टॉर्शन टेंसर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(44 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Manner of characterizing a twist or screw of a moving frame around a curve}}
{{Short description|Manner of characterizing a twist or screw of a moving frame around a curve}}
{{Other uses|Torsion (disambiguation)|Torsion field (disambiguation)}}
{{Other uses|आघूर्ण बल (द्विअर्थता निवारण)|आघूर्ण बल क्षेत्र (द्विअर्थता निवारण)}}
[[File:Torsion along a geodesic.svg|right|thumb|जियोडेसिक के साथ मरोड़।]]विभेदक ज्यामिति में, आघूर्ण बल की धारणा एक वक्र के चारों ओर एक गतिमान तंत्र के मोड़ या पेंच सिद्धांत को चिह्नित करने का एक तरीका है। वक्र का मरोड़, जैसा कि फ्रेनेट-सेरेट फ़ार्मुलों में प्रकट होता है, उदाहरण के लिए, इसके स्पर्शरेखा सदिश के बारे में एक वक्र के मोड़ की मात्रा निर्धारित करता है क्योंकि वक्र विकसित होता है (या स्पर्शरेखा सदिश के बारे में फ़्रेनेट-सेरेट फ़्रेम का रोटेशन)। सतहों की ज्यामिति में, ''जियोडेसिक मरोड़'' वर्णन करता है कि कैसे एक सतह सतह पर एक वक्र के बारे में मुड़ जाती है। वक्रता की साथी धारणा यह मापती है कि कैसे चलते हुए फ्रेम बिना मुड़े वक्र के साथ लुढ़कते हैं।
[[File:Torsion along a geodesic.svg|right|thumb|जियोडेसिक के साथ आघूर्ण बल।]][[विभेदक ज्यामिति|अवकल ज्यामिति]] में, आघूर्ण बल की धारणा एक वक्र के चारों ओर एक [[गतिमान]] [[तंत्र]] के मोड़ या [[पेंच]] को चिह्नित करने का एक तरीका है। [[एक वक्र का आघूर्ण बल]], जैसा कि [[फ्रेनेट-सेरेट]] [[सूत्रों]] में प्रकट होता है, उदाहरण के लिए, अपने स्पर्शरेखा सदिश के बारे में एक वक्र के मोड़ की मात्रा निर्धारित करता है क्योंकि वक्र विकसित होता है (या स्पर्शरेखा सदिश के बारे में फ़्रेनेट-सेरेट तंत्र का परिभ्रमण)। सतहों की ज्यामिति में, अल्पान्तरी ''आघूर्ण बल'' वर्णन करता है कि कैसे एक सतह पर सतह एक वक्र के बारे में मुड़ती है। [[वक्रता]] की साथी धारणा यह मापती है कि कैसे चलते हुए तंत्र बिना मुड़े एक वक्र के साथ बेल्लन हैं।


अधिक आम तौर पर, एक एफ़िन कनेक्शन (यानी, स्पर्शरेखा बंडल में एक कनेक्शन (वेक्टर बंडल)) से लैस एक अलग-अलग मैनिफोल्ड पर, मरोड़ और वक्रता कनेक्शन के दो मूलभूत आविष्कारों का निर्माण करते हैं। इस संदर्भ में, मरोड़ एक आंतरिक लक्षण वर्णन देता है कि कैसे स्पर्शरेखा रिक्त स्थान एक वक्र के बारे में मुड़ते हैं जब वे समानांतर परिवहन करते हैं; जबकि वक्रता बताती है कि कैसे स्पर्शरेखा रिक्त स्थान वक्र के साथ घूमती है। मरोड़ को ठोस रूप से एक टेन्सर के रूप में वर्णित किया जा सकता है, या वेक्टर-वैल्यू फॉर्म के रूप में | वेक्टर-वैल्यू 2-फॉर्म मैनिफोल्ड पर। अगर ∇ डिफरेंशियल मैनिफोल्ड पर एक एफ़िन कनेक्शन है, तो वेक्टर फ़ील्ड्स ''X'' और ''Y'' के संदर्भ में मरोड़ वाले टेंसर को परिभाषित किया जाता है।
आम तौर पर अधिक, [[सजातीय संयोजन]] (अर्थात, [[स्पर्शरेखा समूह]] में एक [[संयोजन]]) से सुसज्जित एक [[अलग-अलग बहुविध]] पर, आघूर्ण बल और वक्रता संयोजन के दो मूलभूत आविष्कारों का निर्माण करते हैं। इस संदर्भ में, आघूर्ण बल एक आंतरिक लक्षण वर्णन देता है कि कैसे [[स्पर्शरेखा समष्टि]] एक वक्र के बारे में मुड़ते हैं जब वे [[समानांतर परिवहन]] करते हैं, जबकि वक्रता बताती है कि कैसे स्पर्शरेखा समष्टि वक्र के साथ घूमती है। आघूर्ण बल को विशेष रूप से एक [[प्रदिश]] के रूप में वर्णित किया जा सकता है, या बहुविध पर [[सदिश मूल्यवान 2-विधि]] के रूप में वर्णित किया जा सकता है। अगर ∇ [[अवकलनीय बहुविध|अवकल बहुविध]] पर एक सजातीय संयोजन है, तो सदिश क्षेत्र ''X'' और ''Y'' के संदर्भ में आघूर्ण बल वाले प्रदिश को परिभाषित किया गया है।
:<math>T(X,Y) = \nabla_XY-\nabla_YX - [X,Y]</math>
:<math>T(X,Y) = \nabla_XY-\nabla_YX - [X,Y]</math>
जहां [X,Y] सदिश क्षेत्रों का लाइ ब्रैकेट है।
जहां [X,Y] [[सदिश क्षेत्रों का लाइ ब्रैकेट]] है।


जियोडेसिक्स की ज्यामिति के अध्ययन में मरोड़ विशेष रूप से उपयोगी है। पैरामीट्रिज्ड जियोडेसिक्स की एक प्रणाली को देखते हुए, उन जियोडेसिक्स वाले एफाइन कनेक्शन के एक वर्ग को निर्दिष्ट कर सकते हैं, लेकिन उनके मरोड़ से भिन्न होते हैं। एक अनूठा कनेक्शन है जो मरोड़ को अवशोषित करता है, लेवी-सिविता कनेक्शन को अन्य, संभवतः गैर-मीट्रिक स्थितियों (जैसे फिन्सलर ज्यामिति) के लिए सामान्यीकृत करता है। मरोड़ के साथ एक संबंध और बिना मरोड़ के संबंधित संबंध के बीच का अंतर एक टेंसर है, जिसे कंटोर्शन टेंसर कहा जाता है। जी-संरचनाओं और कार्टन की तुल्यता पद्धति के अध्ययन में मरोड़ का अवशोषण भी एक मौलिक भूमिका निभाता है। संबंधित प्रक्षेप्य कनेक्शन के माध्यम से, जियोडेसिक्स के अप्रतिबंधित परिवारों के अध्ययन में मरोड़ भी उपयोगी है। सापेक्षता सिद्धांत में, इस तरह के विचारों को आइंस्टीन-कार्टन सिद्धांत के रूप में लागू किया गया है।
[[अल्पान्तरी]] की ज्यामिति के अध्ययन में आघूर्ण बल विशेष रूप से उपयोगी है। प्रचलीकरण अल्पान्तरी  की एक प्रणाली को देखते हुए, उन अल्पान्तरी वाले सजातीय संयोजन के एक वर्ग को निर्दिष्ट कर सकते हैं, लेकिन उनके आघूर्ण बल से भिन्न होते हैं। एक विशिष्ट संयोजन है जो आघूर्ण बल को अवशोषित करता है, तथा [[लेवी-सिविता संयोजन]] को अन्य, संभवतः गैर-मापीय स्थितियों (जैसे [[फिन्सलर ज्यामिति]]) के लिए सामान्यीकृत करता है। आघूर्ण बल के साथ एक संबंध और बिना आघूर्ण बल के संबंधित संबंध के बीच का अंतर एक प्रदिश है, जिसे [[विरूपण प्रदिश]] कहा जाता है। [[जी-संरचनाओं]] और [[कार्टन की तुल्यता पद्धति]] के अध्ययन में आघूर्ण बल का अवशोषण भी एक मौलिक भूमिका निभाता है। संबंधित [[प्रक्षेप्य संयोजन]] के माध्यम से, अल्पान्तरी के अप्रतिबंधित परिवारों के अध्ययन में आघूर्ण बल भी उपयोगी है। [[सापेक्षता सिद्धांत]] में, इस तरह के विचारों को [[आइंस्टीन-कार्टन सिद्धांत]] के रूप में लागू किया गया है।


== मरोड़ टेंसर ==
== आघूर्ण बल प्रदिश ==
M को स्पर्शरेखा बंडल (उर्फ सहसंयोजक व्युत्पन्न) ∇ पर एक affine कनेक्शन के साथ कई गुना होने दें। ∇ का 'मरोड़ टेन्सर' (कभी-कभी कार्टन (मरोड़) टेन्सर कहा जाता है) सदिश-मूल्यवान रूप है | सदिश-मूल्यवान 2-रूप सदिश क्षेत्रों X और Y पर परिभाषित
M को [[स्पर्शरेखा समूह]] (उर्फ [[सहसंयोजक व्युत्पन्न)|सहसंयोजक अवकलज)]] ∇ पर एक [[स]][[जातीय संयोजन]] के साथ बहुविध होने दें। ∇ का 'आघूर्ण बल प्रदिश '(कभी-कभी कार्टन(आघूर्ण बल) प्रदिश भी कहा जाता है) सदिश क्षेत्रों X और Y पर परिभाषित [[सदिश-मूल्यवान 2-रूप|सदिश-मूल्यवान 2-विधि]] है ,


