लाई (lie) बीजगणित: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(24 intermediate revisions by 4 users not shown)
Line 3: Line 3:
{{Lie groups}}
{{Lie groups}}
{{Ring theory sidebar}}
{{Ring theory sidebar}}
गणित में, एक लाई बीजगणित (उच्चारण {{IPAc-en|l|iː}} {{respell|LEE}}) एक सदिश स्थान है <math>\mathfrak g</math> एक साथ एक [[बाइनरी ऑपरेशन|द्वि-आधारी संक्रिया]] के साथ जिसे लाई कोष्ठक कहा जाता है, एक वैकल्पिक बहुरेखीय मानचित्र <math>\mathfrak g \times \mathfrak g \rightarrow \mathfrak g</math>, जो [[जैकोबी पहचान|जैकोबी समरूपता]] को संतुष्ट करता है। दो सदिशों का लाई कोष्ठक <math>x</math> तथा <math>y</math> निरूपित किया जाता है <math>[x,y]</math>।{{efn|The brackets {{math|[,]}} represent bilinear operation <math>\times</math>; often, it is the [[commutator]]: <math>[x,y] =x y - yx</math>, for an associative product on the same vector space. But not necessarily!}} सदिश स्थान <math>\mathfrak g</math> और यह संक्रिया एक गैर-सहयोगी बीजगणित है, जिसका अर्थ है कि लाइ कोष्ठक आवश्यक रूप से साहचर्य संपत्ति नहीं है।
गणित में, लाई बीजगणित (जिसका उच्चारण {{IPAc-en|l|iː}} {{respell|LEE}}) वह सदिश स्थान है जिसे <math>\mathfrak g</math> के साथ एक [[बाइनरी ऑपरेशन|द्वि-आधारी संक्रिया]] के रूप में लाई कोष्ठक कहा जाता है, यह वैकल्पिक बहुरेखीय मानचित्र <math>\mathfrak g \times \mathfrak g \rightarrow \mathfrak g</math>, जो [[जैकोबी पहचान|जैकोबी समरूपता]] को संतुष्ट करता है। दो सदिशों का लाई कोष्ठक <math>x</math> तथा <math>y</math> निरूपित किया जाता है, <math>[x,y]</math>। {{efn|The brackets {{math|[,]}} represent bilinear operation <math>\times</math>; often, it is the [[commutator]]: <math>[x,y] =x y - yx</math>, for an associative product on the same vector space. But not necessarily!}} सदिश स्थान <math>\mathfrak g</math> और यह संक्रिया एक गैर-सहयोगी बीजगणित है, जिसका अर्थ है कि लाइ कोष्ठक आवश्यक रूप से साहचर्य गुण नहीं है।  


लाई बीजगणित [[Index.php?title=झूठ समूहों|लाई समूह]] से निकटता से संबंधित हैं, जो ऐसे [[समूह (गणित)]] हैं जो [[Index.php?title=चिकने विविध|चिकने विविध]] भी हैं: कोई लाई समूह लाई बीजगणित को जन्म देता है, जो समरूपता पर इसकी स्पर्शरेखा स्थान है। इसके विपरीत, वास्तविक या जटिल संख्याओं पर किसी भी परिमित-आयामी लाई बीजगणित के लिए, एक संबंधित [[जुड़ा हुआ स्थान|संयोजित स्थान]] लाई समूह होता है जो परिमित आवरण (ली का तीसरा प्रमेय) तक अद्वितीय होता है। यह पत्राचार लाई बीजगणित के संदर्भ में लाई समूहों की संरचना और वर्गीकरण का अध्ययन करने की अनुमति देता है।
लाई बीजगणित [[Index.php?title=झूठ समूहों|लाई समूह]] से निकटता से संबंधित हैं, जो ऐसे [[समूह (गणित)]] हैं जो [[Index.php?title=चिकने विविध|तिरछा-सममित]] भी हैं, कोई लाई समूह लाई बीजगणित को निर्गत करता है, जो सममित पर इसकी स्पर्शरेखा है। इसके विपरीत, वास्तविक या जटिल संख्याओं पर किसी भी परिमित-आयामी लाई बीजगणित के लिए, एक संबंधित [[जुड़ा हुआ स्थान|संयोजित स्थान]] लाई समूह होता है जो परिमित आवरण (लाई का तीसरा प्रमेय) तक अद्वितीय होता है। यह पत्राचार लाई बीजगणित के संदर्भ में लाई समूहों की संरचना और वर्गीकरण का अध्ययन करने की अनुमति देता है।  


भौतिक विज्ञान में, लाई समूह भौतिक प्रणालियों के समरूपता समूहों के रूप में प्रकट होते हैं, और उनके लाई बीजगणित (समरूपता के निकट स्पर्शरेखा सदिश) को अतिसूक्ष्म समरूपता गति के रूप में माना जा सकता है। इस प्रकार बीजगणित और उनके निरूपण भौतिकी में बड़े पैमाने पर उपयोग किए जाते हैं, विशेष रूप से [[क्वांटम यांत्रिकी]] और कण भौतिकी में।
भौतिक विज्ञान में, लाई समूह भौतिक प्रणालियों के सममित समूहों के रूप में प्रकट होते हैं, और उनके लाई बीजगणित (सममित के निकट स्पर्शरेखा सदिश) को अतिसूक्ष्म सममित गति के रूप में माना जा सकता है। इस प्रकार बीजगणित और उनके निरूपण भौतिकी में बड़े पैमाने पर उपयोग किए जाते हैं, विशेष रूप से [[क्वांटम यांत्रिकी]] और कण भौतिकी में।  


एक प्राथमिक उदाहरण तीन आयामी सदिश का स्थान है <math>\mathfrak{g}=\mathbb{R}^3</math> क्रॉस उत्पाद द्वारा परिभाषित कोष्ठक संक्रिया के साथ <math>[x,y]=x\times y.</math> यह तिरछा-सममित है <math>x\times y = -y\times x</math>, और सहयोगीता के अतिरिक्त यह जैकोबी समरूपता को संतुष्ट करता है:
संकर उत्पाद <math>[x,y]=x\times y</math> द्वारा परिभाषित कोष्ठक संक्रिया के साथ एक प्राथमिक उदाहरण तीन आयामी सदिश <math>\mathfrak{g}=\mathbb{R}^3</math> का स्थानहै। यह तिरछा-सममित है क्योंकि<math>x\times y = -y\times x</math>, और सहयोगीता के अतिरिक्त यह जैकोबी सममित को संतुष्ट करता है:
:<math> x\times(y\times z) \ =\ (x\times y)\times z \ +\  y\times(x\times z). </math>
:<math> x\times(y\times z) \ =\ (x\times y)\times z \ +\  y\times(x\times z). </math>
यह स्थान के घूर्णन के लाई समूह का लाई बीजगणित है,और प्रत्येक सदिश <math>v\in\R^3</math> को अक्ष <math>v</math> के चारों ओर एक अतिसूक्ष्म घुमाव के रूप में चित्रित किया जा सकता है, <math>v</math> के परिमाण के बराबर वेग के साथ। लाइ कोष्ठक दो घुमावों के बीच गैर-क्रमविनिमेयता का एक उपाय है: चूँकि एक घूर्णन अपने साथ चलता है, हमारे पास वैकल्पिक संपत्ति  <math>[x,x]=x\times x = 0</math> है।
यह स्थान के घूर्णन के लाई समूह का लाई बीजगणित है,और प्रत्येक सदिश <math>v\in\R^3</math> को अक्ष <math>v</math> के चारों ओर एक अतिसूक्ष्म घुमाव के रूप में चित्रित किया जा सकता है, <math>v</math> के परिमाण के बराबर वेग के साथ। लाइ कोष्ठक दो घुमावों के बीच गैर-क्रमविनिमेयता का एक माप है: चूँकि घूर्णन अपने साथ चलता है, हमारे पास वैकल्पिक गुण <math>[x,x]=x\times x = 0</math> है।  


== इतिहास ==
== इतिहास ==
1870 के दशक में [[सोफस झूठ|सोफस लाई]] द्वारा अत्यल्प परिवर्तनों की अवधारणा का अध्ययन करने के लिए लाई बीजगणित की शुरुआत की गई थी,<ref>{{harvnb|O'Connor|Robertson|2000}}</ref> और स्वतंत्र रूप से 1880 के दशक में [[विल्हेम हत्या|विल्हेम किलिंग]] द्वारा खोजा गया<ref>{{harvnb|O'Connor|Robertson|2005}}</ref>। लाई बीजगणित नाम 1930 के दशक में [[हरमन वेइल]] द्वारा दिया गया था; पुराने ग्रंथों में, शब्द अत्यल्प समूह का प्रयोग किया जाता है।
1870 में [[सोफस झूठ|सोफस लाई]] द्वारा अत्यल्प परिवर्तनों की अवधारणा का अध्ययन करने के लिए लाई बीजगणित को प्रारंभ किया गया था,<ref>{{harvnb|O'Connor|Robertson|2000}}</ref> और स्वतंत्र रूप से 1880 में [[विल्हेम हत्या|विल्हेम किलिंग]] द्वारा खोजा गया<ref>{{harvnb|O'Connor|Robertson|2005}}</ref>। लाई बीजगणित नाम 1930 में [[हरमन वेइल]] द्वारा दिया गया था; प्राचीन ग्रंथों में, शब्द अत्यल्प समूह का प्रयोग किया जाता है।  


== परिभाषाएँ ==
== परिभाषाएँ ==


=== एक लाई बीजगणित की परिभाषा ===
=== एक लाई बीजगणित की परिभाषा ===
लाई बीजगणित एक सदिश समष्टि है <math>\,\mathfrak{g}</math> किसी क्षेत्र में (गणित) <math>F</math> एक साथ एक बाइनरी संक्रिया के साथ <math>[\,\cdot\,,\cdot\,]: \mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}</math> निम्नलिखित अभिगृहीतों को संतुष्ट करने वाला लाइ कोष्ठक कहलाता है:{{efn|{{harvtxt|Bourbaki|1989|loc=Section 2.}} allows more generally for a [[Module (mathematics)|module]] over a [[commutative ring]]; in this article, this is called a [[#Lie ring|Lie ring]].}}
लाई बीजगणित एक सदिश समष्टि <math>\,\mathfrak{g}</math> है किसी क्षेत्र में (गणित) <math>F</math> एक साथ एक द्वि-आधारी संक्रिया के साथ <math>[\,\cdot\,,\cdot\,]: \mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}</math> निम्नलिखित अभिगृहीतों को संतुष्ट करने वाला लाइ कोष्ठक कहलाता है:{{efn|{{harvtxt|Bourbaki|1989|loc=Section 2.}} allows more generally for a [[Module (mathematics)|module]] over a [[commutative ring]]; in this article, this is called a [[#Lie ring|Lie ring]].}}
* [[बिलिनियर ऑपरेटर|द्विरेखीयता ऑपरेटर]],
* [[बिलिनियर ऑपरेटर|द्विरेखीयता संचालक]],
::<math> [a x + b y, z] = a [x, z] + b [y, z], </math>
::<math> [a x + b y, z] = a [x, z] + b [y, z], </math>
::<math> [z, a x + b y] = a[z, x] + b [z, y] </math>
::<math> [z, a x + b y] = a[z, x] + b [z, y] </math>
: सभी स्केलर्स के लिए <math>a</math>, <math>b</math> में <math>F</math> और सभी तत्व <math>x</math>,<math>y</math>,<math>z</math>में <math>\mathfrak{g}</math>।
: सभी अदिश के लिए <math>a</math>, <math>b</math> में <math>F</math> और सभी तत्वों <math>x</math>,<math>y</math>,<math>z</math> में <math>\mathfrak{g}</math>।  


* वैकल्पिककरण,
* वैकल्पिककरण,
::<math> [x,x]=0\ </math>
::<math> [x,x]=0\ </math>
:सभी के लिए <math>x</math> में <math>\mathfrak{g}</math>।
:सभी के लिए <math>x</math> में <math>\mathfrak{g}</math>।  


* जैकोबी समरूपता,
* जैकोबी समरूपता,
:: <math> [x,[y,z]] + [y,[z,x]] + [z,[x,y]]  = 0 \ </math>
:: <math> [x,[y,z]] + [y,[z,x]] + [z,[x,y]]  = 0 \ </math>
:सभी के लिए <math>x</math>,<math>y</math>,<math>z</math>में <math>\mathfrak{g}</math>।
:सभी के लिए <math>x</math>,<math>y</math>,<math>z</math>में <math>\mathfrak{g}</math>।  


लाई कोष्ठक <math> [x+y,x+y] </math> का विस्तार करने के लिए द्विरेखीयता का उपयोग करना और वैकल्पिकता का उपयोग करना दर्शाता है कि <math> [x,y] + [y,x]=0\ </math> सभी तत्वों के लिए <math>x</math>,<math>y</math>में <math>\mathfrak{g}</math>, यह दर्शाता है कि द्विरेखीयता और वैकल्पिकता का एक साथ अर्थ है
लाई कोष्ठक <math> [x+y,x+y] </math> का विस्तार करने के लिए द्विरेखीयता का उपयोग करना और वैकल्पिकता का उपयोग करना दर्शाता है कि <math> [x,y] + [y,x]=0\ </math> सभी तत्वों के लिए <math>x</math>,<math>y</math> में <math>\mathfrak{g}</math>, यह दर्शाता है कि द्विरेखीयता और वैकल्पिकता का एक साथ अर्थ है
* [[एंटीकम्यूटेटिविटी|अनुगामी]],
* [[एंटीकम्यूटेटिविटी|अनुगामी]],
:: <math> [x,y] = -[y,x],\ </math> : सभी तत्वों के लिए <math>x</math>,<math>y</math>में <math>\mathfrak{g}</math>। यदि क्षेत्र की [[विशेषता (बीजगणित)]] 2 नहीं है, तो अनुगामी का अर्थ वैकल्पिकता है, क्योंकि इसका तात्पर्य है <math>[x,x]=-[x,x].</math><ref>{{harvnb|Humphreys|1978|p=1}}</ref>
:: <math> [x,y] = -[y,x],\ </math> : सभी तत्वों के लिए <math>x</math>,<math>y</math> में <math>\mathfrak{g}</math>। यदि क्षेत्र की [[विशेषता (बीजगणित)]] 2 नहीं है, तो अनुगामी का अर्थ वैकल्पिकता है, क्योंकि इसका तात्पर्य <math>[x,x]=-[x,x]</math> है<ref>{{harvnb|Humphreys|1978|p=1}}</ref>
लाई बीजगणित को न्यून- स्थिति फ़्रेक्टुर अक्षर जैसे <math>\mathfrak{g, h, b, n}</math> से निरूपित करने की प्रथा है यदि एक लाई बीजगणित एक लाई समूह से जुड़ा हुआ है, तो बीजगणित को समूह के फ़्रेक्टुर संस्करण द्वारा दर्शाया जाता है: उदाहरण के लिए विशेष एकात्मक समूह का लाईा बीजगणित एसयू (एन) <math>\mathfrak{su}(n)</math> है|
लाई बीजगणित को न्यून- स्थिति फ़्रेक्टुर अक्षर जैसे <math>\mathfrak{g, h, b, n}</math> से निरूपित करने की प्रथा है यदि एक लाई बीजगणित एक लाई समूह से जुड़ा हुआ है, तो बीजगणित को समूह के फ़्रेक्टुर संस्करण द्वारा दर्शाया जाता है: उदाहरण के लिए विशेष एकात्मक समूह का लाई बीजगणित <math>\mathfrak{su}(n)</math> है|


=== जनित्र और आयाम ===
=== उत्पादक और आयाम ===
लाई बीजगणित के तत्व <math>\mathfrak{g}</math> इसे जनित्र (गणित) कहा जाता है यदि इन तत्वों से युक्त सबसे छोटा उपबीजगणित <math>\mathfrak{g}</math> है। लाई बीजगणित का आयाम सदिश स्थान के रूप में इसका आयाम <math>F</math> है। लाई बीजगणित के न्यूनतम उत्पादक समूह की प्रमुखता हमेशा इसके आयाम से कम या उसके बराबर होती है।
लाई बीजगणित के तत्व <math>\mathfrak{g}</math> इसे उत्पादक (गणित) कहा जाता है यदि इन तत्वों से युक्त सबसे छोटा उपबीजगणित <math>\mathfrak{g}</math> है। लाई बीजगणित का आयाम सदिश स्थान के रूप में इसका आयाम <math>F</math> है। लाई बीजगणित के न्यूनतम उत्पादक समूह की प्रमुखता सदैव इसके आयाम से कम या उसके बराबर होती है।  


अन्य छोटे उदाहरणों के लिए निम्न-आयामी वास्तविक लाई बीजगणित का वर्गीकरण देखें।
अन्य छोटे उदाहरणों के लिए निम्न-आयामी वास्तविक लाई बीजगणित का वर्गीकरण देखें।  


=== उपबीजगणित, आदर्शों और समरूपता ===
=== उपबीजगणित, आदर्शों और समरूपता ===
लाइ कोष्ठक को साहचर्य होने की आवश्यकता नहीं है, जिसका अर्थ है कि <math>[[x,y],z]</math>को बराबर <math>[x,[y,z]]</math> की आवश्यकता नहीं है। यद्यपि, यह [[लचीला बीजगणित]] है। फिर भी, साहचर्य वलय (गणित) और [[साहचर्य बीजगणित]] की अधिकांश शब्दावली सामान्यतः लाई बीजगणित पर लागू होती है। एक लाई उपबीजगणित एक उपस्थान <math>\mathfrak{h} \subseteq \mathfrak{g}</math> है जो लाई कोष्ठक के अधीन बंद है। एक आदर्श <math>\mathfrak i\subseteq\mathfrak{g}</math> मजबूत स्थिति को संतुष्ट करने वाला एक उपबीजगणित है:<ref>Due to the anticommutativity of the commutator, the notions of a left and right ideal in a Lie algebra coincide.</ref>
लाइ कोष्ठक को साहचर्य होने की आवश्यकता नहीं है, जिसका अर्थ है कि <math>[[x,y],z]</math> को बराबर <math>[x,[y,z]]</math> की आवश्यकता नहीं है। यद्यपि, यह [[लचीला बीजगणित|नम्य बीजगणित]] है। फिर भी, साहचर्य वलय (गणित) और [[साहचर्य बीजगणित]] की अधिकांश शब्दावली सामान्यतः लाई बीजगणित पर लागू होती है। एक लाई उपबीजगणित एक उपस्थान <math>\mathfrak{h} \subseteq \mathfrak{g}</math> है जो लाई कोष्ठक के अधीन बंद है। इस प्रकार एक आदर्श <math>\mathfrak i\subseteq\mathfrak{g}</math> मजबूत स्थिति को संतुष्ट करने वाला एक उपबीजगणित है:<ref>Due to the anticommutativity of the commutator, the notions of a left and right ideal in a Lie algebra coincide.</ref>
:<math>[\mathfrak{g},\mathfrak i]\subseteq \mathfrak i.</math>
:<math>[\mathfrak{g},\mathfrak i]\subseteq \mathfrak i.</math>
एक लाई बीजगणित समरूपता एक रेखीय मानचित्र है जो संबंधित लाई कोष्ठक के साथ संगत है:
एक लाई बीजगणित सममित एक रेखीय मानचित्र है जो संबंधित लाई कोष्ठक के साथ संगत है:


:<math> \phi: \mathfrak{g}\to\mathfrak{g'}, \quad \phi([x,y])=[\phi(x),\phi(y)] \ \text{for all}\  
:<math> \phi: \mathfrak{g}\to\mathfrak{g'}, \quad \phi([x,y])=[\phi(x),\phi(y)] \ \text{for all}\  
x,y \in \mathfrak g. </math>
x,y \in \mathfrak g. </math>
साहचर्य छल्लों के लिए, आदर्श समरूपता के कर्नेल_ (बीजगणित) हैं;इसमें एक लाई बीजगणित <math>\mathfrak{g}</math> और एक आदर्श <math>\mathfrak i</math> दिया गया है, कारक बीजगणित या भागफल बीजगणित <math>\mathfrak{g}/\mathfrak i</math> का निर्माण करता है, और पहली तुल्यकारिता प्रमेय लाई बीजगणित के लिए मान्य है।
साहचर्य वलयों के लिए, आदर्श सममित के कर्नेल (बीजगणित) हैं;इसमें एक लाई बीजगणित <math>\mathfrak{g}</math> और एक आदर्श <math>\mathfrak i</math> दिया गया है, कारक बीजगणित या भागफल बीजगणित <math>\mathfrak{g}/\mathfrak i</math> का निर्माण करता है, और पहली तुल्यकारिता प्रमेय लाई बीजगणित के लिए मान्य है।  


चूँकि लाई कोष्ठक संबंधित लाई समूह का एक प्रकार का अतिसूक्ष्म [[कम्यूटेटर|दिकपरिवर्तक]] है, हम कहते हैं कि दो तत्व <math>x,y\in\mathfrak g</math> परिवर्तित करते हैं यदि उनका कोष्ठक: <math>[x,y]=0</math> गायब हो जाता है।
चूँकि लाई कोष्ठक संबंधित लाई समूह का एक प्रकार का अतिसूक्ष्म [[कम्यूटेटर|दिकपरिवर्तक]] है, हम कहते हैं कि दो तत्व <math>x,y\in\mathfrak g</math> परिवर्तित करते हैं यदि उनका कोष्ठक: <math>[x,y]=0</math> अदृश्य हो जाता है।  


