एक्स - रे फ़ोटोइलैक्ट्रॉन स्पेक्ट्रोस्कोपी: Difference between revisions
mNo edit summary |
mNo edit summary |
||
Line 19: | Line 19: | ||
=== विश्लेषण के दौरान गिरावट === | === विश्लेषण के दौरान गिरावट === | ||
अधःपतन उपयोग की गई एक्स-किरण की तरंग दैर्ध्य, एक्स-किरण की कुल मात्रा, सतह के तापमान और निर्वात के स्तर पर सामग्री की संवेदनशीलता पर निर्भर करती है। धातु, मिश्र धातु, चीनी मिट्टी की चीज़ें और अधिकांश शीशे गैर एकवर्णी या एकवर्णी एक्स -किरण द्वारा औसत रूप से खराब नहीं होते हैं। बहुलक, उत्प्रेरक, कुछ अत्यधिक ऑक्सीजन युक्त यौगिक, विभिन्न अकार्बनिक यौगिक और सूक्ष्म जीव हैं। गैर- एकवर्णी एक्स- किरण स्रोत उच्च ऊर्जा वाले ब्रेम्सस्ट्रालुंग एक्स-किरण (ऊर्जा के 1-15 केवी) की एक महत्वपूर्ण मात्रा का उत्पादन करते हैं जो विभिन्न सामग्रियों की सतह को सीधे नीचा दिखाते हैं। गैर-मोनोक्रोमैटिक एक्स-किरण स्रोत भी नमूने की सतह पर एक महत्वपूर्ण मात्रा में ऊष्मा (100 से 200 डिग्री सेल्सियस) उत्पन्न करते हैं क्योंकि एक्स-किरण उत्पन्न करने वाला एनोड सामान्यतः केवल 1 से {{convert|5|cm|0|abbr=on}} नमूने से दूर ऊष्मा का यह स्तर, जब ब्रेम्सस्ट्रालुंग एक्स किरण के साथ संयुक्त होता है, तो कुछ सामग्रियों के लिए गिरावट की मात्रा और दर को बढ़ाने के लिए कार्य करता है। एकवर्णी एक्स -किरण स्रोत भी नमूने की सतह पर एक महत्वपूर्ण मात्रा में गर्मी (100 से 200 डिग्री सेल्सियस) उत्पन्न करते हैं क्योंकि एक्स- | अधःपतन उपयोग की गई एक्स-किरण की तरंग दैर्ध्य, एक्स-किरण की कुल मात्रा, सतह के तापमान और निर्वात के स्तर पर सामग्री की संवेदनशीलता पर निर्भर करती है। धातु, मिश्र धातु, चीनी मिट्टी की चीज़ें और अधिकांश शीशे गैर एकवर्णी या एकवर्णी एक्स -किरण द्वारा औसत रूप से खराब नहीं होते हैं। बहुलक, उत्प्रेरक, कुछ अत्यधिक ऑक्सीजन युक्त यौगिक, विभिन्न अकार्बनिक यौगिक और सूक्ष्म जीव हैं। गैर- एकवर्णी एक्स- किरण स्रोत उच्च ऊर्जा वाले ब्रेम्सस्ट्रालुंग एक्स-किरण (ऊर्जा के 1-15 केवी) की एक महत्वपूर्ण मात्रा का उत्पादन करते हैं जो विभिन्न सामग्रियों की सतह को सीधे नीचा दिखाते हैं। गैर-मोनोक्रोमैटिक एक्स-किरण स्रोत भी नमूने की सतह पर एक महत्वपूर्ण मात्रा में ऊष्मा (100 से 200 डिग्री सेल्सियस) उत्पन्न करते हैं क्योंकि एक्स-किरण उत्पन्न करने वाला एनोड सामान्यतः केवल 1 से {{convert|5|cm|0|abbr=on}} नमूने से दूर ऊष्मा का यह स्तर, जब ब्रेम्सस्ट्रालुंग एक्स किरण के साथ संयुक्त होता है, तो कुछ सामग्रियों के लिए गिरावट की मात्रा और दर को बढ़ाने के लिए कार्य करता है। एकवर्णी एक्स -किरण स्रोत भी नमूने की सतह पर एक महत्वपूर्ण मात्रा में गर्मी (100 से 200 डिग्री सेल्सियस) उत्पन्न करते हैं क्योंकि एक्स-किरण उत्पन्न करने वाला एनोड सामान्यतः केवल 1 से 5 सेमी (2 इंच) दूर होता है। क्योंकि वे नमूने से (50-100 सेमी) दूर हैं, ध्यान देने योग्य ऊष्मा प्रभाव उत्पन्न नहीं करते हैं। उनमें, एक क्वार्ट्ज एकवर्णक प्रणाली एक्स- किरण बीम से ब्रेम्सस्ट्रालुंग एक्स-किरण को अलग करता है, जिसका अर्थ है कि प्रतिरूप केवल एक्स-किरण ऊर्जा के एक संकीर्ण बंध के संपर्क में है। उदाहरण के लिए, यदि एल्यूमीनियम के-अल्फा एक्स-किरण का उपयोग किया जाता है, तो आंतरिक ऊर्जा बंध में 0.43 eV का FWHM होता है, जो 1,486.7 eV (E/ΔE = 3,457) पर केंद्रित होता है। यदि मैग्नीशियम के-अल्फा एक्स-किरण का उपयोग किया जाता है, तो आंतरिक ऊर्जा बंध में 0.36 eV का FWHM होता है, जो 1,253.7 eV (E/ΔE = 3,483) पर केंद्रित होता है। ये आंतरिक एक्स-किरण सीमा की चौड़ाई हैं प्रतिरूप अनावृत होने वाली ऊर्जा की सीमा एक्स- किरण एकवर्णक की गुणवत्ता और अनुकूलन पर निर्भर करती है।क्योंकि निर्वात विभिन्न गैसों (जैसे, O2, CO) और तरल पदार्थ (जैसे, पानी, शराब, सॉल्वैंट्स, आदि) को हटा देता है, जो शुरू में प्रतिरूप की सतह पर या उसके भीतर फंस गए थे, सतह का रसायन और आकृति विज्ञान जारी रहेगा। तब तक बदलें जब तक कि सतह एक स्थिर अवस्था प्राप्त न कर ले। इस प्रकार की गिरावट का पता लगाना कभी-कभी मुश्किल होता है। | ||
=== | === माप क्षेत्र- === | ||
माप क्षेत्र उपकरण डिजाइन पर निर्भर करता है। न्यूनतम विश्लेषण क्षेत्र 10 से 200 माइक्रोमीटर तक होता है। एक्स-किरण के एकवर्णी पुंज के लिए सबसे बड़ा आकार 1-5 मिमी है।गैर-एकवर्णक किरण 10-50 मिमी व्यास के होते हैं। एक्स-किरण स्रोत के रूप में सिंक्रोट्रॉन विकिरण का उपयोग करके नवीनतम प्रतिबिंबन XPS उपकरणों पर 200 nm या उससे कम के स्पेक्ट्रोस्कोपिक प्रतिबिम्ब विश्लेषण स्तर प्राप्त किए गए हैं। | |||
=== | === प्रतिदर्शी आकार सीमा- === | ||
उपकरण छोटे (मिमी रेंज) और बड़े नमूने (सेमी रेंज) स्वीकार करते हैं, | उपकरण छोटे (मिमी रेंज) और बड़े नमूने (सेमी रेंज) स्वीकार करते हैं, इसके कारक प्रतिदर्शी धारक का डिज़ाइन, प्रतिदर्शी स्थानांतरण और XPS कक्ष का आकार है। एक बड़े क्षेत्र का विश्लेषण करने के लिए बड़े को प्रतिदर्शी को बाद में x और y दिशा में ले जाया जाता है। {{Citation needed|date=June 2015}} | ||
=== विश्लेषण काल - === | |||
सामान्यतः व्यापक सर्वेक्षण अवलोकन के लिए 1-20 मिनट तक जो सभी पता लगाने योग्य तत्वों की मात्रा को मापता है, सामान्यतः उच्च विश्लेषण अवलोकन के लिए 1-15 मिनट जो रासायनिक स्थिति के अंतर को प्रकट करता है (गणना क्षेत्र परिणाम के लिए एक उच्च संकेत / शोर अनुपात के लिए प्रायः कई स्वीप की आवश्यकता होती है) महत्व के क्षेत्र में एक गहराई रूपरेखा के लिए 1-4 घंटे जो 4-5 तत्वों को नक़्क़ाशीदार गहराई के कार्य के रूप में मापता है (यह प्रक्रिया समय सबसे अधिक भिन्न हो सकता है क्योंकि कई कारक भूमिका निभाएंगे) | |||