:<math>T(X, Y) := \nabla_X Y - \nabla_Y X - [X,Y]</math>
:<math>T(X, Y) := \nabla_X Y - \nabla_Y X - [X,Y]</math>
कहाँ पे {{nowrap|1=[''X'', ''Y'']}} दो सदिश क्षेत्रों के सदिश क्षेत्रों का लाई कोष्ठक है। लीबनिज नियम (सामान्यीकृत उत्पाद नियम) द्वारा, किसी भी सुचारू कार्य f के लिए T(fX, Y) = T(X, fY) = fT(X, Y)। इसलिए टी टेंसोरियल है, कनेक्शन (वेक्टर बंडल) के संदर्भ में परिभाषित होने के बावजूद, जो एक प्रथम क्रम अंतर ऑपरेटर है: यह स्पर्शरेखा वैक्टर पर 2-फॉर्म देता है, जबकि सहसंयोजक व्युत्पन्न केवल वेक्टर क्षेत्रों के लिए परिभाषित किया गया है।
जहाँ  {{nowrap|1=[''X'', ''Y'']}} दो सदिश क्षेत्रों का [[लाई कोष्ठक]] है। [[लीबनिज नियम]] (सामान्यीकृत उत्पाद नियम) द्वारा, किसी भी [[सहज]] [[सुचारू फलन|फलन]] f के लिए T(fX, Y) = T(X, fY) = fT(X, Y) होता है। तो टी [[तन्यता]] है, [[संयोजक]] के संदर्भ में परिभाषित होने के बावजूद, जो एक प्रथम क्रम अंतर प्रचालक है, यह स्पर्शरेखा सदिशो पर 2-विधि देता है, जबकि सहसंयोजक अवकलज केवल सदिश क्षेत्रों के लिए परिभाषित किया गया है।


=== मरोड़ टेंसर के घटक ===
=== आघूर्ण बल प्रदिश के घटक ===
आघूर्ण बल प्रदिश के घटक <math> T^c{}_{ab} </math> सदिश स्थान के स्थानीय आधार के संदर्भ में {{nowrap|('''e'''<sub>1</sub>, ..., '''e'''<sub>''n''</sub>)}} स्पर्शरेखा बंडल के खंड (फाइबर बंडल) की स्थापना करके प्राप्त किया जा सकता है {{nowrap|1=''X'' = '''e'''<sub>''i''</sub>}}, {{nowrap|1=''Y'' = '''e'''<sub>''j''</sub>}} और कम्यूटेटर गुणांक का परिचय देकर {{nowrap|1=''γ<sup>k</sup><sub>ij</sub>'''''e'''<sub>''k''</sub> := ['''e'''<sub>''i''</sub>, '''e'''<sub>''j''</sub>]}}. मरोड़ के घटक तब हैं
स्पर्शरेखा समूह के [[वर्गों]] के स्थानीय [[आधार]] {{nowrap|('''e'''<sub>1</sub>, ..., '''e'''<sub>''n''</sub>)}} के संदर्भ में आघूर्ण बल प्रदिश <math> T^c{}_{ab} </math> के घटक {{nowrap|1=''X'' = '''e'''<sub>''i''</sub>}} ,{{nowrap|1=''Y'' = '''e'''<sub>''j''</sub>}} समायोजन करके और कम्यूटेटर गुणांक {{nowrap|1=''γ<sup>k</sup><sub>ij</sub>'''''e'''<sub>''k''</sub> := ['''e'''<sub>''i''</sub>, '''e'''<sub>''j''</sub>]}} को प्रस्तुत करके प्राप्त किए जा सकते हैं। तब आघूर्ण बल के घटक हैं,


:<math> T^k{}_{ij} := \Gamma^k{}_{ij} - \Gamma^k{}_{ji}-\gamma^k{}_{ij},\quad i,j,k=1,2,\ldots,n.</math>
:<math> T^k{}_{ij} := \Gamma^k{}_{ij} - \Gamma^k{}_{ji}-\gamma^k{}_{ij},\quad i,j,k=1,2,\ldots,n.</math>
यहां <math>{\Gamma^k}_{ij}</math> कनेक्शन को परिभाषित करने वाले कनेक्शन गुणांक हैं। यदि आधार होलोनोमिक आधार है तो झूठ कोष्ठक गायब हो जाते हैं, <math>\gamma^k{}_{ij}=0</math>. इसलिए <math>T^k{}_{ij}=2\Gamma^k{}_{[ij]}</math>. विशेष रूप से (नीचे देखें), जबकि जियोडेसिक कनेक्शन के सममित भाग को निर्धारित करता है, मरोड़ टेंसर एंटीसिमेट्रिक भाग को निर्धारित करता है।
यहां <math>{\Gamma^k}_{ij}</math> संयोजन को परिभाषित करने वाले [[संयोजन गुणांक]] हैं। यदि आधार [[होलोनोमिक]]  <math>\gamma^k{}_{ij}=0</math> है तो लाई कोष्ठक गायब हो जाते हैं।  इसलिए <math>T^k{}_{ij}=2\Gamma^k{}_{[ij]}</math>विशेष रूप से (नीचे देखें), जबकि [[अल्पान्तरी संयोजन]] के सममित भाग को निर्धारित करता है, आघूर्ण बल प्रदिश प्रतिसममित भाग को निर्धारित करता है।


=== मरोड़ रूप ===
=== आघूर्ण बल रूप ===
मरोड़ रूप, मरोड़ का एक वैकल्पिक लक्षण वर्णन, कई गुना ''एम'' के फ्रेम बंडल एफ''एम'' पर लागू होता है। यह प्रिंसिपल बंडल एक कनेक्शन (प्रिंसिपल बंडल) ''ω'', a gl(''n'') से लैस है - वैल्यू वन-फॉर्म जो gl(''n' में सही एक्शन के जनरेटर के लिए वर्टिकल वैक्टर को मैप करता है। ') और F''M'' के स्पर्शरेखा बंडल पर GL(''n'') की सही क्रिया को समान रूप से परस्पर जोड़ता है, जो कि gl(''n'') पर एक लाइ समूह के आसन्न प्रतिनिधित्व के साथ है। फ्रेम बंडल में एक सोल्डर फॉर्म भी होता है। कैनोनिकल वन-फॉर्म θ, आर में मानों के साथ<sup>n</sup>, एक फ्रेम में परिभाषित {{nowrap|''u'' ∈ F<sub>x</sub>''M''}} (एक रैखिक कार्य के रूप में माना जाता है {{nowrap|''u'' : '''R'''<sup>''n''</sup> → T<sub>x</sub>''M''}}) द्वारा
आघूर्ण बल रूप, आघूर्ण बल का एक वैकल्पिक लक्षण वर्णन है, जो कई गुना ''एम'' के [[फ्रेम समूह]] एफ''एम'' पर लागू होता है। यह मुख्य समूह एक संयोजन विधि ''ω'', a gl(''n'') एक मूल्यवान विधि से सुसज्जित है - जो लम्बवत सदिश को gl(''n) में सही क्रिया के जनित्र के लिए को मानचित्रित करता है, और F''M'' के स्पर्शरेखा समूह पर GL(''n'') की सही क्रिया को समान रूप से परस्पर जोड़ता है, जो कि gl(''n'') पर एक लाइ समूह के आसन्न प्रतिनिधित्व के साथ है। फ्रेम समूह में एक विहित एक-रूप θ भी होता है। जिसका मान Rn में होता है, जिसे एक फ़्रेम u ∈ FxM पर परिभाषित किया जाता है <sup>n</sup>{{nowrap|''u'' ∈ F<sub>x</sub>''M''}} (एक रैखिक फलन के रूप में माना जाता है {{nowrap|''u'' : '''R'''<sup>''n''</sup> → T<sub>x</sub>''M''}}) द्वारा
:<math>\theta(X) = u^{-1}(\pi_{*}(X))</math>
:<math>\theta(X) = u^{-1}(\pi_{*}(X))</math>
कहाँ पे {{nowrap|''π''  : F''M'' → ''M''}} प्रिंसिपल बंडल के लिए प्रोजेक्शन मैपिंग है और {{nowrap|''π∗'' }} इसका पुश-फॉरवर्ड है। मरोड़ रूप तब है
कहाँ पे {{nowrap|''π''  : F''M'' → ''M''}} प्रिंसिपल समूह के लिए प्रक्षेप मानचित्रण है और {{nowrap|''π∗'' }} इसका '''पुश-फॉरवर्ड''' है। आघूर्ण बल रूप तब है
:<math>\Theta = d\theta + \omega\wedge\theta.</math>
:<math>\Theta = d\theta + \omega\wedge\theta.</math>
समतुल्य रूप से, Θ = Dθ, जहां D संबंध द्वारा निर्धारित बाह्य सहपरिवर्ती व्युत्पन्न है।
समतुल्य रूप से, Θ = Dθ, जहां D संबंध द्वारा निर्धारित [[बाह्य सहपरिवर्ती अवकलज]] है।


मरोड़ रूप 'आर' में मूल्यों के साथ एक (क्षैतिज) तन्य रूप है<sup>n</sup>, जिसका अर्थ है कि की सही कार्रवाई के तहत {{nowrap|''g'' ∈ GL(''n'')}} यह समान रूप से रूपांतरित होता है:
आघूर्ण बल रूप 'R<sup>n</sup>' में मूल्यों के साथ एक(क्षैतिज) तन्य रूप है, जिसका अर्थ है कि {{nowrap|''g'' ∈ GL(''n'')}} की सही कार्रवाई के तहत यह समान रूप से रूपांतरित होता है,
:<math>R_g^*\Theta = g^{-1}\cdot\Theta</math>
:<math>R_g^*\Theta = g^{-1}\cdot\Theta</math>
जहां जी 'आर' पर अपने आसन्न प्रतिनिधित्व के माध्यम से दाहिने हाथ की ओर कार्य करता है<sup>एन</sup>.
जहां जी 'R<sup>n</sup>' पर अपने आसन्न प्रतिनिधित्व के माध्यम से दाहिने हाथ की ओर कार्य करता है।


==== एक फ्रेम में मरोड़ रूप ====
==== एक फ्रेम में आघूर्ण बल रूप ====
{{See also|connection form}}
{{See also|संयोजन प्रपत्र}}
टेंगेंट बंडल के एक विशेष फ्रेम में लिखे गए बेस मैनिफोल्ड एम पर एक कनेक्शन फॉर्म के रूप में टॉर्सन फॉर्म को व्यक्त किया जा सकता है {{nowrap|('''e'''<sub>1</sub>, ..., '''e'''<sub>''n''</sub>)}}. कनेक्शन प्रपत्र इन बुनियादी वर्गों के बाहरी सहसंयोजक व्युत्पन्न को व्यक्त करता है:
 
