केंद्रित आयन बीम: Difference between revisions
No edit summary |
|||
Line 11: | Line 11: | ||
[[File:Principe FIB-en.svg|thumb|alt=block diagram|upright=1.65|एफआईबी का सिद्धांत]]मुख्य रूप से बड़े अर्धचालक निर्माताओं के लिए फोकस्ड आयन बीम (FIB) सिस्टम का व्यावसायिक रूप से लगभग बीस वर्षों से उत्पादन किया जा रहा है। FIB सिस्टम स्कैनिंग इलेक्ट्रॉन माइक्रोस्कोप (SEM) के समान तरीके से काम करते हैं, सिवाय इलेक्ट्रॉनों के बीम के अतिरिक्त और जैसा कि नाम से पता चलता है, एफआईबी सिस्टम आयनों (सामान्यतया पर गैलियम) के एक सूक्ष्म रूप से केंद्रित बीम का उपयोग करते हैं जो कि इमेजिंग के लिए कम बीम धाराओं पर या साइट-विशिष्ट [[स्पटरिंग]] या मिलिंग के लिए उच्च बीम धाराओं पर संचालित किया जा सकता है। | [[File:Principe FIB-en.svg|thumb|alt=block diagram|upright=1.65|एफआईबी का सिद्धांत]]मुख्य रूप से बड़े अर्धचालक निर्माताओं के लिए फोकस्ड आयन बीम (FIB) सिस्टम का व्यावसायिक रूप से लगभग बीस वर्षों से उत्पादन किया जा रहा है। FIB सिस्टम स्कैनिंग इलेक्ट्रॉन माइक्रोस्कोप (SEM) के समान तरीके से काम करते हैं, सिवाय इलेक्ट्रॉनों के बीम के अतिरिक्त और जैसा कि नाम से पता चलता है, एफआईबी सिस्टम आयनों (सामान्यतया पर गैलियम) के एक सूक्ष्म रूप से केंद्रित बीम का उपयोग करते हैं जो कि इमेजिंग के लिए कम बीम धाराओं पर या साइट-विशिष्ट [[स्पटरिंग]] या मिलिंग के लिए उच्च बीम धाराओं पर संचालित किया जा सकता है। | ||
जैसा कि दाहिनी ओर आरेख दिखाता है, गैलियम (Ga+) प्राथमिक आयन बीम नमूना सतह पर हिट करता है और सामग्री की छोटी मात्रा को स्पटर (धूम) करता है, जो सतह को या तो माध्यमिक आयनों (i+ या i−) या तटस्थ परमाणुओं (n<sup>0</sup>) के रूप में छोड़ देता है। प्राथमिक किरण द्वितीयक इलेक्ट्रॉन (e−) भी उत्पन्न करती है। नमूना सतह पर प्राथमिक बीम रेखापुंज के रूप में, | जैसा कि दाहिनी ओर आरेख दिखाता है, गैलियम (Ga+) प्राथमिक आयन बीम नमूना सतह पर हिट करता है और सामग्री की छोटी मात्रा को स्पटर (धूम) करता है, जो सतह को या तो माध्यमिक आयनों (i+ या i−) या तटस्थ परमाणुओं (n<sup>0</sup>) के रूप में छोड़ देता है। प्राथमिक किरण द्वितीयक इलेक्ट्रॉन (e−) भी उत्पन्न करती है। नमूना सतह पर प्राथमिक बीम रेखापुंज के रूप में, बिखरे हुए आयनों या द्वितीयक इलेक्ट्रॉनों से संकेत छवि बनाने के लिए एकत्र किया जाता है। | ||
निम्न प्राथमिक बीम धाराओं में, बहुत कम सामग्री का स्पटरिंग होता है और आधुनिक FIB सिस्टम आसानी से 5 एनएम (nm) इमेजिंग रिज़ॉल्यूशन प्राप्त कर सकते हैं (G आयनों के साथ इमेजिंग रिज़ॉल्यूशन स्पटरिंग<ref>{{cite journal|doi=10.1116/1.588663|title=केंद्रित आयन बीम के लिए इमेजिंग रिज़ॉल्यूशन की मौलिक सीमाएँ|year=1996|last1=Orloff|first1=Jon|journal=Journal of Vacuum Science and Technology B|volume=14|issue=6|pages=3759|bibcode = 1996JVSTB..14.3759O }}</ref><ref>{{cite journal|doi=10.1116/1.3013306|title=Ga[sup +] माइक्रोस्कोप में Sn गेंदों के अवलोकन में स्पटरिंग सीमा बनाम सिग्नल-टू-शोर सीमा|year=2008|last1=Castaldo|first1=V.|last2=Hagen|first2=C. W.|last3=Rieger|first3=B.|last4=Kruit|first4=P.|journal=Journal of Vacuum Science and Technology B|volume=26|issue=6|pages=2107–2115|bibcode = 2008JVSTB..26.2107C |url=http://repository.tudelft.nl/islandora/object/uuid%3A283ec59c-b0ec-4932-aef4-7ef63808ce7c/datastream/OBJ/view}}</ref> और डिटेक्टर दक्षता द्वारा ~5 nm तक सीमित है)। उच्च प्राथमिक धाराओं में, स्पटरिंग द्वारा सामग्री का बड़ा हिस्सा हटाया जा सकता है, जिससे नमूने की सटीक मिलिंग उप-माइक्रोमीटर या यहां तक कि एक नैनोस्केल तक हो सकती है। | निम्न प्राथमिक बीम धाराओं में, बहुत कम सामग्री का स्पटरिंग होता है और आधुनिक FIB सिस्टम आसानी से 5 एनएम (nm) इमेजिंग रिज़ॉल्यूशन प्राप्त कर सकते हैं (G आयनों के साथ इमेजिंग रिज़ॉल्यूशन स्पटरिंग<ref>{{cite journal|doi=10.1116/1.588663|title=केंद्रित आयन बीम के लिए इमेजिंग रिज़ॉल्यूशन की मौलिक सीमाएँ|year=1996|last1=Orloff|first1=Jon|journal=Journal of Vacuum Science and Technology B|volume=14|issue=6|pages=3759|bibcode = 1996JVSTB..14.3759O }}</ref><ref>{{cite journal|doi=10.1116/1.3013306|title=Ga[sup +] माइक्रोस्कोप में Sn गेंदों के अवलोकन में स्पटरिंग सीमा बनाम सिग्नल-टू-शोर सीमा|year=2008|last1=Castaldo|first1=V.