की जांच करता है, राज्यों को यादृच्छिक रूप से (उचित वजन के साथ) चुना जाता है। जब तक ये राज्य प्रणाली के राज्यों के पूरे सेट का एक प्रतिनिधि नमूना बनाते हैं, तब तक अनुमानित विशेषता कार्य प्राप्त होता है। जैसे-जैसे अधिक से अधिक यादृच्छिक नमूने शामिल किए जाते हैं, त्रुटियाँ मनमाने ढंग से निम्न स्तर तक कम हो जाती हैं।

  • मेट्रोपोलिस-हेस्टिंग्स एल्गोरिद्म एक क्लासिक मोंटे कार्लो पद्धति है जिसका उपयोग शुरू में कैनोनिकल पहनावा का नमूना लेने के लिए किया गया था।
  • पथ अभिन्न मोंटे कार्लो, कैनोनिकल पहनावा का नमूना लेने के लिए भी उपयोग किया जाता है।

अन्य

  • दुर्लभ गैर-आदर्श गैसों के लिए, क्लस्टर विस्तार जैसे दृष्टिकोण कमजोर अंतःक्रियाओं के प्रभाव को शामिल करने के लिए गड़बड़ी सिद्धांत का उपयोग करते हैं, जिससे वायरल विस्तार होता है।[12]* घने तरल पदार्थों के लिए, एक और अनुमानित दृष्टिकोण कम वितरण कार्यों पर आधारित है, विशेष रूप से रेडियल वितरण समारोह[12]* आणविक गतिशीलता कंप्यूटर सिमुलेशन का उपयोग एर्गोडिक सिस्टम में माइक्रोकैनोनिकल समेकन औसत की गणना के लिए किया जा सकता है। स्टोचैस्टिक हीट बाथ के लिए एक कनेक्शन को शामिल करने के साथ, वे विहित और भव्य विहित स्थितियों को भी मॉडल कर सकते हैं।
  • गैर-संतुलन सांख्यिकीय यांत्रिक परिणामों (नीचे देखें) से जुड़े मिश्रित तरीके उपयोगी हो सकते हैं।

गैर-संतुलन सांख्यिकीय यांत्रिकी

कई भौतिक घटनाओं में संतुलन से बाहर अर्ध-थर्मोडायनामिक प्रक्रियाएं शामिल होती हैं, उदाहरण के लिए:

  • थर्मल चालन, एक तापमान असंतुलन से प्रेरित,
  • विद्युत चालन, एक वोल्टेज असंतुलन द्वारा संचालित,
  • मुक्त ऊर्जा में कमी से प्रेरित सहज रासायनिक प्रतिक्रियाएँ,
  • घर्षण, अपव्यय, क्वांटम विकृति,
  • सिस्टम को बाहरी बलों द्वारा पंप किया जा रहा है (ऑप्टिकल पंपिंग, आदि),
  • और सामान्य रूप से अपरिवर्तनीय प्रक्रियाएं।

ये सभी प्रक्रियाएं समय के साथ विशिष्ट दरों के साथ होती हैं। इंजीनियरिंग में ये दरें महत्वपूर्ण हैं। गैर-संतुलन सांख्यिकीय यांत्रिकी का क्षेत्र इन गैर-संतुलन प्रक्रियाओं को सूक्ष्म स्तर पर समझने से संबंधित है। (सांख्यिकीय ऊष्मप्रवैगिकी का उपयोग केवल अंतिम परिणाम की गणना के लिए किया जा सकता है, बाहरी असंतुलन को हटा दिए जाने के बाद और पहनावा वापस संतुलन में आ गया है।)