एक उपसमुच्चय का [[केंद्रक]] उपबीजगणित <math>S\subset \mathfrak{g}</math> के साथ आने वाले तत्वों <math>S</math>: का वह समूह <math>\mathfrak{z}_{\mathfrak g}(S) = \{x\in\mathfrak g\ \mid\ [x, s] = 0 \ \text{ for all } s\in S\}</math> है। <math>\mathfrak{g}</math> का केंद्रक ही <math>\mathfrak{z}(\mathfrak{g})</math> केंद्र है। इसी तरह, एक उप-स्थान S के लिए, सामान्यक उपबीजगणित का <math>S</math> <math>\mathfrak{n}_{\mathfrak g}(S) = \{x\in\mathfrak g\ \mid\ [x,s]\in S \ \text{ for all}\ s\in S\}</math> है।<ref>{{harvnb|Jacobson|1962|p=28}}</ref> समान रूप से, यदि <math>S</math> एक लाई उपबीजगणित है, <math>\mathfrak{n}_{\mathfrak g}(S)</math> सबसे बड़ा उपबीजगणित <math>S</math> का <math>\mathfrak{n}_{\mathfrak g}(S)</math>आदर्श है।
एक उपसमुच्चय का [[केंद्रक]] उपबीजगणित <math>S\subset \mathfrak{g}</math> के साथ आने वाले तत्वों <math>S</math>: का वह समूह <math>\mathfrak{z}_{\mathfrak g}(S) = \{x\in\mathfrak g\ \mid\ [x, s] = 0 \ \text{ for all } s\in S\}</math> है। <math>\mathfrak{g}</math> का केंद्रक ही <math>\mathfrak{z}(\mathfrak{g})</math> केंद्र है। इसी तरह, एक उप-स्थान S के लिए, सामान्यक उपबीजगणित का <math>S</math> <math>\mathfrak{n}_{\mathfrak g}(S) = \{x\in\mathfrak g\ \mid\ [x,s]\in S \ \text{ for all}\ s\in S\}</math> है। <ref>{{harvnb|Jacobson|1962|p=28}}</ref> समान रूप से, यदि <math>S</math> एक लाई उपबीजगणित है, <math>\mathfrak{n}_{\mathfrak g}(S)</math> सबसे बड़ा उपबीजगणित <math>S</math> का <math>\mathfrak{n}_{\mathfrak g}(S)</math>आदर्श है।  


==== उदाहरण ====
==== उदाहरण ====
सभी के लिए <math>\mathfrak{d}(2) \subset \mathfrak{gl}(2)</math>, दो तत्वों का दिकपरिवर्तक <math>g \in \mathfrak{gl}(2)</math> तथा <math>d \in \mathfrak{d}(2)</math>:
सभी के लिए <math>\mathfrak{d}(2) \subset \mathfrak{gl}(2)</math>, दो तत्वों का दिकपरिवर्तक <math>g \in \mathfrak{gl}(2)</math> तथा <math>d \in \mathfrak{d}(2)</math>:


<math>\begin{align}
<math>\begin{align}
Line 83: Line 83:
\end{align}</math>
\end{align}</math>


दिखाता है <math>\mathfrak{d}(2)</math> एक उपबीजगणित दिखाता है ,लेकिन एक आदर्श नहीं है। वस्तुतः, लाई बीजगणित के प्रत्येक एक-आयामी रैखिक उप-स्थान में प्रेरित एबेलियन लाइ बीजगणित संरचना होती है, जो प्रायः आदर्श नहीं होती है। किसी साधारण लाई बीजगणित के लिए, सभी एबेलियन लाई बीजगणित कभी भी आदर्श नहीं हो सकते।
<math>\mathfrak{d}(2)</math> एक उपबीजगणित दिखाता है ,लेकिन एक आदर्श नहीं है। वस्तुतः, लाई बीजगणित के प्रत्येक एक-आयामी रैखिक उप-स्थान में प्रेरित एबेलियन लाइ बीजगणित संरचना होती है, जो प्रायः आदर्श नहीं होती है। किसी साधारण लाई बीजगणित के लिए, सभी एबेलियन लाई बीजगणित कभी भी आदर्श नहीं हो सकते।  


=== प्रत्यक्ष योग और अर्धप्रत्यक्ष उत्पाद ===
=== प्रत्यक्ष योग और अर्धप्रत्यक्ष उत्पाद ===
Line 91: Line 91:
ताकि <math>\mathfrak g, \mathfrak g'</math> की प्रतियां एक दूसरे के साथ आवागमन करें: <math>[(x,0), (0,x')] = 0.</math>  
ताकि <math>\mathfrak g, \mathfrak g'</math> की प्रतियां एक दूसरे के साथ आवागमन करें: <math>[(x,0), (0,x')] = 0.</math>  


मान लीजिए कि <math>\mathfrak{g}</math> एक लाई बीजगणित है और <math>\mathfrak{i}</math> , <math>\mathfrak{g}</math> की एक गुणजावली है। यदि विहित मानचित्र <math>\mathfrak{g} \to \mathfrak{g}/\mathfrak{i}</math> विभाजित करता है (यानी, एक खंड को स्वीकार करता है), फिर <math>\mathfrak{g}</math> को <math>\mathfrak{i}</math> तथा <math>\mathfrak{g}/\mathfrak{i}</math>, <math>\mathfrak{g}=\mathfrak{g}/\mathfrak{i}\ltimes\mathfrak{i}</math> का अर्धप्रत्यक्ष उत्पाद कहा जाता है। लाई बीजगणित का अर्धप्रत्यक्ष योग भी देखें।
मान लीजिए कि <math>\mathfrak{g}</math> एक लाई बीजगणित है और <math>\mathfrak{i}</math> , <math>\mathfrak{g}</math> की एक गुणजावली है। यदि विहित मानचित्र <math>\mathfrak{g} \to \mathfrak{g}/\mathfrak{i}</math> विभाजित करता है (अर्थात्, एक खंड को स्वीकार करता है), फिर <math>\mathfrak{g}</math> को <math>\mathfrak{i}</math> तथा <math>\mathfrak{g}/\mathfrak{i}</math>, <math>\mathfrak{g}=\mathfrak{g}/\mathfrak{i}\ltimes\mathfrak{i}</math> का अर्धप्रत्यक्ष उत्पाद कहा जाता है। लाई बीजगणित का अर्धप्रत्यक्ष योग भी देखें।  


लेवी के प्रमेय का कहना है कि एक परिमित-आयामी लाई बीजगणित इसके मूल और पूरक उपबीजगणित ( [[लेफ्ट सबलजेब्रा|लेवी उपबीजगणित]]) का एक अर्ध-प्रत्यक्ष उत्पाद है।
लेवी के प्रमेय का कहना है कि एक परिमित-आयामी लाई बीजगणित इसके मूल और पूरक उपबीजगणित ( [[लेफ्ट सबलजेब्रा|लेवी उपबीजगणित]]) का एक अर्ध-प्रत्यक्ष उत्पाद है।  


=== व्युत्पत्ति ===
=== व्युत्पत्ति ===
लाई बीजगणित <math>\mathfrak{g}</math> (या किसी गैर-सहयोगी बीजगणित पर) एक रेखीय मानचित्र है <math>\delta\colon\mathfrak{g}\rightarrow \mathfrak{g}</math> जो [[जनरल लीबनिज नियम|लीबनिज नियम]] का पालन करता है, अर्थात,
लाई बीजगणित <math>\mathfrak{g}</math> (या किसी गैर-सहयोगी बीजगणित पर) एक रेखीय मानचित्र है <math>\delta\colon\mathfrak{g}\rightarrow \mathfrak{g}</math> जो [[जनरल लीबनिज नियम|लीबनिज नियम]] का पालन करता है, अर्थात,
:<math>\delta ([x,y]) = [\delta(x),y] + [x, \delta(y)]</math>
:<math>\delta ([x,y]) = [\delta(x),y] + [x, \delta(y)]</math>
<math>x,y\in\mathfrak g</math> सभी के लिए। किसी भी <math>x\in\mathfrak g</math> से जुड़ी आंतरिक व्युत्पत्ति <math>\mathrm{ad}_x</math> द्वारा परिभाषित आसन्न मानचित्रण <math>\mathrm{ad}_x(y):=[x,y]</math>है। (यह जैकोबी समरूपता के परिणाम के रूप में एक व्युत्पत्ति है।) बाहरी व्युत्पत्ति वे व्युत्पत्ति हैं जो लाई बीजगणित के आसन्न प्रतिनिधित्व से नहीं आती हैं। यदि <math>\mathfrak{g}</math> [[अर्धसरल झूठ बीजगणित|अर्धसरल लाई बीजगणित]] है, प्रत्येक व्युत्पत्ति आंतरिक है।
<math>x,y\in\mathfrak g</math> सभी के लिए। किसी भी <math>x\in\mathfrak g</math> से जुड़ी आंतरिक व्युत्पत्ति <math>\mathrm{ad}_x</math> द्वारा परिभाषित आसन्न मानचित्रण <math>\mathrm{ad}_x(y):=[x,y]</math>है। (यह जैकोबी सममित के परिणाम के रूप में एक व्युत्पत्ति है। ) बाहरी व्युत्पत्ति वे व्युत्पत्ति हैं जो लाई बीजगणित के आसन्न प्रतिनिधित्व से नहीं आती हैं। यदि <math>\mathfrak{g}</math> [[अर्धसरल झूठ बीजगणित|अर्धसरल लाई बीजगणित]] है, प्रत्येक व्युत्पत्ति आंतरिक है।  


व्युत्पत्तियाँ एक सदिश स्थान <math>\mathrm{Der}(\mathfrak g)</math>, जो कि <math>\mathfrak{gl}(\mathfrak{g})</math>; कोष्ठक लाई उपबीजगणित दिकपरिवर्तक है। आंतरिक व्युत्पत्तियाँ <math>\mathrm{Der}(\mathfrak g)</math> एक लाई उपबीजगणित का निर्माण करती हैं।
व्युत्पत्तियाँ एक सदिश स्थान <math>\mathrm{Der}(\mathfrak g)</math>,जो कि <math>\mathfrak{gl}(\mathfrak{g})</math>; कोष्ठक लाई उपबीजगणित दिकपरिवर्तक है। आंतरिक व्युत्पत्तियाँ <math>\mathrm{Der}(\mathfrak g)</math> एक लाई उपबीजगणित का निर्माण करती हैं।  


==== उदाहरण ====
==== उदाहरण ====
उदाहरण के लिए, दिए गए एक लाई बीजगणित आदर्श <math>\mathfrak{i} \subset \mathfrak{g}</math> आसन्न प्रतिनिधित्व <math>\mathfrak{ad}_\mathfrak {g}</math> का <math>\mathfrak{g}</math> पर बाहरी व्युत्पत्तियों के रूप में कार्य करता है <math>\mathfrak{i}</math> जबसे <math>[x,i] \subset \mathfrak{i}</math> किसी के लिए <math>x \in \mathfrak{g}</math> तथा <math>i \in \mathfrak{i}</math>है। लाई बीजगणित के लिए <math>\mathfrak{b}_n</math> ऊपरी त्रिकोणीय आव्यूह में <math>\mathfrak{gl}(n)</math>, इसका एक आदर्श <math>\mathfrak{n}_n</math> सख्ती से ऊपरी त्रिकोणीय आव्यूह हैं(जहां केवल गैर-शून्य तत्व आव्यूह के विकर्ण से ऊपर हैं)। उदाहरण के लिए, तत्वों के दिकपरिवर्तक में <math>\mathfrak{b}_3</math> तथा <math>\mathfrak{n}_3</math> देता है
उदाहरण के लिए, दिए गए एक लाई बीजगणित आदर्श <math>\mathfrak{i} \subset \mathfrak{g}</math> आसन्न प्रतिनिधित्व <math>\mathfrak{ad}_\mathfrak {g}</math> का <math>\mathfrak{g}</math> पर बाहरी व्युत्पत्तियों के रूप में कार्य करता है <math>\mathfrak{i}</math> जबसे <math>[x,i] \subset \mathfrak{i}</math> किसी के लिए <math>x \in \mathfrak{g}</math> तथा <math>i \in \mathfrak{i}</math>है। लाई बीजगणित के लिए <math>\mathfrak{b}_n</math>ऊपरी त्रिकोणीय आव्यूह में <math>\mathfrak{gl}(n)</math>, इसका एक आदर्श <math>\mathfrak{n}_n</math>कठोरता से ऊपरी त्रिकोणीय आव्यूह हैं(जहां केवल गैर-शून्य तत्व आव्यूह के विकर्ण से ऊपर हैं)। उदाहरण के लिए, तत्वों के दिकपरिवर्तक में <math>\mathfrak{b}_3</math> तथा <math>\mathfrak{n}_3</math> देता है


<math>\begin{align}
<math>\begin{align}
Line 133: Line 133:
\end{align}</math>
\end{align}</math>


दिखाता है कि <math>\mathfrak{b}_3</math> से <math>\text{Der}(\mathfrak{n}_3)</math> में बाहरी व्युत्पत्तियाँ स्थित हैं।
दिखाता है कि <math>\mathfrak{b}_3</math>से <math>\text{Der}(\mathfrak{n}_3)</math> में बाहरी व्युत्पत्तियाँ स्थित हैं।  


=== भाजित लाई बीजगणित ===
=== भाजित लाई बीजगणित ===
मान लीजिए कि V क्षेत्र F पर परिमित-विम सदिश समष्टि है, <math>\mathfrak{gl}(V)</math> रैखिक परिवर्तन का लाइ बीजगणित और <math>\mathfrak{g} \subseteq \mathfrak{gl}(V)</math> एक लाई उपबीजगणित है। फिर <math>\mathfrak{g}</math> को विभाजित कहा जाता है यदि <math>\mathfrak{g}</math> में सभी रैखिक परिवर्तनों की विशेषता बहुपद की जड़ें F आधार क्षेत्र में हैं।<ref>{{harvnb|Jacobson|1962|p=42}}</ref> अधिक प्रायः, एक परिमित-आयामी लाई बीजगणित <math>\mathfrak{g}</math> विभाजित होना कहा जाता है यदि इसमें एक कार्टन उपबीजगणित है जिसकी छवि [[संलग्न प्रतिनिधित्व]] के अधीन <math>\operatorname{ad}: \mathfrak{g} \to \mathfrak{gl}(\mathfrak g)</math> एक [[विभाजित झूठ बीजगणित|विभाजित लाई बीजगणित]] है। जटिल अर्धसरल लाई बीजगणित का एक विभाजित वास्तविक रूप (सीफ .#वास्तविक रूप और जटिलता) विभाजित वास्तविक लाई बीजगणित का एक उदाहरण है। अधिक जानकारी के लिए विभाजित लाई बीजगणित भी देखें।
मान लीजिए कि V क्षेत्र F पर परिमित-विम सदिश समष्टि है, <math>\mathfrak{gl}(V)</math> रैखिक परिवर्तन का लाइ बीजगणित और <math>\mathfrak{g} \subseteq \mathfrak{gl}(V)</math> एक लाई उपबीजगणित है। फिर <math>\mathfrak{g}</math> को विभाजित कहा जाता है यदि <math>\mathfrak{g}</math> में सभी रैखिक परिवर्तनों की विशेषता बहुपद की जड़ें F आधार क्षेत्र में हैं। <ref>{{harvnb|Jacobson|1962|p=42}}</ref> अधिक प्रायः, एक परिमित-आयामी लाई बीजगणित <math>\mathfrak{g}</math> विभाजित होना कहा जाता है यदि इसमें कार्टन उपबीजगणित है जिसका प्रतिबिम्ब [[संलग्न प्रतिनिधित्व]] के अधीन <math>\operatorname{ad}: \mathfrak{g} \to \mathfrak{gl}(\mathfrak g)</math> एक [[विभाजित झूठ बीजगणित|विभाजित लाई बीजगणित]] है। जटिल अर्धसरल लाई बीजगणित का विभाजित वास्तविक रूप (cf.वास्तविक रूप और जटिलता) विभाजित वास्तविक लाई बीजगणित का उदाहरण है। अधिक जानकारी के लिए विभाजित लाई बीजगणित भी देखें।  


=== [[वेक्टर अंतरिक्ष आधार|सदिश स्थान आधार]] ===
=== [[वेक्टर अंतरिक्ष आधार|सदिश स्थान आधार]] ===
व्यावहारिक गणनाओं के लिए, बीजगणित के लिए एक स्पष्ट सदिश स्थान आधार चुनना प्रायः सुविधाजनक होता है। इस आधार के लिए एक सामान्य निर्माण लेख [[संरचना स्थिर|संरचना स्थिरांक]] में चित्रित किया गया है।
व्यावहारिक गणनाओं के लिए, बीजगणित के लिए एक स्पष्ट सदिश स्थान आधार चुनना प्रायः सुविधाजनक होता है। इस आधार पर इसे सामान्य निर्माण लेख [[संरचना स्थिर|संरचना स्थिरांक]] में चित्रित किया गया है।  


=== '''श्रेणी-सैद्धांतिक संकेतन का उपयोग करते हुए परिभाषा''' ===
=== '''श्रेणी-सैद्धांतिक संकेतन का उपयोग करते हुए परिभाषा''' ===
यद्यपि ऊपर दी गई परिभाषाएं लाई बीजगणित की पारंपरिक समझ के लिए पर्याप्त हैं, एक बार जब यह समझ में आ जाता है, तो [[श्रेणी सिद्धांत]] के लिए सामान्य संकेतन का उपयोग करके अतिरिक्त अंतर्दृष्टि प्राप्त की जा सकती है, अर्थात, रेखीय मानचित्रों के संदर्भ में लाई बीजगणित को परिभाषित करके-अर्थात्, आकारिकी [[वेक्टर रिक्त स्थान की श्रेणी|सदिश रिक्त स्थान की श्रेणी]] में - अलग-अलग तत्वों पर विचार किए बिना है। (इस खंड में, क्षेत्र (गणित) जिस पर बीजगणित परिभाषित किया गया है, विशेषता (बीजगणित) दो से भिन्न माना जाता है।)
यद्यपि ऊपर दी गई परिभाषाएं लाई बीजगणित की पारंपरिक समझ के लिए पर्याप्त हैं, एक बार जब यह समझ में आ जाता है, तो [[श्रेणी सिद्धांत]] के लिए सामान्य संकेतन का उपयोग करके अतिरिक्त अंतर्दृष्टि प्राप्त की जा सकती है, अर्थात, रेखीय मानचित्रों के संदर्भ में लाई बीजगणित को परिभाषित करके-अर्थात्, आकारिकी [[वेक्टर रिक्त स्थान की श्रेणी|सदिश रिक्त स्थान की श्रेणी]] में - अलग-अलग तत्वों पर विचार किए बिना है। (इस खंड में, क्षेत्र (गणित) जिस पर बीजगणित परिभाषित किया गया है, विशेषता (बीजगणित) दो से भिन्न माना जाता है। )


लाई बीजगणित की श्रेणी-सैद्धांतिक परिभाषा के लिए, दो टेन्सर उत्पाद (टेंसर शक्तियां) और ब्रेडिंग की आवश्यकता होती है। यदि {{mvar|A}} एक सदिश स्थान है, पस्पर विनिमय समाकृतिकता <math>\tau: A\otimes A \to A\otimes A</math> द्वारा परिभाषित किया गया है
लाई बीजगणित की श्रेणी-सैद्धांतिक परिभाषा के लिए, दो टेन्सर उत्पाद (टेंसर शक्तियां) और ब्रेडिंग की आवश्यकता होती है। यदि {{mvar|A}} एक सदिश स्थान है, पस्पर विनिमय समाकृतिकता <math>\tau: A\otimes A \to A\otimes A</math> द्वारा परिभाषित किया गया है
Line 148: Line 148:
चक्रीय-क्रमपरिवर्तन ब्रेडिंग <math>\sigma:A\otimes A\otimes A \to A\otimes A\otimes A </math> की तरह परिभाषित किया गया है
चक्रीय-क्रमपरिवर्तन ब्रेडिंग <math>\sigma:A\otimes A\otimes A \to A\otimes A\otimes A </math> की तरह परिभाषित किया गया है
:<math>\sigma=(\mathrm{id}\otimes \tau)\circ(\tau\otimes \mathrm{id}),</math>
:<math>\sigma=(\mathrm{id}\otimes \tau)\circ(\tau\otimes \mathrm{id}),</math>
जहाँ <math>\mathrm{id}</math> समरूपता रूपवाद है।
जहाँ <math>\mathrm{id}</math> सममित रूपवाद है।  