|last2=Hagen|first2=C. W.|last3=Rieger|first3=B.|last4=Kruit|first4=P.|journal=Journal of Vacuum Science and Technology B|volume=26|issue=6|pages=2107–2115|bibcode = 2008JVSTB..26.2107C |url=http://repository.tudelft.nl/islandora/object/uuid%3A283ec59c-b0ec-4932-aef4-7ef63808ce7c/datastream/OBJ/view}}</ref> और डिटेक्टर दक्षता द्वारा ~5 nm तक सीमित है)। उच्च प्राथमिक धाराओं में, स्पटरिंग द्वारा सामग्री का बड़ा हिस्सा हटाया जा सकता है, जिससे नमूने की सटीक मिलिंग उप-माइक्रोमीटर या यहां तक कि एक नैनोस्केल तक हो सकती है। | ||
Line 42: | Line 42: | ||
एफआईबी तैयारी क्रायोजेनिक रूप से जमे हुए नमूनों के साथ उपयुक्त उपकरण में इस्तेमाल किया जा सकता है, जिससे जैविक नमूने, फार्मास्यूटिकल्स, फोम, स्याही और खाद्य उत्पादों जैसे तरल पदार्थ या वसा वाले नमूनों के क्रॉस सेक्शनल विश्लेषण की अनुमति मिलती है।<ref>{{cite web| url = http://www.fei.com/uploadedFiles/Documents/Content/2006_06_CryoSDB_SoftImaging_AppNote_mb.pdf|title = क्रायो-एसडीबी का उपयोग कर शीतल सामग्री की अनूठी इमेजिंग| access-date=2009-06-06}}</ref> | एफआईबी तैयारी क्रायोजेनिक रूप से जमे हुए नमूनों के साथ उपयुक्त उपकरण में इस्तेमाल किया जा सकता है, जिससे जैविक नमूने, फार्मास्यूटिकल्स, फोम, स्याही और खाद्य उत्पादों जैसे तरल पदार्थ या वसा वाले नमूनों के क्रॉस सेक्शनल विश्लेषण की अनुमति मिलती है।<ref>{{cite web| url = http://www.fei.com/uploadedFiles/Documents/Content/2006_06_CryoSDB_SoftImaging_AppNote_mb.pdf|title = क्रायो-एसडीबी का उपयोग कर शीतल सामग्री की अनूठी इमेजिंग| access-date=2009-06-06}}</ref> | ||
एफआईबी का उपयोग द्वितीयक आयन मास स्पेक्ट्रोमेट्री (एसआईएमएस) के लिए भी किया जाता है। मुख्य रूप से केंद्रित आयन बीम के साथ नमूना की सतह को | एफआईबी का उपयोग द्वितीयक आयन मास स्पेक्ट्रोमेट्री (एसआईएमएस) के लिए भी किया जाता है। मुख्य रूप से केंद्रित आयन बीम के साथ नमूना की सतह को बिखरना के बाद निकाले गए द्वितीयक आयनों को एकत्र और विश्लेषण किया जाता है। | ||
== संवेदनशील नमूनों को स्थानांतरित करने के लिए == | == संवेदनशील नमूनों को स्थानांतरित करने के लिए == | ||
[[ट्रांसमिशन इलेक्ट्रॉन माइक्रोस्कोपी]] (टीईएम) नमूनों ([[लैमेला (सामग्री)|लैमेली]], पतली फिल्मों, और अन्य यंत्रवत् और बीम-संवेदनशील नमूनों) के लिए तनाव और झुकने के न्यूनतम परिचय के लिए। जब केंद्रित आयन बीम (एफआईबी) के अंदर स्थानांतरित किया जाता है, तो लचीले धात्विक [[nanowire|नैनोवायरों]] को विशिष्ट रूप से कठोर [[micromanipulator|माइक्रोमैनिपुलेटर]] से जोड़ा जा सकता है। | [[ट्रांसमिशन इलेक्ट्रॉन माइक्रोस्कोपी]] (टीईएम) नमूनों ([[लैमेला (सामग्री)|लैमेली]], पतली फिल्मों, और अन्य यंत्रवत् और बीम-संवेदनशील नमूनों) के लिए तनाव और झुकने के न्यूनतम परिचय के लिए। जब केंद्रित आयन बीम (एफआईबी) के अंदर स्थानांतरित किया जाता है, तो लचीले धात्विक [[nanowire|नैनोवायरों]] को विशिष्ट रूप से कठोर [[micromanipulator|माइक्रोमैनिपुलेटर]] से जोड़ा जा सकता है। |
Revision as of 12:17, 26 December 2022