सिद्धांत रूप में, गैर-संतुलन सांख्यिकीय यांत्रिकी गणितीय रूप से सटीक हो सकती है: लिउविले के प्रमेय (हैमिल्टनियन) | लिउविले के समीकरण या इसके क्वांटम समकक्ष, वॉन न्यूमैन समीकरण जैसे नियतात्मक समीकरणों के अनुसार समय के साथ एक पृथक प्रणाली के लिए पहनावा विकसित होता है। ये समीकरण प्रत्येक अवस्था में गति के यांत्रिक समीकरणों को स्वतंत्र रूप से लागू करने का परिणाम हैं। दुर्भाग्य से, इन पहनावा विकास समीकरणों में अंतर्निहित यांत्रिक गति की जटिलता का बहुत अधिक भाग होता है, और इसलिए सटीक समाधान प्राप्त करना बहुत मुश्किल होता है। इसके अलावा, पहनावा विकास समीकरण पूरी तरह से प्रतिवर्ती हैं और जानकारी को नष्ट नहीं करते हैं (पहनावा की गिब्स एंट्रॉपी संरक्षित है)। मॉडलिंग अपरिवर्तनीय प्रक्रियाओं में आगे बढ़ने के लिए, संभावना और प्रतिवर्ती यांत्रिकी के अलावा अतिरिक्त कारकों पर विचार करना आवश्यक है।

गैर-संतुलन यांत्रिकी इसलिए सैद्धांतिक अनुसंधान का एक सक्रिय क्षेत्र है क्योंकि इन अतिरिक्त मान्यताओं की वैधता की सीमा का पता लगाया जाना जारी है। निम्नलिखित उपखंडों में कुछ दृष्टिकोणों का वर्णन किया गया है।

स्टोकेस्टिक तरीके

गैर-संतुलन सांख्यिकीय यांत्रिकी के लिए एक दृष्टिकोण सिस्टम में स्टोकेस्टिक (यादृच्छिक) व्यवहार को शामिल करना है। स्टोकेस्टिक व्यवहार पहनावा में निहित जानकारी को नष्ट कर देता है। हालांकि यह तकनीकी रूप से गलत है (ब्लैक होल सूचना विरोधाभास को छोड़कर, एक प्रणाली अपने आप में सूचना की हानि का कारण नहीं बन सकती है), यादृच्छिकता को यह दर्शाने के लिए जोड़ा जाता है कि ब्याज की जानकारी समय के साथ प्रणाली के भीतर सूक्ष्म सहसंबंधों में परिवर्तित हो जाती है, या बीच के सहसंबंधों के बीच प्रणाली और पर्यावरण। ये सहसंबंध रुचि के चर पर कैओस सिद्धांत या छद्म यादृच्छिक प्रभाव के रूप में दिखाई देते हैं। इन सहसंबंधों को यादृच्छिकता के साथ बदलकर, गणनाओं को बहुत आसान बनाया जा सकता है।

  • Boltzmann transport equation: An early form of stochastic mechanics appeared even before the term "statistical mechanics" had been coined, in studies of kinetic theory. James Clerk Maxwell had demonstrated that molecular collisions would lead to apparently chaotic motion inside a gas. Ludwig Boltzmann subsequently showed that, by taking this molecular chaos for granted as a complete randomization, the motions of particles in a gas would follow a simple Boltzmann transport equation that would rapidly restore a gas to an equilibrium state (see H-theorem).

    The Boltzmann transport equation and related approaches are important tools in non-equilibrium statistical mechanics due to their extreme simplicity. These approximations work well in systems where the "interesting" information is immediately (after just one collision) scrambled up into subtle correlations, which essentially restricts them to rarefied gases. The Boltzmann transport equation has been found to be very useful in simulations of electron transport in lightly doped semiconductors (in transistors), where the electrons are indeed analogous to a rarefied gas.

    A quantum technique related in theme is the random phase approximation.
  • BBGKY hierarchy: In liquids and dense gases, it is not valid to immediately discard the correlations between particles after one collision. The BBGKY hierarchy (Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy) gives a method for deriving Boltzmann-type equations but also extending them beyond the dilute gas case, to include correlations after a few collisions.
  • Keldysh formalism (a.k.a. NEGF—non-equilibrium Green functions): A quantum approach to including stochastic dynamics is found in the Keldysh formalism. This approach is often used in electronic quantum transport calculations.
  • Stochastic Liouville equation.