समान रूप से, <math>\sigma</math> द्वारा परिभाषित किया गया है
समान रूप से, <math>\sigma</math> द्वारा परिभाषित किया गया है
:<math>\sigma(x\otimes y\otimes z)= y\otimes z\otimes x.</math>
:<math>\sigma(x\otimes y\otimes z)= y\otimes z\otimes x.</math>
इस अंकन के साथ, एक लाई बीजगणित को एक [[वस्तु (श्रेणी सिद्धांत)]] <math>A</math> के रूप में परिभाषित किया जा सकता है आकृतिवाद के साथ सदिश रिक्त स्थान की श्रेणी में
इस अंकन के साथ, एक लाई बीजगणित को एक [[वस्तु (श्रेणी सिद्धांत)]] <math>A</math> के रूप में परिभाषित किया जा सकता है आकृतिवाद के साथ सदिश रिक्त स्थान की श्रेणी में
:<math>[\cdot,\cdot]:A\otimes A\rightarrow A</math> जो दो रूपवाद समानता को संतुष्ट करता है
:<math>[\cdot,\cdot]:A\otimes A\rightarrow A</math> जो दो रूपवाद समानता को संतुष्ट करता है
:<math>[\cdot,\cdot]\circ(\mathrm{id}+\tau)=0,</math>
:<math>[\cdot,\cdot]\circ(\mathrm{id}+\tau)=0,</math>
तथा
तथा
:<math>[\cdot,\cdot]\circ ([\cdot,\cdot]\otimes \mathrm{id}) \circ (\mathrm{id} +\sigma+\sigma^2)=0.</math>
:<math>[\cdot,\cdot]\circ ([\cdot,\cdot]\otimes \mathrm{id}) \circ (\mathrm{id} +\sigma+\sigma^2)=0.</math><br />
 
 
== उदाहरण ==
== उदाहरण ==


=== सदिश रिक्त स्थान ===
=== सदिश रिक्त स्थान ===


कोई सदिश स्थान <math>V</math> समान रूप से शून्य लाई कोष्ठक के साथ संपन्न एक लाई बीजगणित बन जाता है। ऐसे लाई बीजगणित को एबेलियन लाई बीजगणित कहा जाता है,सीएफ।अधीन। किसी क्षेत्र पर कोई भी एक आयामी लाई बीजगणित लाई कोष्ठक की वैकल्पिक संपत्ति द्वारा एबेलियन है।
कोई सदिश स्थान <math>V</math> समान रूप से शून्य लाई कोष्ठक के साथ संपन्न एक लाई बीजगणित बन जाता है। ऐसे लाई बीजगणित को एबेलियन लाई बीजगणित कहा जाता है,सीएफ के अधीन किसी क्षेत्र पर कोई भी एक आयामी लाई बीजगणित लाई कोष्ठक की वैकल्पिक गुण द्वारा एबेलियन है।  


=== दिकपरिवर्तक कोष्ठक के साथ साहचर्य बीजगणित ===
=== दिकपरिवर्तक कोष्ठक के साथ साहचर्य बीजगणित ===
* एक साहचर्य बीजगणित पर <math>A</math> एक मैदान के ऊपर <math>F</math> गुणन के साथ <math>(x, y) \mapsto xy</math>, एक लाइ कोष्ठक को दिकपरिवर्तक # रिंग सिद्धांत द्वारा परिभाषित किया जा सकता है <math>[x,y] = xy - yx</math>। इस कोष्ठक के साथ, <math>A</math> लाई बीजगणित है।<ref>{{harvnb|Bourbaki|1989|loc=§1.2. Example 1.}}</ref> सहयोगी बीजगणित को लाई बीजगणित का एक लिफाफा बीजगणित कहा जाता है <math>(A, [\,\cdot\, , \cdot \,])</math>। हर लाई बीजगणित को एक में एम्बेड किया जा सकता है जो इस तरह से एक साहचर्य बीजगणित से उत्पन्न होता है; [[सार्वभौमिक लिफाफा बीजगणित]] देखें।
* एक साहचर्य बीजगणित पर <math>A</math> एक मैदान के ऊपर <math>F</math> गुणन के साथ <math>(x, y) \mapsto xy</math>, एक लाइ कोष्ठक को दिकपरिवर्तक वलय सिद्धांत द्वारा परिभाषित किया जा सकता है <math>[x,y] = xy - yx</math>। इस कोष्ठक के साथ, <math>A</math> लाई बीजगणित है। <ref>{{harvnb|Bourbaki|1989|loc=§1.2. Example 1.}}</ref> सहयोगी बीजगणित <math>A</math> को लाई बीजगणित का एक आवरण बीजगणित कहा जाता है <math>(A, [\,\cdot\, , \cdot \,])</math>। हर लाई बीजगणित को एक में अंतर्निहित किया जा सकता है जो इस तरह से एक साहचर्य बीजगणित से उत्पन्न होता है; [[सार्वभौमिक लिफाफा बीजगणित|सार्वभौमिक आवरण बीजगणित]] देखें।  
* एफ-सदिश स्थान का [[एंडोमोर्फिज्म रिंग]] <math>V</math> उपरोक्त लाई कोष्ठक के साथ निरूपित किया गया है <math>\mathfrak{gl}(V)</math>
* उपरोक्त लाई कोष्ठक के साथ <math>F</math>-सदिश स्थान <math>V</math> के [[एंडोमोर्फिज्म रिंग|अंत:रूपांतरण वलय]] के सहयोगी बीजगणित को <math>\mathfrak{gl}(V)</math>निरूपित किया गया है।
* परिमित आयामी सदिश स्थान के लिए <math>V = F^n</math>, पिछला उदाहरण बिल्कुल n × n आव्यूहों का लाई बीजगणित है, जिसे निरूपित किया गया है <math>\mathfrak{gl}(n, F)</math> या <math>\mathfrak{gl}_n(F)</math>,<ref>{{harvnb|Bourbaki|1989|loc=§1.2. Example 2.}}</ref> और कोष्ठक के साथ <math>[X,Y]=XY-YX</math> जहां निकटता आव्यूह गुणन को इंगित करती है। यह सामान्य रेखीय समूह का लाईा बीजगणित है, जिसमें व्युत्क्रमणीय आव्यूह शामिल हैं।
* एक परिमित आयामी सदिश स्थान के लिए <math>V = F^n</math>, पिछला उदाहरण बिल्कुल n × n आव्यूहों का लाई बीजगणित है, जिसे <math>\mathfrak{gl}(n, F)</math> या <math>\mathfrak{gl}_n(F)</math>निरूपित किया गया है,<ref>{{harvnb|Bourbaki|1989|loc=§1.2. Example 2.}}</ref> और कोष्ठक के साथ <math>[X,Y]=XY-YX</math> जहां निकटता आव्यूह गुणन को इंगित करती है। यह सामान्य रेखीय समूह का लाई बीजगणित है, जिसमें व्युत्क्रमणीय आव्यूह सम्मिलित हैं।  


=== विशेष आव्यूह ===
=== विशेष आव्यूह ===
के दो महत्वपूर्ण सबलजेब्रस <math>\mathfrak{gl}_n(F)</math> हैं:
के दो महत्वपूर्ण उपबीजगणित <math>\mathfrak{gl}_n(F)</math> हैं:


* [[ट्रेस (रैखिक बीजगणित)]] शून्य के आव्यूह विशेष रैखिक लाई बीजगणित बनाते हैं <math>\mathfrak{sl}_n(F)</math>, विशेष रेखीय समूह का लाई बीजगणित <math>\mathrm{SL}_n(F)</math>।<ref>{{harvnb|Humphreys|1978|p=2}}</ref>
* [[ट्रेस (रैखिक बीजगणित)]] शून्य के आव्यूह विशेष रैखिक लाई बीजगणित <math>\mathfrak{sl}_n(F)</math> बनाते हैं, विशेष रेखीय समूह का लाई बीजगणित <math>\mathrm{SL}_n(F)</math>। <ref>{{harvnb|Humphreys|1978|p=2}}</ref>
* तिरछा-हर्मिटियन आव्यूह एकात्मक लाई बीजगणित बनाते हैं <math>\mathfrak u(n)</math>, [[एकात्मक समूह]] U(n) का लाईा बीजगणित।
* तिरछा-हर्मिटियन आव्यूह एकात्मक लाई बीजगणित <math>\mathfrak u(n)</math>बनाते हैं, [[एकात्मक समूह]] U(n) का लाई बीजगणित।  


=== आव्यूह लाई बीजगणित ===
=== आव्यूह लाई बीजगणित ===


एक जटिल रेखीय समूह एक लाई समूह है जिसमें मेट्रिसेस होते हैं, <math>G\subset M_n(\mathbb{C})</math>, जहाँ G का गुणन आव्यूह गुणन है। इसी लाई बीजगणित <math>\mathfrak g</math> आव्यूह का स्थान है जो रैखिक स्थान के अंदर G के स्पर्शरेखा सदिश हैं <math>M_n(\mathbb{C})</math>: इसमें समरूपता पर जी में चिकने वक्रों के डेरिवेटिव शामिल हैं: <ब्लॉककोट><math>\mathfrak{g} = \{ X = c'(0) \in M_n(\mathbb{C}) \ \mid\ \text{ smooth } c : \mathbb{R}\to G, \ c(0) = I \}.</math>का लाई कोष्ठक <math>\mathfrak{g}</math> आव्यूह के दिकपरिवर्तक द्वारा दिया जाता है, <math>[X,Y]=XY-YX</math>। लाई बीजगणित को देखते हुए, लाई समूह को [[मैट्रिक्स घातीय|आव्यूह घातीय]] मैपिंग की छवि के रूप में पुनर्प्राप्त कर सकते हैं <math>\exp: M_n(\mathbb{C})\to M_n(\mathbb{C})</math> द्वारा परिभाषित <math>\exp(X) = I + X + \tfrac{1}{2!}X^2+\cdots</math>, जो प्रत्येक आव्यूह के लिए अभिसरण करता है <math>X</math>: वह है, <math>G=\exp(\mathfrak g)</math>
एक जटिल रेखीय समूह एक लाई समूह है जिसमें आव्यूह होते हैं, <math>G\subset M_n(\mathbb{C})</math>, जहाँ G का गुणन आव्यूह गुणन है। संबंधित लाई बीजगणित <math>\mathfrak g</math> आव्यूह का स्थान है जो रैखिक स्थान <math>M_n(\mathbb{C})</math> के अंदर G के स्पर्शरेखा सदिश हैं: इसमें सममित पर जी में चिकने वक्रों के व्युत्पन्न सम्मिलित हैं:  
 
<math>\mathfrak{g} = \{ X = c'(0) \in M_n(\mathbb{C}) \ \mid\ \text{ smooth } c : \mathbb{R}\to G, \ c(0) = I \}.</math>
 
लाई कोष्ठक <math>\mathfrak{g}</math> आव्यूह के दिकपरिवर्तक द्वारा दिया जाता है, <math>[X,Y]=XY-YX</math>। लाई बीजगणित को देखते हुए, लाई समूह को [[मैट्रिक्स घातीय|आव्यूह घातीय]] चित्रण के प्रतिबिम्ब के रूप में पुनर्प्राप्त कर सकते हैं <math>\exp: M_n(\mathbb{C})\to M_n(\mathbb{C})</math> द्वारा परिभाषित <math>\exp(X) = I + X + \tfrac{1}{2!}X^2+\cdots</math>, जो प्रत्येक आव्यूह <math>X</math> के लिए अभिसरण करता है: वह है, <math>G=\exp(\mathfrak g)</math> है।
 
निम्नलिखित आव्यूह लाई समूहों के लाई बीजगणित के उदाहरण हैं:<ref>{{harvnb|Hall|2015|loc=§3.4}}</ref>
निम्नलिखित आव्यूह लाई समूहों के लाई बीजगणित के उदाहरण हैं:<ref>{{harvnb|Hall|2015|loc=§3.4}}</ref>
* विशेष रैखिक समूह <math>{\rm SL}_n(\mathbb{C})</math>, सभी से मिलकर {{math|''n''&nbsp;×&nbsp;''n''}} निर्धारक 1 के साथ आव्यूह। यह बीजगणित है <math>\mathfrak{sl}_n(\mathbb{C})</math>सभी के होते हैं {{math|''n''&nbsp;×&nbsp;''n''}} जटिल प्रविष्टियों के साथ मेट्रिसेस और ट्रेस 0। इसी तरह, कोई संबंधित वास्तविक लाई समूह को परिभाषित कर सकता है <math>{\rm SL}_n(\mathbb{R})</math> और इसका लाई बीजगणित <math>\mathfrak{sl}_n(\mathbb{R})</math>
* विशेष रैखिक समूह <math>{\rm SL}_n(\mathbb{C})</math>, {{math|''n''&nbsp;×&nbsp;''n''}} आव्यूह निर्धारक 1 के साथ सभी से मिलकर। इसके लाई बीजगणित <math>\mathfrak{sl}_n(\mathbb{C})</math> में जटिल प्रविष्टियों और ट्रेस 0 के साथ सभी {{math|''n''&nbsp;×&nbsp;''n''}} आव्यूह होते हैं। इसी तरह, कोई संबंधित वास्तविक लाई समूह <math>{\rm SL}_n(\mathbb{R})</math> और इसका लाई बीजगणित <math>\mathfrak{sl}_n(\mathbb{R})</math>को परिभाषित कर सकता है।
* एकात्मक समूह <math>U(n)</math> n × n एकात्मक आव्यूह होते हैं (संतोषजनक <math>U^*=U^{-1}</math>)। यह लाई बीजगणित है <math>\mathfrak{u}(n)</math> तिरछा-स्व-आसन्न मेट्रिसेस के होते हैं (<math>X^*=-X</math>)
* एकात्मक समूह <math>U(n)</math> n × n एकात्मक आव्यूह होते हैं (संतोषजनक <math>U^*=U^{-1}</math>)। यह लाई बीजगणित <math>\mathfrak{u}(n)</math> है तिरछा-स्व-आसन्न आव्यूह के होते (<math>X^*=-X</math>) हैं।
* विशेष [[ऑर्थोगोनल समूह]] <math>\mathrm{SO}(n)</math>, वास्तविक निर्धारक-एक ऑर्थोगोनल मेट्रिसेस से मिलकर (<math>A^{\mathrm{T}}=A^{-1}</math>)। यह लाई बीजगणित है <math>\mathfrak{so}(n)</math> वास्तविक तिरछा-सममित आव्यूह होते हैं (<math>X^{\rm T}=-X</math>)पूर्ण ऑर्थोगोनल समूह <math>\mathrm{O}(n)</math>निर्धारक-एक शर्त के बिना, शामिल हैं <math>\mathrm{SO}(n)</math> और एक अलग जुड़ा हुआ घटक है, इसलिए इसमें समान लाई बीजगणित है <math>\mathrm{SO}(n)</math>। यह भी देखें तिरछा-सममित_आव्यूह#Infinitesimal_rotations|तिरछा-सममित आव्यूहों के साथ अत्यल्प घुमाव। इसी तरह, जटिल आव्यूह प्रविष्टियों की अनुमति देकर, इस समूह और बीजगणित के एक जटिल संस्करण को परिभाषित किया जा सकता है।
* विशेष [[ऑर्थोगोनल समूह|समकोणिक समूह]] <math>\mathrm{SO}(n)</math>, वास्तविक निर्धारक-एक समकोणिक आव्यूह से मिलकर (<math>A^{\mathrm{T}}=A^{-1}</math>)। यह लाई बीजगणित है <math>\mathfrak{so}(n)</math> वास्तविक तिरछा-सममित आव्यूह होते (<math>X^{\rm T}=-X</math>) है। पूर्ण समकोणिक समूह <math>\mathrm{O}(n)</math>निर्धारक-एक शर्त के बिना, सम्मिलित हैं <math>\mathrm{SO}(n)</math> और एक अलग जुड़ा हुआ घटक है, इसलिए इसमें समान लाई बीजगणित है <math>\mathrm{SO}(n)</math>। तिरछा-सममित आव्यूहों के साथ अत्यल्प घुमाव भी देखें। इसी तरह, जटिल आव्यूह प्रविष्टियों की अनुमति देकर, इस समूह और बीजगणित के एक जटिल संस्करण को परिभाषित किया जा सकता है।  


=== दो आयाम ===
=== दो आयाम ===


* किसी भी क्षेत्र में <math>F</math> समरूपता तक, एक एकल द्वि-आयामी गैर-अबेलियन लाई बीजगणित है। जनित्र एक्स, वाई के साथ, इसके कोष्ठक को परिभाषित किया गया है <math> \left [x, y\right ] = y</math>यह Affine group#Matrix प्रतिनिधित्व उत्पन्न करता है।
* किसी भी क्षेत्र में <math>F</math> सममित तक, एक एकल द्वि-आयामी गैर-अबेलियन लाई बीजगणित है। उत्पादक <math>x</math>, <math>y</math> के साथ, इसके कोष्ठक को <math> \left [x, y\right ] = y</math> के रूप में परिभाषित किया गया है। यह '''अफ्फिन समूह को एक आयाम''' में उत्पन्न करता है।  


: इसे मेट्रिसेस द्वारा महसूस किया जा सकता है:
: इसे आव्यूह द्वारा समझा जा सकता है:
::<math> x= \left( \begin{array}{cc} 1 & 0\\ 0 & 0 \end{array}\right), \qquad y=  \left( \begin{array}{cc} 0 & 1\\ 0 & 0 \end{array}\right).  </math>
::<math> x= \left( \begin{array}{cc} 1 & 0\\ 0 & 0 \end{array}\right), \qquad y=  \left( \begin{array}{cc} 0 & 1\\ 0 & 0 \end{array}\right).  </math>
तब से
क्योंकि
:<math> \left( \begin{array}{cc} 1 & c\\ 0 & 0 \end{array}\right)^{n+1} = \left( \begin{array}{cc} 1 & c\\ 0 & 0 \end{array}\right)</math>
:<math> \left( \begin{array}{cc} 1 & c\\ 0 & 0 \end{array}\right)^{n+1} = \left( \begin{array}{cc} 1 & c\\ 0 & 0 \end{array}\right)</math>
किसी भी प्राकृतिक संख्या के लिए <math>n</math> और कोई भी <math>c</math>, कोई देखता है कि परिणामी लाई समूह तत्व ऊपरी त्रिकोणीय 2 × 2 मेट्रिसेस हैं जो इकाई निचले विकर्ण के साथ हैं:
किसी भी प्राकृतिक संख्या के लिए <math>n</math> और कोई भी <math>c</math>, देखा जा सकता है कि परिणामी लाई समूह तत्व ऊपरी त्रिकोणीय 2 × 2 आव्यूह हैं जो इकाई निचले विकर्ण के साथ हैं:
::<math> \exp(a\cdot{}x+b\cdot{}y)= \left( \begin{array}{cc} e^a & \tfrac{b}{a}(e^a-1)\\ 0 & 1 \end{array}\right) = 1 + \tfrac{e^a-1}{a}\left(a\cdot{}x+b\cdot{}y\right). </math>
::<math> \exp(a\cdot{}x+b\cdot{}y)= \left( \begin{array}{cc} e^a & \tfrac{b}{a}(e^a-1)\\ 0 & 1 \end{array}\right) = 1 + \tfrac{e^a-1}{a}\left(a\cdot{}x+b\cdot{}y\right). </math>


Line 199: Line 202:
* [[हाइजेनबर्ग बीजगणित]] <math>{\rm H}_3(\mathbb{R})</math> तत्वों द्वारा उत्पन्न एक त्रि-आयामी लाई बीजगणित है {{mvar|x}}, {{mvar|y}}, तथा {{mvar|z}} लाई कोष्ठक के साथ
* [[हाइजेनबर्ग बीजगणित]] <math>{\rm H}_3(\mathbb{R})</math> तत्वों द्वारा उत्पन्न एक त्रि-आयामी लाई बीजगणित है {{mvar|x}}, {{mvar|y}}, तथा {{mvar|z}} लाई कोष्ठक के साथ


::<math>[x,y] = z,\quad [x,z] = 0, \quad [y,z] = 0</math>।
::<math>[x,y] = z,\quad [x,z] = 0, \quad [y,z] = 0</math>।  
: यह सामान्यतः पर दिकपरिवर्तक लाइ कोष्ठक और आधार के साथ 3 × 3 कड़ाई से ऊपरी-त्रिकोणीय आव्यूह के स्थान के रूप में महसूस किया जाता है
: यह सामान्यतः दिकपरिवर्तक लाइ कोष्ठक और आधार के साथ 3 × 3 दृढ़ता से ऊपरी-त्रिकोणीय आव्यूह के स्थान के रूप में समझा जाता है
::<math>
::<math>
x = \left( \begin{array}{ccc}
x = \left( \begin{array}{ccc}
Line 218: Line 221:
\end{array}\right)~.\quad
\end{array}\right)~.\quad
</math>
</math>
: [[हाइजेनबर्ग समूह]] के किसी भी तत्व का प्रतिनिधित्व समूह जनरेटर के उत्पाद के रूप में होता है, यानी इन लाई बीजगणित जनरेटर के आव्यूह घातांक,
: [[हाइजेनबर्ग समूह]] के किसी भी तत्व का प्रतिनिधित्व समूह उत्पादक के उत्पाद के रूप में होता है, अर्थात् इन लाई बीजगणित उत्पादक के आव्यूह घातांक,
::<math>\left( \begin{array}{ccc}
::<math>\left( \begin{array}{ccc}
1&a&c\\
1&a&c\\
Line 243: Line 246:
\end{array}\right)~.\quad
\end{array}\right)~.\quad
</math>
</math>
:इन जनरेटर के बीच कम्यूटेशन संबंध हैं
:इन उत्पादक के बीच दिक्-परिवर्तन संबंध हैं
::<math>[F_1, F_2] = F_3,</math>
::<math>[F_1, F_2] = F_3,</math>
:: <math>[F_2, F_3] = F_1,</math>
:: <math>[F_2, F_3] = F_1,</math>
:: <math>[F_3, F_1] = F_2.</math>
:: <math>[F_3, F_1] = F_2.</math>
: त्रि-आयामी [[यूक्लिडियन अंतरिक्ष|यूक्लिडियन स्थान]] <math>\mathbb{R}^3</math> [[वेक्टर (ज्यामितीय)|सदिश (ज्यामितीय)]] के क्रॉस उत्पाद द्वारा दिए गए लाई कोष्ठक के साथ उपरोक्त के समान रूपांतर संबंध हैं: इस प्रकार, यह आइसोमोर्फिक है <math>\mathfrak{so}(3)</math>यह लाई बीजगणित क्वांटम यांत्रिकी में स्पिन -1 कणों के लिए सामान्य रूप से सामान्य [[स्पिन (भौतिकी)]] कोणीय-गति घटक ऑपरेटरों के बराबर है।
: त्रि-आयामी [[यूक्लिडियन अंतरिक्ष|यूक्लिडियन स्थान]] <math>\mathbb{R}^3</math> [[वेक्टर (ज्यामितीय)|सदिश (ज्यामितीय)]] के संकर उत्पाद द्वारा दिए गए लाई कोष्ठक के साथ उपरोक्त के समान रूपांतर संबंध हैं: इस प्रकार, यह <math>\mathfrak{so}(3)</math> के लिए समरूप है। यह लाई बीजगणित क्वांटम यांत्रिकी में चक्रण -1 कणों के लिए सामान्य रूप से सामान्य [[स्पिन (भौतिकी)|चक्रण (भौतिकी)]] कोणीय-गति घटक संचालकों के बराबर है।  