केंद्रित आयन बीम, जिसे एफआईबी (FIB) के रूप में भी जाना जाता है, विशेष रूप से अर्धचालक उद्योग, सामग्री विज्ञान और जैविक क्षेत्र में साइट-विशिष्ट विश्लेषण, जमाव और सामग्री के पृथक्करण के लिए उपयोग की जाने वाली तकनीक है। एफआईबी सेटअप वैज्ञानिक उपकरण है जो स्कैनिंग इलेक्ट्रॉन माइक्रोस्कोप (एसईएम) जैसा दिखता है। हालाँकि, जब एसईएम (SEM) कक्ष में नमूने की छवि बनाने के लिए इलेक्ट्रॉनों के एक केंद्रित बीम का उपयोग करता है, तो एफआईबी सेटअप इसके अतिरिक्त आयनों के केंद्रित बीम का उपयोग करता है। एफआईबी को इलेक्ट्रॉन और आयन बीम कॉलम दोनों के साथ एक सिस्टम में भी सम्मिलित किया जा सकता है, जिससे किसी भी बीम का उपयोग करके एक ही विशेषता की जांच की जा सके। प्रत्यक्ष लेखन लिथोग्राफी (जैसे प्रोटॉन बीम लेखन में) के लिए केंद्रित आयनों के बीम का उपयोग करने के साथ एफआईबी को भ्रमित नहीं होना चाहिए। ये सामान्य तौर पर काफी भिन्न प्रणालियां होती हैं जहां सामग्री को अन्य तंत्रों द्वारा संशोधित किया जाता है।
आयन बीम स्रोत
सबसे व्यापक उपकरण तरल धातु आयन स्रोतों (एलएमआईएस) का उपयोग कर रहे हैंl विशेष रूप से गैलियम आयन स्रोत एलिमेंटल गोल्ड और इरीडियम पर आधारित आयन स्रोत भी उपलब्ध हैं। गैलियम एलएमआईएस में, गैलियम धातु को टंगस्टन सुई के संपर्क में रखा जाता है, और गर्म गैलियम टंगस्टन को गीला कर देता है और सुई की नोक पर प्रवाहित होता है, जहां सतह के तनाव और विद्युत क्षेत्र का विरोधी बल गैलियम को क्यूनिफॉर्म आकार में बाध्य करता है। यह नोक के आकार में बना होता है, इसे टेलर कोन कहते हैं। इस शंकु की नोक की त्रिज्या अत्यंत छोटी है (~2 nm)। इस छोटे सिरे (1×108 वोल्ट प्रति सेंटीमीटर से अधिक) पर विशाल विद्युत क्षेत्र गैलियम परमाणुओं के आयनीकरण और क्षेत्र उत्सर्जन का कारण बनता है।
स्रोत आयनों को सामान्यतया पर 1-50 किलो इलेक्ट्रॉन वोल्ट (0.16–8.0 fJ) की ऊर्जा के लिए त्वरित किया जाता है और इलेक्ट्रोस्टैटिक लेंस द्वारा नमूने पर ध्यान केंद्रित किया जाता है। एलएमआईएस बहुत कम ऊर्जा फैलाव के साथ उच्च धारा घनत्व वाले आयन बीम का उत्पादन करता है। आधुनिक FIB नमूने के लिए दसियों नैनो एम्पीयर करंट दे सकता है, या कुछ नैनोमीटर के क्रम में स्पॉट आकार के साथ नमूना बना सकता है।
हाल ही में, नोबल गैस आयनों के प्लाज़्मा बीम का उपयोग करने वाले यंत्र, जैसे क्सीनन, अधिक व्यापक रूप से उपलब्ध हो गए हैं। [1]
सिद्धांत
मुख्य रूप से बड़े अर्धचालक निर्माताओं के लिए फोकस्ड आयन बीम (FIB) सिस्टम का व्यावसायिक रूप से लगभग बीस वर्षों से उत्पादन किया जा रहा है। FIB सिस्टम स्कैनिंग इलेक्ट्रॉन माइक्रोस्कोप (SEM) के समान तरीके से काम करते हैं, सिवाय इलेक्ट्रॉनों के बीम के अतिरिक्त और जैसा कि नाम से पता चलता है, एफआईबी सिस्टम आयनों (सामान्यतया पर गैलियम) के एक सूक्ष्म रूप से केंद्रित बीम का उपयोग करते हैं जो कि इमेजिंग के लिए कम बीम धाराओं पर या साइट-विशिष्ट स्पटरिंग या मिलिंग के लिए उच्च बीम धाराओं पर संचालित किया जा सकता है।
जैसा कि दाहिनी ओर आरेख दिखाता है, गैलियम (Ga+) प्राथमिक आयन बीम नमूना सतह पर हिट करता है और सामग्री की छोटी मात्रा को स्पटर (धूम) करता है, जो सतह को या तो माध्यमिक आयनों (i+ या i−) या तटस्थ परमाणुओं (n0) के रूप में छोड़ देता है। प्राथमिक किरण द्वितीयक इलेक्ट्रॉन (e−) भी उत्पन्न करती है। नमूना सतह पर प्राथमिक बीम रेखापुंज के रूप में, बिखरे हुए आयनों या द्वितीयक इलेक्ट्रॉनों से संकेत छवि बनाने के लिए एकत्र किया जाता है।
निम्न प्राथमिक बीम धाराओं में, बहुत कम सामग्री का स्पटरिंग होता है और आधुनिक FIB सिस्टम आसानी से 5 एनएम (nm) इमेजिंग रिज़ॉल्यूशन प्राप्त कर सकते हैं (G आयनों के साथ इमेजिंग रिज़ॉल्यूशन स्पटरिंग[2][3] और डिटेक्टर दक्षता द्वारा ~5 nm तक सीमित है)। उच्च प्राथमिक धाराओं में, स्पटरिंग द्वारा सामग्री का बड़ा हिस्सा हटाया जा सकता है, जिससे नमूने की सटीक मिलिंग उप-माइक्रोमीटर या यहां तक कि एक नैनोस्केल तक हो सकती है।