=== विश्लेषण | |||
सामान्यतः व्यापक सर्वेक्षण | |||
== सतह संवेदनशीलता == | == सतह संवेदनशीलता == | ||
XPS केवल उन इलेक्ट्रॉनों का पता लगाता है जो वास्तव में प्रतिरूप से उपकरण के निर्वात में भाग निकले हैं।प्रतिरूप से बचने के लिए, एक फोटोइलेक्ट्रॉन को प्रतिरूप के माध्यम से संचारण करना चाहिए। फोटो-उत्सर्जित इलेक्ट्रॉन सामग्री के भीतर विभिन्न उत्तेजित अवस्थाओं में अप्रत्यस्थ टकराव, पुनर्संयोजन,प्रतिरूप की उत्तेजना, पुनः प्राप्त करने या फंसने से गुजर सकते हैं, जो सभी फोटोइलेक्ट्रॉनों से बचने की संख्या को कम कर सकते हैं।ये प्रभाव एक घातीय संकीर्णन फलन के रूप में दिखाई देते हैं क्योंकि गहराई बढ़ जाती है, सतह पर विश्लेषण से पता लगाए गए संकेतों को प्रतिरूप सतह के नीचे गहरे विश्लेषण से मिले संकेतों की तुलना में अधिक मजबूत बनाता है। इस प्रकार, XPS द्वारा मापा गया संकेत एक घातीय रूप से सतह-भारित संकेत है, और इस तथ्य का उपयोग स्तरित सामग्रियों में विश्लेषण गहराई का अनुमान लगाने के लिए किया जा सकता है। | |||
== रासायनिक अवस्थाएँ और रासायनिक बदलाव == | == रासायनिक अवस्थाएँ और रासायनिक बदलाव == |
Revision as of 19:24, 12 January 2023

चुकि एक विशेष तरंग दैर्ध्य पर एक्स-रे की ऊर्जा ज्ञात है (α एक्स-रे , Eफोटॉन = 1486.7 इलेक्ट्रान वोल्ट के लिए), और क्योंकि उत्सर्जित इलेक्ट्रॉनों की गतिज ऊर्जा को मापा जा सकता है, अतः उत्सर्जित इलेक्ट्रॉनों में से प्रत्येक की इलेक्ट्रॉन बंधन ऊर्जा प्रकाश वैद्युत प्रभाव समीकरण का उपयोग करके निर्धारित हो सकती है
- ,
जहां Ebinding रासायनिक क्षमता के सापेक्ष मापे गए इलेक्ट्रॉन की बंधन ऊर्जा (B E) है, Eफ़ोटॉन उपयोग किए जा रहे एक्स-रे फोटॉनों की ऊर्जा है, Eगतिज इलेक्ट्रॉन की गतिज ऊर्जा है जैसा कि उपकरण द्वारा मापा जाता है और {\displaystyle \ phi }\phi सामग्री की विशिष्ट सतह के लिए कार्य फलन जैसा शब्द है, जिसमें वास्तविक माप में वोल्ट क्षमता के कारण उपकरण के कार्य फलन द्वारा एक छोटा सुधार सम्मिलित है, यह समीकरण अनिवार्य रूप से ऊर्जा समीकरण का संरक्षण है। कार्य फलन-जैसी अवधि {\displaystyle \phi }\phi को एक समायोज्य सहायक सुधार कारक के रूप में माना जा सकता है जो फोटोइलेक्ट्रॉन द्वारा दी गई गतिज ऊर्जा के कुछ eV के लिए वर्णन किया जाता है क्योंकि यह बल्क से उत्सर्जित होता है और डिटेक्टर द्वारा अवशोषित होता है। यह एक स्थिरांक है जिसे अभ्यास में शायद ही कभी समायोजित करने की आवश्यकता होती है।
इतिहास
1887 में, हेनरिक रुडोल्फ हर्ट्ज़ ने फोटोइलेक्ट्रिक प्रभाव की खोज की लेकिन व्याख्या नहीं कर सके, जिसे बाद में 1905 में अल्बर्ट आइंस्टीन (1921 में भौतिकी में नोबेल पुरस्कार) द्वारा समझाया गया था। आइंस्टीन के प्रकाशन के दो साल बाद 1907 में पी.डी. इनेस ने विल्हेम रॉन्टगन रॉन्टगन नलिका , हेल्महोल्ट्ज़ कुंडली , एक चुंबकीय क्षेत्र गोलार्द्ध (एक इलेक्ट्रॉन गतिज ऊर्जा विश्लेषक), और छायाचित्रित प्लेटों के साथ प्रयोग किया, जिससे उत्सर्जित इलेक्ट्रॉनों के व्यापक धारियों को वेग फलन के रूप में अभिलेखबद्ध किया जा सके, जिससे प्रभावी रूप से पहले एक्सपीएस( XPS ) वर्णक्रम का अभिलेखन किया गया । हेनरी मोस्ले और रॉबिन्सन सहित अन्य शोधकर्ताओं ने बन्ध में विवरणों को छांटने के लिए स्वतंत्र रूप से विभिन्न प्रयोग किए।[citation needed] द्वितीय विश्व युद्ध के बाद, काई सिगबान और अपसला (स्वीडन) में उनके शोध समूह ने उपकरण में कई महत्वपूर्ण सुधार किए, और 1954 में सोडियम क्लोराइड (NaCl) का पहला उच्च-ऊर्जा- विश्लेषण एक्सपीएस वर्णक्रम दर्ज किया, जिससे एक्सपीएस की क्षमता का पता चला।[1] कुछ वर्षों बाद 1967 में, सिगबैन ने एक्सपीएस का एक व्यापक अध्ययन प्रकाशित किया, जिससे एक्सपीएस की उपयोगिता की तुरंत पहचान हो गई और साथ ही पहला हार्ड एक्स-किरण उत्सर्जन प्रयोग किया गया, जिसे उन्होंने रासायनिक विश्लेषण के लिए इलेक्ट्रॉन स्पेक्ट्रोस्कोपी (ईएससीए) के रूप में संदर्भित किया।[2] अमेरिका में हेवलेट पैकर्ड में इंजीनियरों के एक छोटे समूह (माइक केली, चार्ल्स ब्रायसन, लेवियर फेय, रॉबर्ट चानी) ने सिगबैन के सहयोग से 1969 में पहला वाणिज्यिक एकवर्णी एक्सपीएस उपकरण तैयार किया।सिगबैन को नोबेल पुरस्कार मिला।1981 में सिगबैन को भौतिकी के लिए, एक्सपीएस को एक उपयोगी विश्लेषणात्मक उपकरण के रूप में विकसित करने के उनके व्यापक प्रयासों को स्वीकार करने के लिए नोबेल पुरस्कार मिला।[3] सिगबैन के काम के समानांतर, इंपीरियल कॉलेज लंदन (और बाद में ऑक्सफोर्ड विश्वविद्यालय में) में डेविड डब्ल्यू टर्नर ने हीलियम लैंप का उपयोग करके आणविक प्रजातियों के लिए पराबैंगनी प्रकाशिक इलेक्ट्रॉन स्पेक्ट्रम विज्ञान (यूपीएस) विकसित किया।[4]
नाप-

एक एक्सपीएस स्पेक्ट्रम एक विशिष्ट बंधन ऊर्जा पर पाए गए इलेक्ट्रॉनों की संख्या का एक आलेख है। प्रत्येक तत्व एक्सपीएस चोटियों का एक सेट उत्पन्न करता है। ये चोटियाँ परमाणुओं के भीतर इलेक्ट्रॉनों के इलेक्ट्रॉन विन्यास के अनुरूप हैं, जैसे, 1s, 2s, 2p, 3s, आदि। प्रत्येक चोटी में पाए गए इलेक्ट्रॉनों की संख्या सीधे एक्सपीएस प्रतिदर्शी मात्रा के भीतर तत्व की मात्रा से संबंधित है। परमाणु प्रतिशत मान उत्पन्न करने के लिए, प्रत्येक अपरिष्कृत एक्सपीएस संकेत को एक सापेक्ष संवेदनशीलता कारक (RSF) द्वारा तीव्रता को विभाजित करके ठीक किया जाता है, और सभी तत्वों का पता लगाया जाता है। चूंकि हाइड्रोजन का पता नहीं चला है अतः इन परमाणु प्रतिशतों में हाइड्रोजन सम्मिलित नहीं है।
मात्रात्मक सटीकता और सटीकता -