स्पर्शरेखा समूह {{nowrap|('''e'''<sub>1</sub>, ..., '''e'''<sub>''n''</sub>)}} के एक विशेष फ्रेम में लिखे गए आधार बहुविध M पर एक [[संयोजन प्रपत्र]] के रूप में आघूर्ण बल का रूप व्यक्त किया जा सकता है। संयोजन प्रपत्र इन बुनियादी वर्गों के बाहरी सहसंयोजक व्युत्पन्न को व्यक्त करता है,
:<math>D\mathbf{e}_i = \mathbf{e}_j {\omega^j}_i .</math>
:<math>D\mathbf{e}_i = \mathbf{e}_j {\omega^j}_i .</math>
स्पर्शरेखा बंडल (इस फ्रेम के सापेक्ष) के लिए सोल्डर फॉर्म दोहरा आधार है {{nowrap|''θ<sup>i</sup>'' ∈ T<sup>∗</sup>''M''}} तुझ से<sub>''i''</sub>, ताकि {{nowrap|1=''θ<sup>i</sup>''('''e'''<sub>j</sub>) = ''δ<sup>i</sup><sub>j</sub>''}} (क्रोनेकर डेल्टा)। फिर मरोड़ 2-रूप में घटक होते हैं
'''स्पर्शरेखा समूह (इस फ्रेम के सापेक्ष)''' के लिए [[सोल्डर फॉर्म e]]<sub>''i''</sub> का [[दोहरा आधार]] है {{nowrap|''θ<sup>i</sup>'' ∈ T<sup>∗</sup>''M''}} है, ताकि {{nowrap|1=''θ<sup>i</sup>''('''e'''<sub>j</sub>) = ''δ<sup>i</sup><sub>j</sub>''}}([[क्रोनेकर डेल्टा)]]तब आघूर्ण बल 2-रूप में घटक होते हैं
:<math>\Theta^k = d\theta^k + {\omega^k}_j \wedge \theta^j = {T^k}_{ij} \theta^i \wedge \theta^j.</math>
:<math>\Theta^k = d\theta^k + {\omega^k}_j \wedge \theta^j = {T^k}_{ij} \theta^i \wedge \theta^j.</math>
सबसे सही अभिव्यक्ति में,
सबसे सही अभिव्यक्ति में,
:<math>{T^k}_{ij} = \theta^k\left(\nabla_{\mathbf{e}_i}\mathbf{e}_j - \nabla_{\mathbf{e}_j}\mathbf{e}_i - \left[\mathbf{e}_i, \mathbf{e}_j\right]\right)</math>
:<math>{T^k}_{ij} = \theta^k\left(\nabla_{\mathbf{e}_i}\mathbf{e}_j - \nabla_{\mathbf{e}_j}\mathbf{e}_i - \left[\mathbf{e}_i, \mathbf{e}_j\right]\right)</math>
मरोड़ टेंसर के फ्रेम-घटक हैं, जैसा कि पिछली परिभाषा में दिया गया है।
आघूर्ण बल प्रदिश के फ्रेम-घटक हैं, जैसा कि पिछली परिभाषा में दिया गया है।


यह आसानी से दिखाया जा सकता है कि Θ<sup>i</sup> अस्थायी रूप से इस अर्थ में रूपांतरित होता है कि यदि कोई भिन्न फ़्रेम है
यह आसानी से दिखाया जा सकता है कि Θ<sup>i</sup> अस्थायी रूप से इस अर्थ में रूपांतरित होता है कि यदि कोई भिन्न फ़्रेम है, तब
:<math>\tilde{\mathbf{e}}_i = \mathbf{e}_j {g^j}_i</math>
:<math>\tilde{\mathbf{e}}_i = \mathbf{e}_j {g^j}_i</math>
कुछ उलटा मैट्रिक्स-मूल्यवान फ़ंक्शन के लिए (जी<sup>जम्मू<sub>''i''</sub>), फिर
कुछ उलटा आव्यूह-मूल्यवान फलन के लिए(g<sup>j<sub>''i''</sub>), तब
:<math>\tilde{\Theta}^i = {\left(g^{-1}\right)^i}_j\Theta^j.</math>
दूसरे शब्दों में, Θ प्रकार का टेंसर है {{nowrap|(1, 2)}} (एक प्रतिपरिवर्ती और दो सहपरिवर्ती सूचकांकों वाला)।


वैकल्पिक रूप से, सोल्डर फॉर्म को फ्रेम-स्वतंत्र फैशन में चित्रित किया जा सकता है क्योंकि एम पर टीएम-वैल्यू वन-फॉर्म θ द्वैत समरूपता के तहत स्पर्शरेखा बंडल की पहचान एंडोमोर्फिज्म के अनुरूप है। {{nowrap|1=End(T''M'') ≈ T''M'' ⊗ T<sup>∗</sup>''M''}}. फिर मरोड़ 2-रूप एक खंड है
<math>\tilde{\Theta}^i = {\left(g^{-1}\right)^i}_j\Theta^j</math>
 
दूसरे शब्दों में, Θ प्रकार {{nowrap|(1, 2)}} का प्रदिश है (एक प्रतिपरिवर्ती और दो सहपरिवर्ती सूचकांकों को वहन करता है)।
 
वैकल्पिक रूप से, सोल्डर फॉर्म को फ्रेम-स्वतंत्र आचरण  में चित्रित किया जा सकता है क्योंकि एम पर टीएम-वैल्यू वन-फॉर्म θ द्वैत समरूपता के तहत स्पर्शरेखा समूह की पहचान एंडोमोर्फिज्म के अनुरूप है। {{nowrap|1=End(T''M'') ≈ T''M'' ⊗ T<sup>∗</sup>''M''}}. फिर आघूर्ण बल 2-रूप एक खंड है
:<math>\Theta\in\text{Hom}\left({\textstyle\bigwedge}^2 {\rm T}M, {\rm T}M\right)</math>
:<math>\Theta\in\text{Hom}\left({\textstyle\bigwedge}^2 {\rm T}M, {\rm T}M\right)</math>
के द्वारा दिया गया
के द्वारा दिया गया
:<math>\Theta = D\theta ,</math>
:<math>\Theta = D\theta ,</math>
जहां D बाहरी सहसंयोजक व्युत्पन्न है। (अधिक जानकारी के लिए कनेक्शन प्रपत्र देखें।)
जहां D बाहरी सहसंयोजक व्युत्पन्न है।(अधिक जानकारी के लिए कनेक्शन प्रपत्र देखें।)


=== अलघुकरणीय अपघटन ===
=== अलघुकरणीय अपघटन ===
मरोड़ टेंसर को दो अलघुकरणीय प्रतिनिधित्व भागों में विघटित किया जा सकता है: एक ट्रेस (रैखिक बीजगणित) | ट्रेस-मुक्त भाग और दूसरा भाग जिसमें ट्रेस शब्द होते हैं। इंडेक्स नोटेशन का उपयोग करते हुए, T का ट्रेस दिया जाता है
आघूर्ण बल प्रदिश को दो [[अलघुकरणीय]] भागों में विघटित किया जा सकता है, एक [[अनुरेख]] (रैखिक बीजगणित)-[[मुक्त]] भाग और दूसरा भाग जिसमें अनुरेख शब्द होते हैं। [[सूचक संकेतन]] का उपयोग करते हुए, T का अनुरेख दिया जाता है
:<math>a_i = T^k{}_{ik} ,</math>
:<math>a_i = T^k{}_{ik} ,</math>
और ट्रेस-मुक्त भाग है
और अनुरेख-मुक्त भाग है
:<math>B^i{}_{jk} = T^i{}_{jk} + \frac{1}{n-1}\delta^i{}_ja_k-\frac{1}{n-1}\delta^i{}_ka_j ,</math>
:<math>B^i{}_{jk} = T^i{}_{jk} + \frac{1}{n-1}\delta^i{}_ja_k-\frac{1}{n-1}\delta^i{}_ka_j ,</math>
जहां δ<sup>मैं<sub>j</sub>क्रोनकर डेल्टा है।
जहां δ<sup>i<sub>j</sub> [[क्रोनकर डेल्टा]] है।  


आंतरिक रूप से, किसी के पास है
आंतरिक रूप से, किसी के पास है
:<math>T\in \operatorname{Hom}\left({\textstyle\bigwedge}^2 {\rm T}M, {\rm T}M\right).</math>
:<math>T\in \operatorname{Hom}\left({\textstyle\bigwedge}^2 {\rm T}M, {\rm T}M\right).</math>
T, tr T का अंश, T का एक अवयव है<sup>∗</sup>M को इस प्रकार परिभाषित किया गया है। तय प्रत्येक वेक्टर के लिए {{nowrap|''X'' ∈ T''M''}}, T एक तत्व T(X) को परिभाषित करता है {{nowrap|Hom(T''M'', T''M'')}} के जरिए
T, tr T का अंश, T<sup>∗</sup>, M का एक अवयव है जिसे निम्नानुसार परिभाषित किया गया है। प्रत्येक सदिश स्थिर  {{nowrap|''X'' ∈ T''M''}} के लिए , T, <math>T(X) : Y \mapsto T(X \wedge Y)</math> के माध्यम से {{nowrap|Hom(T''M'', T''M'')}} के जरिए के अवयव  T(X) को परिभाषित करता है
:<math>T(X) : Y \mapsto T(X \wedge Y).</math>
 
तब (टीआर टी) (एक्स) को इस एंडोमोर्फिज्म के निशान के रूप में परिभाषित किया गया है। वह है,
तब(tr T)(X) को इस अंतःरूपांतरण के निशान के रूप में परिभाषित किया गया है। वह है,
:<math>(\operatorname{tr}\, T)(X) \stackrel{\text{def}}{=}\operatorname{tr} (T(X)).</math>
:<math>(\operatorname{tr}\, T)(X) \stackrel{\text{def}}{=}\operatorname{tr} (T(X)).</math>
T का ट्रेस-मुक्त भाग तब है
T का अनुरेख-मुक्त भाग तब है
:<math>T_0 = T - \frac{1}{n-1}\iota(\operatorname{tr} \,T) ,</math>
:<math>T_0 = T - \frac{1}{n-1}\iota(\operatorname{tr} \,T) ,</math>
जहां ι आंतरिक उत्पाद को दर्शाता है।
जबी ι आंतरिक [[उत्पाद]] को दर्शाता है।


