ज़िरकोनियम डाइऑक्साइड: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 66: Line 66:
== इंजीनियरिंग गुण==
== इंजीनियरिंग गुण==
[[File:Zirconium dioxide ZrO2 bearing balls.jpg|thumb|left|असर वाली गेंदें]]ज़िरकोनियम डाइऑक्साइड सबसे अधिक अध्ययनित सिरेमिक सामग्रियों में से एक है। {{chem2|ZrO2}} कमरे के तापमान पर मोनोक्लिनिक क्रिस्टल सिस्टम क्रिस्टल संरचना को अपनाता है और उच्च तापमान पर [[ चौकोर |चौकोर]] और क्यूबिक क्रिस्टल सिस्टम में संक्रमण करता है। टेट्रागोनल से मोनोक्लिनिक से क्यूबिक तक संरचना के संक्रमण के कारण होने वाले आयतन में परिवर्तन बड़े तनाव को प्रेरित करता है, जिससे यह उच्च तापमान से ठंडा होने पर फट जाता है।<ref>{{cite journal |last1=Platt |first1=P. |last2=Frankel |first2=P. |last3=Gass |first3=M. |last4=Howells |first4=R. |last5=Preuss |first5=M. |title=Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys |journal=Journal of Nuclear Materials |date=November 2014 |volume=454 |issue=1–3 |pages=290–297 |doi=10.1016/j.jnucmat.2014.08.020 |bibcode=2014JNuM..454..290P |doi-access=free}}</ref> जब ज़िरकोनिया [[ डोपिंग (सेमीकंडक्टर) |डोपिंग (सेमीकंडक्टर)]] होता है तो कुछ अन्य ऑक्साइड, टेट्रागोनल और क्यूबिक चरण स्थिर हो जाते हैं। प्रभावी डोपेंट्स में [[ मैग्नीशियम ऑक्साइड |मैग्नीशियम ऑक्साइड]] (MgO), [[ येट्रियम (III) ऑक्साइड |येट्रियम (III) ऑक्साइड]] ({{chem2|Y2O3}}, yttria), [[ कैल्शियम ऑक्साइड |कैल्शियम ऑक्साइड]] ({{chem2|CaO}}), और [[ सेरियम (III) ऑक्साइड |सेरियम (III) ऑक्साइड]] ({{chem2|Ce2O3}}).<ref name=evans>{{cite journal |author=Evans, A.G. |author2=Cannon, R.M. |title=Toughening of brittle solids by martensitic transformations  |journal=Acta Metall. |volume=34 |page=761 |year=1986 |doi=10.1016/0001-6160(86)90052-0 |url=https://zenodo.org/record/1253774}}</ref>
[[File:Zirconium dioxide ZrO2 bearing balls.jpg|thumb|left|असर वाली गेंदें]]ज़िरकोनियम डाइऑक्साइड सबसे अधिक अध्ययनित सिरेमिक सामग्रियों में से एक है। {{chem2|ZrO2}} कमरे के तापमान पर मोनोक्लिनिक क्रिस्टल सिस्टम क्रिस्टल संरचना को अपनाता है और उच्च तापमान पर [[ चौकोर |चौकोर]] और क्यूबिक क्रिस्टल सिस्टम में संक्रमण करता है। टेट्रागोनल से मोनोक्लिनिक से क्यूबिक तक संरचना के संक्रमण के कारण होने वाले आयतन में परिवर्तन बड़े तनाव को प्रेरित करता है, जिससे यह उच्च तापमान से ठंडा होने पर फट जाता है।<ref>{{cite journal |last1=Platt |first1=P. |last2=Frankel |first2=P. |last3=Gass |first3=M. |last4=Howells |first4=R. |last5=Preuss |first5=M. |title=Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys |journal=Journal of Nuclear Materials |date=November 2014 |volume=454 |issue=1–3 |pages=290–297 |doi=10.1016/j.jnucmat.2014.08.020 |bibcode=2014JNuM..454..290P |doi-access=free}}</ref> जब ज़िरकोनिया [[ डोपिंग (सेमीकंडक्टर) |डोपिंग (सेमीकंडक्टर)]] होता है तो कुछ अन्य ऑक्साइड, टेट्रागोनल और क्यूबिक चरण स्थिर हो जाते हैं। प्रभावी डोपेंट्स में [[ मैग्नीशियम ऑक्साइड |मैग्नीशियम ऑक्साइड]] (MgO), [[ येट्रियम (III) ऑक्साइड |येट्रियम (III) ऑक्साइड]] ({{chem2|Y2O3}}, yttria), [[ कैल्शियम ऑक्साइड |कैल्शियम ऑक्साइड]] ({{chem2|CaO}}), और [[ सेरियम (III) ऑक्साइड |सेरियम (III) ऑक्साइड]] ({{chem2|Ce2O3}}).<ref name=evans>{{cite journal |author=Evans, A.G. |author2=Cannon, R.M. |title=Toughening of brittle solids by martensitic transformations  |journal=Acta Metall. |volume=34 |page=761 |year=1986 |doi=10.1016/0001-6160(86)90052-0 |url=https://zenodo.org/record/1253774}}</ref>
ज़िरकोनिया अधिकतर अपने चरण 'स्थिर' अवस्था में अधिक उपयोगी होता है। गर्म होने पर, जिरकोनिया विघटनकारी चरण परिवर्तन से गुजरता है। यट्रिया के छोटे प्रतिशत को जोड़कर, ये चरण परिवर्तन समाप्त हो जाते हैं, और परिणामी सामग्री में अच्छे तापीय, यांत्रिक और विद्युत गुण होते हैं। कुछ स्थितियों में, चतुष्कोणीय चरण [[ मेटास्टेबल |मेटास्टेबल]] हो सकता है। यदि मेटास्टेबल टेट्रागोनल चरण की पर्याप्त मात्रा उपस्थित है, तो एक अनुप्रयुक्त तनाव, दरार की नोक पर [[ तनाव एकाग्रता |तनाव एकाग्रता]] द्वारा बढ़ाया जाता है, जिससे संबंधित वॉल्यूम विस्तार के साथ टेट्रागोनल चरण को मोनोक्लिनिक में परिवर्तित किया जा सकता है। यह चरण परिवर्तन तब दरार को संपीड़न में डाल सकता है, इसकी वृद्धि को धीमा कर सकता है, और फ्रैक्चर की कठोरता को बढ़ा सकता है। यह तंत्र, जिसे ट्रांसफॉरमेशन टफनिंग के रूप में जाना जाता है, स्थिर जिरकोनिया से बने उत्पादों की विश्वसनीयता और जीवनकाल को महत्वपूर्ण रूप से बढ़ाता है।<ref name=evans/><ref>{{cite journal |author=Porter, D.L. |author2=Evans, A.G. |author3=Heuer, A.H. |title=Transformation toughening in PSZ |journal=Acta Metall. |volume=27 |page=1649 |year=1979 |doi=10.1016/0001-6160(79)90046-4}}</ref>
ज़िरकोनिया अधिकतर अपने चरण 'स्थिर' अवस्था में अधिक उपयोगी होता है। गर्म होने पर, जिरकोनिया विघटनकारी चरण परिवर्तन से गुजरता है। यट्रिया के छोटे प्रतिशत को जोड़कर, ये चरण परिवर्तन समाप्त हो जाते हैं, और परिणामी सामग्री में अच्छे तापीय, यांत्रिक और विद्युत गुण होते हैं। कुछ स्थितियों में, चतुष्कोणीय चरण [[ मेटास्टेबल |मेटास्टेबल]] हो सकता है। यदि मेटास्टेबल टेट्रागोनल चरण की पर्याप्त मात्रा उपस्थित है, तो अनुप्रयुक्त तनाव, दरार की नोक पर [[ तनाव एकाग्रता |तनाव एकाग्रता]] द्वारा बढ़ाया जाता है, जिससे संबंधित वॉल्यूम विस्तार के साथ टेट्रागोनल चरण को मोनोक्लिनिक में परिवर्तित किया जा सकता है। यह चरण परिवर्तन तब दरार को संपीड़न में डाल सकता है, इसकी वृद्धि को धीमा कर सकता है, और फ्रैक्चर की कठोरता को बढ़ा सकता है। यह तंत्र, जिसे ट्रांसफॉरमेशन टफनिंग के रूप में जाना जाता है, स्थिर जिरकोनिया से बने उत्पादों की विश्वसनीयता और जीवनकाल को महत्वपूर्ण रूप से बढ़ाता है।<ref name=evans/><ref>{{cite journal |author=Porter, D.L. |author2=Evans, A.G. |author3=Heuer, A.H. |title=Transformation toughening in PSZ |journal=Acta Metall. |volume=27 |page=1649 |year=1979 |doi=10.1016/0001-6160(79)90046-4}}</ref>


