त्रि-गुणन नियम: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{calculus|expanded=अवकल गणित}}
{{calculus|expanded=अवकल गणित}}


'''ट्रिपल उत्पाद नियम''', जिसे चक्रीय श्रृंखला नियम, चक्रीय संबंध, चक्रीय नियम या यूलर की श्रृंखला नियम के रूप में जाना जाता है, एक सूत्र है जो तीन अन्योन्याश्रित चरों के आंशिक डेरिवेटिव से संबंधित है। यह नियम [[ऊष्मप्रवैगिकी|ऊष्मागतिकी]] में अनुप्रयोग पाता है, जहाँ बार-बार तीन चरों को ''f''(''x'', ''y'', ''z'') = 0 के एक फलन द्वारा संबंधित किया जा सकता है, इसलिए प्रत्येक चर को अन्य दो चरों के निहित फलन के रूप में दिया जाता है। उदाहरण के लिए, एक तरल पदार्थ के लिए राज्य का समीकरण [[तापमान]], [[दबाव]] और आयतन को इस तरह से संबंधित करता है। इस तरह के परस्पर संबंधित चर ''x'', ''y'', और ''z'' के लिए त्रिगुण उत्पाद नियम निहित कार्य प्रमेय के परिणाम पर एक पारस्परिक संबंध का उपयोग करने से आता है, और इसके द्वारा दिया जाता है
'''त्रि-गुणन नियम''' एक ऐसा सूत्र है जो तीन परस्पर आश्रित चरों के आंशिक अवकलजों के मध्य सम्बन्ध स्थापित करता है; इसे '''चक्रीय श्रृंखला नियम''', '''चक्रीय संबंध''', '''चक्रीय नियम''' या '''यूलर की श्रृंखला के नियम''' के रूप में जाना जाता है। इस नियम का अनुप्रयोग [[ऊष्मप्रवैगिकी|ऊष्मागतिकी]] में पाया जाता है, जहाँ प्रायः तीन चरों को ''f''(''x'', ''y'', ''z'') = 0 के एक फलन द्वारा संबंधित किया जा सकता है, इसलिए प्रत्येक चर को अन्य दो चरों के निहित फलन के रूप में दिया जाता है। उदाहरण के लिए, एक तरल की अवस्था समीकरण [[तापमान|ताप]], [[दबाव|दाब]] और आयतन को इसी प्रकार संबंधित करती है। इस प्रकार के परस्पर संबंधित चरों ''x'', ''y'', और ''z'' के लिए त्रिगुण उत्पाद नियम निहित फलन प्रमेय के परिणाम पर एक पारस्परिक संबंध का उपयोग करने से प्राप्त होता है, जो कि इस प्रकार है
:<math>\left(\frac{\partial x}{\partial y}\right)\left(\frac{\partial y}{\partial z}\right)\left(\frac{\partial z}{\partial x}\right) = -1,</math>
:<math>\left(\frac{\partial x}{\partial y}\right)\left(\frac{\partial y}{\partial z}\right)\left(\frac{\partial z}{\partial x}\right) = -1,</math>
जहां प्रत्येक कारक अंश में चर का आंशिक व्युत्पन्न है, जिसे अन्य दो का कार्य माना जाता है।
जहाँ प्रत्येक गुणनखंड अंश में चर का आंशिक अवकलज है, जिसे अन्य दो चरों का फलन माना जाता है।


ट्रिपल उत्पाद नियम का लाभ यह है कि शर्तों को पुनर्व्यवस्थित करके, कई प्रतिस्थापन पहचान प्राप्त कर सकते हैं जो आंशिक डेरिवेटिव को बदलने की अनुमति देते हैं जो विश्लेषणात्मक रूप से मूल्यांकन करने, प्रयोगात्मक रूप से मापने या आंशिक डेरिवेटिव के भागफल के साथ एकीकृत करने के लिए मुश्किल हैं जो काम करना आसान है साथ। उदाहरण के लिए,
त्रि-गुणन नियम का लाभ यह है कि इसमें पदों को पुनर्व्यवस्थित करके कई प्रतिस्थापन सर्वसमिकाएँ प्राप्त की जा सकती हैं जो ऐसे आंशिक अवकलजों को प्रतिस्थापित करने की अनुमति प्रदान करती हैं जो विश्लेषणात्मक रूप से मूल्यांकित करने, प्रयोगात्मक रूप से मापने या आंशिक अवकलजों के ऐसे भागफलों के साथ समाकलित करने के लिए कठिन हैं जिनके साथ कार्य करना आसान है। उदाहरण के लिए,