एक्सपीएस व्यापक रूप से एक अनुभवजन्य सूत्र उत्पन्न करने के लिए उपयोग किया जाता है क्योंकि यह सजातीय ठोस-राज्य सामग्री से आसानी से उत्कृष्ट मात्रात्मक सटीकता प्राप्त करता है। पूर्ण परिमाणीकरण के लिए प्रमाणित (या स्वतंत्र रूप से सत्यापित) मानक नमूनों के उपयोग की आवश्यकता होती है, और आम तौर पर अधिक चुनौतीपूर्ण और कम सामान्य होता है।सापेक्ष परिमाणीकरण में एक सेट में कई नमूनों के बीच तुलना शामिल होती है, जिसके लिए एक या अधिक विश्लेषण अलग-अलग होते हैं जबकि अन्य सभी घटक (नमूना मैट्रिक्स) स्थिर होते हैं। मात्रात्मक सटीकता कई मापदंडों पर निर्भर करती है जैसे: संकेतक-शोर अनुपात, शिखर तीव्रता, सापेक्ष संवेदनशीलता कारकों की सटीकता, इलेक्ट्रॉन संचरण फलन के लिए सुधार, सतह मात्रा समरूपता, इलेक्ट्रॉन की ऊर्जा निर्भरता के लिए सुधार औसत मुक्त पथ, और नमूना गिरावट की डिग्री विश्लेषण के कारण।सर्वोत्कृष्ट स्थितियों के अंतर्गत, प्रमुख XPS चोटियों से परिकलित परमाणु प्रतिशत मानों की मात्रात्मक सटीकता प्रत्येक चोटी के लिए 90-95% है। कमजोर XPS संकेतक के लिए मात्रात्मक सटीकता, जिसकी चरम तीव्रता सबसे मजबूत संकेतक का 10-20% है, सही मूल्य का 60-80% है, और संकेतक--शोर अनुपात में सुधार के लिए उपयोग किए जाने वाले प्रयास की मात्रा पर निर्भर करता है ( उदाहरण के लिए संकेतक औसत द्वारा)। मात्रात्मक परिशुद्धता (माप को दोहराने और समान परिणाम प्राप्त करने की क्षमता) मात्रात्मक परिणामों की उचित प्रेषण के लिए एक आवश्यक विचार है।
पता लगाने की सीमा-
संसूचन की मुख्य स्थिति और पृष्ठभूमि संकेत स्तर के अनुप्रस्थ परिच्छेद के साथ पता लगाने की सीमा बहुत भिन्न हो सकती है। सामान्यतः प्रकाशिक इलेक्ट्रॉन अनुप्रस्थ परिच्छेद परमाणु संख्या के साथ बढ़ते हैं। द्वितीयक उत्सर्जित इलेक्ट्रॉनों के कारण मैट्रिक्स घटकों की परमाणु संख्या के साथ-साथ बाध्यकारी ऊर्जा के साथ पृष्ठभूमि बढ़ती है। उदाहरण के लिए, सिलिकॉन पर सोने के परीक्षण में जहां उच्च अनुप्रस्थ परिच्छेद एयू4एफ चोटी प्रमुख सिलिकॉन चोटियों की तुलना में उच्च गतिज ऊर्जा पर है, यह बहुत कम पर बैठता हैऔर उचित अधिग्रहण समय के साथ 1ppm या बेहतर की पहचान सीमा प्राप्त की जा सकती है। सोने पर सिलिकॉन के विपरीत, जहां साधारण अनुप्रस्थ परिच्छेद सिलिकॉन 2p रेखाएं बड़ी पृष्ठभूमि पर Au 4f लाइनों के नीचे बैठती हैं, उसी अधिग्रहण समय के लिए पता लगाने की सीमा बहुत खराब होगी। व्यावहारिक विश्लेषण के लिए पहचान की सीमा को प्रायः 0.1-1.0% परमाणु प्रतिशत (0.1% = 1 भाग प्रति हजार = 1000 भाग प्रति मिलियन) के रूप में उद्धृत किया जाता है, लेकिन कई परिस्थितियों में निम्न सीमा प्राप्त की जा सकती है।
विश्लेषण के दौरान गिरावट
अधःपतन उपयोग की गई एक्स-किरण की तरंग दैर्ध्य, एक्स-किरण की कुल मात्रा, सतह के तापमान और निर्वात के स्तर पर सामग्री की संवेदनशीलता पर निर्भर करती है। धातु, मिश्र धातु, चीनी मिट्टी की चीज़ें और अधिकांश शीशे गैर एकवर्णी या एकवर्णी एक्स -किरण द्वारा औसत रूप से खराब नहीं होते हैं। बहुलक, उत्प्रेरक, कुछ अत्यधिक ऑक्सीजन युक्त यौगिक, विभिन्न अकार्बनिक यौगिक और सूक्ष्म जीव हैं। गैर- एकवर्णी एक्स- किरण स्रोत उच्च ऊर्जा वाले ब्रेम्सस्ट्रालुंग एक्स-किरण (ऊर्जा के 1-15 केवी) की एक महत्वपूर्ण मात्रा का उत्पादन करते हैं जो विभिन्न सामग्रियों की सतह को सीधे नीचा दिखाते हैं। गैर-मोनोक्रोमैटिक एक्स-किरण स्रोत भी नमूने की सतह पर एक महत्वपूर्ण मात्रा में ऊष्मा (100 से 200 डिग्री सेल्सियस) उत्पन्न करते हैं क्योंकि एक्स-किरण उत्पन्न करने वाला एनोड सामान्यतः केवल 1 से 5 cm (2 in) नमूने से दूर ऊष्मा का यह स्तर, जब ब्रेम्सस्ट्रालुंग एक्स किरण के साथ संयुक्त होता है, तो कुछ सामग्रियों के लिए गिरावट की मात्रा और दर को बढ़ाने के लिए कार्य करता है। एकवर्णी एक्स -किरण स्रोत भी नमूने की सतह पर एक महत्वपूर्ण मात्रा में गर्मी (100 से 200 डिग्री सेल्सियस) उत्पन्न करते हैं क्योंकि एक्स-किरण उत्पन्न करने वाला एनोड सामान्यतः केवल 1 से 5 सेमी (2 इंच) दूर होता है। क्योंकि वे नमूने से (50-100 सेमी) दूर हैं, ध्यान देने योग्य ऊष्मा प्रभाव उत्पन्न नहीं करते हैं। उनमें, एक क्वार्ट्ज एकवर्णक प्रणाली एक्स- किरण बीम से ब्रेम्सस्ट्रालुंग एक्स-किरण को अलग करता है, जिसका अर्थ है कि प्रतिरूप केवल एक्स-किरण ऊर्जा के एक संकीर्ण बंध के संपर्क में है। उदाहरण के लिए, यदि एल्यूमीनियम के-अल्फा एक्स-किरण का उपयोग किया जाता है, तो आंतरिक ऊर्जा बंध में 0.43 eV का FWHM होता है, जो 1,486.7 eV (E/ΔE = 3,457) पर केंद्रित होता है। यदि मैग्नीशियम के-अल्फा एक्स-किरण का उपयोग किया जाता है, तो आंतरिक ऊर्जा बंध में 0.36 eV का FWHM होता है, जो 1,253.7 eV (E/ΔE = 3,483) पर केंद्रित होता है। ये आंतरिक एक्स-किरण सीमा की चौड़ाई हैं प्रतिरूप अनावृत होने वाली ऊर्जा की सीमा एक्स- किरण एकवर्णक की गुणवत्ता और अनुकूलन पर निर्भर करती है।क्योंकि निर्वात विभिन्न गैसों (जैसे, O2, CO) और तरल पदार्थ (जैसे, पानी, शराब, सॉल्वैंट्स, आदि) को हटा देता है, जो शुरू में प्रतिरूप की सतह पर या उसके भीतर फंस गए थे, सतह का रसायन और आकृति विज्ञान जारी रहेगा। तब तक बदलें जब तक कि सतह एक स्थिर अवस्था प्राप्त न कर ले। इस प्रकार की गिरावट का पता लगाना कभी-कभी मुश्किल होता है।
माप क्षेत्र-
माप क्षेत्र उपकरण डिजाइन पर निर्भर करता है। न्यूनतम विश्लेषण क्षेत्र 10 से 200 माइक्रोमीटर तक होता है। एक्स-किरण के एकवर्णी पुंज के लिए सबसे बड़ा आकार 1-5 मिमी है।गैर-एकवर्णक किरण 10-50 मिमी व्यास के होते हैं। एक्स-किरण स्रोत के रूप में सिंक्रोट्रॉन विकिरण का उपयोग करके नवीनतम प्रतिबिंबन XPS उपकरणों पर 200 nm या उससे कम के स्पेक्ट्रोस्कोपिक प्रतिबिम्ब विश्लेषण स्तर प्राप्त किए गए हैं।