=== अनंत आयाम ===
=== अनंत आयाम ===


* [[अंतर टोपोलॉजी]] में अनंत-आयामी वास्तविक लाई बीजगणित का एक महत्वपूर्ण वर्ग उत्पन्न होता है। अलग-अलग मैनिफोल्ड एम पर चिकने [[सदिश क्षेत्रों का लेट ब्रैकेट|सदिश क्षेत्रों का लाई कोष्ठक]] लाई बीजगणित बनाता है, जहाँ लाई कोष्ठक को [[वेक्टर क्षेत्र|सदिश क्षेत्र]]्स के लाई कोष्ठक के रूप में परिभाषित किया जाता है। लाई कोष्ठक को व्यक्त करने का एक तरीका [[झूठ व्युत्पन्न|लाई व्युत्पन्न]] की औपचारिकता के माध्यम से है, जो पहले ऑर्डर आंशिक अंतर ऑपरेटर एल के साथ सदिश फ़ील्ड एक्स की समरूपता करता है।<sub>''X''</sub> एल को देकर सुचारू कार्यों पर कार्य करना<sub>''X''</sub>(एफ) एक्स की दिशा में फ़ंक्शन एफ का दिशात्मक व्युत्पन्न हो। दो सदिश क्षेत्रों का लाईा कोष्ठक [एक्स, वाई] सूत्र द्वारा कार्यों पर अपनी कार्रवाई के माध्यम से परिभाषित सदिश क्षेत्र है:
* [[अंतर टोपोलॉजी|अंतर सांस्थिति]] में अनंत-आयामी वास्तविक लाई बीजगणित का एक महत्वपूर्ण वर्ग उत्पन्न होता है। अलग-अलग सममित <math>M</math> पर चिकने [[सदिश क्षेत्रों का लेट ब्रैकेट|सदिश क्षेत्रों का लाई कोष्ठक]] लाई बीजगणित बनाता है, जहाँ लाई कोष्ठक को [[वेक्टर क्षेत्र|सदिश क्षेत्र]] के दिकपरिवर्तक के रूप में परिभाषित किया जाता है। लाई कोष्ठक को व्यक्त करने की एक विधि [[झूठ व्युत्पन्न|लाई व्युत्पन्न]] की औपचारिकता के माध्यम से है,जो एक सदिश क्षेत्र <math>X</math> की पहचान पहले क्रम के आंशिक अंतर संचालक <math>L_X</math> के साथ करता है, जो <math>L_X(f)</math> को <math>X</math> की दिशा में कार्य <math>f</math> का दिशात्मक व्युत्पन्न होने देता है। दो सदिश क्षेत्रों का लाई कोष्ठक [<math>x,y</math>] सूत्र द्वारा कार्यों पर अपनी कार्यवाही के माध्यम से परिभाषित सदिश क्षेत्र है:
   
   
:: <math> L_{[X,Y]}f=L_X(L_Y f)-L_Y(L_X f).\,</math>
:: <math> L_{[X,Y]}f=L_X(L_Y f)-L_Y(L_X f).\,</math>
*केएसी-मूडी बीजगणित|केएसी-मूडी बीजगणित अनंत-आयामी लाई बीजगणित का एक बड़ा वर्ग है जिसकी संरचना उपरोक्त परिमित-आयामी मामलों के समान है।
*'''केएसी-मूडी बीजगणित''' अनंत-आयामी लाई बीजगणित का एक बड़ा वर्ग है जिसकी संरचना उपरोक्त परिमित-आयामी स्थितियों के समान है।  
* [[मोयल ब्रैकेट|मोयल कोष्ठक]] एक अनंत-आयामी लाई बीजगणित है जिसमें सभी शास्त्रीय लाई समूह शामिल हैं# सबलजेब्रस के रूप में द्विरेखीय रूपों के साथ संबंध।
* [[मोयल ब्रैकेट|मोयल कोष्ठक]] एक अनंत-आयामी लाई बीजगणित है जिसमें सभी शास्त्रीय लाई बीजगणित उपबीजगणित के रूप में सम्मिलित हैं।
* [[स्ट्रिंग सिद्धांत]] में विरासोरो बीजगणित का सर्वाधिक महत्व है।
* [[स्ट्रिंग सिद्धांत|स्ट्वलय सिद्धांत]] में '''विरासोरो''' बीजगणित का सर्वाधिक महत्व है।  


== प्रतिनिधित्व ==
== प्रतिनिधित्व ==
{{main|Lie algebra representation}}
{{main|लाइ बीजगणित प्रतिनिधित्व}}




=== परिभाषाएं ===
=== परिभाषाएं ===
सदिश समष्टि V दिया है, मान लीजिए <math>\mathfrak{gl}(V)</math> द्वारा दिए गए कोष्ठक के साथ, वी के सभी रैखिक [[एंडोमोर्फिज्म]] से युक्त लाई बीजगणित को निरूपित करें <math>[X,Y]=XY-YX</math>लाई बीजगणित का एक प्रतिनिधित्व <math>\mathfrak{g}</math> V पर एक ले बीजगणित समाकारिता है
सदिश समष्टि V दिया है, मान लीजिए <math>\mathfrak{gl}(V)</math> लाई बीजगणित को निरूपित करता है ,जिसमें V के सभी रैखिक [[एंडोमोर्फिज्म|अंत:रूपांतरण]] होते हैं, <math>[X,Y]=XY-YX</math> द्वारा दिए गए कोष्ठक के साथ। लाई बीजगणित का एक प्रतिनिधित्व <math>\mathfrak{g}</math> V पर एक लाई बीजगणित समाकारिता है
:<math>\pi: \mathfrak g \to \mathfrak{gl}(V).</math>
:<math>\pi: \mathfrak g \to \mathfrak{gl}(V).</math>
यदि इसकी कर्नेल शून्य है तो एक प्रतिनिधित्व को वफादार कहा जाता है। एडो की प्रमेय<ref>{{harvnb|Jacobson|1962|loc=Ch. VI}}</ref> बताता है कि प्रत्येक परिमित-आयामी लाई बीजगणित में एक परिमित-आयामी सदिश स्थान पर एक वफादार प्रतिनिधित्व होता है।
यदि इसकी कर्नेल शून्य है तो एक प्रतिनिधित्व को यथार्थ कहा जाता है। '''एडो की प्रमेय'''<ref>{{harvnb|Jacobson|1962|loc=Ch. VI}}</ref> बताता है कि प्रत्येक परिमित-आयामी लाई बीजगणित में एक परिमित-आयामी सदिश स्थान पर एक यथार्थ प्रतिनिधित्व होता है।  


=== संलग्न प्रतिनिधित्व ===
=== संलग्न प्रतिनिधित्व ===
किसी भी लाई बीजगणित के लिए <math>\mathfrak{g}</math>, हम एक प्रतिनिधित्व को परिभाषित कर सकते हैं
किसी भी लाई बीजगणित के लिए <math>\mathfrak{g}</math>, हम एक प्रतिनिधित्व को परिभाषित कर सकते हैं
:<math>\operatorname{ad}\colon\mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})</math>
:<math>\operatorname{ad}\colon\mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})</math>
के द्वारा दिया गया <math>\operatorname{ad}(x)(y) = [x, y]</math>; यह सदिश स्थान पर एक प्रतिनिधित्व है <math>\mathfrak{g}</math> लाई बीजगणित के आसन्न प्रतिनिधित्व कहा जाता है।
<math>\operatorname{ad}(x)(y) = [x, y]</math> के द्वारा दिया गया; यह सदिश स्थान पर एक प्रतिनिधित्व है <math>\mathfrak{g}</math> लाई बीजगणित के '''आसन्न प्रतिनिधित्व''' कहा जाता है।  


=== प्रतिनिधित्व सिद्धांत के लक्ष्य ===
=== प्रतिनिधित्व सिद्धांत के लक्ष्य ===
लाई बीजगणित (विशेष रूप से अर्धसरल लाई बीजगणित) के अध्ययन का एक महत्वपूर्ण पहलू उनके अभ्यावेदन का अध्ययन है। (वस्तुतः, संदर्भ अनुभाग में सूचीबद्ध अधिकांश पुस्तकें अपने पृष्ठों का एक बड़ा हिस्सा प्रतिनिधित्व सिद्धांत के लिए समर्पित करती हैं।) यद्यपि एडो का प्रमेय एक महत्वपूर्ण परिणाम है, प्रतिनिधित्व सिद्धांत का प्राथमिक लक्ष्य किसी दिए गए लाईे बीजगणित का एक वफादार प्रतिनिधित्व नहीं खोजना है। <math>\mathfrak{g}</math>वस्तुतः, अर्ध-सरल मामले में, आसन्न प्रतिनिधित्व पहले से ही वफादार है। बल्कि लक्ष्य के सभी संभावित प्रतिनिधित्व को समझना है <math>\mathfrak{g}</math>, समानता की प्राकृतिक धारणा तक। विशेषता शून्य के एक क्षेत्र पर अर्ध-सरल मामले में, पूर्ण न्यूनीकरण पर वेइल का प्रमेय | वेइल का प्रमेय<ref>{{harvnb|Hall|2015|loc=Theorem 10.9}}</ref> कहता है कि प्रत्येक परिमित-आयामी प्रतिनिधित्व अलघुकरणीय अभ्यावेदन का प्रत्यक्ष योग है (जिनमें कोई गैर-तुच्छ अपरिवर्तनीय उप-स्थान नहीं है)। इरेड्यूसिबल निरूपण, बदले में, एक लाई बीजगणित प्रतिनिधित्व द्वारा वर्गीकृत किया जाता है # लाई बीजगणित के परिमित-आयामी प्रतिनिधित्व को वर्गीकृत करता है।
लाई बीजगणित (विशेष रूप से अर्धसरल लाई बीजगणित) के अध्ययन का एक महत्वपूर्ण पहलू उनके अभ्यावेदन का अध्ययन है। (वस्तुतः, संदर्भ अनुभाग में सूचीबद्ध अधिकांश पुस्तकें अपने पृष्ठों का एक बड़ा हिस्सा प्रतिनिधित्व सिद्धांत के लिए समर्पित करती हैं। ) यद्यपि एडो प्रमेय एक महत्वपूर्ण परिणाम है, प्रतिनिधित्व सिद्धांत का प्राथमिक लक्ष्य किसी दिए गए लाईे बीजगणित <math>\mathfrak{g}</math> का एक यथार्थ प्रतिनिधित्व खोजना नहीं है। वस्तुतः, अर्ध-सरल काम में, आसन्न प्रतिनिधित्व पहले से ही यथार्थ है। बल्कि लक्ष्य <math>\mathfrak{g}</math> के सभी संभावित प्रतिनिधित्व को समझना है, समानता की प्राकृतिक धारणा तक। विशेषता शून्य के एक क्षेत्र पर अर्ध-सरल काम में, पूर्ण न्यूनीकरण पर वेइल का प्रमेय | '''वेइल का प्रमेय'''<ref>{{harvnb|Hall|2015|loc=Theorem 10.9}}</ref> कहता है कि प्रत्येक परिमित-आयामी प्रतिनिधित्व अलघुकरणीय अभ्यावेदन का प्रत्यक्ष योग है (जिनमें कोई गैर-नगण्य अपरिवर्तनीय उप-स्थान नहीं है)। अलघुकरणीय निरूपण, बदले में, एक लाई बीजगणित प्रतिनिधित्व के परिमित-आयामी प्रतिनिधित्व को वर्गीकृत करता है।  


=== भौतिकी में प्रतिनिधित्व सिद्धांत ===
=== भौतिकी में प्रतिनिधित्व सिद्धांत ===
अलजेब्रस का प्रतिनिधित्व सिद्धांत सैद्धांतिक भौतिकी के विभिन्न भागों में एक महत्वपूर्ण भूमिका निभाता है। वहां, राज्यों के स्थान पर ऑपरेटरों पर विचार किया जाता है जो कुछ प्राकृतिक रूपांतरण संबंधों को पूरा करते हैं। ये रूपान्तरण संबंध प्रायः समस्या की समरूपता से आते हैं- विशेष रूप से, वे प्रासंगिक समरूपता समूह के लाई बीजगणित के संबंध हैं। एक उदाहरण कोणीय संवेग संचालक होंगे, जिनके परिवर्तन संबंध लाई बीजगणित के हैं <math>\mathfrak{so}(3)</math> घुमाव समूह SO(3) का। सामान्यतः पर, राज्यों का स्थान प्रासंगिक संचालकों के तहत अलघुकरणीय होने से बहुत दूर है, लेकिन कोई इसे अप्रासंगिक टुकड़ों में विघटित करने का प्रयास कर सकता है। ऐसा करने के लिए, किसी को दिए गए लाई बीजगणित के अलघुकरणीय निरूपण को जानने की आवश्यकता है। क्वांटम हाइड्रोजन जैसे परमाणु के अध्ययन में, उदाहरण के लिए, क्वांटम यांत्रिकी पाठ्यपुस्तकें (बिना इसे बुलाए) लाई बीजगणित के इरेड्यूसबल प्रस्तुतियों का वर्गीकरण देती हैं। <math>\mathfrak{so}(3)</math>।
बीजगणित का प्रतिनिधित्व सिद्धांत सैद्धांतिक भौतिकी के विभिन्न भागों में एक महत्वपूर्ण भूमिका निभाता है। यहां, स्थितियों के स्थान पर संचालकों पर विचार किया जाता है जो कुछ प्राकृतिक रूपांतरण संबंधों को पूरा करते हैं। ये रूपान्तरण संबंध प्रायः समस्या की सममित से आते हैं- विशेष रूप से, वे प्रासंगिक सममित समूह के लाई बीजगणित के संबंध हैं। एक उदाहरण कोणीय संवेग संचालक होंगे, जिनके परिवर्तन संबंध लाई बीजगणित <math>\mathfrak{so}(3)</math> घुमाव वाले समूह SO(3) के हैं। सामान्यतः इन स्थितियों का स्थान प्रासंगिक संचालकों के अधीन अलघुकरणीय होने से बहुत दूर है, लेकिन कोई इसे अप्रासंगिक टुकड़ों में विघटित करने का प्रयास कर सकता है। ऐसा करने के लिए, किसी को दिए गए लाई बीजगणित के अलघुकरणीय निरूपण को जानने की आवश्यकता है। क्वांटम हाइड्रोजन जैसे परमाणु के अध्ययन में, उदाहरण के लिए, क्वांटम यांत्रिकी पाठ्यपुस्तकें (बिना इसे कहे) लाई बीजगणित <math>\mathfrak{so}(3)</math> के अलघुकरणीय प्रस्तुतियों का वर्गीकरण देती हैं। ।  


== संरचना सिद्धांत और वर्गीकरण ==
== संरचना सिद्धांत और वर्गीकरण ==


लाई बीजगणित को कुछ हद तक वर्गीकृत किया जा सकता है। विशेष रूप से, यह लाई बोलने वाले समूहों के वर्गीकरण के लिए एक आवेदन है।
लाई बीजगणित को कुछ हद तक वर्गीकृत किया जा सकता है। विशेष रूप से, यह लाई बोलने वाले समूहों के वर्गीकरण के लिए एक आवेदन है।  


=== एबेलियन, निलपोटेंट, और सॉल्वेबल ===
=== एबेलियन, निलपोटेंट, और हलेबल ===
व्युत्पन्न उपसमूहों के संदर्भ में परिभाषित एबेलियन, निलपोटेंट और सॉल्व करने योग्य समूहों के अनुरूप, कोई भी एबेलियन, नीलपोटेंट और सॉल्व करने योग्य ले बीजगणित को परिभाषित कर सकता है।
व्युत्पन्न उपसमूहों के संदर्भ में परिभाषित एबेलियन, निलपोटेंट और हल करने योग्य समूहों के अनुरूप, कोई भी एबेलियन, नीलपोटेंट और हल करने योग्य लाई बीजगणित को परिभाषित कर सकता है।  


एक लाई बीजगणित <math>\mathfrak{g}</math> एबेलियन है{{anchor|abelian}}यदि लाइ कोष्ठक गायब हो जाता है, यानी [x,y] = 0, सभी x और y के लिए <math>\mathfrak{g}</math>। एबेलियन लाइ बीजगणित कम्यूटेटिव (या [[एबेलियन समूह]]) से जुड़े लाई समूहों जैसे सदिश रिक्त स्थान के अनुरूप हैं <math>\mathbb{K}^n</math> या [[टोरस्र्स]] <math>\mathbb{T}^n</math>, और सभी रूप हैं <math>\mathfrak{k}^n,</math> मतलब तुच्छ लाई कोष्ठक के साथ एक एन-डायमेंशनल सदिश स्थान।
लाई बीजगणित <math>\mathfrak{g}</math> वह एबेलियन है यदि लाइ कोष्ठक अदृश्य हो जाता है, अर्थात् [x,y] = 0, सभी x और y के लिए <math>\mathfrak{g}</math>। एबेलियन लाइ बीजगणित विनिमेय (या [[एबेलियन समूह]]) से जुड़े लाई समूहों जैसे सदिश रिक्त स्थान के अनुरूप <math>\mathbb{K}^n</math> या [[टोरस्र्स]] <math>\mathbb{T}^n</math>हैं, और सभी <math>\mathfrak{k}^n</math>रूप हैं, मतलब नगण्य लाई कोष्ठक के साथ एक n-आकार सदिश स्थान है।


लाई बीजगणित का एक अधिक सामान्य वर्ग दी गई लंबाई के सभी दिकपरिवर्तकों के लुप्त होने से परिभाषित होता है। एक लाई बीजगणित <math>\mathfrak{g}</math> [[निलपोटेंट ले बीजगणित]] यदि [[निचली केंद्रीय श्रृंखला]] है
लाई बीजगणित का एक अधिक सामान्य वर्ग दी गई लंबाई के सभी दिकपरिवर्तकों के लुप्त होने से परिभाषित होता है। एक लाई बीजगणित <math>\mathfrak{g}</math> [[निलपोटेंट ले बीजगणित|निलपोटेंट बीजगणित]] यदि [[निचली केंद्रीय श्रृंखला]] है


:<math> \mathfrak{g} > [\mathfrak{g},\mathfrak{g}] > [[\mathfrak{g},\mathfrak{g}],\mathfrak{g}] > [[[\mathfrak{g},\mathfrak{g}],\mathfrak{g}],\mathfrak{g}] > \cdots</math>
:<math> \mathfrak{g} > [\mathfrak{g},\mathfrak{g}] > [[\mathfrak{g},\mathfrak{g}],\mathfrak{g}] > [[[\mathfrak{g},\mathfrak{g}],\mathfrak{g}],\mathfrak{g}] > \cdots</math>
अंततः शून्य हो जाता है। एंगेल के प्रमेय के अनुसार, लाई बीजगणित शून्य है यदि और केवल यदि प्रत्येक यू के लिए <math>\mathfrak{g}</math> [[आसन्न एंडोमोर्फिज्म]]
अंततः शून्य हो जाता है। एंगेल के प्रमेय के अनुसार, लाई बीजगणित शून्य है यदि और केवल यदि प्रत्येक uके लिए <math>\mathfrak{g}</math> [[आसन्न एंडोमोर्फिज्म|आसन्न अंत:रूपांतरण]]


:<math>\operatorname{ad}(u):\mathfrak{g} \to \mathfrak{g}, \quad \operatorname{ad}(u)v=[u,v]</math>
:<math>\operatorname{ad}(u):\mathfrak{g} \to \mathfrak{g}, \quad \operatorname{ad}(u)v=[u,v]</math>
शक्तिहीन है।
शक्तिहीन है।  