:<math>\left(\frac{\partial x}{\partial y}\right) = - \frac{\left(\frac{\partial z}{\partial y}\right)}{\left(\frac{\partial z}{\partial x}\right)}</math>
:<math>\left(\frac{\partial x}{\partial y}\right) = - \frac{\left(\frac{\partial z}{\partial y}\right)}{\left(\frac{\partial z}{\partial x}\right)}</math>
साहित्य में शासन के विभिन्न अन्य रूप मौजूद हैं; इन्हें चर {x, y, z} की अनुमति देकर प्राप्त किया जा सकता है।
शास्त्र में इस नियम के अन्य विभिन्न रूप उपस्थित हैं; इन्हें चरों {''x'', ''y'', ''z''} के क्रम-परिवर्तन द्वारा प्राप्त किया जा सकता है।


== व्युत्पत्ति ==
== व्युत्पत्ति ==


एक अनौपचारिक व्युत्पत्ति इस प्रकार है। मान लीजिए कि f(x, y, z) = 0. z को x और y के फलन के रूप में लिखिए। इस प्रकार [[कुल अंतर]] dz है
एक अनौपचारिक व्युत्पत्ति इस प्रकार है। माना ''f(x, y, z)'' = 0। ''z'' को ''x'' और ''y'' के फलन के रूप में लिखिए। अतः [[कुल अंतर|संपूर्ण अवकल]] ''dz'' इस प्रकार है


:<math>dz = \left(\frac{\partial z}{\partial x}\right)dx + \left(\frac{\partial z}{\partial y}\right) dy</math>
:<math>dz = \left(\frac{\partial z}{\partial x}\right)dx + \left(\frac{\partial z}{\partial y}\right) dy</math>
मान लीजिए कि हम dz = 0 के साथ एक वक्र के साथ आगे बढ़ते हैं, जहाँ वक्र x द्वारा प्राचलित है। इस प्रकार y को x के पदों में लिखा जा सकता है, इसलिए इस वक्र पर
माना, हम ''dz'' = 0 के साथ एक वक्र के अनुदिश आगे बढ़ते हैं, जहाँ यह वक्र ''x'' द्वारा प्राचलित है। इस प्रकार ''y'' को ''x'' के पदों में लिखा जा सकता है, इसलिए इस वक्र पर


:<math>dy = \left(\frac{\partial y}{\partial x}\right) dx</math>
:<math>dy = \left(\frac{\partial y}{\partial x}\right) dx</math>
इसलिए, dz = 0 के लिए समीकरण बन जाता है
इसलिए, ''dz'' = 0 के लिए समीकरण इस प्रकार है


:<math>0 = \left(\frac{\partial z}{\partial x}\right) \, dx + \left(\frac{\partial z}{\partial y}\right) \left(\frac{\partial y}{\partial x}\right) \, dx</math>
:<math>0 = \left(\frac{\partial z}{\partial x}\right) \, dx + \left(\frac{\partial z}{\partial y}\right) \left(\frac{\partial y}{\partial x}\right) \, dx</math>
चूँकि यह सभी dx के लिए सही होना चाहिए, पुनर्व्यवस्थित करने वाली शर्तें देती हैं
चूँकि यह सभी ''dx'' के लिए सत्य होना चाहिए, अतः पदों को पुनर्व्यवस्थित करने पर निम्न समीकरण प्राप्त है ,