प्रतिदर्शी आकार सीमा-
उपकरण छोटे (मिमी रेंज) और बड़े नमूने (सेमी रेंज) स्वीकार करते हैं, इसके कारक प्रतिदर्शी धारक का डिज़ाइन, प्रतिदर्शी स्थानांतरण और XPS कक्ष का आकार है। एक बड़े क्षेत्र का विश्लेषण करने के लिए बड़े को प्रतिदर्शी को बाद में x और y दिशा में ले जाया जाता है।[citation needed]
विश्लेषण काल -
सामान्यतः व्यापक सर्वेक्षण अवलोकन के लिए 1-20 मिनट तक जो सभी पता लगाने योग्य तत्वों की मात्रा को मापता है, सामान्यतः उच्च विश्लेषण अवलोकन के लिए 1-15 मिनट जो रासायनिक स्थिति के अंतर को प्रकट करता है (गणना क्षेत्र परिणाम के लिए एक उच्च संकेत / शोर अनुपात के लिए प्रायः कई स्वीप की आवश्यकता होती है) महत्व के क्षेत्र में एक गहराई रूपरेखा के लिए 1-4 घंटे जो 4-5 तत्वों को नक़्क़ाशीदार गहराई के कार्य के रूप में मापता है (यह प्रक्रिया समय सबसे अधिक भिन्न हो सकता है क्योंकि कई कारक भूमिका निभाएंगे)
सतह संवेदनशीलता
XPS केवल उन इलेक्ट्रॉनों का पता लगाता है जो वास्तव में प्रतिरूप से उपकरण के निर्वात में भाग निकले हैं।प्रतिरूप से बचने के लिए, एक फोटोइलेक्ट्रॉन को प्रतिरूप के माध्यम से संचारण करना चाहिए। फोटो-उत्सर्जित इलेक्ट्रॉन सामग्री के भीतर विभिन्न उत्तेजित अवस्थाओं में अप्रत्यस्थ टकराव, पुनर्संयोजन,प्रतिरूप की उत्तेजना, पुनः प्राप्त करने या फंसने से गुजर सकते हैं, जो सभी फोटोइलेक्ट्रॉनों से बचने की संख्या को कम कर सकते हैं।ये प्रभाव एक घातीय संकीर्णन फलन के रूप में दिखाई देते हैं क्योंकि गहराई बढ़ जाती है, सतह पर विश्लेषण से पता लगाए गए संकेतों को प्रतिरूप सतह के नीचे गहरे विश्लेषण से मिले संकेतों की तुलना में अधिक मजबूत बनाता है। इस प्रकार, XPS द्वारा मापा गया संकेत एक घातीय रूप से सतह-भारित संकेत है, और इस तथ्य का उपयोग स्तरित सामग्रियों में विश्लेषण गहराई का अनुमान लगाने के लिए किया जा सकता है।
रासायनिक अवस्थाएँ और रासायनिक बदलाव

रासायनिक स्थिति की जानकारी उत्पन्न करने की क्षमता, यानी नमूने के सबसे ऊपर के कुछ नैनोमीटर से प्रश्न में परमाणु प्रजातियों का स्थानीय संबंध वातावरण, सतह के रसायन विज्ञान को समझने के लिएएक्सपीएस को एक अनूठा और मूल्यवान उपकरण बनाता है। स्थानीय बंधन वातावरण औपचारिक ऑक्सीकरण अवस्था से प्रभावित होता है, इसके निकटतम-पड़ोसी परमाणुओं की पहचान, और निकटतम-पड़ोसी या अगले-निकटतम-पड़ोसी परमाणुओं के संबंध संकरण। उदाहरण के लिए, जबकि सी की नाममात्र बंधन ऊर्जा 1s इलेक्ट्रॉन 284.6 ईवी है, वास्तविक बंधन ऊर्जा में सूक्ष्म लेकिन प्रतिलिपि प्रस्तुत करने योग्य बदलाव, तथाकथित रासायनिक बदलाव (एनएमआर स्पेक्ट्रोस्कोपी के अनुरूप) रासायनिक स्थिति की जानकारी प्रदान करते हैं।[citation needed]
कार्बन के लिए रासायनिक-अवस्था विश्लेषण का व्यापक रूप से उपयोग किया जाता है। यह कार्बन की रासायनिक अवस्थाओं की उपस्थिति या अनुपस्थिति को बढ़ती बंधन ऊर्जा के अनुमानित क्रम में प्रकट करता है, जैसे: कार्बाइड (-सी)2−), साइलेन्स (-Si-CH3), मेथिलीन/मिथाइल/हाइड्रोकार्बन (-CH2-सीएच2-, सीएच3-सीएच2-, और -CH=CH-), अमीन (-CH2राष्ट्रीय राजमार्ग2), अल्कोहल (-C-OH), कीटोन (-C=O), ऑर्गेनिक एस्टर (-COOR), कार्बोनेट (-CO32−), मोनोफ्लोरो-हाइड्रोकार्बन (-CFH-CH2-), difluoro-हाइड्रोकार्बन (-CF2-सीएच2-), और ट्राइफ्लोरोकार्बन (-CH2-सीएफ3), थोड़े नाम देने के लिए।[citation needed]सिलिकॉन वेफर की सतह के रासायनिक स्थिति विश्लेषण से विभिन्न औपचारिक ऑक्सीकरण अवस्थाओं के कारण रासायनिक बदलाव का पता चलता है, जैसे: एन-डॉप्ड सिलिकॉन और पी-डोप्ड सिलिकॉन (धात्विक सिलिकॉन), सिलिकॉन सबऑक्साइड (सी)2O), सिलिकॉन मोनोऑक्साइड (SiO), और सिलिकॉन डाइऑक्साइड (SiO2). इसका एक उदाहरण Si 2p सिग्नल की ऊर्जा सीमा में एक ऑक्सीकृत सिलिकॉन वेफर के उच्च-रिज़ॉल्यूशन स्पेक्ट्रम के चित्र में देखा गया है।
इंस्ट्रुमेंटेशन
एक्सपीएस प्रणाली के मुख्य घटक एक्स-रे का स्रोत हैं, धातु में मैग्नेटिक शील्डिंग के साथ एक अल्ट्रा-हाई वैक्यूम (यूएचवी) कक्ष, एक इलेक्ट्रॉन संग्रह लेंस, एक इलेक्ट्रॉन ऊर्जा विश्लेषक, एक इलेक्ट्रॉन डिटेक्टर प्रणाली, एक नमूना परिचय कक्ष , सैंपल माउंट, सैंपल को गर्म करने या ठंडा करने की क्षमता वाला एक सैंपल स्टेज और स्टेज मैनिपुलेटर्स का एक सेट।
एक्सपीएस के लिए सबसे प्रचलित इलेक्ट्रॉन स्पेक्ट्रोमीटर गोलार्ध इलेक्ट्रॉन ऊर्जा विश्लेषक है। उनके पास उच्च ऊर्जा संकल्प और उत्सर्जित इलेक्ट्रॉनों का स्थानिक चयन है। कभी-कभी हालांकि, बहुत सरल इलेक्ट्रॉन ऊर्जा फिल्टर - बेलनाकार दर्पण विश्लेषक का उपयोग किया जाता है, जो प्रायः सतह की मौलिक संरचना की जांच के लिए होता है। वे उच्च गणना दरों और उच्च कोणीय/ऊर्जा संकल्प की आवश्यकता के बीच व्यापार-बंद का प्रतिनिधित्व करते हैं। इस प्रकार में दो सह-अक्षीय सिलेंडर होते हैं जो नमूने के सामने रखे जाते हैं, आंतरिक को सकारात्मक क्षमता पर रखा जाता है, जबकि बाहरी सिलेंडर को नकारात्मक क्षमता पर रखा जाता है। केवल सही ऊर्जा वाले इलेक्ट्रॉन ही इस सेटअप से गुजर सकते हैं और अंत में पता लगाए जाते हैं। गणना दर अधिक है लेकिन संकल्प (ऊर्जा और कोण दोनों में) खराब है।