  {{chem2|ZrO2}} }} [[ ऊर्जा अंतराल |ऊर्जा अंतराल]] 5–7 eV के विशिष्ट अनुमानों के साथ चरण (क्यूबिक, टेट्रागोनल, मोनोक्लिनिक, या अनाकार) और तैयारी विधियों पर निर्भर है।<ref>{{cite journal |first=Jane P. |last=Chang |author2=You-Sheng Lin |author3=Karen Chu  |title=Rapid thermal chemical vapor deposition of zirconium oxide for metal–oxide–semiconductor field effect transistor application |journal=[[Journal of Vacuum Science and Technology B]] |volume=19|issue=5 |pages=1782–1787 |year=2001 |doi=10.1116/1.1396639|bibcode=2001JVSTB..19.1782C }}</ref>
  {{chem2|ZrO2}} }} [[ ऊर्जा अंतराल |ऊर्जा अंतराल]] 5–7 eV के विशिष्ट अनुमानों के साथ चरण (क्यूबिक, टेट्रागोनल, मोनोक्लिनिक, या अनाकार) और तैयारी विधियों पर निर्भर है।<ref>{{cite journal |first=Jane P. |last=Chang |author2=You-Sheng Lin |author3=Karen Chu  |title=Rapid thermal chemical vapor deposition of zirconium oxide for metal–oxide–semiconductor field effect transistor application |journal=[[Journal of Vacuum Science and Technology B]] |volume=19|issue=5 |pages=1782–1787 |year=2001 |doi=10.1116/1.1396639|bibcode=2001JVSTB..19.1782C }}</ref>
Line 72: Line 72:


== उपयोग करता है ==
== उपयोग करता है ==
ज़िरकोनिया का मुख्य उपयोग कठोर सिरेमिक के उत्पादन में होता है, जैसे दंत चिकित्सा में,<ref>{{cite web |url=https://www.usgs.gov/centers/nmic/zirconium-and-hafnium-statistics-and-information |title=Zirconium and Hafnium Statistics and Information |first=Joseph |last=Gambogi |website=USGS National Minerals Information Center |access-date=5 May 2018 |url-status=live |archive-url=https://web.archive.org/web/20180218030521/https://minerals.usgs.gov/minerals/pubs/commodity/zirconium/ |archive-date=18 February 2018}}</ref> [[ टाइटेनियम डाइऑक्साइड |टाइटेनियम डाइऑक्साइड]] पिगमेंट के कणों पर एक सुरक्षात्मक कोटिंग के रूप में सहित अन्य उपयोगों के साथ,<ref name="Ullmann"/> एक [[ आग रोक |आग रोक]] सामग्री के रूप में, [[ थर्मल इन्सुलेशन |थर्मल इन्सुलेशन]], अपघर्षक और कांच के तामचीनी में।
ज़िरकोनिया का मुख्य उपयोग कठोर सिरेमिक के उत्पादन में होता है, जैसे दंत चिकित्सा में,<ref>{{cite web |url=https://www.usgs.gov/centers/nmic/zirconium-and-hafnium-statistics-and-information |title=Zirconium and Hafnium Statistics and Information |first=Joseph |last=Gambogi |website=USGS National Minerals Information Center |access-date=5 May 2018 |url-status=live |archive-url=https://web.archive.org/web/20180218030521/https://minerals.usgs.gov/minerals/pubs/commodity/zirconium/ |archive-date=18 February 2018}}</ref> [[ टाइटेनियम डाइऑक्साइड |टाइटेनियम डाइऑक्साइड]] पिगमेंट के कणों पर एक सुरक्षात्मक कोटिंग के रूप में सहित अन्य उपयोगों के साथ,<ref name="Ullmann"/> [[ आग रोक |आग रोक]] सामग्री के रूप में, [[ थर्मल इन्सुलेशन |थर्मल इन्सुलेशन]], अपघर्षक और कांच के तामचीनी में।


स्थिर ज़िरकोनिया का उपयोग [[ ऑक्सीजन |ऑक्सीजन]] सेंसर और [[ ईंधन सेल |ईंधन सेल]] झिल्ली में किया जाता है क्योंकि इसमें ऑक्सीजन [[ आयन |आयन]] को उच्च तापमान पर क्रिस्टल संरचना के माध्यम से स्वतंत्र रूप से स्थानांतरित करने की क्षमता होती है। यह उच्च [[ आयनिक चालकता (ठोस अवस्था) |आयनिक चालकता (ठोस अवस्था)]] (और एक कम इलेक्ट्रॉनिक चालकता) इसे सबसे उपयोगी [[ इलेक्ट्रोसिरेमिक |इलेक्ट्रोसिरेमिक]] में से एक बनाती है।<ref name="Ullmann"/> जिरकोनियम डाइऑक्साइड का उपयोग इलेक्ट्रोक्रोमिक उपकरणों में [[ ठोस इलेक्ट्रोलाइट |ठोस इलेक्ट्रोलाइट]] के रूप में भी किया जाता है।
स्थिर ज़िरकोनिया का उपयोग [[ ऑक्सीजन |ऑक्सीजन]] सेंसर और [[ ईंधन सेल |ईंधन सेल]] झिल्ली में किया जाता है क्योंकि इसमें ऑक्सीजन [[ आयन |आयन]] को उच्च तापमान पर क्रिस्टल संरचना के माध्यम से स्वतंत्र रूप से स्थानांतरित करने की क्षमता होती है। यह उच्च [[ आयनिक चालकता (ठोस अवस्था) |आयनिक चालकता (ठोस अवस्था)]] (और एक कम इलेक्ट्रॉनिक चालकता) इसे सबसे उपयोगी [[ इलेक्ट्रोसिरेमिक |इलेक्ट्रोसिरेमिक]] में से एक बनाती है।<ref name="Ullmann"/> जिरकोनियम डाइऑक्साइड का उपयोग इलेक्ट्रोक्रोमिक उपकरणों में [[ ठोस इलेक्ट्रोलाइट |ठोस इलेक्ट्रोलाइट]] के रूप में भी किया जाता है।
Line 79: Line 79:


=== आला उपयोग ===
=== आला उपयोग ===
क्यूबिक ज़िरकोनिया की बहुत कम तापीय चालकता ने भी उच्च तापमान पर संचालन की अनुमति देने के लिए [[ जेट इंजिन |जेट इंजिन]] और [[ डीजल इंजन |डीजल इंजन]] में [[ थर्मल बाधा कोटिंग |थर्मल बाधा कोटिंग]] या टीबीसी के रूप में इसका उपयोग किया है।<ref>{{cite web |url=https://studylib.net/doc/12141427 |title=Thermal-barrier coatings for more efficient gas-turbine engines |website=studylib.net |language=en |access-date=2018-08-06}}</ref> ऊष्मप्रवैगिक रूप से, एक इंजन का संचालन तापमान जितना अधिक होता है, [[ कार्नोट हीट इंजन |कार्नोट हीट इंजन]] । एक अन्य कम तापीय-चालकता का उपयोग क्रिस्टल ग्रोथ फर्नेस, ईंधन-सेल स्टैक और इन्फ्रारेड हीटिंग सिस्टम के लिए सिरेमिक फाइबर इन्सुलेशन के रूप में होता है।
क्यूबिक ज़िरकोनिया की बहुत कम तापीय चालकता ने भी उच्च तापमान पर संचालन की अनुमति देने के लिए [[ जेट इंजिन |जेट इंजिन]] और [[ डीजल इंजन |डीजल इंजन]] में [[ थर्मल बाधा कोटिंग |थर्मल बाधा कोटिंग]] या टीबीसी के रूप में इसका उपयोग किया है।<ref>{{cite web |url=https://studylib.net/doc/12141427 |title=Thermal-barrier coatings for more efficient gas-turbine engines |website=studylib.net |language=en |access-date=2018-08-06}}</ref> ऊष्मप्रवैगिक रूप से, इंजन का संचालन तापमान जितना अधिक होता है, [[ कार्नोट हीट इंजन |कार्नोट हीट इंजन]] । अन्य कम तापीय-चालकता का उपयोग क्रिस्टल ग्रोथ फर्नेस, ईंधन-सेल स्टैक और इन्फ्रारेड हीटिंग सिस्टम के लिए सिरेमिक फाइबर इन्सुलेशन के रूप में होता है।


इस सामग्री का उपयोग दंत चिकित्सा में क्राउन (दंत चिकित्सा) और [[ पुल (दंत चिकित्सा) |पुल (दंत चिकित्सा)]] जैसे दंत पुनर्स्थापनों के निर्माण के लिए सबफ्रेम के निर्माण में भी किया जाता है, जो तब सौंदर्य संबंधी कारणों से या मजबूत, अत्यंत टिकाऊ दंत चिकित्सा के लिए एक पारंपरिक [[ स्फतीय |स्फतीय]] चीनी मिट्टी के बर्तन के साथ लिपटी होती हैं। कृत्रिम अंग पूरी तरह से अखंड ज़िरकोनिया से निर्मित, सीमित लेकिन लगातार सौंदर्यशास्त्र में सुधार के साथ।<ref>{{cite journal |first=Panos |last=Papaspyridakos |author2=Kunal Lal |title=Complete arch implant rehabilitation using subtractive rapid prototyping and porcelain fused to zirconia prosthesis: A clinical report |journal=The Journal of Prosthetic Dentistry |volume=100 |issue=3 |year=2008 |pages=165–172 |doi=10.1016/S0022-3913(08)00110-8 |pmid=18762028}}</ref><ref name=":0">{{Cite journal|last1=Kastyl|first1=Jaroslav|last2=Chlup|first2=Zdenek|last3=Stastny|first3=Premysl|last4=Trunec|first4=Martin|date=2020-08-17|title=Machinability and properties of zirconia ceramics prepared by gelcasting method|url=https://doi.org/10.1080/17436753.2019.1675402|journal=Advances in Applied Ceramics|volume=119|issue=5–6|pages=252–260|doi=10.1080/17436753.2019.1675402|bibcode=2020AdApC.119..252K |hdl=11012/181089 |s2cid=210795876 |issn=1743-6753}}</ref> [[ yttria |येट्रिया]] (येट्रियम ऑक्साइड) के साथ स्थिर ज़िरकोनिया, जिसे [[ येट्रिया-स्थिर जिरकोनिया |येट्रिया-स्थिर जिरकोनिया]] के रूप में जाना जाता है, को कुछ पूर्ण सिरेमिक क्राउन रेस्टोरेशन में एक मजबूत आधार सामग्री के रूप में उपयोग किया जा सकता है।<ref name=":0" /><ref>{{cite book |editor-last1=Shen |editor-first1=James |title=Advanced ceramics for dentistry |date=2013 |publisher=Elsevier/BH |location=Amsterdam |isbn=978-0123946195 |page=271 |edition=1st}}</ref>
इस सामग्री का उपयोग दंत चिकित्सा में क्राउन (दंत चिकित्सा) और [[ पुल (दंत चिकित्सा) |पुल (दंत चिकित्सा)]] जैसे दंत पुनर्स्थापनों के निर्माण के लिए सबफ्रेम के निर्माण में भी किया जाता है, जो तब सौंदर्य संबंधी कारणों से या मजबूत, अत्यंत टिकाऊ दंत चिकित्सा के लिए पारंपरिक [[ स्फतीय |स्फतीय]] चीनी मिट्टी के बर्तन के साथ लिपटी होती हैं। कृत्रिम अंग पूरी तरह से अखंड ज़िरकोनिया से निर्मित, सीमित लेकिन लगातार सौंदर्यशास्त्र में सुधार के साथ।<ref>{{cite journal |first=Panos |last=Papaspyridakos |author2=Kunal Lal |title=Complete arch implant rehabilitation using subtractive rapid prototyping and porcelain fused to zirconia prosthesis: A clinical report |journal=The Journal of Prosthetic Dentistry |volume=100 |issue=3 |year=2008 |pages=165–172 |doi=10.1016/S0022-3913(08)00110-8 |pmid=18762028}}</ref><ref name=":0">{{Cite journal|last1=Kastyl|first1=Jaroslav|last2=Chlup|first2=Zdenek|last3=Stastny|first3=Premysl|last4=Trunec|first4=Martin|date=2020-08-17|title=Machinability and properties of zirconia ceramics prepared by gelcasting method|url=https://doi.org/10.1080/17436753.2019.1675402|journal=Advances in Applied Ceramics|volume=119|issue=5–6|pages=252–260|doi=10.1080/17436753.2019.1675402|bibcode=2020AdApC.119..252K |hdl=11012/181089 |s2cid=210795876 |issn=1743-6753}}</ref> [[ yttria |येट्रिया]] (येट्रियम ऑक्साइड) के साथ स्थिर ज़िरकोनिया, जिसे [[ येट्रिया-स्थिर जिरकोनिया |येट्रिया-स्थिर जिरकोनिया]] के रूप में जाना जाता है, को कुछ पूर्ण सिरेमिक क्राउन रेस्टोरेशन में एक मजबूत आधार सामग्री के रूप में उपयोग किया जा सकता है।<ref name=":0" /><ref>{{cite book |editor-last1=Shen |editor-first1=James |title=Advanced ceramics for dentistry |date=2013 |publisher=Elsevier/BH |location=Amsterdam |isbn=978-0123946195 |page=271 |edition=1st}}</ref>