निकट-संतुलन के तरीके

गैर-संतुलन सांख्यिकीय यांत्रिक मॉडल का एक अन्य महत्वपूर्ण वर्ग उन प्रणालियों से संबंधित है जो संतुलन से बहुत कम परेशान हैं। बहुत कम गड़बड़ी के साथ, प्रतिक्रिया का विश्लेषण रैखिक प्रतिक्रिया सिद्धांत में किया जा सकता है। एक उल्लेखनीय परिणाम, उतार-चढ़ाव-अपव्यय प्रमेय द्वारा औपचारिक रूप से, यह है कि एक प्रणाली की प्रतिक्रिया जब संतुलन के निकट होती है, तो यह सांख्यिकीय उतार-चढ़ाव से ठीक से संबंधित होता है, जब प्रणाली कुल संतुलन में होती है। अनिवार्य रूप से, एक प्रणाली जो संतुलन से थोड़ी दूर है - चाहे वह बाहरी ताकतों द्वारा या उतार-चढ़ाव से हो - उसी तरह से संतुलन की ओर आराम करती है, क्योंकि प्रणाली अंतर नहीं बता सकती है या यह नहीं जान सकती है कि यह संतुलन से दूर कैसे हो गया।[12]: 664  यह संतुलन सांख्यिकीय यांत्रिकी से परिणाम निकालकर ओम के नियम और तापीय चालकता जैसी संख्याएँ प्राप्त करने के लिए एक अप्रत्यक्ष अवसर प्रदान करता है। चूंकि संतुलन सांख्यिकीय यांत्रिकी गणितीय रूप से अच्छी तरह से परिभाषित है और (कुछ मामलों में) गणना के लिए अधिक उत्तरदायी है, उतार-चढ़ाव-अपव्यय कनेक्शन निकट-संतुलन सांख्यिकीय यांत्रिकी में गणना के लिए एक सुविधाजनक शॉर्टकट हो सकता है।

इस संबंध को बनाने के लिए उपयोग किए जाने वाले कुछ सैद्धांतिक उपकरणों में शामिल हैं:

  • उतार-चढ़ाव-अपव्यय प्रमेय
  • ऑनसेगर पारस्परिक संबंध
  • हरा-कुबो संबंध
  • बैलिस्टिक चालन#Landauer-Buttiker औपचारिकता|Landauer–Büttiker औपचारिकता
  • मोरी-ज़्वानज़िग औपचारिकता

हाइब्रिड तरीके

एक उन्नत दृष्टिकोण स्टोकास्टिक विधियों और रैखिक प्रतिक्रिया सिद्धांत के संयोजन का उपयोग करता है। एक उदाहरण के रूप में, एक इलेक्ट्रॉनिक प्रणाली के प्रवाहकत्त्व में क्वांटम सुसंगतता प्रभाव (कमजोर स्थानीयकरण, चालन में उतार-चढ़ाव) की गणना करने के लिए एक दृष्टिकोण ग्रीन-कुबो संबंधों का उपयोग है, जिसमें विभिन्न इलेक्ट्रॉनों के उपयोग के द्वारा विभिन्न इलेक्ट्रॉनों के बीच बातचीत द्वारा स्टोचैस्टिक dephasing को शामिल किया गया है। क्लेडीश विधि।[13][14]


ऊष्मप्रवैगिकी के बाहर अनुप्रयोग

एक प्रणाली की स्थिति के बारे में ज्ञान में अनिश्चितता के साथ सामान्य यांत्रिक प्रणालियों का विश्लेषण करने के लिए पहनावा औपचारिकता का भी उपयोग किया जा सकता है। एन्सेम्बल का भी उपयोग किया जाता है:

इतिहास

1738 में, स्विस भौतिक विज्ञानी और गणितज्ञ डेनियल बर्नौली ने हाइड्रोडायनामिका को प्रकाशित किया जिसने गैसों के गतिज सिद्धांत का आधार रखा। इस कार्य में, बर्नौली ने उस तर्क को प्रस्तुत किया, जो आज भी प्रयोग किया जाता है, कि गैसों में बड़ी संख्या में अणु सभी दिशाओं में चलते हैं, कि सतह पर उनका प्रभाव गैस के दबाव का कारण बनता है जिसे हम महसूस करते हैं, और जिसे हम गर्मी के रूप में अनुभव करते हैं बस उनकी गति की गतिज ऊर्जा।[4]

1859 में, रुडोल्फ क्लॉसियस द्वारा अणुओं के प्रसार पर एक पेपर पढ़ने के बाद, स्कॉटिश भौतिक विज्ञानी जेम्स क्लर्क मैक्सवेल ने आणविक वेगों का मैक्सवेल वितरण तैयार किया, जिसने एक विशिष्ट श्रेणी में एक निश्चित वेग वाले अणुओं का अनुपात दिया।[15] यह भौतिकी का पहला सांख्यिकीय नियम था।[16] मैक्सवेल ने पहला यांत्रिक तर्क भी दिया कि आण्विक संघट्टों के लिए तापमान की समानता आवश्यक है और इसलिए संतुलन की ओर एक प्रवृत्ति है।[17] पांच साल बाद, 1864 में, लुडविग बोल्ट्जमैन, वियना में एक युवा छात्र, मैक्सवेल के पेपर पर आए और उन्होंने अपने जीवन का अधिकांश समय इस विषय को विकसित करने में बिताया।

सांख्यिकीय यांत्रिकी की शुरुआत 1870 के दशक में बोल्ट्जमैन के काम से हुई थी, जिनमें से अधिकांश सामूहिक रूप से गैस थ्योरी पर उनके 1896 के व्याख्यान में प्रकाशित हुए थे।[18] ऊष्मप्रवैगिकी, एच-प्रमेय, परिवहन सिद्धांत (सांख्यिकीय भौतिकी), थर्मल संतुलन, गैसों की स्थिति का समीकरण, और इसी तरह के विषयों की सांख्यिकीय व्याख्या पर बोल्ट्जमैन के मूल कागजात, वियना अकादमी और अन्य समाजों की कार्यवाही में लगभग 2,000 पृष्ठों पर कब्जा करते हैं। . बोल्ट्जमैन ने एक संतुलन सांख्यिकीय समुच्चय की अवधारणा पेश की और अपने एच-प्रमेय|एच-प्रमेय के साथ पहली बार गैर-संतुलन सांख्यिकीय यांत्रिकी की जांच भी की।

सांख्यिकीय यांत्रिकी शब्द अमेरिकी गणितीय भौतिक विज्ञानी जोशिया विलार्ड गिब्स | जे। 1884 में विलार्ड गिब्स।[19][note 4] संभाव्य यांत्रिकी आज एक अधिक उपयुक्त शब्द लग सकता है, लेकिन सांख्यिकीय यांत्रिकी मजबूती से स्थापित है।[20] अपनी मृत्यु के कुछ समय पहले, गिब्स ने 1902 में सांख्यिकीय यांत्रिकी में प्राथमिक सिद्धांतों को प्रकाशित किया, एक पुस्तक जिसने सांख्यिकीय यांत्रिकी को सभी यांत्रिक प्रणालियों-मैक्रोस्कोपिक या सूक्ष्म, गैसीय या गैर-गैसीय को संबोधित करने के लिए एक पूरी तरह से सामान्य दृष्टिकोण के रूप में औपचारिक रूप दिया।[1]गिब्स के तरीकों को शुरू में शास्त्रीय यांत्रिकी के ढांचे में प्राप्त किया गया था, हालांकि वे इस तरह की सामान्यता के थे कि वे बाद के क्वांटम यांत्रिकी के लिए आसानी से अनुकूल पाए गए, और आज भी सांख्यिकीय यांत्रिकी की नींव बनाते हैं।[2]