इलेक्ट्रॉन गुणकों का उपयोग करके इलेक्ट्रॉनों का पता लगाया जाता है: एकल ऊर्जा का पता लगाने के लिए एकल चैनलट्रॉन, या समानांतर अधिग्रहण के लिए चैनलट्रॉन और माइक्रोचैनल प्लेट्स की सरणी। इन उपकरणों में एक ग्लास चैनल होता है जिसके अंदर एक प्रतिरोधक कोटिंग होती है। सामने और अंत के बीच एक उच्च वोल्टेज लगाया जाता है। एक आने वाले इलेक्ट्रॉन को दीवार पर त्वरित किया जाता है, जहां यह अधिक इलेक्ट्रॉनों को हटा देता है, इस तरह से एक इलेक्ट्रॉन हिमस्खलन बनाया जाता है, जब तक कि मापने योग्य वर्तमान नाड़ी प्राप्त नहीं हो जाती।[citation needed]
प्रयोगशाला आधारित एक्सपीएस
प्रयोगशाला प्रणालियों में, या तो 10–30 मिमी बीम व्यास गैर-एकवर्णी Al Kα या एमजी केα एनोड विकिरण का उपयोग किया जाता है, या एक केंद्रित 20-500 माइक्रोमीटर व्यास बीम एकल तरंग दैर्ध्य अल केα मोनोक्रोमेटेड विकिरण। मोनोक्रोमैटिक अल केα एक्स-रे सामान्य रूप से एक मिलर इंडेक्स के साथ प्राकृतिक, क्रिस्टलीय क्वार्ट्ज की पतली डिस्क के गैर-मोनोक्रोमैटिक एक्स-रे के बीम को विवर्तन और ध्यान केंद्रित करके उत्पादित किया जाता है। <1010> अभिविन्यास। परिणामी तरंग दैर्ध्य 8.3386 एंगस्ट्रॉम (0.83386 एनएम) है जो 1486.7 ईवी की फोटॉन ऊर्जा के अनुरूप है। एल्युमिनियम केα एक्स-रे में आंतरिक पूर्ण चौड़ाई आधी अधिकतम (FWHM) पर होती है। 0.43 eV की आधी अधिकतम (FWHM) पर पूर्ण चौड़ाई, 1486.7 eV (E/ΔE = 3457) पर केंद्रित होती है।[citation needed] एक अच्छी तरह से अनुकूलित मोनोक्रोमेटर के लिए, मोनोक्रोमेटेड एल्यूमीनियम K की ऊर्जा चौड़ाईα एक्स-रे 0.16 ईवी है, लेकिन आम इलेक्ट्रॉन ऊर्जा विश्लेषक (स्पेक्ट्रोमीटर) में ऊर्जा विस्तार एफडब्ल्यूएचएम = 0.25 ईवी के आदेश पर एक परम ऊर्जा संकल्प पैदा करता है, जो वास्तव में, अधिकांश वाणिज्यिक प्रणालियों का अंतिम ऊर्जा संकल्प है। व्यावहारिक, रोजमर्रा की परिस्थितियों में काम करते समय, उच्च ऊर्जा-रिज़ॉल्यूशन सेटिंग्स विभिन्न शुद्ध तत्वों और कुछ यौगिकों के लिए 0.4 और 0.6 eV के बीच चोटी की चौड़ाई (FWHM) उत्पन्न करेंगी। उदाहरण के लिए, मोनोक्रोमेटेड एल्यूमीनियम के का उपयोग करके 20 ईवी की पास ऊर्जा पर 1 मिनट में प्राप्त स्पेक्ट्रम मेंα एक्स-रे, एजी 3 डी5/2 साफ सिल्वर फिल्म या पन्नी के लिए पीक में सामान्यतः 0.45 eV का FWHM होगा।[citation needed] गैर-मोनोक्रोमैटिक मैग्नीशियम एक्स-रे में 9.89 एंगस्ट्रॉम (0.989 एनएम) की तरंग दैर्ध्य होती है जो 1253 ईवी की फोटॉन ऊर्जा से मेल खाती है। गैर-मोनोक्रोमेटेड एक्स-रे की ऊर्जा चौड़ाई लगभग 0.70 ईवी है, जो वास्तव में गैर-मोनोक्रोमैटिक एक्स-रे का उपयोग करने वाली प्रणाली का अंतिम ऊर्जा संकल्प है।[citation needed] गैर-मोनोक्रोमैटिक एक्स-रे स्रोत एक्स-रे को अलग करने के लिए किसी भी क्रिस्टल का उपयोग नहीं करते हैं जो सभी प्राथमिक एक्स-रे लाइनों और उच्च-ऊर्जा ब्रेम्सरेडिएशन एक्स-रे (1-12 केवी) की पूरी श्रृंखला को सतह तक पहुंचने की अनुमति देता है। गैर-मोनोक्रोमैटिक एमजी के का उपयोग करते समय परम ऊर्जा संकल्प (एफडब्ल्यूएचएम)।α स्रोत 0.9-1.0 ईवी है, जिसमें स्पेक्ट्रोमीटर-प्रेरित विस्तार से कुछ योगदान सम्मिलित है।[citation needed]
सिंक्रोटॉन आधारित एक्सपीएस
बड़े पैमाने पर सिंक्रोट्रॉन विकिरण सुविधाओं के विकास से पिछले दशकों में एक सफलता मिली है। यहां, एक स्टोरेज रिंग के अंदर कक्षा में रखे गए सापेक्षिक इलेक्ट्रॉनों के गुच्छों को झुकने वाले मैग्नेट या सम्मिलन उपकरणों जैसे विगलर (सिंक्रोट्रॉन) और उडुलेटर के माध्यम से एक उच्च प्रतिभा और उच्च फ्लक्स फोटॉन बीम का उत्पादन करने के लिए त्वरित किया जाता है। बीम आम तौर पर एनोड-आधारित स्रोतों द्वारा उत्पादित परिमाण की तुलना में अधिक तीव्र और बेहतर संपार्श्विक के आदेश हैं। सिंक्रोट्रॉन विकिरण भी व्यापक तरंग दैर्ध्य रेंज पर ट्यून करने योग्य है, और इसे कई अलग-अलग तरीकों से ध्रुवीकृत किया जा सकता है। इस तरह, फोटॉन को एक विशेष कोर स्तर की जांच के लिए इष्टतम फोटोआयनाइजेशन क्रॉस-सेक्शन देने के लिए चुना जा सकता है। उच्च फोटॉन फ्लक्स, इसके अलावा, कम घनत्व वाली परमाणु प्रजातियों, जैसे आणविक और परमाणु सोखना से भीएक्सपीएस प्रयोग करना संभव बनाता है।
डेटा प्रोसेसिंग
चोटी की पहचान
किसी एक तत्व द्वारा उत्पादित चोटियों की संख्या 1 से 20 से अधिक भिन्न होती है। बंधन ऊर्जा ओं की सारणी जो किसी दिए गए तत्व द्वारा उत्पादित प्रत्येक चोटी के खोल और स्पिन-ऑर्बिट की पहचान करती हैं, आधुनिक एक्सपीएस उपकरणों के साथ सम्मिलित हैं, और विभिन्न में पाई जा सकती हैं हैंडबुक और वेबसाइटें।[5][6] चूंकि ये प्रयोगात्मक रूप से निर्धारित ऊर्जा विशिष्ट तत्वों की विशेषता है, इसलिए उन्हें अज्ञात मौलिक संरचना वाले सामग्री के प्रयोगात्मक रूप से मापा गया चोटियों की पहचान करने के लिए सीधे उपयोग किया जा सकता है।
चोटी की पहचान की प्रक्रिया प्रारम्भ करने से पहले, विश्लेषक को यह निर्धारित करना चाहिए कि असंसाधित सर्वेक्षण स्पेक्ट्रम (0-1400 eV) की बंधन ऊर्जा सकारात्मक या नकारात्मक सतह आवेश के कारण स्थानांतरित नहीं हुई है या नहीं। यह प्रायः दो चोटियों की तलाश करके किया जाता है जो कार्बन और ऑक्सीजन की उपस्थिति के कारण होती हैं।
प्रभारी संदर्भित इंसुलेटर
चार्ज रेफरेंसिंग की आवश्यकता तब होती है जब एक नमूना वाइड-स्कैन, उच्च संवेदनशीलता (कम ऊर्जा रिज़ॉल्यूशन) सर्वेक्षण स्पेक्ट्रा (0-1100 eV), और संकीर्ण-स्कैन, रासायनिक दोनों से सार्थक बंधन ऊर्जा प्राप्त करने के लिए प्रयोगात्मक बंधन ऊर्जा ओं के चार्ज प्रेरित बदलाव से ग्रस्त होता है। अवस्था (उच्च ऊर्जा संकल्प) स्पेक्ट्रा। चार्ज प्रेरित स्थानांतरण सामान्य रूप से सतह से जुड़े कम वोल्टेज (-1 से -20 eV) इलेक्ट्रॉनों की मामूली अधिकता, या इलेक्ट्रॉनों की मामूली कमी (+1 से +15 eV) के शीर्ष 1-12 एनएम के भीतर होता है। फोटो-उत्सर्जित इलेक्ट्रॉनों के नुकसान के कारण नमूना। यदि, संयोग से, सतह का चार्ज अत्यधिक सकारात्मक है, तो स्पेक्ट्रम रोलिंग पहाड़ियों की एक श्रृंखला के रूप में प्रकट हो सकता है, तेज चोटियों के रूप में नहीं जैसा कि उदाहरण स्पेक्ट्रम में दिखाया गया है।