अधिक प्रायः अभी भी, एक लाई बीजगणित <math>\mathfrak{g}</math> हल करने योग्य बीजगणित कहा जाता है यदि [[व्युत्पन्न श्रृंखला]]:
अधिक प्रायः अभी भी, एक लाई बीजगणित <math>\mathfrak{g}</math> हल करने योग्य बीजगणित कहा जाता है यदि [[व्युत्पन्न श्रृंखला]]:


:<math> \mathfrak{g} > [\mathfrak{g},\mathfrak{g}] > [[\mathfrak{g},\mathfrak{g}],[\mathfrak{g},\mathfrak{g}]] > [[[\mathfrak{g},\mathfrak{g}],[\mathfrak{g},\mathfrak{g}]],[[\mathfrak{g},\mathfrak{g}],[\mathfrak{g},\mathfrak{g}]]]  > \cdots</math>
:<math> \mathfrak{g} > [\mathfrak{g},\mathfrak{g}] > [[\mathfrak{g},\mathfrak{g}],[\mathfrak{g},\mathfrak{g}]] > [[[\mathfrak{g},\mathfrak{g}],[\mathfrak{g},\mathfrak{g}]],[[\mathfrak{g},\mathfrak{g}],[\mathfrak{g},\mathfrak{g}]]]  > \cdots</math>
अंततः शून्य हो जाता है।
अंततः शून्य हो जाता है।  


प्रत्येक परिमित-आयामी लाई बीजगणित में एक अद्वितीय अधिकतम हल करने योग्य आदर्श होता है, जिसे लाई बीजगणित का कट्टरपंथी कहा जाता है। लाई पत्राचार के तहत, नीलपोटेंट (क्रमशः, हल करने योग्य) जुड़े हुए समूह नीलपोटेंट (क्रमशः, हल करने योग्य) लाई बीजगणित के अनुरूप होते हैं।
प्रत्येक परिमित-आयामी लाई बीजगणित में एक अद्वितीय अधिकतम हल करने योग्य आदर्श होता है, जिसे लाई बीजगणित का मौलिक कहा जाता है। लाई पत्राचार के अधीन, नीलपोटेंट (क्रमशः, हल करने योग्य) जुड़े हुए समूह नीलपोटेंट (क्रमशः, हल करने योग्य) लाई बीजगणित के अनुरूप होते हैं।  


=== सरल और अर्धसरल ===
=== सरल और अर्धसरल ===
{{main|Semisimple Lie algebra}}
{{main|अर्धसरल लाई बीजगणित}}
एक लाई बीजगणित [[सरल झूठ बीजगणित|सरल लाई बीजगणित]] है यदि इसमें कोई गैर-तुच्छ आदर्श नहीं है और यह अबेलियन नहीं है। (इसका तात्पर्य यह है कि एक आयामी-अनिवार्य रूप से एबेलियन-लाई बीजगणित परिभाषा के अनुसार सरल नहीं है, भले ही इसमें कोई गैर-तुच्छ आदर्श न हो।) एक लाई बीजगणित <math>\mathfrak{g}</math> सेमीसिंपल ले बीजगणित कहा जाता है यदि यह सरल बीजगणितों के प्रत्यक्ष योग के लिए आइसोमोर्फिक है। अर्ध-सरल बीजगणित के कई समतुल्य लक्षण हैं, जैसे कि गैर-शून्य हल करने योग्य आदर्श नहीं हैं।
एक लाई बीजगणित [[सरल झूठ बीजगणित|सरल लाई बीजगणित]] है यदि इसमें कोई गैर-नगण्य आदर्श नहीं है और यह अबेलियन नहीं है। (इसका तात्पर्य यह है कि एक आयामी-अनिवार्य रूप से एबेलियन-लाई बीजगणित परिभाषा के अनुसार सरल नहीं है, भले ही इसमें कोई गैर-नगण्य आदर्श न हो। ) एक लाई बीजगणित <math>\mathfrak{g}</math> अर्धसरल ले बीजगणित कहा जाता है यदि यह सरल बीजगणितों के प्रत्यक्ष योग के लिए समरूप है। अर्ध-सरल बीजगणित के कई समतुल्य लक्षण हैं, जैसे कि गैर-शून्य हल करने योग्य आदर्श नहीं हैं।  
 
लाई बीजगणित के लिए अर्धसरलता की अवधारणा उनके अभ्यावेदन की पूर्ण न्यूनीकरण (अर्धसरलता) के साथ निकटता से संबंधित है। जब जमीनी क्षेत्र एफ में विशेषता (क्षेत्र) शून्य होता है, तो अर्ध-सरल लाई बीजगणित का कोई भी परिमित-आयामी प्रतिनिधित्व अर्ध-सरल प्रतिनिधित्व होता है (यानी, इरेड्यूसिबल प्रतिनिधित्व का प्रत्यक्ष योग)। सामान्य तौर पर, एक लाई बीजगणित को रिडक्टिव लाइ बीजगणित कहा जाता है यदि आसन्न प्रतिनिधित्व अर्ध-सरल है। इस प्रकार, एक अर्धसरल लाई बीजगणित रिडक्टिव है।<!--
of a Lie algebra <math>\mathfrak{g}</math> over ''F'' is equivalent to the complete reducibility of all finite-dimensional [[Lie algebra representation|representations]] of <math>\mathfrak{g}.</math> An early proof of this statement proceeded via connection with compact groups ([[Weyl's unitary trick]]), but later entirely algebraic proofs were found.-->
 


=== कार्टन की कसौटी ===
लाई बीजगणित के लिए अर्धसरलता की अवधारणा उनके अभ्यावेदन की पूर्ण न्यूनीकरण (अर्धसरलता) के साथ निकटता से संबंधित है। जब आधार क्षेत्र F में विशेषता (क्षेत्र) शून्य होता है, तो अर्ध-सरल लाई बीजगणित का कोई भी परिमित-आयामी प्रतिनिधित्व अर्ध-सरल प्रतिनिधित्व होता है (अर्थात्,अलघुकरणीय प्रतिनिधित्व का प्रत्यक्ष योग)। सामान्य तौर पर, एक लाई बीजगणित को सरल लाइ बीजगणित कहा जाता है यदि आसन्न प्रतिनिधित्व अर्ध-सरल है। इस प्रकार, एक अर्धसरल लाई बीजगणित सरल है।
=== कार्टन की मानदंड ===


कार्टन की कसौटी लाई बीजगणित के शून्य-शक्तिशाली, हल करने योग्य या अर्ध-सरल होने की शर्तें देती है। यह [[मारक रूप]] की धारणा पर आधारित है, जो एक [[सममित द्विरेखीय रूप]] है <math>\mathfrak{g}</math> सूत्र द्वारा परिभाषित
कार्टन की मानदंड लाई बीजगणित के शून्य-शक्तिशाली, हल करने योग्य या अर्ध-सरल होने की अनुबंध देती है। t [[Index.php?title=किलिंग रूप|किलिंग रूप]] की धारणा पर आधारित है, जो एक [[सममित द्विरेखीय रूप]] है <math>\mathfrak{g}</math> सूत्र द्वारा परिभाषित है
: <math>K(u,v)=\operatorname{tr}(\operatorname{ad}(u)\operatorname{ad}(v)),</math>
: <math>K(u,v)=\operatorname{tr}(\operatorname{ad}(u)\operatorname{ad}(v)),</math>
जहाँ tr ट्रेस (रैखिक बीजगणित) को दर्शाता है। एक लाई बीजगणित <math>\mathfrak{g}</math> अर्धसरल है यदि और केवल यदि किलिंग फॉर्म नॉनडिजेनरेट फॉर्म है। एक लाई बीजगणित <math>\mathfrak{g}</math> हल करने योग्य है यदि और केवल यदि <math>K(\mathfrak{g},[\mathfrak{g},\mathfrak{g}])=0.</math>
जहाँ tr ट्रेस रैखिक बीजगणित को दर्शाता है। एक लाई बीजगणित <math>\mathfrak{g}</math> अर्धसरल है यदि और केवल यदि किलिंग रूप गैर पतित रूप है। एक लाई बीजगणित <math>\mathfrak{g}</math> हल करने योग्य है यदि और केवल यदि <math>K(\mathfrak{g},[\mathfrak{g},\mathfrak{g}])=0</math> है।
 
 
=== वर्गीकरण ===
=== वर्गीकरण ===


[[लेवी अपघटन]] एक मनमाना लाई बीजगणित को उसके हल करने योग्य रेडिकल के अर्ध-प्रत्यक्ष योग और एक अर्ध-सरल लाई बीजगणित के रूप में व्यक्त करता है, लगभग एक विहित तरीके से। (इस तरह के अपघटन विशेषता शून्य के एक क्षेत्र पर परिमित-आयामी लाई बीजगणित के लिए स्थित हैं।<ref>{{harvnb|Jacobson|1962|loc=Ch. III, § 9.}}</ref>) इसके अलावा, एक बीजगणितीय रूप से बंद क्षेत्र पर अर्ध-सरल लाई बीजगणित को उनके [[मूल प्रक्रिया]] के माध्यम से पूरी तरह से वर्गीकृत किया गया है।
[[लेवी अपघटन]] एक मनमाना लाई बीजगणित को उसके हल करने योग्य मौलिक के अर्ध-प्रत्यक्ष योग और एक अर्ध-सरल लाई बीजगणित के रूप में व्यक्त करता है, लगभग एक विहित विधि से। (इस तरह के अपघटन विशेषता शून्य के एक क्षेत्र पर परिमित-आयामी लाई बीजगणित के लिए स्थित हैं। <ref>{{harvnb|Jacobson|1962|loc=Ch. III, § 9.}}</ref>) इसके अलावा, एक बीजगणितीय रूप से बंद क्षेत्र पर अर्ध-सरल लाई बीजगणित को उनके [[मूल प्रक्रिया]] के माध्यम से पूरी तरह से वर्गीकृत किया गया है।  


== लाई बोलने वाले समूहों से संबंध ==
== लाई समूहों से संबंध ==
{{main|Lie group–Lie algebra correspondence}}
{{main|लाइ समूह-लाइ बीजगणित पत्राचार}}
[[Image:Image Tangent-plane.svg|thumb| एक बिंदु पर एक गोले का स्पर्शरेखा स्थान <math>x</math>। यदि <math>x</math> समरूपता तत्व है, तो स्पर्शरेखा स्थान भी लाईा बीजगणित है।]]यद्यपि लाई बीजगणित प्रायः अपने अधिकार में अध्ययन किया जाता है, ऐतिहासिक रूप से वे लाई समूहों का अध्ययन करने के साधन के रूप में उभरे।
[[Image:Image Tangent-plane.svg|thumb| एक बिंदु पर एक गोले का स्पर्शरेखा स्थान <math>x</math>। यदि <math>x</math> सममित तत्व है, तो स्पर्शरेखा स्थान भी लाई बीजगणित है। ]]यद्यपि लाई बीजगणित प्रायः अपने अधिकार में अध्ययन किया जाता है, ऐतिहासिक रूप से वे लाई समूहों का अध्ययन करने के साधन के रूप में उभरे।  


अब हम लाई समूहों और लाई बीजगणित के बीच के संबंध को संक्षेप में रेखांकित करते हैं। कोई भी लाई समूह एक विहित रूप से निर्धारित लाई बीजगणित (ठोस रूप से, समरूपता पर स्पर्शरेखा स्थान) को जन्म देता है। इसके विपरीत, किसी परिमित-आयामी लाई बीजगणित के लिए <math>\mathfrak g</math>, एक संबंधित जुड़ा हुआ समूह स्थित है <math>G</math> लाई बीजगणित के साथ <math>\mathfrak g</math>। यह लाई का तीसरा प्रमेय है; बेकर-कैंपबेल-हॉसडॉर्फ सूत्र देखें। यह लाई समूह विशिष्ट रूप से निर्धारित नहीं है; यद्यपि , समान लाई बीजगणित वाले कोई भी दो लाई समूह स्थानीय रूप से आइसोमॉर्फिक हैं, और विशेष रूप से, एक ही [[सार्वभौमिक आवरण]] है। उदाहरण के लिए, विशेष ओर्थोगोनल समूह [[SO(3)]] और [[विशेष एकात्मक समूह]] [[SU(2)]] एक ही लाइ बीजगणित को जन्म देते हैं, जो आइसोमोर्फिक है <math>\mathbb{R}^3</math> क्रॉस-उत्पाद के साथ, लेकिन एसयू (2) एसओ (3) का एक सरल-जुड़ा हुआ दोहरा आवरण है।
अब हम लाई समूहों और लाई बीजगणित के बीच के संबंध को संक्षेप में रेखांकित करते हैं। कोई भी लाई समूह एक विहित रूप से निर्धारित लाई बीजगणित (ठोस रूप से, सममित पर स्पर्शरेखा स्थान) को निर्गत करता है। इसके विपरीत, किसी परिमित-आयामी लाई बीजगणित के लिए <math>\mathfrak g</math>, एक संबंधित जुड़ा हुआ समूह <math>G</math> स्थित है लाई बीजगणित के साथ <math>\mathfrak g</math>। यह लाई का तीसरा प्रमेय है; '''बेकर-कैंपबेल-हॉसडॉर्फ''' सूत्र देखें। यह लाई समूह विशिष्ट रूप से निर्धारित नहीं है; यद्यपि , समान लाई बीजगणित वाले कोई भी दो लाई समूह स्थानीय रूप से समरूप हैं, और विशेष रूप से, एक ही [[सार्वभौमिक आवरण]] है। उदाहरण के लिए, विशेष समकोण समूह [[SO(3)]] और [[विशेष एकात्मक समूह]] [[SU(2)]] एक ही लाइ बीजगणित को निर्गत देते हैं, जो समरूप है <math>\mathbb{R}^3</math> संकर-उत्पाद के साथ, लेकिन SU(2) SO(3) का एक सरल-जुड़ा हुआ दोहरा आवरण है।  


यदि हम बस जुड़े हुए लाई समूहों पर विचार करते हैं, यद्यपि, हमारे पास एक-से-एक पत्राचार है: प्रत्येक (परिमित-आयामी वास्तविक) लाई बीजगणित के लिए <math>\mathfrak g</math>, एक अद्वितीय बस जुड़ा हुआ लाई ​​समूह है <math>G</math> लाई बीजगणित के साथ <math>\mathfrak g</math>
यदि हम बस जुड़े हुए लाई समूहों पर विचार करते हैं, यद्यपि, हमारे पास एक-से-एक पत्राचार है: प्रत्येक (परिमित-आयामी वास्तविक) लाई बीजगणित के लिए <math>\mathfrak g</math>, एक अद्वितीय बस जुड़ा हुआ लाई ​​ <math>G</math> लाई बीजगणित के साथ <math>\mathfrak g</math> समूह है।


लाई बीजगणित और लाई समूहों के बीच पत्राचार कई तरह से प्रयोग किया जाता है, जिसमें सरल लाई समूहों की सूची और लाई समूहों के [[प्रतिनिधित्व सिद्धांत]] के संबंधित मामले शामिल हैं। एक लाई बीजगणित का प्रत्येक प्रतिनिधित्व विशिष्ट रूप से जुड़े हुए, बस जुड़े हुए लाई समूह के प्रतिनिधित्व के लिए विशिष्ट रूप से उठाता है, और इसके विपरीत किसी भी लाई समूह का प्रत्येक प्रतिनिधित्व समूह के लाई बीजगणित के प्रतिनिधित्व को प्रेरित करता है; अभ्यावेदन एक-से-एक पत्राचार में हैं। इसलिए, लाई बीजगणित के प्रतिनिधित्व को जानना समूह के प्रतिनिधित्व के प्रश्न को सुलझाता है।
लाई बीजगणित और लाई समूहों के बीच पत्राचार कई तरह से प्रयोग किया जाता है, जिसमें सरल लाई समूहों की सूची और लाई समूहों के [[प्रतिनिधित्व सिद्धांत]] के संबंधित काम सम्मिलित हैं। एक लाई बीजगणित का प्रत्येक प्रतिनिधित्व विशिष्ट रूप से जुड़े हुए, बस जुड़े हुए लाई समूह के प्रतिनिधित्व के लिए विशिष्ट रूप से उठाता है, और इसके विपरीत किसी भी लाई समूह का प्रत्येक प्रतिनिधित्व समूह के लाई बीजगणित के प्रतिनिधित्व को प्रेरित करता है; अभ्यावेदन एक-से-एक पत्राचार में हैं। इसलिए, लाई बीजगणित के प्रतिनिधित्व को परिचय समूह के प्रतिनिधित्व के प्रश्न को सुलझाता है।  


वर्गीकरण के लिए, यह दिखाया जा सकता है कि किसी दिए गए लाई बीजगणित के साथ जुड़ा हुआ कोई भी जुड़ा हुआ समूह सार्वभौमिक कवर मॉड के लिए एक असतत केंद्रीय उपसमूह के लिए आइसोमोर्फिक है। इसलिए लाई समूहों को वर्गीकृत करना केवल [[केंद्र (समूह सिद्धांत)]] के असतत उपसमूहों की गणना करने का मामला बन जाता है, एक बार लाई बीजगणित का वर्गीकरण ज्ञात हो जाता है (एली कार्टन एट अल द्वारा हल किया गया। सेमीसिंपल लाइ बीजगणित मामले में)।
वर्गीकरण के लिए, यह दिखाया जा सकता है कि किसी दिए गए लाई बीजगणित के साथ जुड़ा हुआ कोई भी जुड़ा हुआ समूह सार्वभौमिक कवर मॉड के लिए एक असतत केंद्रीय उपसमूह के लिए समरूप है। इसलिए लाई समूहों को वर्गीकृत करना केवल [[केंद्र (समूह सिद्धांत)]] के असतत उपसमूहों की गणना करने का विषय बन जाता है, एक बार लाई बीजगणित का वर्गीकरण ज्ञात हो जाता है (अर्धसरल विषय में एली कार्टन एट अल द्वारा हल किया गया)।  


यदि लाई बीजगणित अनंत-आयामी है, तो समस्या अधिक सूक्ष्म है। कई उदाहरणों में, घातीय मानचित्र स्थानीय रूप से [[होमियोमोर्फिज्म]] भी नहीं है (उदाहरण के लिए, डिफ (एस<sup>1</sup>), किसी को मनमाने ढंग से उस समरूपता के करीब भिन्नताएं मिल सकती हैं जो ऍक्स्प की छवि में नहीं हैं)। इसके अलावा, कुछ अनंत-आयामी लाई बीजगणित किसी भी समूह के लाईे बीजगणित नहीं हैं।
यदि लाई बीजगणित अनंत-आयामी है, तो समस्या अधिक सूक्ष्म है। कई उदाहरणों में, घातीय मानचित्र स्थानीय रूप से [[होमियोमोर्फिज्म]] भी नहीं है (उदाहरण के लिए, '''Diff'''(S<sup>1</sup>), किसी को मनमाने ढंग से उस सममित के करीब भिन्नताएं मिल सकती हैं जो उदाहरण प्रतिबिम्ब में नहीं हैं)। इसके अलावा, कुछ अनंत-आयामी लाई बीजगणित किसी भी समूह के लाईे बीजगणित नहीं हैं।  


== वास्तविक रूप और जटिलता ==
== वास्तविक रूप और जटिलता ==
एक [[जटिल झूठ बीजगणित|जटिल लाई बीजगणित]] दिया गया <math>\mathfrak g</math>, एक वास्तविक लाई बीजगणित <math>\mathfrak{g}_0</math> का साकार रूप कहा गया है <math>\mathfrak g</math> यदि [[जटिलता]] <math>\mathfrak{g}_0 \otimes_{\mathbb R} \mathbb{C} \simeq \mathfrak{g}</math> के लिए आइसोमोर्फिक है <math>\mathfrak{g}</math><ref name="Fulton 26">{{harvnb|Fulton|Harris|1991|loc=§26.1.}}</ref> एक वास्तविक रूप अद्वितीय होने की आवश्यकता नहीं है; उदाहरण के लिए, <math>\mathfrak{sl}_2 \mathbb{C}</math> के दो वास्तविक रूप हैं <math>\mathfrak{sl}_2 \mathbb{R}</math> तथा <math>\mathfrak{su}_2</math>।<ref name="Fulton 26" />
एक [[जटिल झूठ बीजगणित|जटिल लाई बीजगणित]] दिया गया <math>\mathfrak g</math>, एक वास्तविक लाई बीजगणित <math>\mathfrak{g}_0</math> का साकार रूप कहा गया है <math>\mathfrak g</math> यदि [[जटिलता]] <math>\mathfrak{g}_0 \otimes_{\mathbb R} \mathbb{C} \simeq \mathfrak{g}</math> के लिए <math>\mathfrak{g}</math> समरूप है। <ref name="Fulton 26">{{harvnb|Fulton|Harris|1991|loc=§26.1.}}</ref> एक वास्तविक रूप अद्वितीय होने की आवश्यकता नहीं है; उदाहरण के लिए, <math>\mathfrak{sl}_2 \mathbb{C}</math> के दो वास्तविक रूप <math>\mathfrak{sl}_2 \mathbb{R}</math> तथा <math>\mathfrak{su}_2</math> हैं । <ref name="Fulton 26" />
 