यदि नमूना गैर-प्रवाहकीय है, तो चार्ज न्यूट्रलाइजेशन प्रदान करने के लिए कम ऊर्जा वाली इलेक्ट्रॉन फ्लड गन का उपयोग किया जा सकता है। इस तरीके से, धनात्मक प्राथमिक आयन बीम का उपयोग करके धनात्मक माध्यमिक आयनों के साथ इमेजिंग करके, यहां तक कि अत्यधिक इन्सुलेटिंग नमूनों को बिना सतह कोटिंग के इमेज और मिल्ड किया जा सकता है, जैसा कि एसईएम में आवश्यक होगा।
कुछ समय पहले तक, अर्धचालक उद्योग में एफआईबी का अत्यधिक उपयोग होता रहा है। एकीकृत सर्किट पर साइट-विशिष्ट स्थानों के दोष विश्लेषण, सर्किट संशोधन, फोटोमास्क मरम्मत और ट्रांसमिशन इलेक्ट्रॉन माइक्रोस्कोप (टीईएम) नमूना तैयार करने जैसे अनुप्रयोग सामान्य प्रक्रियाएं बन गए हैं। नवीनतम एफआईबी सिस्टम में उच्च-रिज़ॉल्यूशन इमेजिंग क्षमता है; सीटू सेक्शनिंग के साथ मिलकर इस क्षमता ने कई मामलों में अलग एसईएम उपकरण में एफआईबी-सेक्शन वाले नमूनों की जांच करने की आवश्यकता को समाप्त कर दिया है।[4] एसईएम (SEM) इमेजिंग अभी भी उच्चतम रिज़ॉल्यूशन इमेजिंग के लिए आवश्यक है और संवेदनशील नमूनों को नुकसान से बचाने के लिए। हालाँकि, एक ही कक्ष पर एसईएम और FIB स्तंभों का संयोजन दोनों के लाभों को उपयोग में लाने में सक्षम बनाता है।
एफआईबी इमेजिंग
एफआईबी माध्यमिक इलेक्ट्रॉन छवियां तीव्र अनाज अभिविन्यास विपरीत दिखाती हैं। नतीजतन, रासायनिक नक़्क़ाशी का सहारा लिए बिना अनाज की आकृति विज्ञान को आसानी से चित्रित किया जा सकता है। इमेजिंग मापदंडों के सावधानीपूर्वक चयन के माध्यम से अनाज की सीमा के विपरीत को भी बढ़ाया जा सकता है। एफआईबी द्वितीयक आयन छवियां भी रासायनिक अंतर प्रकट करती हैं, और जंग अध्ययन में विशेष रूप से उपयोगी होती हैं, क्योंकि धातुओं की द्वितीयक आयन उपज ऑक्सीजन की उपस्थिति में परिमाण के तीन क्रमों तक बढ़ सकती है, स्पष्ट रूप से संक्षारण की उपस्थिति का अनावरण करती है।[5]
एफआईबी माध्यमिक इलेक्ट्रॉन इमेजिंग का एक अन्य लाभ यह तथ्य है कि आयन बीम प्रोटीन की लेबलिंग में उपयोग की जाने वाली फ्लोरोसेंट जांच से संकेत को नहीं बदलता है, इस प्रकार FIB माध्यमिक इलेक्ट्रॉन छवियों को प्रतिदीप्ति माइक्रोस्कोपी द्वारा प्राप्त छवियों के साथ सहसंबंधित करने का अवसर पैदा करता है।[6][7]
निक्षारण
इलेक्ट्रॉन सूक्ष्मदर्शी के विपरीत, एफआईबी मूल रूप से नमूने के लिए विनाशकारी है। जब उच्च-ऊर्जा वाले गैलियम आयन नमूने पर प्रहार करते हैं, तो वे सतह से परमाणुओं को बाहर निकाल देंगे। गैलियम परमाणुओं को सतह के शीर्ष कुछ नैनोमीटरों में भी प्रत्यारोपित किया जाएगा और सतह को अनाकार बनाया जाएगा।
स्पटरिंग क्षमता के कारण, सूक्ष्म और नैनोस्केल पर सामग्री को संशोधित या मशीन करने के लिए, एफआईबी को सूक्ष्म और नैनो-मशीनिंग उपकरण के रूप में उपयोग किया जाता है। एफआईबी माइक्रोमशीनिंग अपने आप में व्यापक क्षेत्र बन गया है, लेकिन FIB के साथ नैनो मशीनिंग ऐसा क्षेत्र है जो अभी भी विकसित हो रहा है। इमेजिंग के लिए आम तौर पर सबसे छोटा बीम आकार 2.5–6 एनएम होता है। सबसे छोटी मिल्ड विशेषताएं कुछ बड़ी (10–15 एनएम) होती हैं क्योंकि यह कुल बीम आकार और मिल्ड किए जा रहे नमूने के साथ परस्पर क्रियाओं पर निर्भर होती है।
एफआईबी उपकरण सतहों को खोदने या मशीन करने के लिए डिज़ाइन किए गए हैं, आदर्श एफआईबी अगली परत में परमाणुओं के किसी भी व्यवधान या सतह के ऊपर किसी भी अवशिष्ट व्यवधान के बिना परमाणु परत को दूर कर सकता है। अभी तक स्पटर के कारण मशीनिंग सामान्यतया पर सब-माइक्रोमीटर लंबाई के पैमाने पर सतहों को खुरदरा कर देती है।[8][9]
निक्षेप