प्रायोगिक रूप से मापी गई चोटियों में से प्रत्येक में एक चार्ज सुधार कारक जोड़कर चार्ज रेफरेंसिंग की जाती है। चूँकि विभिन्न हाइड्रोकार्बन प्रजातियाँ सभी वायु-उजागर सतहों पर दिखाई देती हैं, हाइड्रोकार्बन C (1s)एक्सपीएस शिखर की बंधन ऊर्जा का उपयोग गैर-प्रवाहकीय नमूनों या कंडक्टरों से प्राप्त सभी ऊर्जाओं को ठीक करने के लिए किया जाता है जिन्हें नमूना माउंट से जानबूझकर पृथक किया गया है। शिखर सामान्यतः 284.5 eV और 285.5 eV के बीच पाया जाता है। 284.8 ईवी बंधन ऊर्जा नियमित रूप से चार्ज संदर्भित इंसुलेटर के लिए संदर्भ बंधन ऊर्जा के रूप में उपयोग की जाती है, ताकि चार्ज सुधार कारक 284.8 ईवी और प्रयोगात्मक रूप से मापा गया सी (1 एस) शिखर स्थिति के बीच का अंतर हो।
प्रवाहकीय सामग्री और कंडक्टरों के अधिकांश मूल आक्साइड को कभी भी चार्ज संदर्भ की आवश्यकता नहीं होनी चाहिए। प्रवाहकीय सामग्री को कभी भी चार्ज संदर्भित नहीं किया जाना चाहिए जब तक कि नमूने की सबसे ऊपरी परत में मोटी गैर-प्रवाहकीय फिल्म न हो। चार्जिंग प्रभाव, यदि आवश्यक हो, तो इलेक्ट्रॉन फ्लड गन, यूवी रोशनी, कम वोल्टेज आर्गन आयन बीम से कम वोल्टेज (1-20 ईवी) इलेक्ट्रॉन बीम के उपयोग से सतह पर उपयुक्त कम ऊर्जा शुल्क प्रदान करके भी मुआवजा दिया जा सकता है। लो-वोल्टेज इलेक्ट्रॉन बीम (1-10 eV), अपर्चर मास्क, लो-वोल्टेज इलेक्ट्रॉन बीम के साथ मेश स्क्रीन आदि के साथ।
पीक-फिटिंग
- इलेक्ट्रॉन विश्लेषक की सेटिंग (जैसे पास एनर्जी, स्टेप साइज)
- शिखर फिटिंग को प्रभावित करने वाले नमूना कारक विश्लेषण मात्रा (आयन नक़्क़ाशी, या लेजर सफाई से) के भीतर भौतिक दोषों की संख्या हैं, और नमूने का बहुत ही भौतिक रूप (एकल क्रिस्टल, पॉलिश, पाउडर, जंग लगा हुआपीक-फिटिंग हाई एनर्जी रेजोल्यूशनएक्सपीएस स्पेक्ट्रा की प्रक्रिया वैज्ञानिक ज्ञान और अनुभव का मिश्रण है। प्रक्रिया उपकरण डिजाइन, उपकरण घटकों, प्रयोगात्मक सेटिंग्स और नमूना चर से प्रभावित होती है। किसी भी पीक-फिट प्रयास को प्रारम्भ करने से पहले, पीक-फिट का प्रदर्शन करने वाले विश्लेषक को यह जानने की जरूरत है कि क्या नमूने का सबसे ऊपरी 15 एनएम सजातीय सामग्री होने की उम्मीद है या सामग्रियों का मिश्रण होने की उम्मीद है। यदि शीर्ष 15 एनएम एक सजातीय सामग्री है जिसमें केवल बहुत ही कम मात्रा में कार्बन और सोखने वाली गैसें हैं, तो विश्लेषक चोटी-फिटिंग प्रक्रिया को बढ़ाने के लिए सैद्धांतिक शिखर क्षेत्र अनुपात का उपयोग कर सकते हैं। पीक फिटिंग के परिणाम समग्र चोटी की चौड़ाई (अधिकतम आधे पर, एफडब्ल्यूएचएम), संभावित रासायनिक बदलाव, चोटी के आकार, उपकरण डिजाइन कारकों और प्रयोगात्मक सेटिंग्स, साथ ही नमूना गुणों से प्रभावित होते हैं:
- आधी अधिकतम (एफडब्ल्यूएचएम) मूल्यों पर पूरी चौड़ाई रासायनिक अवस्था परिवर्तन और भौतिक प्रभावों के उपयोगी संकेतक हैं। उनकी वृद्धि रासायनिक बंधों की संख्या में परिवर्तन, नमूना स्थिति में परिवर्तन (एक्स-रे क्षति) या सतह के विभेदक चार्ज (सतह की आवेश अवस्था में स्थानीयकृत अंतर) का संकेत दे सकती है। हालांकि, एफडब्ल्यूएचएम डिटेक्टर पर भी निर्भर करता है, और सैंपल चार्ज होने के कारण बढ़ भी सकता है। मोनोक्रोमैटिक अल के-अल्फा एक्स-रे स्रोत से लैस एक्सपीएस पर उच्च ऊर्जा रिज़ॉल्यूशन प्रयोग सेटिंग्स का उपयोग करते समय, प्रमुख एक्सपीएस चोटियों का एफडब्ल्यूएचएम 0.3 ईवी से 1.7 ईवी तक होता है। निम्नलिखित प्रमुखएक्सपीएस संकेतों से FWHM का एक सरल सारांश है:[citation needed] शुद्ध धातुओं से मुख्य धातु चोटियों (जैसे 1s, 2p3, 3d5, 4f7) में FWHMs होते हैं जो 0.30 eV से 1.0 eV तक होते हैं बाइनरी मेटल ऑक्साइड से मुख्य धातु चोटियों (जैसे 1s, 2p3, 3d5, 4f7) में FWHMs होते हैं जो 0.9 eV से होते हैं से 1.7 eV बाइनरी मेटल ऑक्साइड से O (1s) शिखर में FWHMs होते हैं, जो सामान्य रूप से 1.0 eV से 1.4 eV तक होते हैं। C (1s) शिखर से एडवेंचर हाइड्रोकार्बन में FWHM होते हैं, जो सामान्य रूप से 1.0 eV से 1.4 eV तक होते हैं।
- रासायनिक बदलाव मान निकटतम-पड़ोसी परमाणुओं के बीच इलेक्ट्रॉन बंधन ध्रुवीकरण की डिग्री पर निर्भर करता है। एक विशिष्ट रासायनिक बदलाव शुद्ध तत्व के एक रूप के बीई बनाम एक विशिष्ट रासायनिक अवस्था के बीई मूल्यों में अंतर है, या उस तत्व के एक विशेष सहमत-रासायनिक अवस्था में अंतर है। शिखर-फिटिंग कच्चे रासायनिक अवस्था स्पेक्ट्रम से प्राप्त घटक चोटियों को नमूने के नमूने की मात्रा के भीतर विभिन्न रासायनिक अवस्थाों की उपस्थिति के लिए सौंपा जा सकता है।
- पीक आकार उपकरण पैरामीटर, प्रयोगात्मक पैरामीटर और नमूना विशेषताओं पर निर्भर करते हैं।
- उपकरण डिजाइन कारकों में इस्तेमाल की गई एक्स-रे (मोनोक्रोमैटिक अल, गैर-मोनोक्रोमैटिक एमजी, सिंक्रोट्रॉन, एजी, जेडआर) की लाइनविड्थ और शुद्धता के साथ-साथ इलेक्ट्रॉन विश्लेषक के गुण सम्मिलित हैं।
सैद्धांतिक पहलू
क्वांटम यांत्रिक उपचार
जब एक प्रकाश उत्सर्जन घटना घटित होती है, तो निम्न ऊर्जा संरक्षण नियम लागू होता है:
जहां पर फोटॉन ऊर्जा है, आयनीकरण से पहले इलेक्ट्रॉन बीई (एक्सपीएस स्तर के संबंध में बंधन ऊर्जा) है, और फोटोइलेक्ट्रॉन की गतिज ऊर्जा है। यदि फर्मी स्तर के संबंध में संदर्भ लिया जाता है (जैसा कि सामान्यतः फोटोइलेक्ट्रॉन स्पेक्ट्रोस्कोपी में किया जाता है) फर्मी स्तर के सापेक्ष बंधन ऊर्जा (बीई) के योग से प्रतिस्थापित किया जाना चाहिए, , और नमूना कार्य समारोह, .