:<math>\left(\frac{\partial z}{\partial x}\right) = -\left(\frac{\partial z}{\partial y}\right) \left(\frac{\partial y}{\partial x}\right)</math>
:<math>\left(\frac{\partial z}{\partial x}\right) = -\left(\frac{\partial z}{\partial y}\right) \left(\frac{\partial y}{\partial x}\right)</math>
डेरिवेटिव द्वारा दाईं ओर विभाजित करने पर ट्रिपल उत्पाद नियम मिलता है
दक्षिण पक्ष पर अवकलजों द्वारा विभाजित करने पर त्रि-गुणन नियम प्राप्त होता है


:<math>\left(\frac{\partial x}{\partial y}\right)\left(\frac{\partial y}{\partial z}\right) \left(\frac{\partial z}{\partial x}\right) = -1</math>
:<math>\left(\frac{\partial x}{\partial y}\right)\left(\frac{\partial y}{\partial z}\right) \left(\frac{\partial z}{\partial x}\right) = -1</math>
ध्यान दें कि यह प्रमाण आंशिक डेरिवेटिव के अस्तित्व, [[सटीक अंतर]] dz के अस्तित्व, dz = 0 के साथ कुछ [[पड़ोस (गणित)]] में एक वक्र बनाने की क्षमता, और आंशिक डेरिवेटिव और उनके व्युत्क्रम के शून्येतर मूल्य के बारे में कई अंतर्निहित धारणाएं बनाता है। [[गणितीय विश्लेषण]] पर आधारित एक औपचारिक प्रमाण इन संभावित अस्पष्टताओं को समाप्त कर देगा।
ध्यान दें कि यह प्रमाण आंशिक अवकलजों के अस्तित्व, [[सटीक अंतर|यथार्थ अवकल]] ''dz'' के अस्तित्व, ''dz'' = 0 के साथ [[पड़ोस (गणित)|समीप]] के किसी क्षेत्र में एक वक्र बनाने की क्षमता, और आंशिक अवकलजों और उनके व्युत्क्रमों के अशून्य मान के सम्बन्ध में कई निहित धारणाएँ बनाता है। [[गणितीय विश्लेषण]] पर आधारित एक औपचारिक प्रमाण इन संभावित अस्पष्टताओं को समाप्त कर देता है।


=== वैकल्पिक व्युत्पत्ति ===
=== वैकल्पिक व्युत्पत्ति ===
मान लीजिए एक फलन {{math|1=''f''(''x'', ''y'', ''z'') = 0}}, जहाँ {{mvar|x}}, {{mvar|y}}, और {{mvar|z}} एक दूसरे के फलन हैं। चरों के कुल अंतर लिखिए
माना एक फलन {{math|1=''f''(''x'', ''y'', ''z'') = 0}}, जहाँ {{mvar|x}}, {{mvar|y}}, और {{mvar|z}} एक दूसरे के फलन हैं। चरों के संपूर्ण अवकलों को लिखिए।
<math display="block">dx = \left(\frac{\partial x}{\partial y}\right) dy + \left(\frac{\partial x}{\partial z}\right) dz</math><math display="block">dy = \left(\frac{\partial y}{\partial x}\right) dx + \left(\frac{\partial y}{\partial z}\right) dz</math>{{math|''dy''}} को {{math|''dx''}} में बदलें<math display="block">dx = \left(\frac{\partial x}{\partial y}\right) \left[ \left(\frac{\partial y}{\partial x}\right) dx + \left(\frac{\partial y}{\partial z}\right) dz\right] + \left(\frac{\partial x}{\partial z}\right) dz</math>
<math display="block">dx = \left(\frac{\partial x}{\partial y}\right) dy + \left(\frac{\partial x}{\partial z}\right) dz</math><math display="block">dy = \left(\frac{\partial y}{\partial x}\right) dx + \left(\frac{\partial y}{\partial z}\right) dz</math>{{math|''dy''}} और {{math|''dx''}} को परस्पर प्रतिस्थापित करने पर<math display="block">dx = \left(\frac{\partial x}{\partial y}\right) \left[ \left(\frac{\partial y}{\partial x}\right) dx + \left(\frac{\partial y}{\partial z}\right) dz\right] + \left(\frac{\partial x}{\partial z}\right) dz</math>
[[श्रृंखला नियम]] का उपयोग करके कोई दिखा सकता है कि दाहिने हाथ की ओर {{math|''dx''}} का गुणांक एक के बराबर है, इस प्रकार {{math|''dz''}} का गुणांक शून्य होना चाहिए
[[श्रृंखला नियम]] का उपयोग करके यह दर्शाया जा सकता है कि दक्षिण पक्ष में {{math|''dx''}} का गुणांक एक के बराबर है, इस प्रकार {{math|''dz''}} का गुणांक शून्य होना चाहिए,<math display="block"> \left(\frac{\partial x}{\partial y}\right) \left(\frac{\partial y}{\partial z}\right) + \left(\frac{\partial x}{\partial z}\right) = 0</math>दूसरे पद को घटाने और इसके व्युत्क्रम से गुणा करने पर त्रि-गुणन नियम प्राप्त होता है<math display="block">\left(\frac{\partial x}{\partial y}\right) \left(\frac{\partial y}{\partial z}\right) \left(\frac{\partial z}{\partial x}\right) = -1.</math>
<math display="block"> \left(\frac{\partial x}{\partial y}\right) \left(\frac{\partial y}{\partial z}\right) + \left(\frac{\partial x}{\partial z}\right) = 0</math>दूसरे पद को घटाने और इसके व्युत्क्रम से गुणा करने पर त्रिक गुणन नियम प्राप्त होता है<math display="block">\left(\frac{\partial x}{\partial y}\right) \left(\frac{\partial y}{\partial z}\right) \left(\frac{\partial z}{\partial x}\right) = -1.</math>
 