रूपांतरण-सख्त जिरकोनिया का उपयोग सिरेमिक चाकू बनाने के लिए किया जाता है। कठोरता के कारण, सिरेमिक-धार कटलरी स्टील की धार वाले उत्पादों की तुलना में अधिक समय तक तेज रहती है।<ref>{{cite news |url=https://asia.kyocera.com/products/kitchen/basic_series/serrated_12cm_blade.html |title=Serrated 12cm blade Ceramic Kitchen Knives and Tools |newspaper=Ceramic Kitchen Knives and Tools &#124; Kyocera Asia-Pacific |access-date=4 August 2021}}</ref>
रूपांतरण-सख्त जिरकोनिया का उपयोग सिरेमिक चाकू बनाने के लिए किया जाता है। कठोरता के कारण, सिरेमिक-धार कटलरी स्टील की धार वाले उत्पादों की तुलना में अधिक समय तक तेज रहती है।<ref>{{cite news |url=https://asia.kyocera.com/products/kitchen/basic_series/serrated_12cm_blade.html |title=Serrated 12cm blade Ceramic Kitchen Knives and Tools |newspaper=Ceramic Kitchen Knives and Tools &#124; Kyocera Asia-Pacific |access-date=4 August 2021}}</ref>
Line 87: Line 87:
[[ गरमागरम | गरमागरम]] होने पर इसकी अशुद्धता और शानदार चमक के कारण, इसे [[ गैस का तीव्र प्रकाश |गैस का तीव्र प्रकाश]] के लिए स्टिक्स के एक घटक के रूप में उपयोग किया गया था।{{citation needed|date=June 2012}}
[[ गरमागरम | गरमागरम]] होने पर इसकी अशुद्धता और शानदार चमक के कारण, इसे [[ गैस का तीव्र प्रकाश |गैस का तीव्र प्रकाश]] के लिए स्टिक्स के एक घटक के रूप में उपयोग किया गया था।{{citation needed|date=June 2012}}


ज़िरकोनिया को ईंधन और ऑक्सीडाइज़र दोनों प्रदान करने के लिए मंगल के वातावरण से [[ कार्बन मोनोआक्साइड |कार्बन मोनोआक्साइड]] और ऑक्सीजन को [[ इलेक्ट्रोलीज़ |इलेक्ट्रोलीज़]] करने का प्रस्ताव दिया गया है जिसका उपयोग मंगल पर सतह परिवहन के लिए रासायनिक ऊर्जा के भंडार के रूप में किया जा सकता है। प्रारंभिक सतह परिवहन उपयोग के लिए कार्बन मोनोऑक्साइड/ऑक्सीजन इंजनों का सुझाव दिया गया है, क्योंकि कार्बन मोनोऑक्साइड और ऑक्सीजन दोनों सीधे तौर पर जिरकोनिया इलेक्ट्रोलिसिस द्वारा हाइड्रोजन प्राप्त करने के लिए मंगल ग्रह के किसी भी जल संसाधन के उपयोग की आवश्यकता के बिना उत्पादित किए जा सकते हैं, जो मीथेन के उत्पादन के लिए आवश्यक होगा। या कोई हाइड्रोजन आधारित ईंधन।<ref name="landis2001">{{cite journal |first1=Geoffrey A. |last1=Landis |first2=Diane L. |last2=Linne |title=Mars Rocket Vehicle Using In Situ Propellants |journal=Journal of Spacecraft and Rockets |date=2001 |volume=38 |issue=5 |pages=730–35 |doi=10.2514/2.3739|bibcode=2001JSpRo..38..730L }}</ref>
ज़िरकोनिया को ईंधन और ऑक्सीडाइज़र दोनों प्रदान करने के लिए मंगल के वातावरण से [[ कार्बन मोनोआक्साइड |कार्बन मोनोआक्साइड]] और ऑक्सीजन को [[ इलेक्ट्रोलीज़ |इलेक्ट्रोलीज़]] करने का प्रस्ताव दिया गया है जिसका उपयोग मंगल पर सतह परिवहन के लिए रासायनिक ऊर्जा के भंडार के रूप में किया जा सकता है। प्रारंभिक सतह परिवहन उपयोग के लिए कार्बन मोनोऑक्साइड ऑक्सीजन इंजनों का सुझाव दिया गया है, क्योंकि कार्बन मोनोऑक्साइड और ऑक्सीजन दोनों सामान्य तौर पर जिरकोनिया इलेक्ट्रोलिसिस द्वारा हाइड्रोजन प्राप्त करने के लिए मंगल ग्रह के किसी भी जल संसाधन के उपयोग की आवश्यकता के बिना उत्पादित किए जा सकते हैं, जो मीथेन के उत्पादन के लिए आवश्यक होगा। या कोई हाइड्रोजन आधारित ईंधन।<ref name="landis2001">{{cite journal |first1=Geoffrey A. |last1=Landis |first2=Diane L. |last2=Linne |title=Mars Rocket Vehicle Using In Situ Propellants |journal=Journal of Spacecraft and Rockets |date=2001 |volume=38 |issue=5 |pages=730–35 |doi=10.2514/2.3739|bibcode=2001JSpRo..38..730L }}</ref>