यह भी देखें


टिप्पणियाँ

  1. The probabilities in quantum statistical mechanics should not be confused with quantum superposition. While a quantum ensemble can contain states with quantum superpositions, a single quantum state cannot be used to represent an ensemble.
  2. Statistical equilibrium should not be confused with mechanical equilibrium. The latter occurs when a mechanical system has completely ceased to evolve even on a microscopic scale, due to being in a state with a perfect balancing of forces. Statistical equilibrium generally involves states that are very far from mechanical equilibrium.
  3. The transitive thermal equilibrium (as in, "X is thermal equilibrium with Y") used here means that the ensemble for the first system is not perturbed when the system is allowed to weakly interact with the second system.
  4. According to Gibbs, the term "statistical", in the context of mechanics, i.e. statistical mechanics, was first used by the Scottish physicist James Clerk Maxwell in 1871. From: J. Clerk Maxwell, Theory of Heat (London, England: Longmans, Green, and Co., 1871), p. 309: "In dealing with masses of matter, while we do not perceive the individual molecules, we are compelled to adopt what I have described as the statistical method of calculation, and to abandon the strict dynamical method, in which we follow every motion by the calculus."


संदर्भ

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 Gibbs, Josiah Willard (1902). Elementary Principles in Statistical Mechanics. New York: Charles Scribner's Sons.
  2. 2.0 2.1 2.2 2.3 Tolman, R. C. (1938). The Principles of Statistical Mechanics. Dover Publications. ISBN 9780486638966.
  3. Jaynes, E. (1957). "सूचना सिद्धांत और सांख्यिकीय यांत्रिकी". Physical Review. 106 (4): 620–630. Bibcode:1957PhRv..106..620J. doi:10.1103/PhysRev.106.620.
  4. 4.0 4.1 J. Uffink, "Compendium of the foundations of classical statistical physics." (2006)
  5. 5.0 5.1 5.2 Gao, Xiang; Gallicchio, Emilio; Roitberg, Adrian (2019). "सामान्यीकृत बोल्ट्जमैन वितरण एकमात्र ऐसा वितरण है जिसमें गिब्स-शैनन एन्ट्रापी थर्मोडायनामिक एन्ट्रॉपी के बराबर होती है". The Journal of Chemical Physics. 151 (3): 034113. arXiv:1903.02121. Bibcode:2019JChPh.151c4113G. doi:10.1063/1.5111333. PMID 31325924. S2CID 118981017.
  6. 6.0 6.1 6.2 Gao, Xiang (March 2022). "एनसेंबल थ्योरी का गणित". Results in Physics. 34: 105230. Bibcode:2022ResPh..3405230G. doi:10.1016/j.rinp.2022.105230. S2CID 221978379.
  7. Reif, F. (1965). सांख्यिकीय और तापीय भौतिकी के मूल सिद्धांत. McGraw–Hill. p. 227. ISBN 9780070518001.
  8. Touchette, Hugo (2015). "एन्सेम्बल्स की समतुल्यता और गैर-बराबरी: थर्मोडायनामिक, मैक्रोस्टेट और माप स्तर". Journal of Statistical Physics. 159 (5): 987–1016. arXiv:1403.6608. Bibcode:2015JSP...159..987T. doi:10.1007/s10955-015-1212-2. S2CID 118534661.