== अनुप्रयोग ==
== अनुप्रयोग ==


=== उदाहरण: [[आदर्श गैस कानून|आदर्श गैस नियम]] ===
=== उदाहरण: [[आदर्श गैस कानून|आदर्श गैस नियम]] ===
आदर्श गैस कानून दबाव (पी), मात्रा (वी), और तापमान (टी) के राज्य चर से संबंधित है
आदर्श गैस नियम दाब (P), आयतन (V), और ताप (T) के अवस्था चरों को निम्न के माध्यम से संबंधित करता है
:<math>PV=nRT</math>
:<math>PV=nRT</math>
जिसे इस रूप में लिखा जा सकता है
जिसे इस रूप में लिखा जा सकता है
:<math>f(P,V,T) = PV-nRT = 0</math>
:<math>f(P,V,T) = PV-nRT = 0</math>
इसलिए प्रत्येक राज्य चर को अन्य राज्य चर के निहित कार्य के रूप में लिखा जा सकता है:
इसलिए प्रत्येक अवस्था चर को अन्य अवस्था चरों के निहित फलन के रूप में लिखा जा सकता है:
:<math>
:<math>
\begin{align}  
\begin{align}  
Line 49: Line 49:
\end{align}
\end{align}
</math>
</math>
उपरोक्त अभिव्यक्तियों से, हमारे पास है
उपरोक्त व्यंजकों से, निम्न समीकरण प्राप्त होती है
:<math>
:<math>
\begin{align}  
\begin{align}  
Line 59: Line 59:
</math>
</math>
===ज्यामितीय बोध ===
===ज्यामितीय बोध ===
[[File:Deriving Wave Velocity using the Triple Product Rule.png|thumb|समय t (ठोस रेखा) और t+Δt (धराशायी रेखा) पर एक यात्रा तरंग का प्रोफ़ाइल। समय अंतराल Δt में, बिंदु p2 उसी ऊँचाई तक ऊपर उठेगा जो p1 समय t पर था।|228x228px]]ट्रिपल उत्पाद नियम का एक ज्यामितीय अहसास यात्रा तरंग के वेग के साथ घनिष्ठ संबंधों में पाया जा सकता है
[[File:Deriving Wave Velocity using the Triple Product Rule.png|thumb|समय t (ठोस रेखा) और t+Δt (धराशायी रेखा) पर एक यात्रा तरंग का प्रोफ़ाइल। समय अंतराल Δt में, बिंदु p2 उसी ऊँचाई तक ऊपर उठेगा जो p1 समय t पर था।|228x228px]]त्रि-गुणन नियम का एक ज्यामितीय बोध गतिमान तरंग के वेग के साथ घनिष्ठ संबंधों में देखा जा सकता है
:<math>\phi(x,t) = A \cos (kx - \omega t) </math>
:<math>\phi(x,t) = A \cos (kx - \omega t) </math>
समय t (ठोस नीली रेखा) पर दाईं ओर दिखाया गया है और थोड़े समय बाद t+Δt (धराशायी) दिखाया गया है। लहर अपने आकार को बरकरार रखती है क्योंकि यह फैलता है, ताकि स्थिति x पर समय टी पर एक बिंदु स्थिति x + Δx समय t + Δt पर एक बिंदु के अनुरूप होगा,