एक अर्ध-सरल परिमित-आयामी जटिल लाई बीजगणित दिया गया है <math>\mathfrak g</math>, इसका एक [[विभाजित रूप]] एक वास्तविक रूप है जो विभाजित होता है; यानी, इसमें एक कार्टन उपबीजगणित है जो वास्तविक eigenvalues ​​​​के साथ एक आसन्न प्रतिनिधित्व के माध्यम से कार्य करता है। एक विभाजित रूप स्थित है और अद्वितीय है (समरूपता तक)।<ref name="Fulton 26" />एक [[कॉम्पैक्ट रूप]] एक वास्तविक रूप है जो एक कॉम्पैक्ट लाइ समूह का लाइ बीजगणित है। एक कॉम्पैक्ट रूप स्थित है और अद्वितीय भी है।<ref name="Fulton 26" />
 


एक अर्ध-सरल परिमित-आयामी जटिल लाई बीजगणित <math>\mathfrak g</math> दिया गया है, इसका एक [[विभाजित रूप]] एक वास्तविक रूप है जो विभाजित होता है; अर्थात्, इसमें एक कार्टन उपबीजगणित है जो वास्तविक अभिलाक्षणिक मान​​​​ के साथ एक आसन्न प्रतिनिधित्व के माध्यम से कार्य करता है। एक विभाजित रूप और अद्वितीय (सममित तक) स्थित है। <ref name="Fulton 26" />एक [[कॉम्पैक्ट रूप|सघन रूप]] एक वास्तविक रूप है जो एक सघन लाइ समूह का लाइ बीजगणित है। एक सघन रूप स्थित और अद्वितीय भी है। <ref name="Fulton 26" />
== अतिरिक्त संरचनाओं के साथ लाई बीजगणित ==
== अतिरिक्त संरचनाओं के साथ लाई बीजगणित ==
एक लाई बीजगणित को कुछ अतिरिक्त संरचनाओं से सुसज्जित किया जा सकता है जिन्हें कोष्ठक के साथ संगत माना जाता है। उदाहरण के लिए, एक ग्रेडेड लाई बीजगणित एक ग्रेडेड सदिश स्थान स्ट्रक्चर वाला एक लाई बीजगणित है। यदि यह डिफरेंशियल के साथ भी आता है (ताकि अंतर्निहित ग्रेडेड सदिश स्थान एक [[चेन कॉम्प्लेक्स]] हो), तो इसे डिफरेंशियल ग्रेडेड लाई बीजगणित कहा जाता है।
एक लाई बीजगणित को कुछ अतिरिक्त संरचनाओं से सुसज्जित किया जा सकता है जिन्हें कोष्ठक के साथ संगत माना जाता है। उदाहरण के लिए, एक श्रेणीबद्ध '''लाई बीजगणित''' एक श्रेणीबद्ध सदिश स्थान संरचना वाला एक लाई बीजगणित है। यदि यह अवकल के साथ भी आता है (ताकि अंतर्निहित श्रेणीबद्ध सदिश स्थान एक [[चेन कॉम्प्लेक्स|मिश्रित श्रंखला]] हो), तो इसे अवकल श्रेणीबद्ध लाई बीजगणित कहा जाता है।  


एक साधारण लाई बीजगणित लाई बीजगणित की श्रेणी में एक साधारण वस्तु है; दूसरे शब्दों में, यह अंतर्निहित समूह को एक साधारण समूह के साथ बदलकर प्राप्त किया जाता है (इसलिए इसे लाई बीजगणित के परिवार के रूप में बेहतर माना जा सकता है)।
एक साधारण लाई बीजगणित लाई बीजगणित की श्रेणी में एक साधारण वस्तु है; दूसरे शब्दों में, यह अंतर्निहित समूह को एक साधारण समूह के साथ बदलकर प्राप्त किया जाता है (इसलिए इसे लाई बीजगणित के वंश के रूप में बेहतर माना जा सकता है)।  


== लाई रिंग ==
== लाई वलय ==
लाई बीजगणित के सामान्यीकरण के रूप में, या समूह (गणित) की निचली केंद्रीय श्रृंखला के अध्ययन के माध्यम से एक लाई की अंगूठी उत्पन्न होती है। एक लाइ रिंग को गुणन के साथ एक गैर-सहयोगी रिंग के रूप में परिभाषित किया गया है जो कि एंटीकोमुटिव है और जैकोबी समरूपता को संतुष्ट करता है। अधिक विशेष रूप से हम एक लाई की अंगूठी को परिभाषित कर सकते हैं <math>L</math> संक्रिया के साथ एक एबेलियन समूह होना <math>[\cdot,\cdot]</math> जिसके निम्नलिखित गुण हैं:
लाई बीजगणित के सामान्यीकरण के रूप में, या समूह (गणित) की निचली केंद्रीय श्रृंखला के अध्ययन के माध्यम से एक लाई की वलय उत्पन्न होती है। एक लाइ वलय को गुणन के साथ एक गैर-सहयोगी वलय के रूप में परिभाषित किया गया है जो कि विरुद्ध विनिमेय है और जैकोबी सममित को संतुष्ट करता है। अधिक विशेष रूप से हम एक लाई की वलय को परिभाषित कर सकते हैं <math>L</math> संक्रिया के साथ एक एबेलियन समूह होना <math>[\cdot,\cdot]</math> जिसके निम्नलिखित गुण हैं:


* द्विरेखीयता:
* द्विरेखीयता:


::<math> [x + y, z] = [x, z] + [y, z], \quad  [z, x + y] = [z, x] + [z, y] </math>
::<math> [x + y, z] = [x, z] + [y, z], \quad  [z, x + y] = [z, x] + [z, y] </math>
: सभी x, y, z ∈ L के लिए।
: सभी x, y, z ∈ L के लिए।  


* जैकोबी समरूपता:
* जैकोबी समरूपता:


:: <math> [x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0 \quad </math>
:: <math> [x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0 \quad </math>
: L में सभी x, y, z के लिए।
: L में सभी x, y, z के लिए।  


* एल में सभी एक्स के लिए:
* Lमें सभी x के लिए:


::<math> [x,x]=0 \quad </math>
::<math> [x,x]=0 \quad </math>
लाई रिंग्स को इसके अलावा लाई ग्रुप्स नहीं होना चाहिए। कोई भी लाई बीजगणित लाई की अंगूठी का एक उदाहरण है। कोष्ठक ऑपरेटर को परिभाषित करके किसी भी साहचर्य रिंग को लाइ रिंग में बनाया जा सकता है <math>[x,y] = xy - yx</math>। किसी भी लाई बीजगणित के विपरीत एक संगत वलय होता है, जिसे सार्वभौमिक आवरण बीजगणित कहा जाता है।
लाई वलय को इसके अलावा लाई समूह नहीं होना चाहिए। कोई भी लाई बीजगणित लाई की वलय का एक उदाहरण है। कोष्ठक संचालक को परिभाषित करके किसी भी साहचर्य वलय को लाइ वलय में बनाया जा सकता है <math>[x,y] = xy - yx</math>। किसी भी लाई बीजगणित के विपरीत एक संगत वलय होता है, जिसे सार्वभौमिक आवरण बीजगणित कहा जाता है।  


लैज़र्ड पत्राचार के माध्यम से परिमित [[पी-समूह]]ों के अध्ययन में लाई के छल्ले का उपयोग किया जाता है। एक पी-समूह के निचले केंद्रीय कारक परिमित एबेलियन पी-समूह हैं, इसलिए 'जेड'/पी'जेड' पर मॉड्यूल। निचले केंद्रीय कारकों के प्रत्यक्ष योग को दो कोसमूह प्रतिनिधियों के दिकपरिवर्तक होने के लिए कोष्ठक को परिभाषित करके एक लाइ रिंग की संरचना दी जाती है। लाइ रिंग संरचना एक अन्य मॉड्यूल होमोमोर्फिज्म, पीटीएच पावर मैप के साथ समृद्ध है, जो संबंधित लाइ रिंग को एक तथाकथित प्रतिबंधित लाइ रिंग बनाती है।
'''लैज़र्ड पत्राचार''' के माध्यम से परिमित [[Index.php?title=p-समूह|p-समूह]] के अध्ययन में लाई वलय का उपयोग किया जाता है। एक p-समूह के निचले केंद्रीय कारक परिमित एबेलियन p-समूह हैं, इसलिए 'z'/p'z' पर मापांक। निचले केंद्रीय कारकों के प्रत्यक्ष योग को दो को समूह प्रतिनिधियों के दिकपरिवर्तक होने के लिए कोष्ठक को परिभाषित करके एक लाइ वलय की संरचना दी जाती है। लाइ वलय संरचना एक अन्य मापांक होमोमोर्फिज्म, pवे शक्ति मानचित्र के साथ समृद्ध है, जो संबंधित लाइ वलय को एक तथाकथित प्रतिबंधित लाइ वलय बनाती है।  


[[पी-एडिक पूर्णांक]]ों जैसे पूर्णांकों के छल्ले पर लाइ बीजगणित का अध्ययन करके पी-एडिक विश्लेषणात्मक समूहों और उनके एंडोमोर्फिज्म की परिभाषा में लाई के छल्ले भी उपयोगी होते हैं। चेवेली के कारण लाई प्रकार के परिमित समूहों की परिभाषा में जटिल संख्याओं पर लाई बीजगणित से पूर्णांकों पर लाई बीजगणित तक सीमित करना शामिल है, और फिर एक सीमित क्षेत्र पर लाई बीजगणित प्राप्त करने के लिए मोडुलो पी को कम करना शामिल है।
[[पी-एडिक पूर्णांक|p-एडिक पूर्णांक]] जैसे पूर्णांकों के वलय पर लाइ बीजगणित का अध्ययन करके p-एडिक विश्लेषणात्मक समूहों और उनके अंत:रूपांतरण की परिभाषा में लाई के वलय भी उपयोगी होते हैं। चेवेली के कारण लाई प्रकार के परिमित समूहों की परिभाषा में जटिल संख्याओं पर लाई बीजगणित से पूर्णांकों पर लाई बीजगणित तक सीमित करना सम्मिलित है, और फिर एक सीमित क्षेत्र पर लाई बीजगणित प्राप्त करने के लिए मोडुलो p को कम करना सम्मिलित है।  


=== उदाहरण ===
=== उदाहरण ===
* फील्ड (गणित) के अतिरिक्त एक सामान्य रिंग (गणित) पर कोई भी लाई बीजगणित लाई की अंगूठी का एक उदाहरण है। नाम के बावजूद लाई रिंग इसके अतिरिक्त लाई समूह नहीं हैं।
* क्षेत्र (गणित) के अतिरिक्त एक सामान्य वलय (गणित) पर कोई भी लाई बीजगणित लाई की वलय का एक उदाहरण है। नाम के अतिरिक्त लाई वलय इसके अतिरिक्त लाई समूह नहीं हैं।  
* कोष्ठक ऑपरेटर को परिभाषित करके किसी भी सहयोगी अंगूठी को लाई की अंगूठी में बनाया जा सकता है
* कोष्ठक संचालक को परिभाषित करके किसी भी सहयोगी वलय को लाई की वलय में बनाया जा सकता है
:: <math>[x,y] = xy - yx.</math>
:: <math>[x,y] = xy - yx.</math>
* समूह (गणित) के अध्ययन से उत्पन्न होने वाली लाई की अंगूठी के उदाहरण के लिए, आइए <math>G</math> के साथ एक समूह बनें <math>[x,y]= x^{-1}y^{-1}xy</math> दिकपरिवर्तक संक्रिया, और चलो <math>G = G_0 \supseteq G_1 \supseteq G_2 \supseteq \cdots \supseteq G_n \supseteq \cdots</math> में एक [[केंद्रीय श्रृंखला]] हो <math>G</math> - वह दिकपरिवर्तक उपसमूह है <math>[G_i,G_j]</math> में निहित है <math>G_{i+j}</math> किसी के लिए <math>i,j</math>। फिर
* समूह (गणित) के अध्ययन से उत्पन्न होने वाली लाई की वलय के उदाहरण के लिए, आइए <math>G</math> के साथ एक समूह <math>[x,y]= x^{-1}y^{-1}xy</math> बनें दिकपरिवर्तक संक्रिया, और <math>G = G_0 \supseteq G_1 \supseteq G_2 \supseteq \cdots \supseteq G_n \supseteq \cdots</math> में एक [[केंद्रीय श्रृंखला]] हो <math>G</math> - दिकपरिवर्तक उपसमूह <math>[G_i,G_j]</math> में निहित <math>G_{i+j}</math> किसी भी <math>i,j</math> के लिए <math>G_{i+j}</math>है। तब


:: <math>L = \bigoplus G_i/G_{i+1}</math>
:: <math>L = \bigoplus G_i/G_{i+1}</math>
: ग्रुप संक्रिया (जो प्रत्येक सजातीय भाग में एबेलियन है) द्वारा आपूर्ति की गई जोड़ के साथ एक लाइ रिंग है, और कोष्ठक संक्रिया द्वारा दिया गया है
: समूह संक्रिया (जो प्रत्येक सजातीय भाग में एबेलियन है) द्वारा आपूर्ति की गई जोड़ के साथ एक लाइ वलय है, और कोष्ठक संक्रिया द्वारा दिया गया है


:: <math>[xG_i, yG_j] = [x,y]G_{i+j}\ </math>
:: <math>[xG_i, yG_j] = [x,y]G_{i+j}\ </math>
: रैखिक रूप से विस्तारित। श्रृंखला की केंद्रीयता सुनिश्चित करती है कि दिकपरिवर्तक <math>[x,y]</math> कोष्ठक संक्रिया को उचित लाई सैद्धांतिक गुण देता है।
: रैखिक रूप से विस्तारित श्रृंखला की केंद्रीयता सुनिश्चित करती है कि दिकपरिवर्तक <math>[x,y]</math> कोष्ठक संक्रिया को उचित लाई सैद्धांतिक गुण देता है।  


== यह भी देखें ==
== यह भी देखें ==
{{div col|colwidth=28em}}
{{div col|colwidth=28em}}
* झूठ बीजगणित का संलग्न प्रतिनिधित्व
* लाइ बीजगणित का संलग्न प्रतिनिधित्व
* [[Affine झूठ बीजगणित]]
* [[अफ्फिन लाइ बीजगणित]]
* एनीओनिक झूठ बीजगणित
* एनीओनिक लाइ बीजगणित
* [[झूठ बीजगणित का ऑटोमोर्फिज्म]]
* [[ लाइ बीजगणित की स्वकारिता]]
* [[चिराल ले बीजगणित]]
* [[चिराल लाइ बीजगणित]]
* [[मुक्त झूठ बीजगणित]]<!-- Need to be discussed somewhere in this article but not clear where, probably not too early. -->
* [[मुक्त लाइ बीजगणित]]<!-- Need to be discussed somewhere in this article but not clear where, probably not too early. -->
* [[झूठ बीजगणित का सूचकांक]]
* [[ लाइ बीजगणित का सूचकांक]]
* [[झूठ बीजगणित कोहोलॉजी]]
* [[ लाइ बीजगणित सह-समरूपता]]
* [[झूठ बीजगणित विस्तार]]
* [[ लाइ बीजगणित विस्तार]]
* [[झूठ बीजगणित प्रतिनिधित्व]]
* [[ लाइ बीजगणित प्रतिनिधित्व]]
* झूठ बोलजेब्रा
* [[लाइ बीएलजेब्रा]]
* [[कोलजेब्रा लेट जाओ]]
* [[लाइ कोलजेब्रा]]
* [[झूठ बोलना]]
* [[ लाइ संचालित]]
* [[कण भौतिकी और प्रतिनिधित्व सिद्धांत]]
* [[कण भौतिकी और प्रतिनिधित्व सिद्धांत]]
* [[लव सुपरएलजेब्रा]]
* [[लाइ उत्तमबीजगणित]]
* [[पोइसन बीजगणित]]
* [[पोइसन बीजगणित]]
* [[पूर्व झूठ बीजगणित]]
* [[पूर्व लाइ बीजगणित]]
* [[क्वांटम समूह]]
* [[क्वांटम समूह]]
* मोयल कोष्ठक
* मोयल कोष्ठक
* [[Quasi-Frobenius झूठ बीजगणित]]
* [[अर्ध-फ्रोबेनियस लाइ बीजगणित]]
* [[अर्ध-झूठ बीजगणित]]
* [[अर्ध-लाइ बीजगणित]]
* [[प्रतिबंधित झूठ बीजगणित]]
* [[प्रतिबंधित लाइ बीजगणित]]
* सेरे रिश्ते
* [[सेर्रे सम्बन्ध]]
* [[सममित झूठ बीजगणित]] <!-- missing article -->
* [[सममित लाइ बीजगणित]] <!-- missing article -->
* गेलफैंड-फक्स कोहोलॉजी
* [[गेलफैंड-फक्स सह-समरूपता]]
{{div col end}}
{{div col end}}


Line 422: Line 418:
* {{Cite journal|last1=Boza|first1=Luis|last2=Fedriani|first2=Eugenio M.|last3=Núñez|first3=Juan|date=2001-06-01|title=जटिल तंतुरूप लाई बीजगणित को वर्गीकृत करने के लिए एक नई विधि|journal=Applied Mathematics and Computation|volume=121|issue=2–3|pages=169–175|doi=10.1016/s0096-3003(99)00270-2|issn=0096-3003}}
* {{Cite journal|last1=Boza|first1=Luis|last2=Fedriani|first2=Eugenio M.|last3=Núñez|first3=Juan|date=2001-06-01|title=जटिल तंतुरूप लाई बीजगणित को वर्गीकृत करने के लिए एक नई विधि|journal=Applied Mathematics and Computation|volume=121|issue=2–3|pages=169–175|doi=10.1016/s0096-3003(99)00270-2|issn=0096-3003}}
* {{cite book |last=Bourbaki|first=Nicolas|author-link=Nicolas Bourbaki|title=झूठ समूह और झूठ बीजगणित: अध्याय 1-3|year=1989|isbn=978-3-540-64242-8|publisher=Springer |url=https://books.google.com/books?id=brSYF_rB2ZcC}}
* {{cite book |last=Bourbaki|first=Nicolas|author-link=Nicolas Bourbaki|title=झूठ समूह और झूठ बीजगणित: अध्याय 1-3|year=1989|isbn=978-3-540-64242-8|publisher=Springer |url=https://books.google.com/books?id=brSYF_rB2ZcC}}
* करिन एर्डमैन | एर्डमैन, कैरिन और वाइल्डन, मार्क। इंट्रोडक्शन टू लाई एल्जेब्रस, पहला संस्करण, स्प्रिंगर, 2006। {{isbn|1-84628-040-0}}
* करिन एर्डमैन | एर्डमैन, कैरिन और वाइल्डन, मार्क। इंट्रोडक्शन टू लाई एल्जेब्रस, पहला संस्करण, स्प्वलयर, 2006। {{isbn|1-84628-040-0}}
* {{Fulton-Harris}}
* {{Fulton-Harris}}
* {{cite book |last=Hall|first=Brian C.|title=झूठ समूह, झूठ बीजगणित, और प्रतिनिधित्व: एक प्राथमिक परिचय|edition=2nd|series=Graduate Texts in Mathematics|volume=222|publisher=Springer|year=2015|isbn=978-3319134666|doi=10.1007/978-3-319-13467-3|issn=0072-5285}}
* {{cite book |last=Hall|first=Brian C.|title=झूठ समूह, झूठ बीजगणित, और प्रतिनिधित्व: एक प्राथमिक परिचय|edition=2nd|series=Graduate Texts in Mathematics|volume=222|publisher=Springer|year=2015|isbn=978-3319134666|doi=10.1007/978-3-319-13467-3|issn=0072-5285}}
Line 458: Line 454:
{{Authority control}}
{{Authority control}}


{{DEFAULTSORT:Lie Algebra}}[[Category:झूठ बोलने वाले समूह]]
{{DEFAULTSORT:Lie Algebra}}
 
[[Category:Articles with hatnote templates targeting a nonexistent page|Lie Algebra]]
[[Category:Articles with short description|Lie Algebra]]
[[Category:CS1 British English-language sources (en-gb)|Lie Algebra]]
[[Category:CS1 français-language sources (fr)|Lie Algebra]]
[[Category:CS1 maint|Lie Algebra]]
[[Category:CS1 Ελληνικά-language sources (el)|Lie Algebra]]
[[Category:CS1 русский-language sources (ru)|Lie Algebra]]
[[Category:Citation Style 1 templates|W]]
[[Category:Collapse templates|Lie Algebra]]
[[Category:Created On 26/11/2022|Lie Algebra]]
[[Category:Lua-based templates|Lie Algebra]]
[[Category:Machine Translated Page|Lie Algebra]]
[[Category:Missing redirects|Lie Algebra]]
[[Category:Multi-column templates|Lie Algebra]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists|Lie Algebra]]
[[Category:Pages using div col with small parameter|Lie Algebra]]
[[Category:Pages with script errors|Lie Algebra]]
[[Category:Short description with empty Wikidata description|Lie Algebra]]
[[Category:Sidebars with styles needing conversion|Lie Algebra]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready|Lie Algebra]]
[[Category:Templates based on the Citation/CS1 Lua module|Lie Algebra]]
[[Category:Templates generating COinS|Cite web]]
[[Category:Templates generating microformats|Lie Algebra]]
[[Category:Templates that add a tracking category|Lie Algebra]]
[[Category:Templates that are not mobile friendly|Lie Algebra]]
[[Category:Templates used by AutoWikiBrowser|Cite web]]
[[Category:Templates using TemplateData|Lie Algebra]]
[[Category:Templates using under-protected Lua modules|Lie Algebra]]
[[Category:Wikipedia fully protected templates|Cite web]]
[[Category:Wikipedia metatemplates|Lie Algebra]]
[[Category:झूठ बोलने वाले समूह|Lie Algebra]]
[[Category:झूठे बीजगणित| ]]
[[Category:झूठे बीजगणित| ]]
[[Category: Machine Translated Page]]
[[Category:Created On 26/11/2022]]