== वक्रता और बियांची पहचान ==
== वक्रता और बियांची पहचान ==
∇ का रीमैन वक्रता टेन्सर एक मानचित्रण है {{nowrap|T''M'' × T''M'' → End(T''M'')}} सदिश क्षेत्रों X, Y और Z द्वारा परिभाषित
∇ का वक्रता टेन्सर एक मानचित्रण {{nowrap|T''M'' × T''M'' → End(T''M'')}} है जिसे सदिश क्षेत्रों X, Y और Z द्वारा परिभाषित किया गया है,
:<math>R(X, Y)Z = \nabla_X\nabla_YZ - \nabla_Y\nabla_XZ - \nabla_{[X, Y]}Z.</math>
:<math>R(X, Y)Z = \nabla_X\nabla_YZ - \nabla_Y\nabla_XZ - \nabla_{[X, Y]}Z.</math>
एक बिंदु पर वैक्टर के लिए, यह परिभाषा इस बात से स्वतंत्र है कि वेक्टर को बिंदु से दूर वेक्टर क्षेत्रों तक कैसे बढ़ाया जाता है (इस प्रकार यह एक टेन्सर को परिभाषित करता है, बहुत मरोड़ की तरह)।
एक बिंदु पर सदिश के लिए, यह परिभाषा इस बात से स्वतंत्र है कि सदिश को बिंदु से दूर सदिश क्षेत्रों तक कैसे बढ़ाया जाता है (इस प्रकार यह एक प्रदिश को परिभाषित करता है, बहुत आघूर्ण बल की तरह)।


बियांची की पहचान वक्रता और मरोड़ से संबंधित है।{{sfn|Kobayashi|Nomizu|1963|loc=Volume 1, Proposition III.5.2}} होने देना <math>\mathfrak{S}</math> X, Y और Z पर चक्रीय क्रमचय को निरूपित करें। उदाहरण के लिए,
बियांची की पहचान वक्रता और आघूर्ण बल से संबंधित है।{{sfn|Kobayashi|Nomizu|1963|loc=Volume 1, Proposition III.5.2}} मान लीजिए  <math>\mathfrak{S}</math> X, Y और Z पर [[चक्रीय योग]] को दर्शाता है। उदाहरण के लिए,
:<math>\mathfrak{S}\left(R\left(X, Y\right)Z\right) := R(X, Y)Z + R(Y, Z)X + R(Z, X)Y.</math>
:<math>\mathfrak{S}\left(R\left(X, Y\right)Z\right) := R(X, Y)Z + R(Y, Z)X + R(Z, X)Y.</math>
फिर निम्नलिखित पहचान धारण करते हैं
फिर निम्नलिखित पहचान धारण करते हैं


#बियांची की पहली पहचान:
#बियांची की पहली पहचान,
#: <math>\mathfrak{S}\left(R\left(X, Y\right)Z\right) = \mathfrak{S}\left(T\left(T(X, Y), Z\right) + \left(\nabla_XT\right)\left(Y, Z\right)\right)</math>
#: <math>\mathfrak{S}\left(R\left(X, Y\right)Z\right) = \mathfrak{S}\left(T\left(T(X, Y), Z\right) + \left(\nabla_XT\right)\left(Y, Z\right)\right)</math>
#बियांची की दूसरी पहचान:
#बियांची की दूसरी पहचान,
#: <math>\mathfrak{S}\left(\left(\nabla_XR\right)\left(Y, Z\right) + R\left(T\left(X, Y\right), Z\right)\right) = 0</math>
#: <math>\mathfrak{S}\left(\left(\nabla_XR\right)\left(Y, Z\right) + R\left(T\left(X, Y\right), Z\right)\right) = 0</math>
=== वक्रता रूप और बियांची पहचान ===
=== वक्रता रूप और बियांची पहचान ===
वक्रता रूप gl(''n'')-मूल्यवान 2-रूप है
[[वक्रता रूप]] gl(''n'')-मूल्यवान 2-रूप है
:<math>\Omega = D\omega = d\omega + \omega \wedge \omega</math>
:<math>\Omega = D\omega = d\omega + \omega \wedge \omega</math>
जहाँ, फिर से, D बाह्य सहसंयोजक व्युत्पन्न को दर्शाता है। वक्रता रूप और मरोड़ रूप के संदर्भ में, संबंधित बियांची पहचान हैं{{sfn|Kobayashi|Nomizu|1963|loc=Volume 1, III.2}}
जहाँ, फिर से, D बाह्य सहसंयोजक व्युत्पन्न को दर्शाता है। वक्रता रूप और आघूर्ण बल रूप के संदर्भ में, संबंधित बियांची पहचान हैं{{sfn|Kobayashi|Nomizu|1963|loc=Volume 1, III.2}}
# <math>D\Theta = \Omega \wedge \theta</math>
# <math>D\Theta = \Omega \wedge \theta</math>
# <math>D\Omega = 0.</math>
# <math>D\Omega = 0.</math>
इसके अलावा, कोई वक्रता और मरोड़ वाले तनावों को वक्रता और मरोड़ वाले रूपों से निम्नानुसार पुनर्प्राप्त कर सकता है। F के एक बिंदु u पर<sub>x</sub>एम, एक है{{sfn|Kobayashi|Nomizu|1963|loc=Volume 1, III.5}}
इसके अलावा, कोई वक्रता और आघूर्ण बल वाले तनावों को वक्रता और आघूर्ण बल वाले रूपों से निम्नानुसार पुनर्प्राप्त कर सकता है। F के एक बिंदु u पर<sub>x</sub>एम, एक है{{sfn|Kobayashi|Nomizu|1963|loc=Volume 1, III.5}}
:<math>\begin{align}
:<math>\begin{align}
   R(X, Y)Z &= u\left(2\Omega\left(\pi^{-1}(X), \pi^{-1}(Y)\right)\right)\left(u^{-1}(Z)\right), \\
   R(X, Y)Z &= u\left(2\Omega\left(\pi^{-1}(X), \pi^{-1}(Y)\right)\right)\left(u^{-1}(Z)\right), \\
   T(X, Y) &= u\left(2\Theta\left(\pi^{-1}(X), \pi^{-1}(Y)\right)\right),
   T(X, Y) &= u\left(2\Theta\left(\pi^{-1}(X), \pi^{-1}(Y)\right)\right),
\end{align}</math>
\end{align}</math>
कहाँ फिर से {{nowrap|''u'' : '''R'''<sup>''n''</sup> → T<sub>x</sub>''M''}} फाइबर में फ्रेम निर्दिष्ट करने वाला कार्य है, और π के माध्यम से वैक्टरों की लिफ्ट की पसंद है<sup>-1</sup> अप्रासंगिक है क्योंकि वक्रता और मरोड़ के रूप क्षैतिज हैं (वे अस्पष्ट लंबवत वैक्टर पर गायब हो जाते हैं)।
जहां फिर से {{nowrap|''u'' : '''R'''<sup>''n''</sup> → T<sub>x</sub>''M''}} तन्तु में फ्रेम निर्दिष्ट करने वाला कार्य है, और π<sup>-1</sup> के माध्यम से सदिशों की लिफ्ट की पसंद अप्रासंगिक है क्योंकि वक्रता और आघूर्ण बल के रूप क्षैतिज हैं (वे अस्पष्ट लंबवत सदिशों  पर गायब हो जाते हैं)।


== लक्षण और व्याख्याएं ==
== लक्षण और व्याख्याएं ==
इस खंड के दौरान, एम को अलग-अलग कई गुना माना जाता है, और ∇ एम के स्पर्शरेखा बंडल पर एक सहसंयोजक व्युत्पन्न होता है जब तक कि अन्यथा नोट नहीं किया जाता।
इस खंड के दौरान, M को [[अलग-अलग कई गुना]] माना जाता है, और ∇ एम के [[स्पर्शरेखा समूह]] पर एक [[सहपरिवर्ती व्युत्पन्न]] होता है जब तक कि यह नोट नहीं किया जाता।


===संदर्भ फ्रेम का घुमाव===
===संदर्भ फ्रेम का घुमाव===
कर्व्स की क्लासिकल डिफरेंशियल ज्योमेट्री में, फ्रेनेट-सेरेट सूत्र वर्णन करते हैं कि कैसे एक विशेष मूविंग फ्रेम (फ्रेनेट-सेरेट फ्रेम) वक्र के साथ मुड़ता है। भौतिक शब्दों में, मरोड़ वक्र के स्पर्शरेखा के साथ एक आदर्श शीर्ष बिंदु के कोणीय गति से मेल खाती है।
[[वक्र के शास्त्रीय अंतर ज्यामिति]] में, [[फ्रेनेट-सेरेट सूत्र]] यह वर्णन करते हैं कि कैसे एक विशेष गतिमान तंत्र (फ्रेनेट-सेरेट फ्रेम) वक्र के साथ मुड़ता है। भौतिक शब्दों में, आघूर्ण बल वक्र के स्पर्शरेखा के साथ एक आदर्श [[शीर्ष]] बिंदु के [[कोणीय गति]] से मेल खाती है।