सैद्धांतिक दृष्टिकोण से, एक ठोस से फोटो उत्सर्जन प्रक्रिया को एक अर्धशास्त्रीय दृष्टिकोण के साथ वर्णित किया जा सकता है, जहां विद्युत चुम्बकीय क्षेत्र को अभी भी शास्त्रीय रूप से व्यवहार किया जाता है, जबकि पदार्थ के लिए क्वांटम-मैकेनिकल विवरण का उपयोग किया जाता है। विद्युत चुम्बकीय क्षेत्र के अधीन एक इलेक्ट्रॉन के लिए एक-कण हैमिल्टनियन द्वारा दिया गया है:
- ,
जहां पर इलेक्ट्रॉन तरंग समारोह है, विद्युत चुम्बकीय क्षेत्र की वेक्टर क्षमता है और ठोस की अविचलित क्षमता है। कूलम्ब गेज में (), सदिश क्षमता संवेग संचालक के साथ आवागमन करती है (), ताकि हैमिल्टनियन में ब्रैकेट में अभिव्यक्ति सरल हो जाए:
दरअसल उपेक्षा कर रहे हैं हैमिल्टनियन शब्द में, हम संभावित फोटोकरंट योगदानों की अवहेलना कर रहे हैं।[7] इस तरह के प्रभाव आम तौर पर थोक में नगण्य होते हैं, लेकिन सतह पर महत्वपूर्ण हो सकते हैं। में द्विघात शब्द इसके बजाय सुरक्षित रूप से उपेक्षित किया जा सकता है, क्योंकि एक विशिष्ट फोटोमिशन प्रयोग में इसका योगदान पहले शब्द की तुलना में कम परिमाण का एक क्रम है।
प्रथम-क्रम गड़बड़ी दृष्टिकोण में, एक-इलेक्ट्रॉन हैमिल्टनियन को दो शब्दों में विभाजित किया जा सकता है, एक अविचलित हैमिल्टनियन , साथ ही एक इंटरैक्शन हैमिल्टनियन , जो विद्युत चुम्बकीय क्षेत्र के प्रभावों का वर्णन करता है:
समय-निर्भर गड़बड़ी सिद्धांत में, एक हार्मोनिक या निरंतर परेशानी के लिए, प्रारंभिक अवस्था के बीच संक्रमण दर और अंतिम स्थिति फर्मी के गोल्डन नियम द्वारा व्यक्त किया गया है:
- ,
जहां पर तथा क्रमशः प्रारंभिक और अंतिम अवस्था में अविचलित हैमिल्टन के आइगेनवेल्यू हैं, और फोटॉन ऊर्जा है। फर्मी का गोल्डन रूल इस अनुमान का उपयोग करता है कि गड़बड़ी अनंत समय के लिए सिस्टम पर काम करती है। यह सन्निकटन तब मान्य होता है जब सिस्टम पर गड़बड़ी का कार्य संक्रमण के लिए आवश्यक समय से बहुत बड़ा होता है। यह समझा जाना चाहिए कि इस समीकरण को अवस्थाों के घनत्व के साथ एकीकृत करने की जरूरत है जो देता है:[8]
एक वास्तविक प्रकाश उत्सर्जन प्रयोग में जमीनी अवस्था कोर इलेक्ट्रॉन बीई की सीधे जांच नहीं की जा सकती है, क्योंकि बीई मापा जाता है प्रारंभिक अवस्था और अंतिम अवस्था दोनों प्रभावों को सम्मिलित करता है, और परिमित कोर-होल जीवनकाल के कारण वर्णक्रमीय लिनिविथ को चौड़ा किया जाता है ().
समय डोमेन में कोर होल के लिए एक घातीय क्षय संभावना मानते हुए (), एफडब्ल्यूएचएम (हाफ मैक्सिमम पर फुल विड्थ) के साथ स्पेक्ट्रल फंक्शन का लोरेंट्ज़ियन आकार होगा। के द्वारा दिया गया:
फूरियर रूपांतरण के सिद्धांत से, तथा अनिश्चितता संबंध से जुड़े हुए हैं:
प्रकाश उत्सर्जन की घटना परमाणु को अत्यधिक उत्तेजित कोर आयनित अवस्था में छोड़ देती है, जिससे यह विकिरण (प्रतिदीप्ति) या गैर-विकिरण (सामान्यतः बरमा क्षय द्वारा) का क्षय कर सकता है। लोरेंत्ज़ियन ब्रॉडिंग के अलावा, गॉसियन ब्रॉडिंग से फोटोमिशन स्पेक्ट्रा भी प्रभावित होता है, जिसका योगदान इसके द्वारा व्यक्त किया जा सकता है
तीन मुख्य कारक स्पेक्ट्रा के गॉसियन विस्तार में प्रवेश करते हैं: प्रायोगिक ऊर्जा संकल्प, कंपन और अमानवीय विस्तार। पहला प्रभाव फोटॉन बीम की गैर-पूर्ण मोनोक्रोमैटिकिटी के कारण होता है-जिसके परिणामस्वरूप परिमित बैंडविड्थ होता है- और विश्लेषक की सीमित संकल्प शक्ति के कारण होता है। कंपन घटक प्रारंभिक और अंतिम अवस्था दोनों में कम ऊर्जा कंपन मोड के उत्तेजना द्वारा निर्मित होता है। अंत में, स्पेक्ट्रम में अनसुलझे कोर स्तर के घटकों की उपस्थिति से अमानवीय विस्तार हो सकता है।
इलेक्ट्रॉनों के कोर स्तर के प्रकाश उत्सर्जन का सिद्धांत
अस्थिर मतलब मुक्त पथ
एक ठोस में, अप्रत्यास्थ प्रकीर्णन घटनाएँ भी प्रकाश-उत्सर्जन प्रक्रिया में योगदान करती हैं, जिससे इलेक्ट्रॉन-छेद जोड़े उत्पन्न होते हैं जो मुख्य प्रकाश-उत्सर्जन शिखर के उच्च बीई पक्ष पर एक अप्रत्यास्थ पूंछ के रूप में दिखाई देते हैं। वास्तव में यह इलेक्ट्रॉन अप्रत्यास्थ माध्य मुक्त पथ (आईएमएफपी) की गणना की अनुमति देता है। यह बीयर-लैंबर्ट कानून के आधार पर तैयार किया जा सकता है, जो बताता है
जहां पर आईएमएफपी है और नमूने के लंबवत अक्ष है। वास्तव में यह आम तौर पर मामला है कि आईएमएफपी केवल कमजोर सामग्री पर निर्भर है, बल्कि फोटोइलेक्ट्रॉन गतिज ऊर्जा पर दृढ़ता से निर्भर है। मात्रात्मक रूप से हम संबंधित कर सकते हैं आईएमएफपी द्वारा[9][10]
जहां पर घनत्व द्वारा गणना के अनुसार औसत परमाणु व्यास है . उपरोक्त सूत्र सीह और डेंच द्वारा विकसित किया गया था।
प्लास्मोनिक प्रभाव
कुछ मामलों में, प्लास्मोन उत्तेजनाओं के कारण ऊर्जा हानि की विशेषताएं भी देखी जाती हैं। यह या तो कोर होल क्षय के कारण होने वाला एक अंतिम अवस्था प्रभाव हो सकता है, जो ठोस (आंतरिक प्लास्मोन) में परिमाणित इलेक्ट्रॉन तरंग उत्तेजना उत्पन्न करता है, या यह उत्सर्जक से सतह (बाहरी प्लास्मोंस) तक यात्रा करने वाले फोटोइलेक्ट्रॉनों द्वारा प्रेरित उत्तेजनाओं के कारण हो सकता है। प्रथम-परत परमाणुओं की कम समन्वय संख्या के कारण, बल्क और सतह परमाणुओं की प्लाज्मा आवृत्ति निम्नलिखित समीकरण से संबंधित होती है:
- ,