इसे समय ''t'' (सतत नीली रेखा) पर और अल्प समय बाद t+Δt (असतत) पर दाईं ओर दिखाया गया है। तरंग अपने आकार को व्यवस्थित रखती है क्योंकि यह प्रसारित है, जिससे समय ''t'' पर स्थिति ''x'' पर एक बिंदु, समय ''t + Δt'' पर स्थिति ''x + Δx'' पर एक बिंदु के अनुरूप होगा,
:<math>A \cos (kx - \omega t) = A \cos (k (x + \Delta x) - \omega (t + \Delta t)). </math>
:<math>A \cos (kx - \omega t) = A \cos (k (x + \Delta x) - \omega (t + \Delta t)). </math>
यह समीकरण केवल सभी एक्स और टी के लिए संतुष्ट हो सकता है यदि {{nowrap|1=''k''&thinsp;Δ''x'' − ''ω''&thinsp;Δ''t'' = 0}}, जिसके परिणामस्वरूप [[चरण वेग]] के लिए सूत्र
यह समीकरण केवल सभी ''x'' और ''t'' के लिए संतुष्ट हो सकती है यदि {{nowrap|1=''k''&thinsp;Δ''x'' − ''ω''&thinsp;Δ''t'' = 0}}, जिसके परिणामस्वरूप [[चरण वेग|कला वेग]] के लिए सूत्र प्राप्त होता है,
:<math> v = \frac{\Delta x}{\Delta t} = \frac{\omega}{k}. </math>
:<math> v = \frac{\Delta x}{\Delta t} = \frac{\omega}{k}. </math>
ट्रिपल उत्पाद नियम के साथ संबंध को स्पष्ट करने के लिए, समय t पर बिंदु p1 पर विचार करें और इसके संगत बिंदु (समान ऊंचाई के साथ) p̄1 पर t+Δt पर विचार करें। समय t पर p2 को उस बिंदु के रूप में परिभाषित करें जिसका x-निर्देशांक p̄1 से मेल खाता है, और p̄2 को p2 के संबंधित बिंदु के रूप में परिभाषित करें जैसा कि दाईं ओर की आकृति में दिखाया गया है। p1 और p̄1 के बीच की दूरी Δx, p2 और p̄2 (हरी रेखाएं) के बीच की दूरी के समान है, और इस दूरी को Δt से विभाजित करने पर तरंग की गति प्राप्त होती है।
त्रि-गुणन नियम के साथ संबंध को स्पष्ट करने के लिए, समय ''t'' पर बिंदु ''p<sub>1</sub>'' और समय ''t+Δt'' पर इसके संगत बिंदु (समान ऊँचाई वाले) ''p̄<sub>1</sub>'' पर विचार करें। समय ''t'' पर बिंदु ''p<sub>2</sub>'' को उस बिंदु के रूप में परिभाषित करें जिसका x-निर्देशांक ''p̄<sub>1</sub>'' के x-निर्देशांक के समान है, और ''p̄<sub>2</sub>'' को ''p<sub>2</sub>'' के संगत बिंदु के रूप में परिभाषित करें जैसा कि दाईं ओर की आकृति में दर्शाया गया है। बिन्दुओं ''p<sub>1</sub>'' और ''p̄<sub>1</sub>'' के बीच की दूरी Δx, ''p<sub>2</sub>'' और ''p̄<sub>2</sub>'' (हरी रेखाएँ) के बीच की दूरी के समान है, और इस दूरी को ''Δt'' से विभाजित करने पर तरंग की गति प्राप्त होती है।