एक (मीट्रिक) कनेक्शन के साथ कई गुना का मामला एक समान व्याख्या को स्वीकार करता है। मान लीजिए कि एक पर्यवेक्षक कनेक्शन के लिए जियोडेसिक के साथ आगे बढ़ रहा है। इस तरह के एक पर्यवेक्षक को आमतौर पर जड़त्वीय संदर्भ फ्रेम के रूप में माना जाता है क्योंकि वे कोई त्वरण अनुभव नहीं करते हैं। मान लीजिए कि इसके अलावा पर्यवेक्षक अपने साथ कठोर सीधे मापने वाली छड़ों (एक समन्वय प्रणाली) की एक प्रणाली रखता है। प्रत्येक छड़ एक सीधा खंड है; एक जियोडेसिक। मान लें कि प्रत्येक छड़ को प्रक्षेपवक्र के समानांतर ले जाया जाता है। तथ्य यह है कि इन छड़ों को शारीरिक रूप से प्रक्षेपवक्र के साथ ले जाया जाता है, इसका मतलब है कि वे लेटे-घसीटे जाते हैं, या प्रचारित होते हैं ताकि स्पर्शरेखा के साथ प्रत्येक छड़ का व्युत्पन्न गायब हो जाए। हालांकि, वे फ्रेनेट-सेरेट फ्रेम में शीर्ष द्वारा महसूस किए गए टोक़ के अनुरूप टोक़ (या मरोड़ वाली ताकतों) का अनुभव कर सकते हैं। इस बल को मरोड़ से मापा जाता है।
एक(दूरी) संयोजन के साथ कई गुना का मामला एक समान व्याख्या को स्वीकार करता है। मान लीजिए कि एक पर्यवेक्षक संयोंजन के लिए अल्पान्तरी के साथ आगे बढ़ रहा है। इस तरह के एक पर्यवेक्षक को आमतौर पर [[जड़त्वीय]] संदर्भ फ्रेम के रूप में माना जाता है क्योंकि वे कोई [[त्वरण]] अनुभव नहीं करते हैं। मान लीजिए कि इसके अलावा पर्यवेक्षक अपने साथ कठोर सीधे मापने वाली छड़ों(एक [[समन्वय प्रणाली]]) की एक प्रणाली रखता है। प्रत्येक छड़ एक सीधा खंड है, जो एक [[अल्पान्तरी]] है। मान लें कि प्रत्येक छड़ को प्रक्षेपवक्र के [[समानांतर]] ले जाया जाता है। कहने का तात्पर्य यह है कि इन छड़ों को शारीरिक रूप से प्रक्षेपवक्र के साथ ले जाया जाता है, '''इसका मतलब है कि कि वे लेटे-घसीटे जाते हैं,''' या प्रचारित होते हैं ताकि स्पर्शरेखा के साथ प्रत्येक छड़ का व्युत्पन्न गायब हो जाए। हालांकि, वे फ्रेनेट-सेरेट फ्रेम में शीर्ष द्वारा महसूस किए गए अर्धवृत्त बल के अनुरूप अर्धवृत्त बल(या आघूर्ण बल वाली ताकतों) का अनुभव कर सकते हैं। इस बल को आघूर्ण बल से मापा जाता है।


अधिक सटीक रूप से, मान लीजिए कि प्रेक्षक एक जियोडेसिक पथ γ(t) के साथ चलता है और इसके साथ एक मापक छड़ ले जाता है। जब प्रेक्षक पथ के साथ यात्रा करता है तो छड़ सतह को झाडू देती है। प्राकृतिक निर्देशांक हैं {{nowrap|(''t'', ''x'')}} इस सतह के साथ, जहाँ t पर्यवेक्षक द्वारा लिया गया पैरामीटर समय है, और x मापने वाली छड़ के साथ स्थिति है। शर्त यह है कि रॉड की स्पर्शरेखा को वक्र के साथ अनुवादित समानांतर होना चाहिए
अधिक सटीक रूप से, मान लीजिए कि प्रेक्षक एक अल्पान्तरी पथ γ(t) के साथ चलता है और इसके साथ एक मापक छड़ ले जाता है। जब प्रेक्षक पथ के साथ यात्रा करता है तो छड़ सतह को घुमा देती है। इस सतह के साथ प्राकृतिक निर्देशांक {{nowrap|(''t'', ''x'')}} हैं, जहाँ t पर्यवेक्षक द्वारा लिया गया पैरामीटर समय है, और x मापने वाली छड़ के साथ स्थिति है। शर्त यह है कि रॉड की स्पर्शरेखा को वक्र के साथ अनुवादित समानांतर होना चाहिए


:<math>\left.\nabla_\frac{\partial}{\partial t}\frac{\partial}{\partial x}\right|_{x=0} = 0.</math>
:<math>\left.\nabla_\frac{\partial}{\partial t}\frac{\partial}{\partial x}\right|_{x=0} = 0.</math>
नतीजतन, मरोड़ द्वारा दिया जाता है
नतीजतन, आघूर्ण बल द्वारा दिया जाता है


:<math>\left.T\left(\frac{\partial}{\partial x},\frac{\partial}{\partial t}\right)\right|_{x=0} = \left.\nabla_{\frac{\partial}{\partial x}}\frac{\partial}{\partial t}\right|_{x=0}.</math>
:<math>\left.T\left(\frac{\partial}{\partial x},\frac{\partial}{\partial t}\right)\right|_{x=0} = \left.\nabla_{\frac{\partial}{\partial x}}\frac{\partial}{\partial t}\right|_{x=0}.</math>
यदि यह शून्य नहीं है, तो छड़ पर अंकित बिन्दु (द {{nowrap|1=''x'' = constant}} कर्व्स) जियोडेसिक्स के बजाय हेलिक्स का पता लगाएगा। वे पर्यवेक्षक के चारों ओर घूमते रहेंगे। ध्यान दें कि इस तर्क के लिए यह जरूरी नहीं था कि  <math>\gamma(t)</math> एक जियोडेसिक है। कोई वक्र काम करेगा।
यदि यह शून्य नहीं है, तो छड़ पर अंकित बिन्दु(द {{nowrap|1=''x'' = constant}} कर्व्स) अल्पान्तरी के बजाय कुंडलित वक्र का पता लगाएगा। वे पर्यवेक्षक के चारों ओर घूमते रहेंगे। ध्यान दें कि इस तर्क के लिए यह जरूरी नहीं था कि  <math>\gamma(t)</math> एक अल्पान्तरी है। और कोई वक्र काम करेगा।


मरोड़ की यह व्याख्या टेलीपरेलिज्म के सिद्धांत में एक भूमिका निभाती है, जिसे आइंस्टीन-कार्टन सिद्धांत के रूप में भी जाना जाता है, जो सापेक्षता सिद्धांत का एक वैकल्पिक सूत्रीकरण है।
आघूर्ण बल की यह व्याख्या [[टेलीपरेलिज्म]] के सिद्धांत में एक भूमिका निभाती है, जिसे [[आइंस्टीन-कार्टन सिद्धांत]] के रूप में भी जाना जाता है, जो [[सापेक्षता सिद्धांत]] का एक वैकल्पिक निरूपण है।


=== एक रेशा का मरोड़ ===
=== एक रेशा का आघूर्ण बल ===
सामग्री विज्ञान और विशेष रूप से प्रत्यास्थता सिद्धांत में, मरोड़ के विचार भी एक महत्वपूर्ण भूमिका निभाते हैं। एक समस्या बेलों के विकास का प्रतिरूप है, जो कि इस सवाल पर ध्यान केंद्रित करते हुए कि कैसे बेलें वस्तुओं के चारों ओर घूमने का प्रबंधन करती हैं।{{sfn|Goriely|Robertson-Tessi|Tabor|Vandiver|2006}} बेल को एक दूसरे के चारों ओर मुड़े हुए प्रत्यास्थताओं की एक जोड़ी के रूप में तैयार किया गया है। अपनी ऊर्जा-न्यूनतम अवस्था में, बेल स्वाभाविक रूप से हेलिक्स के आकार में बढ़ती है। लेकिन इसकी सीमा (या लंबाई) को अधिकतम करने के लिए बेल को फैलाया भी जा सकता है। इस मामले में, बेल का मरोड़ तंतुओं की जोड़ी (या समतुल्य रूप से तंतुओं को जोड़ने वाले रिबन की सतह मरोड़) के मरोड़ से संबंधित है, और यह बेल की लंबाई-अधिकतम (जियोडेसिक) विन्यास के बीच के अंतर को दर्शाता है। और इसका ऊर्जा-न्यूनतम विन्यास।
[[पदार्थ विज्ञान]] और विशेष रूप से [[प्रत्यास्थता सिद्धांत]] में, आघूर्ण बल के विचार भी एक महत्वपूर्ण भूमिका निभाते हैं। एक समस्या बेलों के विकास का प्रतिरूप है, जो कि इस सवाल पर ध्यान केंद्रित करते हुए कि कैसे बेलें वस्तुओं के चारों ओर घूमने का प्रबंधन करती हैं।{{sfn|Goriely|Robertson-Tessi|Tabor|Vandiver|2006}} बेल को एक दूसरे के चारों ओर मुड़े हुए प्रत्यास्थताओं की एक जोड़ी के रूप में तैयार किया गया है। अपनी ऊर्जा-न्यूनतम अवस्था में, बेल स्वाभाविक रूप से [[कुंडलित वक्रता]] के आकार में बढ़ती है। लेकिन इसकी सीमा(या लंबाई) को अधिकतम करने के लिए बेल को फैलाया भी जा सकता है। इस मामले में, बेल का आघूर्ण बल तंतुओं की जोड़ी(या समतुल्य रूप से तंतुओं को जोड़ने वाले पट्टी की सतह आघूर्ण बल) के आघूर्ण बल से संबंधित है, और यह बेल की लंबाई-अधिकतम(अल्पान्तरी) विन्यास और इसकी ऊर्जा-न्यूनतम विन्यास के बीच अंतर को दर्शाता है।


===मरोड़ और आवर्त===
===आघूर्ण बल और आवर्त===
द्रव गतिकी में, आघूर्ण बल स्वाभाविक रूप से भंवर रेखाओं से जुड़ा होता है।
द्रव गतिकी में, आघूर्ण बल स्वाभाविक रूप से भंवर रेखाओं से जुड़ा होता है।
{{Expand section|date=June 2008}}
{{Expand section|date=June 2008}}


== अल्पान्तरी और आघूर्ण बल का अवशोषण ==
== अल्पान्तरी और आघूर्ण बल का अवशोषण ==
मान लीजिए कि γ (टी) एम पर एक वक्र है। तब γ एक 'संबद्ध रूप से प्रचलीकरण अल्पान्तरी है, बशर्ते कि γ के प्रक्षेत्र में सभी समय t के लिए  
मान लीजिए कि γ(t) M पर एक वक्र है। तब γ एक 'सजातीय रूप से प्रचलीकरण अल्पान्तरी है, बशर्ते कि γ के प्रक्षेत्र में सभी समय t के लिए समीकरण, 
 