Latest revision as of 11:01, 27 December 2022

गणित में, लाई बीजगणित (जिसका उच्चारण /l/ LEE) वह सदिश स्थान है जिसे के साथ एक द्वि-आधारी संक्रिया के रूप में लाई कोष्ठक कहा जाता है, यह वैकल्पिक बहुरेखीय मानचित्र , जो जैकोबी समरूपता को संतुष्ट करता है। दो सदिशों का लाई कोष्ठक तथा निरूपित किया जाता है, [lower-alpha 1] सदिश स्थान और यह संक्रिया एक गैर-सहयोगी बीजगणित है, जिसका अर्थ है कि लाइ कोष्ठक आवश्यक रूप से साहचर्य गुण नहीं है।

लाई बीजगणित लाई समूह से निकटता से संबंधित हैं, जो ऐसे समूह (गणित) हैं जो तिरछा-सममित भी हैं, कोई लाई समूह लाई बीजगणित को निर्गत करता है, जो सममित पर इसकी स्पर्शरेखा है। इसके विपरीत, वास्तविक या जटिल संख्याओं पर किसी भी परिमित-आयामी लाई बीजगणित के लिए, एक संबंधित संयोजित स्थान लाई समूह होता है जो परिमित आवरण (लाई का तीसरा प्रमेय) तक अद्वितीय होता है। यह पत्राचार लाई बीजगणित के संदर्भ में लाई समूहों की संरचना और वर्गीकरण का अध्ययन करने की अनुमति देता है।

भौतिक विज्ञान में, लाई समूह भौतिक प्रणालियों के सममित समूहों के रूप में प्रकट होते हैं, और उनके लाई बीजगणित (सममित के निकट स्पर्शरेखा सदिश) को अतिसूक्ष्म सममित गति के रूप में माना जा सकता है। इस प्रकार बीजगणित और उनके निरूपण भौतिकी में बड़े पैमाने पर उपयोग किए जाते हैं, विशेष रूप से क्वांटम यांत्रिकी और कण भौतिकी में।

संकर उत्पाद द्वारा परिभाषित कोष्ठक संक्रिया के साथ एक प्राथमिक उदाहरण तीन आयामी सदिश का स्थानहै। यह तिरछा-सममित है क्योंकि, और सहयोगीता के अतिरिक्त यह जैकोबी सममित को संतुष्ट करता है:

यह स्थान के घूर्णन के लाई समूह का लाई बीजगणित है,और प्रत्येक सदिश को अक्ष के चारों ओर एक अतिसूक्ष्म घुमाव के रूप में चित्रित किया जा सकता है, के परिमाण के बराबर वेग के साथ। लाइ कोष्ठक दो घुमावों के बीच गैर-क्रमविनिमेयता का एक माप है: चूँकि घूर्णन अपने साथ चलता है, हमारे पास वैकल्पिक गुण है।

इतिहास

1870 में सोफस लाई द्वारा अत्यल्प परिवर्तनों की अवधारणा का अध्ययन करने के लिए लाई बीजगणित को प्रारंभ किया गया था,[1] और स्वतंत्र रूप से 1880 में विल्हेम किलिंग द्वारा खोजा गया[2]। लाई बीजगणित नाम 1930 में हरमन वेइल द्वारा दिया गया था; प्राचीन ग्रंथों में, शब्द अत्यल्प समूह का प्रयोग किया जाता है।

परिभाषाएँ

एक लाई बीजगणित की परिभाषा

लाई बीजगणित एक सदिश समष्टि है किसी क्षेत्र में (गणित) एक साथ एक द्वि-आधारी संक्रिया के साथ निम्नलिखित अभिगृहीतों को संतुष्ट करने वाला लाइ कोष्ठक कहलाता है:[lower-alpha 2]

सभी अदिश के लिए , में और सभी तत्वों ,, में
  • वैकल्पिककरण,
सभी के लिए में
  • जैकोबी समरूपता,
सभी के लिए ,,में

लाई कोष्ठक का विस्तार करने के लिए द्विरेखीयता का उपयोग करना और वैकल्पिकता का उपयोग करना दर्शाता है कि सभी तत्वों के लिए , में , यह दर्शाता है कि द्विरेखीयता और वैकल्पिकता का एक साथ अर्थ है

 : सभी तत्वों के लिए , में । यदि क्षेत्र की विशेषता (बीजगणित) 2 नहीं है, तो अनुगामी का अर्थ वैकल्पिकता है, क्योंकि इसका तात्पर्य है[3]

लाई बीजगणित को न्यून- स्थिति फ़्रेक्टुर अक्षर जैसे से निरूपित करने की प्रथा है यदि एक लाई बीजगणित एक लाई समूह से जुड़ा हुआ है, तो बीजगणित को समूह के फ़्रेक्टुर संस्करण द्वारा दर्शाया जाता है: उदाहरण के लिए विशेष एकात्मक समूह का लाई बीजगणित है|

उत्पादक और आयाम

लाई बीजगणित के तत्व इसे उत्पादक (गणित) कहा जाता है यदि इन तत्वों से युक्त सबसे छोटा उपबीजगणित है। लाई बीजगणित का आयाम सदिश स्थान के रूप में इसका आयाम है। लाई बीजगणित के न्यूनतम उत्पादक समूह की प्रमुखता सदैव इसके आयाम से कम या उसके बराबर होती है।

अन्य छोटे उदाहरणों के लिए निम्न-आयामी वास्तविक लाई बीजगणित का वर्गीकरण देखें।

उपबीजगणित, आदर्शों और समरूपता

लाइ कोष्ठक को साहचर्य होने की आवश्यकता नहीं है, जिसका अर्थ है कि को बराबर की आवश्यकता नहीं है। यद्यपि, यह नम्य बीजगणित है। फिर भी, साहचर्य वलय (गणित) और साहचर्य बीजगणित की अधिकांश शब्दावली सामान्यतः लाई बीजगणित पर लागू होती है। एक लाई उपबीजगणित एक उपस्थान है जो लाई कोष्ठक के अधीन बंद है। इस प्रकार एक आदर्श मजबूत स्थिति को संतुष्ट करने वाला एक उपबीजगणित है:[4]

एक लाई बीजगणित सममित एक रेखीय मानचित्र है जो संबंधित लाई कोष्ठक के साथ संगत है:

साहचर्य वलयों के लिए, आदर्श सममित के कर्नेल (बीजगणित) हैं;इसमें एक लाई बीजगणित और एक आदर्श दिया गया है, कारक बीजगणित या भागफल बीजगणित का निर्माण करता है, और पहली तुल्यकारिता प्रमेय लाई बीजगणित के लिए मान्य है।

चूँकि लाई कोष्ठक संबंधित लाई समूह का एक प्रकार का अतिसूक्ष्म दिकपरिवर्तक है, हम कहते हैं कि दो तत्व परिवर्तित करते हैं यदि उनका कोष्ठक: अदृश्य हो जाता है।

एक उपसमुच्चय का केंद्रक उपबीजगणित के साथ आने वाले तत्वों : का वह समूह है। का केंद्रक ही केंद्र है। इसी तरह, एक उप-स्थान S के लिए, सामान्यक उपबीजगणित का है। [5] समान रूप से, यदि एक लाई उपबीजगणित है, सबसे बड़ा उपबीजगणित का आदर्श है।

उदाहरण

सभी के लिए , दो तत्वों का दिकपरिवर्तक तथा :

एक उपबीजगणित दिखाता है ,लेकिन एक आदर्श नहीं है। वस्तुतः, लाई बीजगणित के प्रत्येक एक-आयामी रैखिक उप-स्थान में प्रेरित एबेलियन लाइ बीजगणित संरचना होती है, जो प्रायः आदर्श नहीं होती है। किसी साधारण लाई बीजगणित के लिए, सभी एबेलियन लाई बीजगणित कभी भी आदर्श नहीं हो सकते।

प्रत्यक्ष योग और अर्धप्रत्यक्ष उत्पाद

दो लाई बीजगणित के लिए तथा , अनुखंड का उनका सीधा योग बीजगणित सदिश स्थान है सभी जोड़ों से मिलकर , संक्रिया के साथ

ताकि की प्रतियां एक दूसरे के साथ आवागमन करें:

मान लीजिए कि एक लाई बीजगणित है और , की एक गुणजावली है। यदि विहित मानचित्र विभाजित करता है (अर्थात्, एक खंड को स्वीकार करता है), फिर को तथा , का अर्धप्रत्यक्ष उत्पाद कहा जाता है। लाई बीजगणित का अर्धप्रत्यक्ष योग भी देखें।

लेवी के प्रमेय का कहना है कि एक परिमित-आयामी लाई बीजगणित इसके मूल और पूरक उपबीजगणित ( लेवी उपबीजगणित) का एक अर्ध-प्रत्यक्ष उत्पाद है।

व्युत्पत्ति

लाई बीजगणित (या किसी गैर-सहयोगी बीजगणित पर) एक रेखीय मानचित्र है जो लीबनिज नियम का पालन करता है, अर्थात,

सभी के लिए। किसी भी से जुड़ी आंतरिक व्युत्पत्ति द्वारा परिभाषित आसन्न मानचित्रण है। (यह जैकोबी सममित के परिणाम के रूप में एक व्युत्पत्ति है। ) बाहरी व्युत्पत्ति वे व्युत्पत्ति हैं जो लाई बीजगणित के आसन्न प्रतिनिधित्व से नहीं आती हैं। यदि अर्धसरल लाई बीजगणित है, प्रत्येक व्युत्पत्ति आंतरिक है।

व्युत्पत्तियाँ एक सदिश स्थान ,जो कि ; कोष्ठक लाई उपबीजगणित दिकपरिवर्तक है। आंतरिक व्युत्पत्तियाँ एक लाई उपबीजगणित का निर्माण करती हैं।

उदाहरण

उदाहरण के लिए, दिए गए एक लाई बीजगणित आदर्श आसन्न प्रतिनिधित्व का पर बाहरी व्युत्पत्तियों के रूप में कार्य करता है जबसे किसी के लिए तथा है। लाई बीजगणित के लिए ऊपरी त्रिकोणीय आव्यूह में , इसका एक आदर्श कठोरता से ऊपरी त्रिकोणीय आव्यूह हैं(जहां केवल गैर-शून्य तत्व आव्यूह के विकर्ण से ऊपर हैं)। उदाहरण के लिए, तत्वों के दिकपरिवर्तक में तथा देता है

दिखाता है कि से में बाहरी व्युत्पत्तियाँ स्थित हैं।

भाजित लाई बीजगणित

मान लीजिए कि V क्षेत्र F पर परिमित-विम सदिश समष्टि है, रैखिक परिवर्तन का लाइ बीजगणित और एक लाई उपबीजगणित है। फिर को विभाजित कहा जाता है यदि में सभी रैखिक परिवर्तनों की विशेषता बहुपद की जड़ें F आधार क्षेत्र में हैं। [6] अधिक प्रायः, एक परिमित-आयामी लाई बीजगणित विभाजित होना कहा जाता है यदि इसमें कार्टन उपबीजगणित है जिसका प्रतिबिम्ब संलग्न प्रतिनिधित्व के अधीन एक विभाजित लाई बीजगणित है। जटिल अर्धसरल लाई बीजगणित का विभाजित वास्तविक रूप (cf.वास्तविक रूप और जटिलता) विभाजित वास्तविक लाई बीजगणित का उदाहरण है। अधिक जानकारी के लिए विभाजित लाई बीजगणित भी देखें।

सदिश स्थान आधार

व्यावहारिक गणनाओं के लिए, बीजगणित के लिए एक स्पष्ट सदिश स्थान आधार चुनना प्रायः सुविधाजनक होता है। इस आधार पर इसे सामान्य निर्माण लेख संरचना स्थिरांक में चित्रित किया गया है।

श्रेणी-सैद्धांतिक संकेतन का उपयोग करते हुए परिभाषा

यद्यपि ऊपर दी गई परिभाषाएं लाई बीजगणित की पारंपरिक समझ के लिए पर्याप्त हैं, एक बार जब यह समझ में आ जाता है, तो श्रेणी सिद्धांत के लिए सामान्य संकेतन का उपयोग करके अतिरिक्त अंतर्दृष्टि प्राप्त की जा सकती है, अर्थात, रेखीय मानचित्रों के संदर्भ में लाई बीजगणित को परिभाषित करके-अर्थात्, आकारिकी सदिश रिक्त स्थान की श्रेणी में - अलग-अलग तत्वों पर विचार किए बिना है। (इस खंड में, क्षेत्र (गणित) जिस पर बीजगणित परिभाषित किया गया है, विशेषता (बीजगणित) दो से भिन्न माना जाता है। )

लाई बीजगणित की श्रेणी-सैद्धांतिक परिभाषा के लिए, दो टेन्सर उत्पाद (टेंसर शक्तियां) और ब्रेडिंग की आवश्यकता होती है। यदि A एक सदिश स्थान है, पस्पर विनिमय समाकृतिकता द्वारा परिभाषित किया गया है

चक्रीय-क्रमपरिवर्तन ब्रेडिंग की तरह परिभाषित किया गया है

जहाँ सममित रूपवाद है।

समान रूप से, द्वारा परिभाषित किया गया है

इस अंकन के साथ, एक लाई बीजगणित को एक वस्तु (श्रेणी सिद्धांत) के रूप में परिभाषित किया जा सकता है आकृतिवाद के साथ सदिश रिक्त स्थान की श्रेणी में

जो दो रूपवाद समानता को संतुष्ट करता है

तथा


उदाहरण

सदिश रिक्त स्थान

कोई सदिश स्थान समान रूप से शून्य लाई कोष्ठक के साथ संपन्न एक लाई बीजगणित बन जाता है। ऐसे लाई बीजगणित को एबेलियन लाई बीजगणित कहा जाता है,सीएफ के अधीन किसी क्षेत्र पर कोई भी एक आयामी लाई बीजगणित लाई कोष्ठक की वैकल्पिक गुण द्वारा एबेलियन है।

दिकपरिवर्तक कोष्ठक के साथ साहचर्य बीजगणित

  • एक साहचर्य बीजगणित पर एक मैदान के ऊपर गुणन के साथ , एक लाइ कोष्ठक को दिकपरिवर्तक वलय सिद्धांत द्वारा परिभाषित किया जा सकता है । इस कोष्ठक के साथ, लाई बीजगणित है। [7] सहयोगी बीजगणित को लाई बीजगणित का एक आवरण बीजगणित कहा जाता है । हर लाई बीजगणित को एक में अंतर्निहित किया जा सकता है जो इस तरह से एक साहचर्य बीजगणित से उत्पन्न होता है; सार्वभौमिक आवरण बीजगणित देखें।
  • उपरोक्त लाई कोष्ठक के साथ -सदिश स्थान के अंत:रूपांतरण वलय के सहयोगी बीजगणित को निरूपित किया गया है।
  • एक परिमित आयामी सदिश स्थान के लिए , पिछला उदाहरण बिल्कुल n × n आव्यूहों का लाई बीजगणित है, जिसे या निरूपित किया गया है,[8] और कोष्ठक के साथ जहां निकटता आव्यूह गुणन को इंगित करती है। यह सामान्य रेखीय समूह का लाई बीजगणित है, जिसमें व्युत्क्रमणीय आव्यूह सम्मिलित हैं।

विशेष आव्यूह

के दो महत्वपूर्ण उपबीजगणित हैं:

  • ट्रेस (रैखिक बीजगणित) शून्य के आव्यूह विशेष रैखिक लाई बीजगणित बनाते हैं, विशेष रेखीय समूह का लाई बीजगणित [9]
  • तिरछा-हर्मिटियन आव्यूह एकात्मक लाई बीजगणित बनाते हैं, एकात्मक समूह U(n) का लाई बीजगणित।

आव्यूह लाई बीजगणित

एक जटिल रेखीय समूह एक लाई समूह है जिसमें आव्यूह होते हैं, , जहाँ G का गुणन आव्यूह गुणन है। संबंधित लाई बीजगणित आव्यूह का स्थान है जो रैखिक स्थान के अंदर G के स्पर्शरेखा सदिश हैं: इसमें सममित पर जी में चिकने वक्रों के व्युत्पन्न सम्मिलित हैं:

लाई कोष्ठक आव्यूह के दिकपरिवर्तक द्वारा दिया जाता है, । लाई बीजगणित को देखते हुए, लाई समूह को आव्यूह घातीय चित्रण के प्रतिबिम्ब के रूप में पुनर्प्राप्त कर सकते हैं द्वारा परिभाषित , जो प्रत्येक आव्यूह के लिए अभिसरण करता है: वह है, है।

निम्नलिखित आव्यूह लाई समूहों के लाई बीजगणित के उदाहरण हैं:[10]

  • विशेष रैखिक समूह , n × n आव्यूह निर्धारक 1 के साथ सभी से मिलकर। इसके लाई बीजगणित में जटिल प्रविष्टियों और ट्रेस 0 के साथ सभी n × n आव्यूह होते हैं। इसी तरह, कोई संबंधित वास्तविक लाई समूह और इसका लाई बीजगणित को परिभाषित कर सकता है।
  • एकात्मक समूह n × n एकात्मक आव्यूह होते हैं (संतोषजनक )। यह लाई बीजगणित है तिरछा-स्व-आसन्न आव्यूह के होते () हैं।
  • विशेष समकोणिक समूह , वास्तविक निर्धारक-एक समकोणिक आव्यूह से मिलकर ()। यह लाई बीजगणित है वास्तविक तिरछा-सममित आव्यूह होते () है। पूर्ण समकोणिक समूह निर्धारक-एक शर्त के बिना, सम्मिलित हैं और एक अलग जुड़ा हुआ घटक है, इसलिए इसमें समान लाई बीजगणित है । तिरछा-सममित आव्यूहों के साथ अत्यल्प घुमाव भी देखें। इसी तरह, जटिल आव्यूह प्रविष्टियों की अनुमति देकर, इस समूह और बीजगणित के एक जटिल संस्करण को परिभाषित किया जा सकता है।

दो आयाम

  • किसी भी क्षेत्र में सममित तक, एक एकल द्वि-आयामी गैर-अबेलियन लाई बीजगणित है। उत्पादक , के साथ, इसके कोष्ठक को के रूप में परिभाषित किया गया है। यह अफ्फिन समूह को एक आयाम में उत्पन्न करता है।
इसे आव्यूह द्वारा समझा जा सकता है:

क्योंकि

किसी भी प्राकृतिक संख्या के लिए और कोई भी , देखा जा सकता है कि परिणामी लाई समूह तत्व ऊपरी त्रिकोणीय 2 × 2 आव्यूह हैं जो इकाई निचले विकर्ण के साथ हैं:


तीन आयाम

  • हाइजेनबर्ग बीजगणित तत्वों द्वारा उत्पन्न एक त्रि-आयामी लाई बीजगणित है x, y, तथा z लाई कोष्ठक के साथ
यह सामान्यतः दिकपरिवर्तक लाइ कोष्ठक और आधार के साथ 3 × 3 दृढ़ता से ऊपरी-त्रिकोणीय आव्यूह के स्थान के रूप में समझा जाता है
हाइजेनबर्ग समूह के किसी भी तत्व का प्रतिनिधित्व समूह उत्पादक के उत्पाद के रूप में होता है, अर्थात् इन लाई बीजगणित उत्पादक के आव्यूह घातांक,
  • लाई बीजगणित समूह का SO(3) तीन आव्यूह द्वारा फैला हुआ है[11]
इन उत्पादक के बीच दिक्-परिवर्तन संबंध हैं
त्रि-आयामी यूक्लिडियन स्थान सदिश (ज्यामितीय) के संकर उत्पाद द्वारा दिए गए लाई कोष्ठक के साथ उपरोक्त के समान रूपांतर संबंध हैं: इस प्रकार, यह के लिए समरूप है। यह लाई बीजगणित क्वांटम यांत्रिकी में चक्रण -1 कणों के लिए सामान्य रूप से सामान्य चक्रण (भौतिकी) कोणीय-गति घटक संचालकों के बराबर है।

अनंत आयाम

  • अंतर सांस्थिति में अनंत-आयामी वास्तविक लाई बीजगणित का एक महत्वपूर्ण वर्ग उत्पन्न होता है। अलग-अलग सममित पर चिकने सदिश क्षेत्रों का लाई कोष्ठक लाई बीजगणित बनाता है, जहाँ लाई कोष्ठक को सदिश क्षेत्र के दिकपरिवर्तक के रूप में परिभाषित किया जाता है। लाई कोष्ठक को व्यक्त करने की एक विधि लाई व्युत्पन्न की औपचारिकता के माध्यम से है,जो एक सदिश क्षेत्र की पहचान पहले क्रम के आंशिक अंतर संचालक के साथ करता है, जो को की दिशा में कार्य का दिशात्मक व्युत्पन्न होने देता है। दो सदिश क्षेत्रों का लाई कोष्ठक [] सूत्र द्वारा कार्यों पर अपनी कार्यवाही के माध्यम से परिभाषित सदिश क्षेत्र है:
  • केएसी-मूडी बीजगणित अनंत-आयामी लाई बीजगणित का एक बड़ा वर्ग है जिसकी संरचना उपरोक्त परिमित-आयामी स्थितियों के समान है।
  • मोयल कोष्ठक एक अनंत-आयामी लाई बीजगणित है जिसमें सभी शास्त्रीय लाई बीजगणित उपबीजगणित के रूप में सम्मिलित हैं।
  • स्ट्वलय सिद्धांत में विरासोरो बीजगणित का सर्वाधिक महत्व है।