Δx की गणना करने के लिए, p<sub>2</sub> पर गणना किए गए दो आंशिक डेरिवेटिव पर विचार करें,
''Δx'' की गणना करने के लिए, ''p<sub>2</sub>'' पर गणना किए गए दो आंशिक अवकलजों पर विचार करें,
:<math> \left( \frac{\partial \phi}{\partial t} \right) \Delta t = \text{rise from }p_2\text{ to }\bar{p}_1\text{ in time }\Delta t\text{ (gold line)} </math>
:<math> \left( \frac{\partial \phi}{\partial t} \right) \Delta t = \text{rise from }p_2\text{ to }\bar{p}_1\text{ in time }\Delta t\text{ (gold line)} </math>
:<math> \left( \frac{\partial \phi}{\partial x} \right) = \text{slope of the wave (red line) at time }t. </math>
:<math> \left( \frac{\partial \phi}{\partial x} \right) = \text{slope of the wave (red line) at time }t. </math>
इन दो आंशिक डेरिवेटिव्स को विभाजित करना और ढलान की परिभाषा का उपयोग करना (रन से विभाजित वृद्धि) हमें वांछित सूत्र देता है
इन दो आंशिक अवकलजों को विभाजित करने और प्रवणता की परिभाषा का उपयोग करने पर (रन से विभाजित वृद्धि) हमें वांछित सूत्र प्राप्त होता हैː
:<math> \Delta x = - \frac{\left( \frac{\partial \phi}{\partial t} \right) \Delta t}{\left( \frac{\partial \phi}{\partial x} \right)}, </math>
:<math> \Delta x = - \frac{\left( \frac{\partial \phi}{\partial t} \right) \Delta t}{\left( \frac{\partial \phi}{\partial x} \right)}, </math>
जहां ऋणात्मक चिह्न इस तथ्य को दर्शाता है कि तरंग की गति के सापेक्ष p1, p2 के पीछे स्थित है। इस प्रकार, तरंग का वेग द्वारा दिया जाता है
जहाँ ऋणात्मक चिह्न इस तथ्य को दर्शाता है कि ''p<sub>1</sub>'' तरंग की गति के सापेक्ष, ''p<sub>2</sub>'' के पीछे स्थित है। इस प्रकार, तरंग का वेग निम्न है
:<math> v = \frac{\Delta x}{\Delta t} = - \frac{\left( \frac{\partial \phi}{\partial t} \right)}{\left( \frac{\partial \phi}{\partial x} \right)}.</math>
:<math> v = \frac{\Delta x}{\Delta t} = - \frac{\left( \frac{\partial \phi}{\partial t} \right)}{\left( \frac{\partial \phi}{\partial x} \right)}.</math>
अनंत Δt के लिए, <math> \frac{\Delta x}{\Delta t} = \left( \frac{\partial x}{\partial t} \right)</math> और हम ट्रिपल उत्पाद नियम को पुनर्प्राप्त करते हैं
अत्यंत सूक्ष्म Δt के लिए, <math> \frac{\Delta x}{\Delta t} = \left( \frac{\partial x}{\partial t} \right)</math> और हम त्रि-गुणन नियम को पुनर्प्राप्त करते हैं
:<math> v = \frac{\Delta x}{\Delta t} = - \frac{\left( \frac{\partial \phi}{\partial t} \right)}{\left( \frac{\partial \phi}{\partial x} \right)}.</math>
:<math> v = \frac{\Delta x}{\Delta t} = - \frac{\left( \frac{\partial \phi}{\partial t} \right)}{\left( \frac{\partial \phi}{\partial x} \right)}.</math>
== यह भी देखें ==
== यह भी देखें ==


* {{annotated link|अवकलन नियम}}
* {{annotated link|अवकलन नियम}}
* {{annotated link|यथार्थ अवकल}} (ट्रिपल उत्पाद नियम की एक और व्युत्पत्ति है)
* {{annotated link|यथार्थ अवकल}} (त्रि-गुणन नियम की एक और व्युत्पत्ति है)
* {{annotated link|गुणन नियम}}
* {{annotated link|गुणन नियम}}
* {{annotated link|संपूर्ण अवकलज}}
* {{annotated link|संपूर्ण अवकलज}}