 
:<math>\nabla_{\dot{\gamma}(t)}\dot{\gamma}(t) = 0</math> हो।
:<math>\nabla_{\dot{\gamma}(t)}\dot{\gamma}(t) = 0</math> हो।
γ के प्रक्षेत्र में सभी समय के लिए टी। (यहां डॉट टी के संबंध में भेदभाव को दर्शाता है, जो γ के साथ स्पर्शरेखा सदिश को संकेत करता है।) {{nowrap|1=''t'' = 0}}, <math>\dot{\gamma}(0)</math>.
(यहां डॉट टी के संबंध में भेदभाव को दर्शाता है, जो γ के साथ स्पर्शरेखा सदिश को संकेत करता है।) प्रत्येक अल्पान्तरी समय  {{nowrap|1=''t'' = 0}}, <math>\dot{\gamma}(0)</math> पर अपने प्रारंभिक स्पर्शरेखा सदिश द्वारा विशिष्ट रूप से निर्धारित किया जाता है।


एक संयोजन के आघूर्ण बल के एक अनुप्रयोग में अल्पान्तरी विस्मय शामिल होता है: मोटे तौर पर सभी समान रूप से प्रचलीकरण अल्पान्तरी का परिवार। आघूर्ण बल उनके अल्पान्तरी विस्मय के संदर्भ में संयोजक को वर्गीकृत करने की अस्पष्टता है:
मोटे तौर पर सभी समान रूप से प्रचलीकरण अल्पान्तरी का परिवार, एक संयोजन के आघूर्ण बल के एक अनुप्रयोग में [[अल्पान्तरी विस्मय]] शामिल होता है। आघूर्ण बल उनके अल्पान्तरी विस्मय के संदर्भ में संयोजक को वर्गीकृत करने की अस्पष्टता है,
* दो संयोजक ∇ और ∇' जिनमें समान रूप से प्रचलीकरण अल्पान्तरी (यानी, एक ही अल्पान्तरी विस्मय) है, केवल आघूर्ण बल से भिन्न हैं।<ref>See Spivak (1999) Volume II, Addendum 1 to Chapter 6.  See also Bishop and Goldberg (1980), section 5.10.</ref>
* दो संयोजक ∇ और ∇' जिनमें समान रूप से प्रचलीकरण अल्पान्तरी(अर्थात, एक ही अल्पान्तरी विस्मय) केवल आघूर्ण बल से भिन्न होते हैं।<ref>See Spivak (1999) Volume II, Addendum 1 to Chapter 6.  See also Bishop and Goldberg (1980), section 5.10.</ref>
अधिक सटीक रूप से, यदि X और Y स्पर्शरेखा सदिशों की एक जोड़ी हैं {{nowrap|''p'' ∈ ''M''}}, तो मान लें
अधिक सटीक रूप से, यदि X और Y {{nowrap|''p'' ∈ ''M''}} पर स्पर्शरेखा सदिशों की एक जोड़ी हैं , तो मान लें लीजिए कि
:<math>\Delta(X,Y)=\nabla_X\tilde{Y}-\nabla'_X\tilde{Y}</math>
:<math>\Delta(X,Y)=\nabla_X\tilde{Y}-\nabla'_X\tilde{Y}</math>
<nowiki>पी से दूर एक्स और वाई के मनमाने विस्तार के संदर्भ में गणना की गई दो संयोजकों का अंतर हो। उत्पाद नियम से, कोई देखता है कि Δ वास्तव में X और Y पर कैसे निर्भर नहीं करता है{{</nowiki>&prime;<nowiki>}} विस्तारित हैं (इसलिए यह M पर एक प्रदिश को परिभाषित करता है)। एस और को Δ के समकालिक और वैकल्पिक हिस्से होने दें:</nowiki>
दो संयोजकों का अंतर हो, जिसकी गणना p से दूर X और Y के मनमाने विस्तार के रूप में की जाती है। [[लीबनिज उत्पाद नियम]] से, कोई देखता है कि Δ वास्तव में इस बात पर निर्भर नहीं करता है कि X और Y कैसे विस्तारित हैं विस्तारित हैं (इसलिए यह M पर एक प्रदिश को परिभाषित करता है)। S और A को Δ के समकालिक और वैकल्पिक हिस्से होने दें,
:<math>S(X,Y)=\tfrac12\left(\Delta(X,Y)+\Delta(Y,X)\right)</math>
:<math>S(X,Y)=\tfrac12\left(\Delta(X,Y)+\Delta(Y,X)\right)</math>
:<math>A(X,Y)=\tfrac12\left(\Delta(X,Y)-\Delta(Y,X)\right)</math>
:<math>A(X,Y)=\tfrac12\left(\Delta(X,Y)-\Delta(Y,X)\right)</math>
तब
क्योकि
* <math>A(X,Y) = \tfrac12\left(T(X,Y) - T'(X,Y)\right)</math> आघूर्ण बल‌ प्रदिश का अंतर है।
* <math>A(X,Y) = \tfrac12\left(T(X,Y) - T'(X,Y)\right)</math> आघूर्ण बल‌ प्रदिश का अंतर है।
* ∇ और ∇' समान रूप से प्रचलीकरण अल्पान्तरी  के समान परिवारों को परिभाषित करते हैं यदि और केवल यदि {{nowrap|1=''S''(''X'', ''Y'') = 0}}.
* ∇ और ∇' समान रूप से प्रचलीकरण अल्पान्तरी  के समान परिवारों को परिभाषित करते हैं यदि केवल {{nowrap|1=''S''(''X'', ''Y'') = 0}}.
दूसरे शब्दों में, दो संयोजकों के अंतर का समकालिक भाग यह निर्धारित करता है कि क्या उनके पास समान प्रचलीकरण अल्पान्तरी  है, जबकि अंतर का तिरछा हिस्सा दो संयोजकों के सापेक्ष आघूर्ण बल से निर्धारित होता है। एक और परिणाम है:
दूसरे शब्दों में, दो संयोजकों के अंतर का समकालिक भाग यह निर्धारित करता है कि क्या उनके पास समान प्रचलीकरण अल्पान्तरी  है, जबकि अंतर का तिरछा हिस्सा दो संयोजकों के सापेक्ष आघूर्ण बल से निर्धारित होता है। एक और परिणाम यह है,
* किसी भी संबंध संबंध को देखते हुए ∇, एक अद्वितीय आघूर्ण बल-मुक्त संयोजक ∇′ है, जो समान रूप से प्रचलीकरण अल्पान्तरी  के एक ही परिवार के साथ है। इन दो संयोजकों के बीच का अंतर वास्तव में एक प्रदिश, विरूपण प्रदिश है।
* किसी भी संबंध को देखते हुए ∇, एक अद्वितीय आघूर्ण बल-मुक्त संयोजक ∇′ है, जो समान रूप से प्रचलीकरण अल्पान्तरी  के एक ही परिवार के साथ है। इन दो संयोजकों के बीच का अंतर वास्तव में एक प्रदिश[[, विरूपण प्रदिश]] है।
यह सामान्य संबंध (संभवतः गैर-मीट्रिक) संयोजक के लिए रिमेंनियन ज्यामिति के मौलिक प्रमेय का सामान्यीकरण है।  
यह सामान्य संबंध(संभवतः गैर-मापीय) संयोजक के लिए [[रीमानी ज्यमिति के मौलिक प्रमेय]] का सामान्यीकरण है।  


== यह भी देखें ==
== यह भी देखें ==
Line 179: Line 177:
{{tensors}}
{{tensors}}


{{DEFAULTSORT:Torsion Tensor}}[[Category:विभेदक ज्यामिति]]
{{DEFAULTSORT:Torsion Tensor}}
[[Category: संबंध (गणित)]]
[[Category: वक्रता (गणित)]]
[[Category: टेन्सर]]
 


[[Category: Machine Translated Page]]
[[Category:All articles to be expanded|Torsion Tensor]]
[[Category:Created On 25/11/2022]]
[[Category:Articles to be expanded from June 2008|Torsion Tensor]]
[[Category:Articles using small message boxes|Torsion Tensor]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Torsion Tensor]]
[[Category:Articles with invalid date parameter in template|Torsion Tensor]]
[[Category:Articles with short description|Torsion Tensor]]
[[Category:CS1|Torsion Tensor]]
[[Category:Collapse templates|Torsion Tensor]]
[[Category:Created On 25/11/2022|Torsion Tensor]]
[[Category:Machine Translated Page|Torsion Tensor]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists|Torsion Tensor]]
[[Category:Pages with script errors|Torsion Tensor]]
[[Category:Short description with empty Wikidata description|Torsion Tensor]]
[[Category:Sidebars with styles needing conversion|Torsion Tensor]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates generating microformats|Torsion Tensor]]
[[Category:Templates that are not mobile friendly|Torsion Tensor]]
[[Category:Templates using TemplateData|Torsion Tensor]]
[[Category:Wikipedia metatemplates|Torsion Tensor]]
[[Category:टेन्सर|Torsion Tensor]]
[[Category:वक्रता (गणित)|Torsion Tensor]]
[[Category:विभेदक ज्यामिति|Torsion Tensor]]
[[Category:संबंध (गणित)|Torsion Tensor]]

Latest revision as of 17:49, 22 December 2022

जियोडेसिक के साथ आघूर्ण बल।

अवकल ज्यामिति में, आघूर्ण बल की धारणा एक वक्र के चारों ओर एक गतिमान तंत्र के मोड़ या पेंच को चिह्नित करने का एक तरीका है। एक वक्र का आघूर्ण बल, जैसा कि फ्रेनेट-सेरेट सूत्रों में प्रकट होता है, उदाहरण के लिए, अपने स्पर्शरेखा सदिश के बारे में एक वक्र के मोड़ की मात्रा निर्धारित करता है क्योंकि वक्र विकसित होता है (या स्पर्शरेखा सदिश के बारे में फ़्रेनेट-सेरेट तंत्र का परिभ्रमण)। सतहों की ज्यामिति में, अल्पान्तरी आघूर्ण बल वर्णन करता है कि कैसे एक सतह पर सतह एक वक्र के बारे में मुड़ती है। वक्रता की साथी धारणा यह मापती है कि कैसे चलते हुए तंत्र बिना मुड़े एक वक्र के साथ बेल्लन हैं।