आयन बीम प्रेरित निक्षेपण के माध्यम से सामग्री जमा करने के लिए एफआईबी का भी उपयोग किया जा सकता है। एफआईबी-सहायता प्राप्त रासायनिक वाष्प जमाव तब होता है जब गैस, जैसे कि टंगस्टन हेक्साकार्बोनिल (W(CO)6) (डब्ल्यू (सीओ) 6) को निर्वात कक्ष में पेश किया जाता है और नमूने पर केमिसॉर्ब (रासायनिक शोषण) की अनुमति दी जाती है। बीम के साथ क्षेत्र को स्कैन करके, अग्रदूत गैस अस्थिर और गैर-वाष्पशील घटकों में विघटित हो जाएगी; गैर-वाष्पशील घटक, जैसे टंगस्टन, सतह पर निक्षेपण के रूप में रहता है। यह उपयोगी है, क्योंकि बीम के विनाशकारी स्पटरिंग से अंतर्निहित नमूने की रक्षा के लिए जमा धातु को एक बलि परत के रूप में इस्तेमाल किया जा सकता है। नैनोमीटर से लेकर सैकड़ों माइक्रोमीटर तक की लंबाई में, टंगस्टन धातु का जमाव धातु की रेखाओं को सही जगह पर रखने की अनुमति देता है। अन्य सामग्री जैसे प्लैटिनम, कोबाल्ट, कार्बन, सोना आदि भी स्थानीय रूप से जमा किए जा सकते हैं।[8][9] गैस-समर्थित निक्षेपण और FIB नक़्क़ाशी प्रक्रियाएं नीचे दिखाई गई हैं।[10]
मौजूदा अर्धचालक उपकरण को पैच या संशोधित करने के लिए एफआईबी का उपयोग प्रायः अर्धचालक उद्योग में किया जाता है। उदाहरण के लिए, एकीकृत परिपथ में, गैलियम बीम का उपयोग अवांछित विद्युत कनेक्शनों को काटने और/या कनेक्शन बनाने के लिए प्रवाहकीय सामग्री जमा करने के लिए किया जा सकता है। अर्धचालक्स के प्रतिमानित डोपिंग में उच्च स्तर की सतह की बातचीत का उपयोग किया जाता है। FIB का उपयोग मास्क रहित आरोपण के लिए भी किया जाता है।
टीईएम तैयारी के लिए
इलेक्ट्रान सम्प्रेषित दूरदर्शी के लिए नमूने तैयार करने के लिए एफआईबी का भी सामान्यतया पर उपयोग किया जाता है। टीईएम को बहुत पतले नमूनों की आवश्यकता होती है, सामान्यतया पर ~ 100 नैनोमीटर या उससे कम। ऐसे पतले नमूने तैयार करने के लिए आयन मिलिंग या इलेक्ट्रोपॉलिशिंग जैसी अन्य तकनीकों का उपयोग किया जा सकता है। हालांकि, एफआईबी का नैनोमीटर-स्केल रिज़ॉल्यूशन रुचि के सटीक क्षेत्र को चुनने की अनुमति देता है, जैसे कि शायद अनाज की सीमा या सामग्री में दोष। यह महत्वपूर्ण है, उदाहरण के लिए, एकीकृत सर्किट विफलता विश्लेषण में। यदि चिप पर कई मिलियन में से विशेष ट्रांजिस्टर खराब है, तो उस एकल ट्रांजिस्टर का इलेक्ट्रॉन माइक्रोस्कोप नमूना तैयार करने में सक्षम एकमात्र उपकरण FIB है।[8][9] ट्रांसमिशन इलेक्ट्रॉन माइक्रोस्कोपी के लिए नमूने तैयार करने के लिए उपयोग किए जाने वाले एक ही प्रोटोकॉल का उपयोग नमूने के सूक्ष्म क्षेत्र का चयन करने, इसे निकालने और माध्यमिक आयन मास स्पेक्ट्रोमेट्री (एसआईएमएस) का उपयोग करके विश्लेषण के लिए तैयार करने के लिए भी किया जा सकता है।[11]
एफआईबी नमूना तैयार करने की कमियां उपर्युक्त सतह क्षति और आरोपण हैं, जो उच्च-रिज़ॉल्यूशन "जाली इमेजिंग" टीईएम या इलेक्ट्रॉन ऊर्जा हानि स्पेक्ट्रोस्कोपी जैसी तकनीकों का उपयोग करते समय ध्यान देने योग्य प्रभाव उत्पन्न करते हैं। इस क्षतिग्रस्त परत को निम्न बीम वोल्टेज के साथ एफआईबी मिलिंग द्वारा कम किया जा सकता है, या एफआईबी प्रक्रिया के पूरा होने के बाद कम वोल्टेज वाले आर्गन आयन बीम के साथ मिलिंग द्वारा कम किया जा सकता है।[12]
एफआईबी तैयारी क्रायोजेनिक रूप से जमे हुए नमूनों के साथ उपयुक्त उपकरण में इस्तेमाल किया जा सकता है, जिससे जैविक नमूने, फार्मास्यूटिकल्स, फोम, स्याही और खाद्य उत्पादों जैसे तरल पदार्थ या वसा वाले नमूनों के क्रॉस सेक्शनल विश्लेषण की अनुमति मिलती है।[13]
एफआईबी का उपयोग द्वितीयक आयन मास स्पेक्ट्रोमेट्री (एसआईएमएस) के लिए भी किया जाता है। मुख्य रूप से केंद्रित आयन बीम के साथ नमूना की सतह को बिखरना के बाद निकाले गए द्वितीयक आयनों को एकत्र और विश्लेषण किया जाता है।
संवेदनशील नमूनों को स्थानांतरित करने के लिए
ट्रांसमिशन इलेक्ट्रॉन माइक्रोस्कोपी (टीईएम) नमूनों (लैमेली, पतली फिल्मों, और अन्य यंत्रवत् और बीम-संवेदनशील नमूनों) के लिए तनाव और झुकने के न्यूनतम परिचय के लिए। जब केंद्रित आयन बीम (एफआईबी) के अंदर स्थानांतरित किया जाता है, तो लचीले धात्विक नैनोवायरों को विशिष्ट रूप से कठोर माइक्रोमैनिपुलेटर से जोड़ा जा सकता है।
इस पद्धति के मुख्य लाभों में नमूना तैयार करने के समय में उल्लेखनीय कमी (त्वरित वेल्डिंग और लो बीम करंट पर नैनोवायर की कटिंग), और तनाव-प्रेरित झुकने, पीटी संदूषण, और आयन बीम क्षति को कम करना सम्मिलित है।[14]