जिरकोनिया का उपयोग [[ फोटोकैटलिसिस |फोटोकैटलिसिस]] के रूप में किया जा सकता है<ref>{{cite journal |last1=Kohno |first1=Yoshiumi |last2=Tanaka |first2=Tsunehiro |last3=Funabiki |first3=Takuzo |last4=Yoshida |first4=Satohiro |title=Identification and reactivity of a surface intermediate in the photoreduction of CO2 with H2 over ZrO2 |journal=Journal of the Chemical Society, Faraday Transactions |date=1998 |volume=94 |issue=13 |pages=1875–1880 |doi=10.1039/a801055b}}</ref> इसके उच्च बैंड गैप (~ 5 eV) के बाद से<ref>{{cite journal |last1=Gionco |first1=Chiara |last2=Paganini |first2=Maria C. |last3=Giamello |first3=Elio |last4=Burgess |first4=Robertson |last5=Di Valentin |first5=Cristiana |last6=Pacchioni |first6=Gianfranco |title=Cerium-Doped Zirconium Dioxide, a Visible-Light-Sensitive Photoactive Material of Third Generation |journal=The Journal of Physical Chemistry Letters |date=15 January 2014 |volume=5 |issue=3 |pages=447–451 |doi=10.1021/jz402731s |pmid=26276590 |hdl=2318/141649 |hdl-access=free}}</ref> उच्च ऊर्जावान इलेक्ट्रॉनों और छिद्रों की पीढ़ी की अनुमति देता है। कुछ अध्ययनों ने अपघटित कार्बनिक यौगिकों में डोप्ड ज़िरकोनिया (दृश्य प्रकाश अवशोषण को बढ़ाने के लिए) की गतिविधि का प्रदर्शन किया<ref>{{cite journal |last1=Yuan |first1=Quan |last2=Liu |first2=Yang |last3=Li |first3=Le-Le |last4=Li |first4=Zhen-Xing |last5=Fang |first5=Chen-Jie |last6=Duan |first6=Wen-Tao |last7=Li |first7=Xing-Guo |last8=Yan |first8=Chun-Hua |title=Highly ordered mesoporous titania–zirconia photocatalyst for applications in degradation of rhodamine-B and hydrogen evolution |journal=Microporous and Mesoporous Materials |date=August 2009 |volume=124 |issue=1–3 |pages=169–178 |doi=10.1016/j.micromeso.2009.05.006}}</ref><ref>{{cite journal |last1=Bortot Coelho |first1=Fabrício |last2=Gionco |first2=Chiara |last3=Paganini |first3=Maria |last4=Calza |first4=Paola |last5=Magnacca |first5=Giuliana |title=Control of Membrane Fouling in Organics Filtration Using Ce-Doped Zirconia and Visible Light |journal=Nanomaterials |date=3 April 2019 |volume=9 |issue=4 |pages=534 |doi=10.3390/nano9040534| pmc=6523972  |pmid=30987140 |doi-access=free}}</ref> और अपशिष्ट जल से [[ हैग्जावलेंट क्रोमियम |हैग्जावलेंट क्रोमियम]] |Cr(VI) को कम करना।<ref>{{cite journal |last1=Bortot Coelho |first1=Fabrício Eduardo |last2=Candelario |first2=Victor M. |last3=Araújo |first3=Estêvão Magno Rodrigues |last4=Miranda |first4=Tânia Lúcia Santos |last5=Magnacca |first5=Giuliana |title=Photocatalytic Reduction of Cr(VI) in the Presence of Humic Acid Using Immobilized Ce–ZrO2 under Visible Light |journal=Nanomaterials |date=18 April 2020 |volume=10 |issue=4 |pages=779 |doi=10.3390/nano10040779 |pmid=32325680 |pmc=7221772 |issn=2079-4991 |doi-access=free}}</ref>
जिरकोनिया का उपयोग [[ फोटोकैटलिसिस |फोटोकैटलिसिस]] के रूप में किया जा सकता है<ref>{{cite journal |last1=Kohno |first1=Yoshiumi |last2=Tanaka |first2=Tsunehiro |last3=Funabiki |first3=Takuzo |last4=Yoshida |first4=Satohiro |title=Identification and reactivity of a surface intermediate in the photoreduction of CO2 with H2 over ZrO2 |journal=Journal of the Chemical Society, Faraday Transactions |date=1998 |volume=94 |issue=13 |pages=1875–1880 |doi=10.1039/a801055b}}</ref> इसके उच्च बैंड गैप (~ 5 eV) के बाद से<ref>{{cite journal |last1=Gionco |first1=Chiara |last2=Paganini |first2=Maria C. |last3=Giamello |first3=Elio |last4=Burgess |first4=Robertson |last5=Di Valentin |first5=Cristiana |last6=Pacchioni |first6=Gianfranco |title=Cerium-Doped Zirconium Dioxide, a Visible-Light-Sensitive Photoactive Material of Third Generation |journal=The Journal of Physical Chemistry Letters |date=15 January 2014 |volume=5 |issue=3 |pages=447–451 |doi=10.1021/jz402731s |pmid=26276590 |hdl=2318/141649 |hdl-access=free}}</ref> उच्च ऊर्जावान इलेक्ट्रॉनों और छिद्रों की पीढ़ी की अनुमति देता है। कुछ अध्ययनों ने अपघटित कार्बनिक यौगिकों में डोप्ड ज़िरकोनिया (दृश्य प्रकाश अवशोषण को बढ़ाने के लिए) की गतिविधि का प्रदर्शन किया<ref>{{cite journal |last1=Yuan |first1=Quan |last2=Liu |first2=Yang |last3=Li |first3=Le-Le |last4=Li |first4=Zhen-Xing |last5=Fang |first5=Chen-Jie |last6=Duan |first6=Wen-Tao |last7=Li |first7=Xing-Guo |last8=Yan |first8=Chun-Hua |title=Highly ordered mesoporous titania–zirconia photocatalyst for applications in degradation of rhodamine-B and hydrogen evolution |journal=Microporous and Mesoporous Materials |date=August 2009 |volume=124 |issue=1–3 |pages=169–178 |doi=10.1016/j.micromeso.2009.05.006}}</ref><ref>{{cite journal |last1=Bortot Coelho |first1=Fabrício |last2=Gionco |first2=Chiara |last3=Paganini |first3=Maria |last4=Calza |first4=Paola |last5=Magnacca |first5=Giuliana |title=Control of Membrane Fouling in Organics Filtration Using Ce-Doped Zirconia and Visible Light |journal=Nanomaterials |date=3 April 2019 |volume=9 |issue=4 |pages=534 |doi=10.3390/nano9040534| pmc=6523972  |pmid=30987140 |doi-access=free}}</ref> और अपशिष्ट जल से [[ हैग्जावलेंट क्रोमियम |हैग्जावलेंट क्रोमियम]] |Cr(VI) को कम करना।<ref>{{cite journal |last1=Bortot Coelho |first1=Fabrício Eduardo |last2=Candelario |first2=Victor M. |last3=Araújo |first3=Estêvão Magno Rodrigues |last4=Miranda |first4=Tânia Lúcia Santos |last5=Magnacca |first5=Giuliana |title=Photocatalytic Reduction of Cr(VI) in the Presence of Humic Acid Using Immobilized Ce–ZrO2 under Visible Light |journal=Nanomaterials |date=18 April 2020 |volume=10 |issue=4 |pages=779 |doi=10.3390/nano10040779 |pmid=32325680 |pmc=7221772 |issn=2079-4991 |doi-access=free}}</ref>
Line 103: Line 103:
=== हीरा अनुकरण ===
=== हीरा अनुकरण ===
{{Main|क्यूबिक जिरकोनिया}}
{{Main|क्यूबिक जिरकोनिया}}
[[File:CZ brilliant.jpg|thumb|ब्रिलियंट-कट क्यूबिक ज़िरकोनिया]]ज़िरकोनिया के घन चरण के एकल क्रिस्टल सामान्यतः [[ आभूषण |आभूषण]] में हीरे के सिमुलेंट के रूप में उपयोग किए जाते हैं। हीरे की तरह, क्यूबिक ज़िरकोनिया में एक क्यूबिक क्रिस्टल संरचना और उच्च अपवर्तन सूचकांक होता है। हीरे से एक अच्छी गुणवत्ता वाले क्यूबिक ज़िरकोनिया रत्न को दृष्टिगत रूप से समझना जटिल है, और अधिकांश ज्वैलर्स के पास इसकी कम तापीय चालकता (हीरा एक बहुत अच्छा तापीय चालक है) द्वारा क्यूबिक ज़िरकोनिया की पहचान करने के लिए एक तापीय चालकता परीक्षक होगा। ज़िरकोनिया की इस अवस्था को  सामान्यतः क्यूबिक ज़िरकोनिया, सीजेड या ज़िरकॉन द्वारा आभूषण कहा जाता है, लेकिन अंतिम नाम रासायनिक रूप से सटीक नहीं है। ज़िरकॉन वास्तव में प्राकृतिक रूप से पाए जाने वाले ज़िरकोनियम (IV) सिलिकेट ({{chem2|ZrSiO4}}).
[[File:CZ brilliant.jpg|thumb|ब्रिलियंट-कट क्यूबिक ज़िरकोनिया]]ज़िरकोनिया के घन चरण के एकल क्रिस्टल सामान्यतः [[ आभूषण |आभूषण]] में हीरे के सिमुलेंट के रूप में उपयोग किए जाते हैं। हीरे की तरह, क्यूबिक ज़िरकोनिया में क्यूबिक क्रिस्टल संरचना और उच्च अपवर्तन सूचकांक होता है। हीरे से एक अच्छी गुणवत्ता वाले क्यूबिक ज़िरकोनिया रत्न को दृष्टिगत रूप से समझना जटिल है, और अधिकांश ज्वैलर्स के पास इसकी कम तापीय चालकता (हीरा एक बहुत अच्छा तापीय चालक है) द्वारा क्यूबिक ज़िरकोनिया की पहचान करने के लिए तापीय चालकता परीक्षक होगा। ज़िरकोनिया की इस अवस्था को  सामान्यतः क्यूबिक ज़िरकोनिया, सीजेड या ज़िरकॉन द्वारा आभूषण कहा जाता है, लेकिन अंतिम नाम रासायनिक रूप से सटीक नहीं है। ज़िरकॉन वास्तव में प्राकृतिक रूप से पाए जाने वाले ज़िरकोनियम (IV) सिलिकेट ({{chem2|ZrSiO4}}) होता है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 16:47, 26 January 2023

"ज़िरकोनिया" यहां पुनर्निर्देश करता है। संबंधित सिलिकेट खनिज के लिए, ज़िरकॉन देखें।