आम तौर पर अधिक, सजातीय संयोजन (अर्थात, स्पर्शरेखा समूह में एक संयोजन) से सुसज्जित एक अलग-अलग बहुविध पर, आघूर्ण बल और वक्रता संयोजन के दो मूलभूत आविष्कारों का निर्माण करते हैं। इस संदर्भ में, आघूर्ण बल एक आंतरिक लक्षण वर्णन देता है कि कैसे स्पर्शरेखा समष्टि एक वक्र के बारे में मुड़ते हैं जब वे समानांतर परिवहन करते हैं, जबकि वक्रता बताती है कि कैसे स्पर्शरेखा समष्टि वक्र के साथ घूमती है। आघूर्ण बल को विशेष रूप से एक प्रदिश के रूप में वर्णित किया जा सकता है, या बहुविध पर सदिश मूल्यवान 2-विधि के रूप में वर्णित किया जा सकता है। अगर ∇ अवकल बहुविध पर एक सजातीय संयोजन है, तो सदिश क्षेत्र X और Y के संदर्भ में आघूर्ण बल वाले प्रदिश को परिभाषित किया गया है।

जहां [X,Y] सदिश क्षेत्रों का लाइ ब्रैकेट है।

अल्पान्तरी की ज्यामिति के अध्ययन में आघूर्ण बल विशेष रूप से उपयोगी है। प्रचलीकरण अल्पान्तरी की एक प्रणाली को देखते हुए, उन अल्पान्तरी वाले सजातीय संयोजन के एक वर्ग को निर्दिष्ट कर सकते हैं, लेकिन उनके आघूर्ण बल से भिन्न होते हैं। एक विशिष्ट संयोजन है जो आघूर्ण बल को अवशोषित करता है, तथा लेवी-सिविता संयोजन को अन्य, संभवतः गैर-मापीय स्थितियों (जैसे फिन्सलर ज्यामिति) के लिए सामान्यीकृत करता है। आघूर्ण बल के साथ एक संबंध और बिना आघूर्ण बल के संबंधित संबंध के बीच का अंतर एक प्रदिश है, जिसे विरूपण प्रदिश कहा जाता है। जी-संरचनाओं और कार्टन की तुल्यता पद्धति के अध्ययन में आघूर्ण बल का अवशोषण भी एक मौलिक भूमिका निभाता है। संबंधित प्रक्षेप्य संयोजन के माध्यम से, अल्पान्तरी के अप्रतिबंधित परिवारों के अध्ययन में आघूर्ण बल भी उपयोगी है। सापेक्षता सिद्धांत में, इस तरह के विचारों को आइंस्टीन-कार्टन सिद्धांत के रूप में लागू किया गया है।

आघूर्ण बल प्रदिश

M को स्पर्शरेखा समूह (उर्फ सहसंयोजक अवकलज) ∇ पर एक जातीय संयोजन के साथ बहुविध होने दें। ∇ का 'आघूर्ण बल प्रदिश '(कभी-कभी कार्टन(आघूर्ण बल) प्रदिश भी कहा जाता है) सदिश क्षेत्रों X और Y पर परिभाषित सदिश-मूल्यवान 2-विधि है ,

जहाँ [X, Y] दो सदिश क्षेत्रों का लाई कोष्ठक है। लीबनिज नियम (सामान्यीकृत उत्पाद नियम) द्वारा, किसी भी सहज फलन f के लिए T(fX, Y) = T(X, fY) = fT(X, Y) होता है। तो टी तन्यता है, संयोजक के संदर्भ में परिभाषित होने के बावजूद, जो एक प्रथम क्रम अंतर प्रचालक है, यह स्पर्शरेखा सदिशो पर 2-विधि देता है, जबकि सहसंयोजक अवकलज केवल सदिश क्षेत्रों के लिए परिभाषित किया गया है।

आघूर्ण बल प्रदिश के घटक

स्पर्शरेखा समूह के वर्गों के स्थानीय आधार (e1, ..., en) के संदर्भ में आघूर्ण बल प्रदिश के घटक X = ei ,Y = ej समायोजन करके और कम्यूटेटर गुणांक γkijek := [ei, ej] को प्रस्तुत करके प्राप्त किए जा सकते हैं। तब आघूर्ण बल के घटक हैं,

यहां संयोजन को परिभाषित करने वाले संयोजन गुणांक हैं। यदि आधार होलोनोमिक है तो लाई कोष्ठक गायब हो जाते हैं। इसलिए । विशेष रूप से (नीचे देखें), जबकि अल्पान्तरी संयोजन के सममित भाग को निर्धारित करता है, आघूर्ण बल प्रदिश प्रतिसममित भाग को निर्धारित करता है।

आघूर्ण बल रूप

आघूर्ण बल रूप, आघूर्ण बल का एक वैकल्पिक लक्षण वर्णन है, जो कई गुना एम के फ्रेम समूह एफएम पर लागू होता है। यह मुख्य समूह एक संयोजन विधि ω, a gl(n) एक मूल्यवान विधि से सुसज्जित है - जो लम्बवत सदिश को gl(n) में सही क्रिया के जनित्र के लिए को मानचित्रित करता है, और FM के स्पर्शरेखा समूह पर GL(n) की सही क्रिया को समान रूप से परस्पर जोड़ता है, जो कि gl(n) पर एक लाइ समूह के आसन्न प्रतिनिधित्व के साथ है। फ्रेम समूह में एक विहित एक-रूप θ भी होता है। जिसका मान Rn में होता है, जिसे एक फ़्रेम u ∈ FxM पर परिभाषित किया जाता है nu ∈ FxM (एक रैखिक फलन के रूप में माना जाता है u : Rn → TxM) द्वारा

कहाँ पे π  : FMM प्रिंसिपल समूह के लिए प्रक्षेप मानचित्रण है और π∗ इसका पुश-फॉरवर्ड है। आघूर्ण बल रूप तब है

समतुल्य रूप से, Θ = Dθ, जहां D संबंध द्वारा निर्धारित बाह्य सहपरिवर्ती अवकलज है।

आघूर्ण बल रूप 'Rn' में मूल्यों के साथ एक(क्षैतिज) तन्य रूप है, जिसका अर्थ है कि g ∈ GL(n) की सही कार्रवाई के तहत यह समान रूप से रूपांतरित होता है,

जहां जी 'Rn' पर अपने आसन्न प्रतिनिधित्व के माध्यम से दाहिने हाथ की ओर कार्य करता है।

एक फ्रेम में आघूर्ण बल रूप

स्पर्शरेखा समूह (e1, ..., en) के एक विशेष फ्रेम में लिखे गए आधार बहुविध M पर एक संयोजन प्रपत्र के रूप में आघूर्ण बल का रूप व्यक्त किया जा सकता है। संयोजन प्रपत्र इन बुनियादी वर्गों के बाहरी सहसंयोजक व्युत्पन्न को व्यक्त करता है,

स्पर्शरेखा समूह (इस फ्रेम के सापेक्ष) के लिए सोल्डर फॉर्म ei का दोहरा आधार है θi ∈ TM है, ताकि θi(ej) = δij(क्रोनेकर डेल्टा)। तब आघूर्ण बल 2-रूप में घटक होते हैं

सबसे सही अभिव्यक्ति में,

आघूर्ण बल प्रदिश के फ्रेम-घटक हैं, जैसा कि पिछली परिभाषा में दिया गया है।

यह आसानी से दिखाया जा सकता है कि Θi अस्थायी रूप से इस अर्थ में रूपांतरित होता है कि यदि कोई भिन्न फ़्रेम है, तब

कुछ उलटा आव्यूह-मूल्यवान फलन के लिए(gji), तब

दूसरे शब्दों में, Θ प्रकार (1, 2) का प्रदिश है (एक प्रतिपरिवर्ती और दो सहपरिवर्ती सूचकांकों को वहन करता है)।

वैकल्पिक रूप से, सोल्डर फॉर्म को फ्रेम-स्वतंत्र आचरण में चित्रित किया जा सकता है क्योंकि एम पर टीएम-वैल्यू वन-फॉर्म θ द्वैत समरूपता के तहत स्पर्शरेखा समूह की पहचान एंडोमोर्फिज्म के अनुरूप है। End(TM) ≈ TM ⊗ TM. फिर आघूर्ण बल 2-रूप एक खंड है

के द्वारा दिया गया

जहां D बाहरी सहसंयोजक व्युत्पन्न है।(अधिक जानकारी के लिए कनेक्शन प्रपत्र देखें।)

अलघुकरणीय अपघटन

आघूर्ण बल प्रदिश को दो अलघुकरणीय भागों में विघटित किया जा सकता है, एक अनुरेख (रैखिक बीजगणित)-मुक्त भाग और दूसरा भाग जिसमें अनुरेख शब्द होते हैं। सूचक संकेतन का उपयोग करते हुए, T का अनुरेख दिया जाता है

और अनुरेख-मुक्त भाग है

जहां δij क्रोनकर डेल्टा है।

आंतरिक रूप से, किसी के पास है

T, tr T का अंश, T, M का एक अवयव है जिसे निम्नानुसार परिभाषित किया गया है। प्रत्येक सदिश स्थिर X ∈ TM के लिए , T, के माध्यम से Hom(TM, TM) के जरिए के अवयव T(X) को परिभाषित करता है

तब(tr T)(X) को इस अंतःरूपांतरण के निशान के रूप में परिभाषित किया गया है। वह है,

T का अनुरेख-मुक्त भाग तब है

जबी ι आंतरिक उत्पाद को दर्शाता है।

वक्रता और बियांची पहचान

∇ का वक्रता टेन्सर एक मानचित्रण TM × TM → End(TM) है जिसे सदिश क्षेत्रों X, Y और Z द्वारा परिभाषित किया गया है,

एक बिंदु पर सदिश के लिए, यह परिभाषा इस बात से स्वतंत्र है कि सदिश को बिंदु से दूर सदिश क्षेत्रों तक कैसे बढ़ाया जाता है (इस प्रकार यह एक प्रदिश को परिभाषित करता है, बहुत आघूर्ण बल की तरह)।

बियांची की पहचान वक्रता और आघूर्ण बल से संबंधित है।[1] मान लीजिए X, Y और Z पर चक्रीय योग को दर्शाता है। उदाहरण के लिए,