प्रतिनिधित्व


परिभाषाएं

सदिश समष्टि V दिया है, मान लीजिए लाई बीजगणित को निरूपित करता है ,जिसमें V के सभी रैखिक अंत:रूपांतरण होते हैं, द्वारा दिए गए कोष्ठक के साथ। लाई बीजगणित का एक प्रतिनिधित्व V पर एक लाई बीजगणित समाकारिता है

यदि इसकी कर्नेल शून्य है तो एक प्रतिनिधित्व को यथार्थ कहा जाता है। एडो की प्रमेय[12] बताता है कि प्रत्येक परिमित-आयामी लाई बीजगणित में एक परिमित-आयामी सदिश स्थान पर एक यथार्थ प्रतिनिधित्व होता है।

संलग्न प्रतिनिधित्व

किसी भी लाई बीजगणित के लिए , हम एक प्रतिनिधित्व को परिभाषित कर सकते हैं

के द्वारा दिया गया; यह सदिश स्थान पर एक प्रतिनिधित्व है लाई बीजगणित के आसन्न प्रतिनिधित्व कहा जाता है।

प्रतिनिधित्व सिद्धांत के लक्ष्य

लाई बीजगणित (विशेष रूप से अर्धसरल लाई बीजगणित) के अध्ययन का एक महत्वपूर्ण पहलू उनके अभ्यावेदन का अध्ययन है। (वस्तुतः, संदर्भ अनुभाग में सूचीबद्ध अधिकांश पुस्तकें अपने पृष्ठों का एक बड़ा हिस्सा प्रतिनिधित्व सिद्धांत के लिए समर्पित करती हैं। ) यद्यपि एडो प्रमेय एक महत्वपूर्ण परिणाम है, प्रतिनिधित्व सिद्धांत का प्राथमिक लक्ष्य किसी दिए गए लाईे बीजगणित का एक यथार्थ प्रतिनिधित्व खोजना नहीं है। वस्तुतः, अर्ध-सरल काम में, आसन्न प्रतिनिधित्व पहले से ही यथार्थ है। बल्कि लक्ष्य के सभी संभावित प्रतिनिधित्व को समझना है, समानता की प्राकृतिक धारणा तक। विशेषता शून्य के एक क्षेत्र पर अर्ध-सरल काम में, पूर्ण न्यूनीकरण पर वेइल का प्रमेय | वेइल का प्रमेय[13] कहता है कि प्रत्येक परिमित-आयामी प्रतिनिधित्व अलघुकरणीय अभ्यावेदन का प्रत्यक्ष योग है (जिनमें कोई गैर-नगण्य अपरिवर्तनीय उप-स्थान नहीं है)। अलघुकरणीय निरूपण, बदले में, एक लाई बीजगणित प्रतिनिधित्व के परिमित-आयामी प्रतिनिधित्व को वर्गीकृत करता है।

भौतिकी में प्रतिनिधित्व सिद्धांत

बीजगणित का प्रतिनिधित्व सिद्धांत सैद्धांतिक भौतिकी के विभिन्न भागों में एक महत्वपूर्ण भूमिका निभाता है। यहां, स्थितियों के स्थान पर संचालकों पर विचार किया जाता है जो कुछ प्राकृतिक रूपांतरण संबंधों को पूरा करते हैं। ये रूपान्तरण संबंध प्रायः समस्या की सममित से आते हैं- विशेष रूप से, वे प्रासंगिक सममित समूह के लाई बीजगणित के संबंध हैं। एक उदाहरण कोणीय संवेग संचालक होंगे, जिनके परिवर्तन संबंध लाई बीजगणित घुमाव वाले समूह SO(3) के हैं। सामान्यतः इन स्थितियों का स्थान प्रासंगिक संचालकों के अधीन अलघुकरणीय होने से बहुत दूर है, लेकिन कोई इसे अप्रासंगिक टुकड़ों में विघटित करने का प्रयास कर सकता है। ऐसा करने के लिए, किसी को दिए गए लाई बीजगणित के अलघुकरणीय निरूपण को जानने की आवश्यकता है। क्वांटम हाइड्रोजन जैसे परमाणु के अध्ययन में, उदाहरण के लिए, क्वांटम यांत्रिकी पाठ्यपुस्तकें (बिना इसे कहे) लाई बीजगणित के अलघुकरणीय प्रस्तुतियों का वर्गीकरण देती हैं। ।

संरचना सिद्धांत और वर्गीकरण

लाई बीजगणित को कुछ हद तक वर्गीकृत किया जा सकता है। विशेष रूप से, यह लाई बोलने वाले समूहों के वर्गीकरण के लिए एक आवेदन है।

एबेलियन, निलपोटेंट, और हलेबल

व्युत्पन्न उपसमूहों के संदर्भ में परिभाषित एबेलियन, निलपोटेंट और हल करने योग्य समूहों के अनुरूप, कोई भी एबेलियन, नीलपोटेंट और हल करने योग्य लाई बीजगणित को परिभाषित कर सकता है।

लाई बीजगणित वह एबेलियन है यदि लाइ कोष्ठक अदृश्य हो जाता है, अर्थात् [x,y] = 0, सभी x और y के लिए । एबेलियन लाइ बीजगणित विनिमेय (या एबेलियन समूह) से जुड़े लाई समूहों जैसे सदिश रिक्त स्थान के अनुरूप या टोरस्र्स हैं, और सभी रूप हैं, मतलब नगण्य लाई कोष्ठक के साथ एक n-आकार सदिश स्थान है।

लाई बीजगणित का एक अधिक सामान्य वर्ग दी गई लंबाई के सभी दिकपरिवर्तकों के लुप्त होने से परिभाषित होता है। एक लाई बीजगणित निलपोटेंट बीजगणित यदि निचली केंद्रीय श्रृंखला है

अंततः शून्य हो जाता है। एंगेल के प्रमेय के अनुसार, लाई बीजगणित शून्य है यदि और केवल यदि प्रत्येक uके लिए आसन्न अंत:रूपांतरण

शक्तिहीन है।

अधिक प्रायः अभी भी, एक लाई बीजगणित हल करने योग्य बीजगणित कहा जाता है यदि व्युत्पन्न श्रृंखला:

अंततः शून्य हो जाता है।

प्रत्येक परिमित-आयामी लाई बीजगणित में एक अद्वितीय अधिकतम हल करने योग्य आदर्श होता है, जिसे लाई बीजगणित का मौलिक कहा जाता है। लाई पत्राचार के अधीन, नीलपोटेंट (क्रमशः, हल करने योग्य) जुड़े हुए समूह नीलपोटेंट (क्रमशः, हल करने योग्य) लाई बीजगणित के अनुरूप होते हैं।

सरल और अर्धसरल

एक लाई बीजगणित सरल लाई बीजगणित है यदि इसमें कोई गैर-नगण्य आदर्श नहीं है और यह अबेलियन नहीं है। (इसका तात्पर्य यह है कि एक आयामी-अनिवार्य रूप से एबेलियन-लाई बीजगणित परिभाषा के अनुसार सरल नहीं है, भले ही इसमें कोई गैर-नगण्य आदर्श न हो। ) एक लाई बीजगणित अर्धसरल ले बीजगणित कहा जाता है यदि यह सरल बीजगणितों के प्रत्यक्ष योग के लिए समरूप है। अर्ध-सरल बीजगणित के कई समतुल्य लक्षण हैं, जैसे कि गैर-शून्य हल करने योग्य आदर्श नहीं हैं।

लाई बीजगणित के लिए अर्धसरलता की अवधारणा उनके अभ्यावेदन की पूर्ण न्यूनीकरण (अर्धसरलता) के साथ निकटता से संबंधित है। जब आधार क्षेत्र F में विशेषता (क्षेत्र) शून्य होता है, तो अर्ध-सरल लाई बीजगणित का कोई भी परिमित-आयामी प्रतिनिधित्व अर्ध-सरल प्रतिनिधित्व होता है (अर्थात्,अलघुकरणीय प्रतिनिधित्व का प्रत्यक्ष योग)। सामान्य तौर पर, एक लाई बीजगणित को सरल लाइ बीजगणित कहा जाता है यदि आसन्न प्रतिनिधित्व अर्ध-सरल है। इस प्रकार, एक अर्धसरल लाई बीजगणित सरल है।

कार्टन की मानदंड

कार्टन की मानदंड लाई बीजगणित के शून्य-शक्तिशाली, हल करने योग्य या अर्ध-सरल होने की अनुबंध देती है। t किलिंग रूप की धारणा पर आधारित है, जो एक सममित द्विरेखीय रूप है सूत्र द्वारा परिभाषित है

जहाँ tr ट्रेस रैखिक बीजगणित को दर्शाता है। एक लाई बीजगणित अर्धसरल है यदि और केवल यदि किलिंग रूप गैर पतित रूप है। एक लाई बीजगणित हल करने योग्य है यदि और केवल यदि है।

वर्गीकरण

लेवी अपघटन एक मनमाना लाई बीजगणित को उसके हल करने योग्य मौलिक के अर्ध-प्रत्यक्ष योग और एक अर्ध-सरल लाई बीजगणित के रूप में व्यक्त करता है, लगभग एक विहित विधि से। (इस तरह के अपघटन विशेषता शून्य के एक क्षेत्र पर परिमित-आयामी लाई बीजगणित के लिए स्थित हैं। [14]) इसके अलावा, एक बीजगणितीय रूप से बंद क्षेत्र पर अर्ध-सरल लाई बीजगणित को उनके मूल प्रक्रिया के माध्यम से पूरी तरह से वर्गीकृत किया गया है।

लाई समूहों से संबंध

एक बिंदु पर एक गोले का स्पर्शरेखा स्थान । यदि सममित तत्व है, तो स्पर्शरेखा स्थान भी लाई बीजगणित है।

यद्यपि लाई बीजगणित प्रायः अपने अधिकार में अध्ययन किया जाता है, ऐतिहासिक रूप से वे लाई समूहों का अध्ययन करने के साधन के रूप में उभरे।

अब हम लाई समूहों और लाई बीजगणित के बीच के संबंध को संक्षेप में रेखांकित करते हैं। कोई भी लाई समूह एक विहित रूप से निर्धारित लाई बीजगणित (ठोस रूप से, सममित पर स्पर्शरेखा स्थान) को निर्गत करता है। इसके विपरीत, किसी परिमित-आयामी लाई बीजगणित के लिए , एक संबंधित जुड़ा हुआ समूह स्थित है लाई बीजगणित के साथ । यह लाई का तीसरा प्रमेय है; बेकर-कैंपबेल-हॉसडॉर्फ सूत्र देखें। यह लाई समूह विशिष्ट रूप से निर्धारित नहीं है; यद्यपि , समान लाई बीजगणित वाले कोई भी दो लाई समूह स्थानीय रूप से समरूप हैं, और विशेष रूप से, एक ही सार्वभौमिक आवरण है। उदाहरण के लिए, विशेष समकोण समूह SO(3) और विशेष एकात्मक समूह SU(2) एक ही लाइ बीजगणित को निर्गत देते हैं, जो समरूप है संकर-उत्पाद के साथ, लेकिन SU(2) SO(3) का एक सरल-जुड़ा हुआ दोहरा आवरण है।

यदि हम बस जुड़े हुए लाई समूहों पर विचार करते हैं, यद्यपि, हमारे पास एक-से-एक पत्राचार है: प्रत्येक (परिमित-आयामी वास्तविक) लाई बीजगणित के लिए , एक अद्वितीय बस जुड़ा हुआ लाई ​​ लाई बीजगणित के साथ समूह है।

लाई बीजगणित और लाई समूहों के बीच पत्राचार कई तरह से प्रयोग किया जाता है, जिसमें सरल लाई समूहों की सूची और लाई समूहों के प्रतिनिधित्व सिद्धांत के संबंधित काम सम्मिलित हैं। एक लाई बीजगणित का प्रत्येक प्रतिनिधित्व विशिष्ट रूप से जुड़े हुए, बस जुड़े हुए लाई समूह के प्रतिनिधित्व के लिए विशिष्ट रूप से उठाता है, और इसके विपरीत किसी भी लाई समूह का प्रत्येक प्रतिनिधित्व समूह के लाई बीजगणित के प्रतिनिधित्व को प्रेरित करता है; अभ्यावेदन एक-से-एक पत्राचार में हैं। इसलिए, लाई बीजगणित के प्रतिनिधित्व को परिचय समूह के प्रतिनिधित्व के प्रश्न को सुलझाता है।

वर्गीकरण के लिए, यह दिखाया जा सकता है कि किसी दिए गए लाई बीजगणित के साथ जुड़ा हुआ कोई भी जुड़ा हुआ समूह सार्वभौमिक कवर मॉड के लिए एक असतत केंद्रीय उपसमूह के लिए समरूप है। इसलिए लाई समूहों को वर्गीकृत करना केवल केंद्र (समूह सिद्धांत) के असतत उपसमूहों की गणना करने का विषय बन जाता है, एक बार लाई बीजगणित का वर्गीकरण ज्ञात हो जाता है (अर्धसरल विषय में एली कार्टन एट अल द्वारा हल किया गया)।

यदि लाई बीजगणित अनंत-आयामी है, तो समस्या अधिक सूक्ष्म है। कई उदाहरणों में, घातीय मानचित्र स्थानीय रूप से होमियोमोर्फिज्म भी नहीं है (उदाहरण के लिए, Diff(S1), किसी को मनमाने ढंग से उस सममित के करीब भिन्नताएं मिल सकती हैं जो उदाहरण प्रतिबिम्ब में नहीं हैं)। इसके अलावा, कुछ अनंत-आयामी लाई बीजगणित किसी भी समूह के लाईे बीजगणित नहीं हैं।

वास्तविक रूप और जटिलता

एक जटिल लाई बीजगणित दिया गया , एक वास्तविक लाई बीजगणित का साकार रूप कहा गया है यदि जटिलता के लिए समरूप है। [15] एक वास्तविक रूप अद्वितीय होने की आवश्यकता नहीं है; उदाहरण के लिए, के दो वास्तविक रूप तथा हैं । [15]

एक अर्ध-सरल परिमित-आयामी जटिल लाई बीजगणित दिया गया है, इसका एक विभाजित रूप एक वास्तविक रूप है जो विभाजित होता है; अर्थात्, इसमें एक कार्टन उपबीजगणित है जो वास्तविक अभिलाक्षणिक मान​​​​ के साथ एक आसन्न प्रतिनिधित्व के माध्यम से कार्य करता है। एक विभाजित रूप और अद्वितीय (सममित तक) स्थित है। [15]एक सघन रूप एक वास्तविक रूप है जो एक सघन लाइ समूह का लाइ बीजगणित है। एक सघन रूप स्थित और अद्वितीय भी है। [15]

अतिरिक्त संरचनाओं के साथ लाई बीजगणित

एक लाई बीजगणित को कुछ अतिरिक्त संरचनाओं से सुसज्जित किया जा सकता है जिन्हें कोष्ठक के साथ संगत माना जाता है। उदाहरण के लिए, एक श्रेणीबद्ध लाई बीजगणित एक श्रेणीबद्ध सदिश स्थान संरचना वाला एक लाई बीजगणित है। यदि यह अवकल के साथ भी आता है (ताकि अंतर्निहित श्रेणीबद्ध सदिश स्थान एक मिश्रित श्रंखला हो), तो इसे अवकल श्रेणीबद्ध लाई बीजगणित कहा जाता है।

एक साधारण लाई बीजगणित लाई बीजगणित की श्रेणी में एक साधारण वस्तु है; दूसरे शब्दों में, यह अंतर्निहित समूह को एक साधारण समूह के साथ बदलकर प्राप्त किया जाता है (इसलिए इसे लाई बीजगणित के वंश के रूप में बेहतर माना जा सकता है)।

लाई वलय

लाई बीजगणित के सामान्यीकरण के रूप में, या समूह (गणित) की निचली केंद्रीय श्रृंखला के अध्ययन के माध्यम से एक लाई की वलय उत्पन्न होती है। एक लाइ वलय को गुणन के साथ एक गैर-सहयोगी वलय के रूप में परिभाषित किया गया है जो कि विरुद्ध विनिमेय है और जैकोबी सममित को संतुष्ट करता है। अधिक विशेष रूप से हम एक लाई की वलय को परिभाषित कर सकते हैं संक्रिया के साथ एक एबेलियन समूह होना जिसके निम्नलिखित गुण हैं:

  • द्विरेखीयता:
सभी x, y, z ∈ L के लिए।
  • जैकोबी समरूपता:
L में सभी x, y, z के लिए।
  • Lमें सभी x के लिए:

लाई वलय को इसके अलावा लाई समूह नहीं होना चाहिए। कोई भी लाई बीजगणित लाई की वलय का एक उदाहरण है। कोष्ठक संचालक को परिभाषित करके किसी भी साहचर्य वलय को लाइ वलय में बनाया जा सकता है । किसी भी लाई बीजगणित के विपरीत एक संगत वलय होता है, जिसे सार्वभौमिक आवरण बीजगणित कहा जाता है।

लैज़र्ड पत्राचार के माध्यम से परिमित p-समूह के अध्ययन में लाई वलय का उपयोग किया जाता है। एक p-समूह के निचले केंद्रीय कारक परिमित एबेलियन p-समूह हैं, इसलिए 'z'/p'z' पर मापांक। निचले केंद्रीय कारकों के प्रत्यक्ष योग को दो को समूह प्रतिनिधियों के दिकपरिवर्तक होने के लिए कोष्ठक को परिभाषित करके एक लाइ वलय की संरचना दी जाती है। लाइ वलय संरचना एक अन्य मापांक होमोमोर्फिज्म, pवे शक्ति मानचित्र के साथ समृद्ध है, जो संबंधित लाइ वलय को एक तथाकथित प्रतिबंधित लाइ वलय बनाती है।

p-एडिक पूर्णांक जैसे पूर्णांकों के वलय पर लाइ बीजगणित का अध्ययन करके p-एडिक विश्लेषणात्मक समूहों और उनके अंत:रूपांतरण की परिभाषा में लाई के वलय भी उपयोगी होते हैं। चेवेली के कारण लाई प्रकार के परिमित समूहों की परिभाषा में जटिल संख्याओं पर लाई बीजगणित से पूर्णांकों पर लाई बीजगणित तक सीमित करना सम्मिलित है, और फिर एक सीमित क्षेत्र पर लाई बीजगणित प्राप्त करने के लिए मोडुलो p को कम करना सम्मिलित है।

उदाहरण

  • क्षेत्र (गणित) के अतिरिक्त एक सामान्य वलय (गणित) पर कोई भी लाई बीजगणित लाई की वलय का एक उदाहरण है। नाम के अतिरिक्त लाई वलय इसके अतिरिक्त लाई समूह नहीं हैं।
  • कोष्ठक संचालक को परिभाषित करके किसी भी सहयोगी वलय को लाई की वलय में बनाया जा सकता है
  • समूह (गणित) के अध्ययन से उत्पन्न होने वाली लाई की वलय के उदाहरण के लिए, आइए के साथ एक समूह बनें दिकपरिवर्तक संक्रिया, और में एक केंद्रीय श्रृंखला हो - दिकपरिवर्तक उपसमूह में निहित किसी भी के लिए है। तब
समूह संक्रिया (जो प्रत्येक सजातीय भाग में एबेलियन है) द्वारा आपूर्ति की गई जोड़ के साथ एक लाइ वलय है, और कोष्ठक संक्रिया द्वारा दिया गया है
रैखिक रूप से विस्तारित श्रृंखला की केंद्रीयता सुनिश्चित करती है कि दिकपरिवर्तक कोष्ठक संक्रिया को उचित लाई सैद्धांतिक गुण देता है।

यह भी देखें


टिप्पणियाँ

  1. The brackets [,] represent bilinear operation ; often, it is the commutator: , for an associative product on the same vector space. But not necessarily!
  2. Bourbaki (1989, Section 2.) allows more generally for a module over a commutative ring; in this article, this is called a Lie ring.


संदर्भ

  1. O'Connor & Robertson 2000
  2. O'Connor & Robertson 2005
  3. Humphreys 1978, p. 1
  4. Due to the anticommutativity of the commutator, the notions of a left and right ideal in a Lie algebra coincide.
  5. Jacobson 1962, p. 28
  6. Jacobson 1962, p. 42
  7. Bourbaki 1989, §1.2. Example 1.
  8. Bourbaki 1989, §1.2. Example 2.
  9. Humphreys 1978, p. 2
  10. Hall 2015, §3.4
  11. Hall 2015, Example 3.27
  12. Jacobson 1962, Ch. VI
  13. Hall 2015, Theorem 10.9
  14. Jacobson 1962, Ch. III, § 9.
  15. 15.0 15.1 15.2 15.3 Fulton & Harris 1991, §26.1.


स्रोत


बाहरी संबंध