Zirconium dioxide
ZrO2powder.jpg
Kristallstruktur Zirconium(IV)-oxid.png
Names
IUPAC names
Zirconium dioxide
Zirconium(IV) oxide
Other names
Zirconia
Baddeleyite
Identifiers
3D model (JSmol)
ChemSpider
EC Number
  • 215-227-2
UNII
  • InChI=1S/2O.Zr
    Key: MCMNRKCIXSYSNV-UHFFFAOYSA-N
  • O=[Zr]=O
Properties
ZrO
2
Molar mass 123.218 g/mol
Appearance white powder
Density 5.68 g/cm3
Melting point 2,715 °C (4,919 °F; 2,988 K)
Boiling point 4,300 °C (7,770 °F; 4,570 K)
negligible
Solubility soluble in HF, and hot [[sulfuric acid|H2SO4]]
2.13
Thermochemistry
50.3 JK−1mol−1
–1080 kJ/mol
Hazards
GHS labelling:
GHS07: Exclamation mark
Warning
H315, H319, H335
P261, P264, P271, P280, P302+P352, P304+P340, P305+P351+P338, P312, P321, P332+P313, P337+P313, P362, P403+P233, P405, P501
Flash point Non-flammable
Lethal dose or concentration (LD, LC):
> 8.8 g/kg (oral, rat)
Safety data sheet (SDS) MSDS
Related compounds
Other anions
Zirconium disulfide
Other cations
Titanium dioxide
Hafnium dioxide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

जिरकोनियम डाइऑक्साइड (ZrO
2
), कभी-कभी जिरकोनिया (जिरकोन के साथ भ्रमित नहीं होना) के रूप में जाना जाता है, जिक्रोन ium का सफेद क्रिस्टलीय ऑक्साइड है। मोनोक्लिनिक क्रिस्टल सिस्टम के साथ इसका सबसे स्वाभाविक रूप से होने वाला रूप खनिज बैडडेलीट है। डोपेंट स्थिर क्यूबिक स्ट्रक्चर्ड ज़िरकोनिया, घनाकार गोमेदातु ,रत्न और हीरे के सिमुलेंट के रूप में उपयोग के लिए विभिन्न रंगों में संश्लेषित किया जाता है।[1]


उत्पादन, रासायनिक गुण, घटना

ज़िरकोनिया पकाना ज़िरकोनियम यौगिकों द्वारा निर्मित होता है, इसकी उच्च थर्मोस्टेबिलिटी का शोषण करता है।[2]


संरचना

तीन चरण ज्ञात हैं 1170 डिग्री सेल्सियस से नीचे मोनोक्लिनिक, 1170 डिग्री सेल्सियस और 2370 डिग्री सेल्सियस के बीच चतुष्कोणीय, और 2370 डिग्री सेल्सियस से ऊपर क्यूबिक।[3] प्रवृत्ति उच्च तापमान पर उच्च समरूपता के लिए है, जैसा कि सामान्यतः होता है। कैल्शियम या अट्रियम के ऑक्साइड का छोटा प्रतिशत क्यूबिक चरण में स्थिर हो जाता है।[2] बहुत ही दुर्लभ खनिज tazerans , (Zr,Ti,Ca)O2, घन क्रिस्टल प्रणाली है। भिन्न TiO2, जिसमें सभी चरणों में छह-समन्वित टाइटेनियम सम्मिलित हैं, मोनोक्लिनिक ज़िरकोनिया में सात-समन्वित ज़िरकोनियम केंद्र होते हैं। यह अंतर टाइटेनियम परमाणु के सापेक्ष जिरकोनियम परमाणु के बड़े आकार के लिए जिम्मेदार है।[4]


रासायनिक अभिक्रियाएं

ज़िरकोनिया रासायनिक रूप से अप्रतिक्रियाशील है। यह धीरे-धीरे केंद्रित हाइड्रोफ्लुओरिक अम्ल और सल्फ्यूरिक एसिड द्वारा अतिक्रमण किया जाता है। कार्बन के साथ गर्म करने पर यह जिरकोनियम कार्बाइड में परिवर्तित हो जाता है। जब क्लोरीन की उपस्थिति में कार्बन के साथ गर्म किया जाता है, तो यह जिरकोनियम (IV) क्लोराइड में परिवर्तित हो जाता है। यह रूपांतरण जिरकोनियम धातु के शुद्धिकरण का आधार है और क्रोल प्रक्रिया के अनुरूप है।

इंजीनियरिंग गुण

असर वाली गेंदें

ज़िरकोनियम डाइऑक्साइड सबसे अधिक अध्ययनित सिरेमिक सामग्रियों में से एक है। ZrO2 कमरे के तापमान पर मोनोक्लिनिक क्रिस्टल सिस्टम क्रिस्टल संरचना को अपनाता है और उच्च तापमान पर चौकोर और क्यूबिक क्रिस्टल सिस्टम में संक्रमण करता है। टेट्रागोनल से मोनोक्लिनिक से क्यूबिक तक संरचना के संक्रमण के कारण होने वाले आयतन में परिवर्तन बड़े तनाव को प्रेरित करता है, जिससे यह उच्च तापमान से ठंडा होने पर फट जाता है।[5] जब ज़िरकोनिया डोपिंग (सेमीकंडक्टर) होता है तो कुछ अन्य ऑक्साइड, टेट्रागोनल और क्यूबिक चरण स्थिर हो जाते हैं। प्रभावी डोपेंट्स में मैग्नीशियम ऑक्साइड (MgO), येट्रियम (III) ऑक्साइड (Y2O3, yttria), कैल्शियम ऑक्साइड (CaO), और सेरियम (III) ऑक्साइड (Ce2O3).[6]

ज़िरकोनिया अधिकतर अपने चरण 'स्थिर' अवस्था में अधिक उपयोगी होता है। गर्म होने पर, जिरकोनिया विघटनकारी चरण परिवर्तन से गुजरता है। यट्रिया के छोटे प्रतिशत को जोड़कर, ये चरण परिवर्तन समाप्त हो जाते हैं, और परिणामी सामग्री में अच्छे तापीय, यांत्रिक और विद्युत गुण होते हैं। कुछ स्थितियों में, चतुष्कोणीय चरण मेटास्टेबल हो सकता है। यदि मेटास्टेबल टेट्रागोनल चरण की पर्याप्त मात्रा उपस्थित है, तो अनुप्रयुक्त तनाव, दरार की नोक पर तनाव एकाग्रता द्वारा बढ़ाया जाता है, जिससे संबंधित वॉल्यूम विस्तार के साथ टेट्रागोनल चरण को मोनोक्लिनिक में परिवर्तित किया जा सकता है। यह चरण परिवर्तन तब दरार को संपीड़न में डाल सकता है, इसकी वृद्धि को धीमा कर सकता है, और फ्रैक्चर की कठोरता को बढ़ा सकता है। यह तंत्र, जिसे ट्रांसफॉरमेशन टफनिंग के रूप में जाना जाता है, स्थिर जिरकोनिया से बने उत्पादों की विश्वसनीयता और जीवनकाल को महत्वपूर्ण रूप से बढ़ाता है।[6][7]

ZrO2 }} ऊर्जा अंतराल 5–7 eV के विशिष्ट अनुमानों के साथ चरण (क्यूबिक, टेट्रागोनल, मोनोक्लिनिक, या अनाकार) और तैयारी विधियों पर निर्भर है।[8]