फिर निम्नलिखित पहचान धारण करते हैं

  1. बियांची की पहली पहचान,
  2. बियांची की दूसरी पहचान,

वक्रता रूप और बियांची पहचान

वक्रता रूप gl(n)-मूल्यवान 2-रूप है

जहाँ, फिर से, D बाह्य सहसंयोजक व्युत्पन्न को दर्शाता है। वक्रता रूप और आघूर्ण बल रूप के संदर्भ में, संबंधित बियांची पहचान हैं[2]

इसके अलावा, कोई वक्रता और आघूर्ण बल वाले तनावों को वक्रता और आघूर्ण बल वाले रूपों से निम्नानुसार पुनर्प्राप्त कर सकता है। F के एक बिंदु u परxएम, एक है[3]

जहां फिर से u : Rn → TxM तन्तु में फ्रेम निर्दिष्ट करने वाला कार्य है, और π-1 के माध्यम से सदिशों की लिफ्ट की पसंद अप्रासंगिक है क्योंकि वक्रता और आघूर्ण बल के रूप क्षैतिज हैं (वे अस्पष्ट लंबवत सदिशों पर गायब हो जाते हैं)।

लक्षण और व्याख्याएं

इस खंड के दौरान, M को अलग-अलग कई गुना माना जाता है, और ∇ एम के स्पर्शरेखा समूह पर एक सहपरिवर्ती व्युत्पन्न होता है जब तक कि यह नोट नहीं किया जाता।

संदर्भ फ्रेम का घुमाव

वक्र के शास्त्रीय अंतर ज्यामिति में, फ्रेनेट-सेरेट सूत्र यह वर्णन करते हैं कि कैसे एक विशेष गतिमान तंत्र (फ्रेनेट-सेरेट फ्रेम) वक्र के साथ मुड़ता है। भौतिक शब्दों में, आघूर्ण बल वक्र के स्पर्शरेखा के साथ एक आदर्श शीर्ष बिंदु के कोणीय गति से मेल खाती है।

एक(दूरी) संयोजन के साथ कई गुना का मामला एक समान व्याख्या को स्वीकार करता है। मान लीजिए कि एक पर्यवेक्षक संयोंजन के लिए अल्पान्तरी के साथ आगे बढ़ रहा है। इस तरह के एक पर्यवेक्षक को आमतौर पर जड़त्वीय संदर्भ फ्रेम के रूप में माना जाता है क्योंकि वे कोई त्वरण अनुभव नहीं करते हैं। मान लीजिए कि इसके अलावा पर्यवेक्षक अपने साथ कठोर सीधे मापने वाली छड़ों(एक समन्वय प्रणाली) की एक प्रणाली रखता है। प्रत्येक छड़ एक सीधा खंड है, जो एक अल्पान्तरी है। मान लें कि प्रत्येक छड़ को प्रक्षेपवक्र के समानांतर ले जाया जाता है। कहने का तात्पर्य यह है कि इन छड़ों को शारीरिक रूप से प्रक्षेपवक्र के साथ ले जाया जाता है, इसका मतलब है कि कि वे लेटे-घसीटे जाते हैं, या प्रचारित होते हैं ताकि स्पर्शरेखा के साथ प्रत्येक छड़ का व्युत्पन्न गायब हो जाए। हालांकि, वे फ्रेनेट-सेरेट फ्रेम में शीर्ष द्वारा महसूस किए गए अर्धवृत्त बल के अनुरूप अर्धवृत्त बल(या आघूर्ण बल वाली ताकतों) का अनुभव कर सकते हैं। इस बल को आघूर्ण बल से मापा जाता है।

अधिक सटीक रूप से, मान लीजिए कि प्रेक्षक एक अल्पान्तरी पथ γ(t) के साथ चलता है और इसके साथ एक मापक छड़ ले जाता है। जब प्रेक्षक पथ के साथ यात्रा करता है तो छड़ सतह को घुमा देती है। इस सतह के साथ प्राकृतिक निर्देशांक (t, x) हैं, जहाँ t पर्यवेक्षक द्वारा लिया गया पैरामीटर समय है, और x मापने वाली छड़ के साथ स्थिति है। शर्त यह है कि रॉड की स्पर्शरेखा को वक्र के साथ अनुवादित समानांतर होना चाहिए

नतीजतन, आघूर्ण बल द्वारा दिया जाता है

यदि यह शून्य नहीं है, तो छड़ पर अंकित बिन्दु(द x = constant कर्व्स) अल्पान्तरी के बजाय कुंडलित वक्र का पता लगाएगा। वे पर्यवेक्षक के चारों ओर घूमते रहेंगे। ध्यान दें कि इस तर्क के लिए यह जरूरी नहीं था कि एक अल्पान्तरी है। और कोई वक्र काम करेगा।

आघूर्ण बल की यह व्याख्या टेलीपरेलिज्म के सिद्धांत में एक भूमिका निभाती है, जिसे आइंस्टीन-कार्टन सिद्धांत के रूप में भी जाना जाता है, जो सापेक्षता सिद्धांत का एक वैकल्पिक निरूपण है।

एक रेशा का आघूर्ण बल

पदार्थ विज्ञान और विशेष रूप से प्रत्यास्थता सिद्धांत में, आघूर्ण बल के विचार भी एक महत्वपूर्ण भूमिका निभाते हैं। एक समस्या बेलों के विकास का प्रतिरूप है, जो कि इस सवाल पर ध्यान केंद्रित करते हुए कि कैसे बेलें वस्तुओं के चारों ओर घूमने का प्रबंधन करती हैं।[4] बेल को एक दूसरे के चारों ओर मुड़े हुए प्रत्यास्थताओं की एक जोड़ी के रूप में तैयार किया गया है। अपनी ऊर्जा-न्यूनतम अवस्था में, बेल स्वाभाविक रूप से कुंडलित वक्रता के आकार में बढ़ती है। लेकिन इसकी सीमा(या लंबाई) को अधिकतम करने के लिए बेल को फैलाया भी जा सकता है। इस मामले में, बेल का आघूर्ण बल तंतुओं की जोड़ी(या समतुल्य रूप से तंतुओं को जोड़ने वाले पट्टी की सतह आघूर्ण बल) के आघूर्ण बल से संबंधित है, और यह बेल की लंबाई-अधिकतम(अल्पान्तरी) विन्यास और इसकी ऊर्जा-न्यूनतम विन्यास के बीच अंतर को दर्शाता है।

आघूर्ण बल और आवर्त

द्रव गतिकी में, आघूर्ण बल स्वाभाविक रूप से भंवर रेखाओं से जुड़ा होता है।

अल्पान्तरी और आघूर्ण बल का अवशोषण

मान लीजिए कि γ(t) M पर एक वक्र है। तब γ एक 'सजातीय रूप से प्रचलीकरण अल्पान्तरी है, बशर्ते कि γ के प्रक्षेत्र में सभी समय t के लिए समीकरण,

हो।

(यहां डॉट टी के संबंध में भेदभाव को दर्शाता है, जो γ के साथ स्पर्शरेखा सदिश को संकेत करता है।) प्रत्येक अल्पान्तरी समय t = 0, पर अपने प्रारंभिक स्पर्शरेखा सदिश द्वारा विशिष्ट रूप से निर्धारित किया जाता है।

मोटे तौर पर सभी समान रूप से प्रचलीकरण अल्पान्तरी का परिवार, एक संयोजन के आघूर्ण बल के एक अनुप्रयोग में अल्पान्तरी विस्मय शामिल होता है। आघूर्ण बल उनके अल्पान्तरी विस्मय के संदर्भ में संयोजक को वर्गीकृत करने की अस्पष्टता है,

  • दो संयोजक ∇ और ∇' जिनमें समान रूप से प्रचलीकरण अल्पान्तरी(अर्थात, एक ही अल्पान्तरी विस्मय) केवल आघूर्ण बल से भिन्न होते हैं।[5]

अधिक सटीक रूप से, यदि X और Y pM पर स्पर्शरेखा सदिशों की एक जोड़ी हैं , तो मान लें लीजिए कि

दो संयोजकों का अंतर हो, जिसकी गणना p से दूर X और Y के मनमाने विस्तार के रूप में की जाती है। लीबनिज उत्पाद नियम से, कोई देखता है कि Δ वास्तव में इस बात पर निर्भर नहीं करता है कि X और Y कैसे विस्तारित हैं विस्तारित हैं (इसलिए यह M पर एक प्रदिश को परिभाषित करता है)। S और A को Δ के समकालिक और वैकल्पिक हिस्से होने दें,

क्योकि

  • आघूर्ण बल‌ प्रदिश का अंतर है।
  • ∇ और ∇' समान रूप से प्रचलीकरण अल्पान्तरी के समान परिवारों को परिभाषित करते हैं यदि केवल S(X, Y) = 0.

दूसरे शब्दों में, दो संयोजकों के अंतर का समकालिक भाग यह निर्धारित करता है कि क्या उनके पास समान प्रचलीकरण अल्पान्तरी है, जबकि अंतर का तिरछा हिस्सा दो संयोजकों के सापेक्ष आघूर्ण बल से निर्धारित होता है। एक और परिणाम यह है,

  • किसी भी संबंध को देखते हुए ∇, एक अद्वितीय आघूर्ण बल-मुक्त संयोजक ∇′ है, जो समान रूप से प्रचलीकरण अल्पान्तरी के एक ही परिवार के साथ है। इन दो संयोजकों के बीच का अंतर वास्तव में एक प्रदिश, विरूपण प्रदिश है।

यह सामान्य संबंध(संभवतः गैर-मापीय) संयोजक के लिए रीमानी ज्यमिति के मौलिक प्रमेय का सामान्यीकरण है।

यह भी देखें

टिप्पणियाँ

  1. Kobayashi & Nomizu 1963, Volume 1, Proposition III.5.2.
  2. Kobayashi & Nomizu 1963, Volume 1, III.2.
  3. Kobayashi & Nomizu 1963, Volume 1, III.5.
  4. Goriely et al. 2006.
  5. See Spivak (1999) Volume II, Addendum 1 to Chapter 6. See also Bishop and Goldberg (1980), section 5.10.


इस पेज में लापता आंतरिक लिंक की सूची

संदर्भ