Revision as of 12:55, 7 January 2023

त्रि-गुणन नियम एक ऐसा सूत्र है जो तीन परस्पर आश्रित चरों के आंशिक अवकलजों के मध्य सम्बन्ध स्थापित करता है; इसे चक्रीय श्रृंखला नियम, चक्रीय संबंध, चक्रीय नियम या यूलर की श्रृंखला के नियम के रूप में जाना जाता है। इस नियम का अनुप्रयोग ऊष्मागतिकी में पाया जाता है, जहाँ प्रायः तीन चरों को f(x, y, z) = 0 के एक फलन द्वारा संबंधित किया जा सकता है, इसलिए प्रत्येक चर को अन्य दो चरों के निहित फलन के रूप में दिया जाता है। उदाहरण के लिए, एक तरल की अवस्था समीकरण ताप, दाब और आयतन को इसी प्रकार संबंधित करती है। इस प्रकार के परस्पर संबंधित चरों x, y, और z के लिए त्रिगुण उत्पाद नियम निहित फलन प्रमेय के परिणाम पर एक पारस्परिक संबंध का उपयोग करने से प्राप्त होता है, जो कि इस प्रकार है

जहाँ प्रत्येक गुणनखंड अंश में चर का आंशिक अवकलज है, जिसे अन्य दो चरों का फलन माना जाता है।

त्रि-गुणन नियम का लाभ यह है कि इसमें पदों को पुनर्व्यवस्थित करके कई प्रतिस्थापन सर्वसमिकाएँ प्राप्त की जा सकती हैं जो ऐसे आंशिक अवकलजों को प्रतिस्थापित करने की अनुमति प्रदान करती हैं जो विश्लेषणात्मक रूप से मूल्यांकित करने, प्रयोगात्मक रूप से मापने या आंशिक अवकलजों के ऐसे भागफलों के साथ समाकलित करने के लिए कठिन हैं जिनके साथ कार्य करना आसान है। उदाहरण के लिए,

शास्त्र में इस नियम के अन्य विभिन्न रूप उपस्थित हैं; इन्हें चरों {x, y, z} के क्रम-परिवर्तन द्वारा प्राप्त किया जा सकता है।

व्युत्पत्ति

एक अनौपचारिक व्युत्पत्ति इस प्रकार है। माना f(x, y, z) = 0। z को x और y के फलन के रूप में लिखिए। अतः संपूर्ण अवकल dz इस प्रकार है

माना, हम dz = 0 के साथ एक वक्र के अनुदिश आगे बढ़ते हैं, जहाँ यह वक्र x द्वारा प्राचलित है। इस प्रकार y को x के पदों में लिखा जा सकता है, इसलिए इस वक्र पर

इसलिए, dz = 0 के लिए समीकरण इस प्रकार है

चूँकि यह सभी dx के लिए सत्य होना चाहिए, अतः पदों को पुनर्व्यवस्थित करने पर निम्न समीकरण प्राप्त है ,

दक्षिण पक्ष पर अवकलजों द्वारा विभाजित करने पर त्रि-गुणन नियम प्राप्त होता है

ध्यान दें कि यह प्रमाण आंशिक अवकलजों के अस्तित्व, यथार्थ अवकल dz के अस्तित्व, dz = 0 के साथ समीप के किसी क्षेत्र में एक वक्र बनाने की क्षमता, और आंशिक अवकलजों और उनके व्युत्क्रमों के अशून्य मान के सम्बन्ध में कई निहित धारणाएँ बनाता है। गणितीय विश्लेषण पर आधारित एक औपचारिक प्रमाण इन संभावित अस्पष्टताओं को समाप्त कर देता है।