  9. Ledoux, Michel (2005). माप घटना की एकाग्रता (PDF). Mathematical Surveys and Monographs. Vol. 89. doi:10.1090/surv/089. ISBN 9780821837924..
  10. Gorban, A. N.; Tyukin, I. Y. (2018). "विमीयता का आशीर्वाद: डेटा के सांख्यिकीय भौतिकी की गणितीय नींव". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 376 (2118): 20170237. arXiv:1801.03421. Bibcode:2018RSPTA.37670237G. doi:10.1098/rsta.2017.0237. PMC 5869543. PMID 29555807.
  11. Baxter, Rodney J. (1982). सांख्यिकीय यांत्रिकी में सटीक रूप से हल किए गए मॉडल. Academic Press Inc. ISBN 9780120831807.
  12. 12.0 12.1 12.2 Balescu, Radu (1975). Equilibrium and Non-Equilibrium Statistical Mechanics. John Wiley & Sons. ISBN 9780471046004.
  13. Altshuler, B. L.; Aronov, A. G.; Khmelnitsky, D. E. (1982). "क्वांटम स्थानीयकरण पर छोटे ऊर्जा हस्तांतरण के साथ इलेक्ट्रॉन-इलेक्ट्रॉन टकराव के प्रभाव". Journal of Physics C: Solid State Physics. 15 (36): 7367. Bibcode:1982JPhC...15.7367A. doi:10.1088/0022-3719/15/36/018.
  14. Aleiner, I.; Blanter, Y. (2002). "चालन में उतार-चढ़ाव के लिए इनलेस्टिक बिखरने का समय". Physical Review B. 65 (11): 115317. arXiv:cond-mat/0105436. Bibcode:2002PhRvB..65k5317A. doi:10.1103/PhysRevB.65.115317. S2CID 67801325.
  15. See:
  16. Mahon, Basil (2003). द मैन हू चेंज्ड एवरीथिंग - द लाइफ ऑफ जेम्स क्लर्क मैक्सवेल. Hoboken, NJ: Wiley. ISBN 978-0-470-86171-4. OCLC 52358254.
  17. Gyenis, Balazs (2017). "मैक्सवेल और सामान्य वितरण: संभाव्यता, स्वतंत्रता और संतुलन की प्रवृत्ति की रंगीन कहानी". Studies in History and Philosophy of Modern Physics. 57: 53–65. arXiv:1702.01411. Bibcode:2017SHPMP..57...53G. doi:10.1016/j.shpsb.2017.01.001. S2CID 38272381.
  18. Ebeling, Werner; Sokolov, Igor M. (2005). Ebeling Werner; Sokolov Igor M. (eds.). स्टैटिस्टिकल थर्मोडायनामिक्स एंड स्टोचैस्टिक थ्योरी ऑफ़ नोनक्विलिब्रियम सिस्टम्स. Series on Advances in Statistical Mechanics. Vol. 8. World Scientific Press. pp. 3–12. Bibcode:2005stst.book.....E. doi:10.1142/2012. ISBN 978-90-277-1674-3. (section 1.2)
  19. J. W. Gibbs, "On the Fundamental Formula of Statistical Mechanics, with Applications to Astronomy and Thermodynamics." Proceedings of the American Association for the Advancement of Science, 33, 57-58 (1884). Reproduced in The Scientific Papers of J. Willard Gibbs, Vol II (1906), pp. 16.
  20. Mayants, Lazar (1984). संभाव्यता और भौतिकी की पहेली. Springer. p. 174. ISBN 978-90-277-1674-3.


इस पेज में लापता आंतरिक लिंक की सूची

  • आंकड़े
  • भौतिक विज्ञान
  • थर्मोडायनामिक संतुलन
  • सिद्धांत संभावना
  • ताप की गुंजाइश
  • सांख्यिकीय पहनावा (गणितीय भौतिकी)
  • महामारी संभाव्यता
  • मौलिक थर्मोडायनामिक संबंध
  • अलग निकाय
  • गर्मी स्नान
  • माप की एकाग्रता
  • बड़ा डेटा
  • कृत्रिम होशियारी
  • खिलौना मॉडल
  • कठिन षट्भुज मॉडल
  • आणविक गतिकी
  • तापीय चालकता
  • क्वांटम असंगति
  • टकराव
  • अराजकता सिद्धांत
  • कूट-यादृच्छिक
  • ऊष्मीय चालकता
  • पहनावा पूर्वानुमान
  • तंत्रिका - तंत्र
  • की परिक्रमा
  • गैसों का गतिज सिद्धांत
  • स्थिति के समीकरण

बाहरी संबंध