ज़िरकोनिया का एक विशेष स्थिति टेट्रागोनल पॉलीक्रिस्टलाइन ज़िरकोनिया या टीजेडपी है, जो केवल मेटास्टेबल टेट्रागोनल चरण से बना पॉलीक्रिस्टलाइन ज़िरकोनिया का संकेत है।

उपयोग करता है

ज़िरकोनिया का मुख्य उपयोग कठोर सिरेमिक के उत्पादन में होता है, जैसे दंत चिकित्सा में,[9] टाइटेनियम डाइऑक्साइड पिगमेंट के कणों पर एक सुरक्षात्मक कोटिंग के रूप में सहित अन्य उपयोगों के साथ,[2] आग रोक सामग्री के रूप में, थर्मल इन्सुलेशन, अपघर्षक और कांच के तामचीनी में।

स्थिर ज़िरकोनिया का उपयोग ऑक्सीजन सेंसर और ईंधन सेल झिल्ली में किया जाता है क्योंकि इसमें ऑक्सीजन आयन को उच्च तापमान पर क्रिस्टल संरचना के माध्यम से स्वतंत्र रूप से स्थानांतरित करने की क्षमता होती है। यह उच्च आयनिक चालकता (ठोस अवस्था) (और एक कम इलेक्ट्रॉनिक चालकता) इसे सबसे उपयोगी इलेक्ट्रोसिरेमिक में से एक बनाती है।[2] जिरकोनियम डाइऑक्साइड का उपयोग इलेक्ट्रोक्रोमिक उपकरणों में ठोस इलेक्ट्रोलाइट के रूप में भी किया जाता है।

ज़िरकोनिया इलेक्ट्रोसेरामिक लीड जिरकोनेट टाइटेनेट (PZT) का अग्रदूत है, जो एक उच्च-κ डाइइलेक्ट्रिक है, जो असंख्य घटकों में पाया जाता है।

आला उपयोग

क्यूबिक ज़िरकोनिया की बहुत कम तापीय चालकता ने भी उच्च तापमान पर संचालन की अनुमति देने के लिए जेट इंजिन और डीजल इंजन में थर्मल बाधा कोटिंग या टीबीसी के रूप में इसका उपयोग किया है।[10] ऊष्मप्रवैगिक रूप से, इंजन का संचालन तापमान जितना अधिक होता है, कार्नोट हीट इंजन । अन्य कम तापीय-चालकता का उपयोग क्रिस्टल ग्रोथ फर्नेस, ईंधन-सेल स्टैक और इन्फ्रारेड हीटिंग सिस्टम के लिए सिरेमिक फाइबर इन्सुलेशन के रूप में होता है।

इस सामग्री का उपयोग दंत चिकित्सा में क्राउन (दंत चिकित्सा) और पुल (दंत चिकित्सा) जैसे दंत पुनर्स्थापनों के निर्माण के लिए सबफ्रेम के निर्माण में भी किया जाता है, जो तब सौंदर्य संबंधी कारणों से या मजबूत, अत्यंत टिकाऊ दंत चिकित्सा के लिए पारंपरिक स्फतीय चीनी मिट्टी के बर्तन के साथ लिपटी होती हैं। कृत्रिम अंग पूरी तरह से अखंड ज़िरकोनिया से निर्मित, सीमित लेकिन लगातार सौंदर्यशास्त्र में सुधार के साथ।[11][12] येट्रिया (येट्रियम ऑक्साइड) के साथ स्थिर ज़िरकोनिया, जिसे येट्रिया-स्थिर जिरकोनिया के रूप में जाना जाता है, को कुछ पूर्ण सिरेमिक क्राउन रेस्टोरेशन में एक मजबूत आधार सामग्री के रूप में उपयोग किया जा सकता है।[12][13]

रूपांतरण-सख्त जिरकोनिया का उपयोग सिरेमिक चाकू बनाने के लिए किया जाता है। कठोरता के कारण, सिरेमिक-धार कटलरी स्टील की धार वाले उत्पादों की तुलना में अधिक समय तक तेज रहती है।[14]

गरमागरम होने पर इसकी अशुद्धता और शानदार चमक के कारण, इसे गैस का तीव्र प्रकाश के लिए स्टिक्स के एक घटक के रूप में उपयोग किया गया था।[citation needed]

ज़िरकोनिया को ईंधन और ऑक्सीडाइज़र दोनों प्रदान करने के लिए मंगल के वातावरण से कार्बन मोनोआक्साइड और ऑक्सीजन को इलेक्ट्रोलीज़ करने का प्रस्ताव दिया गया है जिसका उपयोग मंगल पर सतह परिवहन के लिए रासायनिक ऊर्जा के भंडार के रूप में किया जा सकता है। प्रारंभिक सतह परिवहन उपयोग के लिए कार्बन मोनोऑक्साइड ऑक्सीजन इंजनों का सुझाव दिया गया है, क्योंकि कार्बन मोनोऑक्साइड और ऑक्सीजन दोनों सामान्य तौर पर जिरकोनिया इलेक्ट्रोलिसिस द्वारा हाइड्रोजन प्राप्त करने के लिए मंगल ग्रह के किसी भी जल संसाधन के उपयोग की आवश्यकता के बिना उत्पादित किए जा सकते हैं, जो मीथेन के उत्पादन के लिए आवश्यक होगा। या कोई हाइड्रोजन आधारित ईंधन।[15]

जिरकोनिया का उपयोग फोटोकैटलिसिस के रूप में किया जा सकता है[16] इसके उच्च बैंड गैप (~ 5 eV) के बाद से[17] उच्च ऊर्जावान इलेक्ट्रॉनों और छिद्रों की पीढ़ी की अनुमति देता है। कुछ अध्ययनों ने अपघटित कार्बनिक यौगिकों में डोप्ड ज़िरकोनिया (दृश्य प्रकाश अवशोषण को बढ़ाने के लिए) की गतिविधि का प्रदर्शन किया[18][19] और अपशिष्ट जल से हैग्जावलेंट क्रोमियम |Cr(VI) को कम करना।[20]

ज़िरकोनिया ट्रांजिस्टर में एक इन्सुलेटर के रूप में संभावित अनुप्रयोगों के साथ संभावित उच्च-κ ढांकता हुआ पदार्थ भी है।

ज़िरकोनिया ऑप्टिकल कोटिंग के निक्षेपण में भी कार्यरत है; यह इस वर्णक्रमीय क्षेत्र में कम अवशोषण के कारण पराबैंगनी उपप्रकार निकट-यूवी से अवरक्त सीआईई डिवीजन योजना मध्य-आईआर तक उपयोग करने योग्य एक उच्च-सूचकांक सामग्री है। ऐसे अनुप्रयोगों में, यह सामान्यतः भौतिक वाष्प जमाव द्वारा संग्रह किया जाता है।[21]

गहने बनाने में, कुछ घड़ी के स्थितियों को काले जिरकोनियम ऑक्साइड के रूप में विज्ञापित किया जाता है।[22] 2015 में ओमेगा ने पूरी तरह से जारी किया ZrO2 द डार्क साइड ऑफ द मून नाम की घड़ी[23] सिरेमिक केस, बेज़ेल, पुशर्स और क्लैस्प के साथ, इसे स्टेनलेस स्टील की तुलना में चार गुना कठिन और इसलिए रोजमर्रा के उपयोग के समय खरोंच के लिए अधिक प्रतिरोधी के रूप में विज्ञापित किया।

गैस टंग्सटन आर्क वेल्डिंग में, टंगस्टन इलेक्ट्रोड में 2% थोरियम के अतिरिक्त 1% ज़िरकोनियम ऑक्साइड ( जिरकोनिया ) होता है, जिसमें अच्छी आर्क स्टार्टिंग और करंट क्षमता होती है, और ये रेडियोधर्मी नहीं होते हैं।[24]