वैकल्पिक व्युत्पत्ति

माना एक फलन f(x, y, z) = 0, जहाँ x, y, और z एक दूसरे के फलन हैं। चरों के संपूर्ण अवकलों को लिखिए।

dy और dx को परस्पर प्रतिस्थापित करने पर
श्रृंखला नियम का उपयोग करके यह दर्शाया जा सकता है कि दक्षिण पक्ष में dx का गुणांक एक के बराबर है, इस प्रकार dz का गुणांक शून्य होना चाहिए,
दूसरे पद को घटाने और इसके व्युत्क्रम से गुणा करने पर त्रि-गुणन नियम प्राप्त होता है

अनुप्रयोग

उदाहरण: आदर्श गैस नियम

आदर्श गैस नियम दाब (P), आयतन (V), और ताप (T) के अवस्था चरों को निम्न के माध्यम से संबंधित करता है

जिसे इस रूप में लिखा जा सकता है

इसलिए प्रत्येक अवस्था चर को अन्य अवस्था चरों के निहित फलन के रूप में लिखा जा सकता है:

उपरोक्त व्यंजकों से, निम्न समीकरण प्राप्त होती है

ज्यामितीय बोध

समय t (ठोस रेखा) और t+Δt (धराशायी रेखा) पर एक यात्रा तरंग का प्रोफ़ाइल। समय अंतराल Δt में, बिंदु p2 उसी ऊँचाई तक ऊपर उठेगा जो p1 समय t पर था।

त्रि-गुणन नियम का एक ज्यामितीय बोध गतिमान तरंग के वेग के साथ घनिष्ठ संबंधों में देखा जा सकता है

इसे समय t (सतत नीली रेखा) पर और अल्प समय बाद t+Δt (असतत) पर दाईं ओर दिखाया गया है। तरंग अपने आकार को व्यवस्थित रखती है क्योंकि यह प्रसारित है, जिससे समय t पर स्थिति x पर एक बिंदु, समय t + Δt पर स्थिति x + Δx पर एक बिंदु के अनुरूप होगा,

यह समीकरण केवल सभी x और t के लिए संतुष्ट हो सकती है यदि k Δxω Δt = 0, जिसके परिणामस्वरूप कला वेग के लिए सूत्र प्राप्त होता है,

त्रि-गुणन नियम के साथ संबंध को स्पष्ट करने के लिए, समय t पर बिंदु p1 और समय t+Δt पर इसके संगत बिंदु (समान ऊँचाई वाले) 1 पर विचार करें। समय t पर बिंदु p2 को उस बिंदु के रूप में परिभाषित करें जिसका x-निर्देशांक 1 के x-निर्देशांक के समान है, और 2 को p2 के संगत बिंदु के रूप में परिभाषित करें जैसा कि दाईं ओर की आकृति में दर्शाया गया है। बिन्दुओं p1 और 1 के बीच की दूरी Δx, p2 और 2 (हरी रेखाएँ) के बीच की दूरी के समान है, और इस दूरी को Δt से विभाजित करने पर तरंग की गति प्राप्त होती है।

Δx की गणना करने के लिए, p2 पर गणना किए गए दो आंशिक अवकलजों पर विचार करें,

इन दो आंशिक अवकलजों को विभाजित करने और प्रवणता की परिभाषा का उपयोग करने पर (रन से विभाजित वृद्धि) हमें वांछित सूत्र प्राप्त होता हैː

जहाँ ऋणात्मक चिह्न इस तथ्य को दर्शाता है कि p1 तरंग की गति के सापेक्ष, p2 के पीछे स्थित है। इस प्रकार, तरंग का वेग निम्न है

अत्यंत सूक्ष्म Δt के लिए, और हम त्रि-गुणन नियम को पुनर्प्राप्त करते हैं

यह भी देखें

संदर्भ

  • Elliott, J. R.; Lira, C. T. (1999). Introductory Chemical Engineering Thermodynamics (1st ed.). Prentice Hall. p. 184. ISBN 0-13-011386-7.
  • Carter, Ashley H. (2001). Classical and Statistical Thermodynamics. Prentice Hall. p. 392. ISBN 0-13-779208-5.

श्रेणी:साक्ष्य युक्त लेख श्रेणी: ऊष्मप्रवैगिकी के नियम श्रेणी:बहुभिन्नरूपी कलन श्रेणी: विश्लेषण में प्रमेय श्रेणी: कलन में प्रमेय