एक ठोस में प्लास्मोन अवस्था सामान्यतः सतह पर स्थानीयकृत होते हैं, और आईएमएफपी को दृढ़ता से प्रभावित कर सकते हैं। ताकि सतह और बल्क प्लास्मों को आसानी से एक दूसरे से अलग किया जा सके।
कंपन प्रभाव
तापमान पर निर्भर परमाणु जलक कंपन, या फोनोन, कोर स्तर के घटकों को विस्तृत कर सकते हैं और एक्स-रे फोटोइलेक्ट्रॉन विवर्तन (एक्सपीडी) प्रयोग में व्यतिकरण प्रतिरूप को क्षीण कर सकते हैं। कंपन संबंधी प्रभावों का लेखा-जोखा रखने का सबसे आसान तरीका है बिखरे हुए एकल-फोटोइलेक्ट्रॉन वेव फलन को डिबाइ -वॉलर फैक्टर कारक से गुणा करना:
- ,
जहां पर प्रकीर्णन के कारण तरंग सदिश भिन्नता का वर्ग परिमाण है, तथा तापमान-निर्भर एक आयामी कंपन माध्य वर्ग विस्थापन है उत्सर्जक है। डेबी मॉडल में, माध्य वर्ग विस्थापन की गणना डेबी तापमान के रूप में की जाती है, जैसे:
यह भी देखें
संबंधित तरीके
- एआरपीईएस, कोण-समाधान फोटो उत्सर्जन स्पेक्ट्रोस्कोपी
- यूपीएस, पराबैंगनी फोटोइलेक्ट्रॉन स्पेक्ट्रोस्कोपी
- पीईएस, प्रकाश उत्सर्जन स्पेक्ट्रोस्कोपी
- ZEKE, Rydberg आयनीकरण स्पेक्ट्रोस्कोपी # ZEKE
- एईएस, बरमा इलेक्ट्रॉन स्पेक्ट्रोस्कोपी
- ईडीएस, ऊर्जा फैलाने वाला एक्स-रे स्पेक्ट्रोस्कोपी, (ईडीएक्स या ईडीएक्सआरएफ)
- पीईएम, प्रकाश उत्सर्जन इलेक्ट्रॉन माइक्रोस्कोपी
संदर्भ
- ↑ Siegbahn, K.; Edvarson, K. I. Al (1956). "β-रे स्पेक्ट्रोस्कोपी 1 : 105 की परिशुद्ध रेंज में". Nuclear Physics. 1 (8): 137–159. Bibcode:1956NucPh...1..137S. doi:10.1016/S0029-5582(56)80022-9.
- ↑ Siegbahn, Kai (1967). इलेक्ट्रॉन स्पेक्ट्रोस्कोपी के माध्यम से ईएससीए परमाणु, आणविक और ठोस राज्य संरचना अध्ययन: उप्साला के रॉयल सोसाइटी ऑफ साइंस #एन्स को प्रस्तुत किया गया, 3 दिसंबर, 1965. Almqvist & Wiksell. OCLC 310539900.
- ↑ Electron Spectroscopy for Atoms, Molecules and Condensed Matter, Nobel Lecture, December 8, 1981
- ↑ Turner, D. W.; Jobory, M. I. Al (1962). "फोटोइलेक्ट्रॉन ऊर्जा मापन द्वारा आयनीकरण क्षमता का निर्धारण". The Journal of Chemical Physics. 37 (12): 3007. Bibcode:1962JChPh..37.3007T. doi:10.1063/1.1733134.
- ↑ "एक्स-रे डेटा बुकलेट". xdb.lbl.gov. Retrieved 2020-06-20.
- ↑ "तत्वों और मूल आक्साइड की पुस्तिका" (PDF). XPS International, Inc. Retrieved 8 December 2012.
- ↑ Hüfner, S. (1995). फोटोइलेक्ट्रॉन स्पेक्ट्रोस्कोपी: सिद्धांत और अनुप्रयोग. Springer Verlag.
- ↑ Sakurai, J. (1995). आधुनिक क्वांटम यांत्रिकी (Rev. ed.). Addison-Wesley Publishing Company. p. 332. ISBN 0-201-53929-2.
- ↑ Attard, Gary; Barnes, Colin (1998). सतह. Oxford Chemistry Primers. p. 27. ISBN 978-0198556862.
- ↑ "एक्सपीएस: द मीन फ्री पाथ". lasurface.com.
अग्रिम पठन
- XPS Spectra, Databases, Spectra and Application Notes, [1]
- Handbooks of Monochromaticएक्सपीएस Spectra - Fully Annotated, PDF of Volumes 1 and 2, B.V.Crist, published byएक्सपीएस International LLC, 2005, Mountain View, CA, USA
- Handbooks of Monochromaticएक्सपीएस Spectra, Volumes 1-5, B.V.Crist, published byएक्सपीएस International LLC, 2004, Mountain View, CA, USA
- Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, ed. J.T.Grant and D.Briggs, published by IM Publications, 2003, Chichester, UK
- An Introduction to Surface Analysis byएक्सपीएस and AES, J.F.Watts, J.Wolstenholme, published by Wiley & Sons, 2003, Chichester, UK, ISBN 978-0-470-84713-8
- Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, 2nd edition, ed. M.P.Seah and D.Briggs, published by Wiley & Sons, 1992, Chichester, UK
- Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, ed. M.P.Seah and D.Briggs, published by Wiley & Sons, 1983, Chichester, UK ISBN 0-471-26279-X
- Surface Chemical Analysis — Vocabulary, ISO 18115 : 2001, International Organization for Standardization (ISO), TC/201, Switzerland, [2]
- Handbook of X-ray Photoelectron Spectroscopy, J.F.Moulder, W.F.Stickle, P.E.Sobol, and K.D.Bomben, published by Perkin-Elmer Corp., 1992, Eden Prairie, MN, USA
इस पेज में लापता आंतरिक लिंक की सूची
- पहचान सीमा
- भाग प्रति हजार
- भाग प्रति दस लाख
- सेमीकंडक्टर
- हड्डी
- कांच
- कागज़
- चीनी मिट्टी
- प्रसाधन सामग्री
- इलेक्ट्रॉन बंधन ऊर्जा
- ऊर्जा संरक्षण
- नोबेल पुरुस्कार
- बंधन ऊर्जा
- ऋणावेशित सूक्ष्म अणु का विन्यास
- शोर अनुपात का संकेत
- लहरदार
- अधिकतम अर्ध पर पूरी चौड़ाई
- बेलोचदार मतलब मुक्त पथ
- औसत वर्ग विस्थापन
बाहरी संबंध
- [3]एक्सपीएस Spectra, Databases, Spectra and Application Notes
- X-Ray Photoelectron Spectroscopy Overview
- The conventional X-Ray source at the Surface Science Laboratory - Instrumental description and guided tour
- The SuperESCA beamline @ Elettra Welcome to the Fastएक्सपीएस beamline!
- Monochromatedएक्सपीएस Technique background information, useful analysis resources and monochromatedएक्सपीएस equipment description.