यह सीटू इलेक्ट्रॉन माइक्रोस्कोपी में नमूना तैयार करने के लिए विशेष रूप से उपयुक्त है।
परमाणु जांच नमूना तैयार करने के लिए
परमाणु जांच टोमोग्राफी के लिए शंक्वाकार नमूने बनाने के लिए टीईएम नमूने बनाते समय लागू किए गए वही लगातार मिलिंग कदम लागू किए जा सकते हैं। इस मामले में, आयन कुंडलाकार मिलिंग पैटर्न में चला गया, जिसमें आंतरिक मिलिंग सर्कल उत्तरोत्तर छोटा होता जा रहा है। बीम करंट आम तौर पर नमूना को नुकसान पहुंचाने या नष्ट करने से बचने के लिए आंतरिक सर्कल जितना छोटा होता है, उतना ही कम हो जाता है।[15]
एफआईबी टोमोग्राफी
नमूने में उप-माइक्रोन सुविधाओं की साइट-विशिष्ट 3डी इमेजिंग के लिए केंद्रित आयन बीम शक्तिशाली उपकरण बन गया है। इस एफआईबी टोमोग्राफी तकनीक में, नमूने को इलेक्ट्रॉन बीम का उपयोग करके नई उजागर सतह की इमेजिंग करते समय नमूने के लिए लंबवत आयन बीम का उपयोग करके क्रमिक रूप से मिल्ड किया जाता है। यह तथाकथित, टुकड़ा और दृश्य दृष्टिकोण बड़े पैमाने पर नैनो-संरचनाओं को एसईएम के लिए उपलब्ध कई इमेजिंग मोडों में वर्णित करने की अनुमति देता है, जिसमें द्वितीयक इलेक्ट्रॉन, बैकस्कैटर इलेक्ट्रॉन और ऊर्जा फैलाव एक्स-रे माप सम्मिलित हैं। यह प्रक्रिया विनाशकारी है क्योंकि प्रत्येक छवि को एकत्र करने के बाद नमूना क्रमिक रूप से मिल जाता है। इमेज स्टैक को पंजीकृत करके और आर्टिफैक्ट्स को हटाकर छवियों की एकत्रित श्रृंखला को फिर से 3डी वॉल्यूम में पुनर्निर्मित किया जाता है। एफआईबी टोमोग्राफी को कम करने वाली प्रमुख कलाकृति आयन मिल करटेनिंग है, जहां मिल पैटर्न प्रत्येक छवि में बड़ी एपेरियोडिक धारियां बनाते हैं। डी-स्ट्रिपिंग एल्गोरिदम का उपयोग करके आयन मिल पर्दा हटाया जा सकता है। FIB टोमोग्राफी दोनों कमरे और क्रायो तापमान के साथ-साथ सामग्री और जैविक नमूनों दोनों पर की जा सकती है।
इतिहास
एफआईबी प्रौद्योगिकी का इतिहास
- 1975: क्षेत्र उत्सर्जन प्रौद्योगिकी पर आधारित पहली एफआईबी प्रणालियाँ लेवी-सेटी[16][17] और ऑरलॉफ़ और स्वानसन[18] द्वारा विकसित की गईं और गैस क्षेत्र आयनीकरण स्रोतों (जीएफआईएस) का उपयोग किया।
- 1978: एलएमआईएस पर आधारित पहला एफआईबी सेलिगर एट अल द्वारा बनाया गया था।[19]
एलएमआईएस का भौतिकी
- 1600: गिल्बर्ट ने प्रलेखित किया कि उच्च तनाव के तहत द्रव एक शंकु बनाता है।
- 1914: ज़ेलेनी ने कोन और जेट का अवलोकन किया और फ़िल्माया
- 1959: रिचर्ड फेनमैन ने आयन बीम के उपयोग का सुझाव दिया।
- 1964: टेलर ने इलेक्ट्रो हाइड्रोडायनामिक्स (ईएचडी) के समीकरणों के बिल्कुल शंक्वाकार समाधान का उत्पादन किया
- 1975: क्रोहन और रिंगो ने पहला उच्च चमक आयन स्रोत: एलएमआईएस का उत्पादन किया
एलएमआईएस और एफआईबी के कुछ अग्रणी[20]
- महोनी (1969)
- सुदराउड एट अल। पेरिस इलेवन ओरसे (1974)
- ह्यूजेस रिसर्च लैब्स, सेलिगर (1978)
- ह्यूजेस रिसर्च लैब्स, कुबेना (1978 -1993)
- ऑक्सफोर्ड मैयर विश्वविद्यालय (1980)
- कल्हम यूके, रॉय क्लैम्पिट प्रीवेट (1980)
- ओरेगन ग्रेजुएट सेंटर, एल. स्वानसन (1980)
- ओरेगन ग्रेजुएट सेंटर, जॉन ऑरलॉफ|जे. ऑरलॉफ़ (1974)
- एमआईटी, जे. मेल्न्गैलिस (1980)
हीलियम आयन सूक्ष्मदर्शी (HeIM)
व्यावसायिक रूप से उपलब्ध उपकरणों में देखा जाने वाला अन्य आयन स्रोत एक हीलियम आयन स्रोत है, जो Ga आयनों की तुलना में स्वाभाविक रूप से नमूने के लिए कम हानिकारक है, हालांकि यह अभी भी थोड़ी मात्रा में सामग्री को स्पटर करेगा, विशेष रूप से उच्च आवर्धन और लंबे स्कैन समय पर। चूंकि हीलियम आयनों को छोटे जांच आकार में केंद्रित किया जा सकता है और एसईएम में उच्च ऊर्जा (>1 केवी) इलेक्ट्रॉनों की तुलना में बहुत छोटे नमूना इंटरैक्शन प्रदान करते हैं, अच्छी सामग्री के विपरीत और ओ आयन सूक्ष्मदर्शी के बराबर या उच्च क्षेत्र की उच्च गहराई पर फ़ोकस की उच्च-रिज़ॉल्यूशन छवियां उत्पन्न कर सकता है। वाणिज्यिक उपकरण उप -1 एनएम रिज़ॉल्यूशन में सक्षम हैं।[21][22]
केंद्रित आयन बीम सेटअप में वियन फ़िल्टर
Ga आयनों के साथ इमेजिंग और मिलिंग हमेशा नमूना सतह के पास Ga निगमन का परिणाम है। जैसा कि नमूना सतह स्पटरिंग यील्ड और आयन फ्लक्स (प्रति क्षेत्र प्रति समय आयनों) के समानुपातिक दर पर दूर होता है, Ga को नमूने में आगे प्रत्यारोपित किया जाता है, और Ga की स्थिर-अवस्था प्रोफ़ाइल तक पहुँच जाती है। यह आरोपण अक्सर अर्धचालक की श्रेणी में समस्या है जहां गैलियम द्वारा सिलिकॉन को अमोर्फाइज़ किया जा सकता है। गा एलएमआई स्रोतों के लिए वैकल्पिक समाधान प्राप्त करने के लिए, बड़े पैमाने पर फ़िल्टर किए गए कॉलम विकसित किए गए हैं, जो वीन फ़िल्टर तकनीक पर आधारित हैं। ऐसे स्रोतों में सम्मिलित हैं Au-Si, Au-Ge और Au-Si-Ge स्रोत जो Si, Cr, Fe, Co, Ni, Ge, In, Sn, Au, Pb और अन्य तत्व उपलब्ध कराते हैं।
वीन फिल्टर का सिद्धांत लंबवत इलेक्ट्रोस्टैटिक और त्वरित कणों पर काम करने वाले चुंबकीय क्षेत्र द्वारा प्रेरित विपरीत बलों के संतुलन पर आधारित है। उचित द्रव्यमान प्रक्षेप पथ सीधा रहता है और द्रव्यमान चयन छिद्र से गुजरता है जबकि अन्य द्रव्यमान रुक जाते हैं।[23]
गैलियम के अलावा अन्य स्रोतों के उपयोग की अनुमति देने के अलावा, ये कॉलम विभिन्न प्रजातियों से केवल वीन फ़िल्टर के गुणों को समायोजित करके स्विच कर सकते हैं। बड़े आयनों का उपयोग छोटे आयनों के साथ समोच्चों को परिष्कृत करने से पहले तेजी से मिलिंग करने के लिए किया जा सकता है। उपयोगकर्ता उपयुक्त मिश्र धातु स्रोतों के तत्वों के साथ अपने नमूने डोप करने की संभावना से भी लाभान्वित होते हैं।
बाद की संपत्ति ने चुंबकीय सामग्री और उपकरणों की जांच में बहुत रुचि दिखाई है। खिज्रोएव और लिट्विनोव ने चुंबकीय बल माइक्रोस्कोप (एमएफएम) की मदद से दिखाया है कि आयनों की एक महत्वपूर्ण खुराक है जो चुंबकीय गुणों में बदलाव का अनुभव किए बिना चुंबकीय सामग्री को डीमैग्नेटाइज कर सकती है। इस तरह के अपरंपरागत परिप्रेक्ष्य से एफआईबी का उपयोग करना आज विशेष रूप से उपयुक्त है जब इतनी सारी नई तकनीकों का भविष्य तेजी से प्रोटोटाइप नैनोस्केल चुंबकीय उपकरणों को बनाने की क्षमता पर निर्भर करता है।[24]
यह भी देखें
- कन्फोकल माइक्रोस्कोपी
- आयन मिलिंग मशीन
- पाउडर विवर्तन
- अल्ट्राफास्ट एक्स-रे
- एक्स - रे क्रिस्टलोग्राफी
- एक्स-रे बिखरने की तकनीक
संदर्भ
- ↑ Burnett, T.L.; Kelley, R.; Winiarski, B.; Contreras, L.; Daly, M.; Gholinia, A.; Burke, M.G.; Withers, P.J. (2016-02-01). "Xe प्लाज्मा FIB डुअल बीम माइक्रोस्कोपी द्वारा बड़ी मात्रा में सीरियल सेक्शन टोमोग्राफी". Ultramicroscopy (in English). 161: 119–129. doi:10.1016/j.ultramic.2015.11.001. ISSN 0304-3991. PMID 26683814.
- ↑ Orloff, Jon (1996). "केंद्रित आयन बीम के लिए इमेजिंग रिज़ॉल्यूशन की मौलिक सीमाएँ". Journal of Vacuum Science and Technology B. 14 (6): 3759. Bibcode:1996JVSTB..14.3759O. doi:10.1116/1.588663.
- ↑ Castaldo, V.; Hagen, C. W.; Rieger, B.; Kruit, P. (2008). "Ga[sup +] माइक्रोस्कोप में Sn गेंदों के अवलोकन में स्पटरिंग सीमा बनाम सिग्नल-टू-शोर सीमा". Journal of Vacuum Science and Technology B. 26 (6): 2107–2115. Bibcode:2008JVSTB..26.2107C. doi:10.1116/1.3013306.
- ↑ "परिचय: फोकस्ड आयन बीम सिस्टम". Retrieved 2009-08-06.
- ↑ "एफआईबी: रासायनिक कंट्रास्ट". Retrieved 2007-02-28.
- ↑ Cite error: Invalid
<ref>
tag; no text was provided for refs named:0
- ↑ Cite error: Invalid
<ref>
tag; no text was provided for refs named:1
- ↑ 8.0 8.1 8.2 J. Orloff; M. Utlaut; L. Swanson (2003). उच्च रिज़ॉल्यूशन केंद्रित आयन बीम: FIB और इसके अनुप्रयोग. Springer Press. ISBN 978-0-306-47350-0.
- ↑ 9.0 9.1 9.2 L.A. Giannuzzi; F.A. Stevens (2004). केंद्रित आयन बीम का परिचय: इंस्ट्रुमेंटेशन, सिद्धांत, तकनीक और अभ्यास. Springer Press. ISBN 978-0-387-23116-7.
- ↑ Koch, J.; Grun, K.; Ruff, M.; Wernhardt, R.; Wieck, A.D. (1999). "केंद्रित आयन बीम आरोपण द्वारा नैनोइलेक्ट्रॉनिक उपकरणों का निर्माण". IECON '99 Proceedings. The 25th Annual Conference of the IEEE. Vol. 1. pp. 35–39. doi:10.1109/IECON.1999.822165. ISBN 0-7803-5735-3.
- ↑ Bertazzo, Sergio; Maidment, Susannah C. R.; Kallepitis, Charalambos; Fearn, Sarah; Stevens, Molly M.; Xie, Hai-nan (9 June 2015). "फाइबर और सेलुलर संरचनाएं 75 मिलियन-वर्ष पुराने डायनासोर के नमूनों में संरक्षित हैं". Nature Communications. 6: 7352. Bibcode:2015NatCo...6.7352B. doi:10.1038/ncomms8352. PMC 4468865. PMID 26056764.
- ↑ Principe, E L; Gnauck, P; Hoffrogge, P (2005). "एक FIB-SEM साधन में इन-सीटू कम वोल्टेज आर्गन आयन अंतिम मिलिंग का उपयोग करके मंदिर की तैयारी के लिए एक तीन बीम दृष्टिकोण". Microscopy and Microanalysis. 11. doi:10.1017/S1431927605502460.
- ↑ "क्रायो-एसडीबी का उपयोग कर शीतल सामग्री की अनूठी इमेजिंग" (PDF). Retrieved 2009-06-06.
- ↑ Gorji, Saleh; Kashiwar, Ankush; Mantha, Lakshmi S; Kruk, Robert; Witte, Ralf; Marek, Peter; Hahn, Horst; Kübel, Christian; Scherer, Torsten (December 2020). "Nanowire ने FIB में संवेदनशील TEM नमूनों के स्थानांतरण की सुविधा प्रदान की". Ultramicroscopy. 219: 113075. doi:10.1016/j.ultramic.2020.113075. PMID 33035837.
- ↑ Miller, M. K.; Russell, K. F. (September 2007). "दोहरे बीम SEM/FIB मिलर के साथ एटम जांच नमूना तैयार करना". Ultramicroscopy. 107 (9): 761–6. doi:10.1016/j.ultramic.2007.02.023. PMID 17403581.
- ↑ Levi-Setti, R. (1974). "प्रोटॉन स्कैनिंग माइक्रोस्कोपी: व्यवहार्यता और वादा". Scanning Electron Microscopy: 125.
- ↑ W. H. Escovitz; T. R. Fox; R. Levi-Setti (1975). "फील्ड आयन स्रोत के साथ स्कैनिंग ट्रांसमिशन आयन माइक्रोस्कोप". Proceedings of the National Academy of Sciences of the United States of America. 72 (5): 1826–1828. Bibcode:1975PNAS...72.1826E. doi:10.1073/pnas.72.5.1826. PMC 432639. PMID 1057173.
- ↑ Orloff, J.; Swanson, L. (1975). "माइक्रोप्रोब अनुप्रयोगों के लिए क्षेत्र-आयनीकरण स्रोत का अध्ययन". Journal of Vacuum Science and Technology. 12 (6): 1209. Bibcode:1975JVST...12.1209O. doi:10.1116/1.568497.
- ↑ Seliger, R.; Ward, J.W.; Wang, V.; Kubena, R.L. (1979). "सबमाइक्रोमीटर स्पॉट आकार के साथ एक उच्च तीव्रता स्कैनिंग आयन जांच". Appl. Phys. Lett. 34 (5): 310. Bibcode:1979ApPhL..34..310S. doi:10.1063/1.90786.
- ↑ C.A. Volkert; A.M. Minor (2007). "केंद्रित आयन बीम: माइक्रोस्कोपी और माइक्रोमशीनिंग" (PDF). MRS Bulletin. 32 (5): 389–399. doi:10.1557/mrs2007.62.
- ↑ "कार्ल ज़ीस प्रेस विज्ञप्ति". 2008-11-21. Archived from the original on 2009-05-01. Retrieved 2009-06-06.
- ↑ "जीस ओरियन हीलियम आयन माइक्रोस्कोप तकनीकी डेटा" (PDF). Retrieved 2011-06-02.
- ↑ Orsay physics work on ExB mass filter Column, 1993
- ↑ Khizroev S.; Litvinov D. (2004). "नैनोस्केल चुंबकीय उपकरणों का फोकस्ड-आयन-बीम-आधारित रैपिड प्रोटोटाइपिंग". Nanotechnology. 15 (3): R7. Bibcode:2004Nanot..15R...7K. doi:10.1088/0957-4484/15/3/R01.
- Hoffman, David P.; Shtengel, Gleb; Xu, C. Shan; Campbell, Kirby R.; Freeman, Melanie; Wang, Lei; Milkie, Daniel E.; Pasolli, H. Amalia; Iyer, Nirmala; Bogovic, John A.; Stabley, Daniel R.; Shirinifard, Abbas; Pang, Song; Peale, David; Schaefer, Kathy; Pomp, Wim; Chang, Chi-Lun; Lippincott-Schwartz, Jennifer; Kirchhausen, Tom; Solecki, David J.; Betzig, Eric; Hess, Harald F. (2020). "Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells". Science. 367 (6475): eaaz5357. doi:10.1126/science.aaz5357. ISSN 0036-8075. PMC 7339343. PMID 31949053.
अग्रिम पठन
- Mackenzie, R A D (1990). "Focused ion beam technology: a bibliography". Nanotechnology. 1 (2): 163–201. Bibcode:1990Nanot...1..163M. doi:10.1088/0957-4484/1/2/007.
- J. Orloff (2009). Handbook of Charged Particle Optics. CRC Press. ISBN 978-1-4200-4554-3.
- L.A. Giannuzzi; F.A. Stevie (2004). Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice. Springer Press. ISBN 978-0-387-23116-7.