हीरा अनुकरण

ब्रिलियंट-कट क्यूबिक ज़िरकोनिया

ज़िरकोनिया के घन चरण के एकल क्रिस्टल सामान्यतः आभूषण में हीरे के सिमुलेंट के रूप में उपयोग किए जाते हैं। हीरे की तरह, क्यूबिक ज़िरकोनिया में क्यूबिक क्रिस्टल संरचना और उच्च अपवर्तन सूचकांक होता है। हीरे से एक अच्छी गुणवत्ता वाले क्यूबिक ज़िरकोनिया रत्न को दृष्टिगत रूप से समझना जटिल है, और अधिकांश ज्वैलर्स के पास इसकी कम तापीय चालकता (हीरा एक बहुत अच्छा तापीय चालक है) द्वारा क्यूबिक ज़िरकोनिया की पहचान करने के लिए तापीय चालकता परीक्षक होगा। ज़िरकोनिया की इस अवस्था को सामान्यतः क्यूबिक ज़िरकोनिया, सीजेड या ज़िरकॉन द्वारा आभूषण कहा जाता है, लेकिन अंतिम नाम रासायनिक रूप से सटीक नहीं है। ज़िरकॉन वास्तव में प्राकृतिक रूप से पाए जाने वाले ज़िरकोनियम (IV) सिलिकेट (ZrSiO4) होता है।

यह भी देखें

  • शमन
  • सिंटरिंग
  • एस-प्रकार का तारा, जिरकोनियम मोनोऑक्साइड की वर्णक्रमीय रेखाएँ उत्सर्जित करता है
  • येट्रिया-स्थिर ज़िरकोनिया

संदर्भ

  1. Wang, S. F.; Zhang, J.; Luo, D. W.; Gu, F.; Tang, D. Y.; Dong, Z. L.; Tan, G. E. B.; Que, W. X.; Zhang, T. S.; Li, S.; Kong, L. B. (2013-05-01). "Transparent ceramics: Processing, materials and applications". Progress in Solid State Chemistry (in English). 41 (1): 20–54. doi:10.1016/j.progsolidstchem.2012.12.002. ISSN 0079-6786.
  2. 2.0 2.1 2.2 2.3 Ralph Nielsen "Zirconium and Zirconium Compounds" in Ullmann's Encyclopedia of Industrial Chemistry, 2005, Wiley-VCH, Weinheim. doi:10.1002/14356007.a28_543
  3. R. Stevens, 1986. Introduction to Zirconia. Magnesium Elektron Publication No 113
  4. Greenwood, N. N.; & Earnshaw, A. (1997). Chemistry of the Elements (2nd Edn.), Oxford:Butterworth-Heinemann. ISBN 0-7506-3365-4
  5. Platt, P.; Frankel, P.; Gass, M.; Howells, R.; Preuss, M. (November 2014). "Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys". Journal of Nuclear Materials. 454 (1–3): 290–297. Bibcode:2014JNuM..454..290P. doi:10.1016/j.jnucmat.2014.08.020.
  6. 6.0 6.1 Evans, A.G.; Cannon, R.M. (1986). "Toughening of brittle solids by martensitic transformations". Acta Metall. 34: 761. doi:10.1016/0001-6160(86)90052-0.
  7. Porter, D.L.; Evans, A.G.; Heuer, A.H. (1979). "Transformation toughening in PSZ". Acta Metall. 27: 1649. doi:10.1016/0001-6160(79)90046-4.
  8. Chang, Jane P.; You-Sheng Lin; Karen Chu (2001). "Rapid thermal chemical vapor deposition of zirconium oxide for metal–oxide–semiconductor field effect transistor application". Journal of Vacuum Science and Technology B. 19 (5): 1782–1787. Bibcode:2001JVSTB..19.1782C. doi:10.1116/1.1396639.
  9. Gambogi, Joseph. "Zirconium and Hafnium Statistics and Information". USGS National Minerals Information Center. Archived from the original on 18 February 2018. Retrieved 5 May 2018.
  10. "Thermal-barrier coatings for more efficient gas-turbine engines". studylib.net (in English). Retrieved 2018-08-06.
  11. Papaspyridakos, Panos; Kunal Lal (2008). "Complete arch implant rehabilitation using subtractive rapid prototyping and porcelain fused to zirconia prosthesis: A clinical report". The Journal of Prosthetic Dentistry. 100 (3): 165–172. doi:10.1016/S0022-3913(08)00110-8. PMID 18762028.
  12. 12.0 12.1 Kastyl, Jaroslav; Chlup, Zdenek; Stastny, Premysl; Trunec, Martin (2020-08-17). "Machinability and properties of zirconia ceramics prepared by gelcasting method". Advances in Applied Ceramics. 119 (5–6): 252–260. Bibcode:2020AdApC.119..252K. doi:10.1080/17436753.2019.1675402. hdl:11012/181089. ISSN 1743-6753. S2CID 210795876.
  13. Shen, James, ed. (2013). Advanced ceramics for dentistry (1st ed.). Amsterdam: Elsevier/BH. p. 271. ISBN 978-0123946195.
  14. "Serrated 12cm blade Ceramic Kitchen Knives and Tools". Ceramic Kitchen Knives and Tools | Kyocera Asia-Pacific. Retrieved 4 August 2021.
  15. Landis, Geoffrey A.; Linne, Diane L. (2001). "Mars Rocket Vehicle Using In Situ Propellants". Journal of Spacecraft and Rockets. 38 (5): 730–35. Bibcode:2001JSpRo..38..730L. doi:10.2514/2.3739.
  16. Kohno, Yoshiumi; Tanaka, Tsunehiro; Funabiki, Takuzo; Yoshida, Satohiro (1998). "Identification and reactivity of a surface intermediate in the photoreduction of CO2 with H2 over ZrO2". Journal of the Chemical Society, Faraday Transactions. 94 (13): 1875–1880. doi:10.1039/a801055b.
  17. Gionco, Chiara; Paganini, Maria C.; Giamello, Elio; Burgess, Robertson; Di Valentin, Cristiana; Pacchioni, Gianfranco (15 January 2014). "Cerium-Doped Zirconium Dioxide, a Visible-Light-Sensitive Photoactive Material of Third Generation". The Journal of Physical Chemistry Letters. 5 (3): 447–451. doi:10.1021/jz402731s. hdl:2318/141649. PMID 26276590.
  18. Yuan, Quan; Liu, Yang; Li, Le-Le; Li, Zhen-Xing; Fang, Chen-Jie; Duan, Wen-Tao; Li, Xing-Guo; Yan, Chun-Hua (August 2009). "Highly ordered mesoporous titania–zirconia photocatalyst for applications in degradation of rhodamine-B and hydrogen evolution". Microporous and Mesoporous Materials. 124 (1–3): 169–178. doi:10.1016/j.micromeso.2009.05.006.
  19. Bortot Coelho, Fabrício; Gionco, Chiara; Paganini, Maria; Calza, Paola; Magnacca, Giuliana (3 April 2019). "Control of Membrane Fouling in Organics Filtration Using Ce-Doped Zirconia and Visible Light". Nanomaterials. 9 (4): 534. doi:10.3390/nano9040534. PMC 6523972. PMID 30987140.
  20. Bortot Coelho, Fabrício Eduardo; Candelario, Victor M.; Araújo, Estêvão Magno Rodrigues; Miranda, Tânia Lúcia Santos; Magnacca, Giuliana (18 April 2020). "Photocatalytic Reduction of Cr(VI) in the Presence of Humic Acid Using Immobilized Ce–ZrO2 under Visible Light". Nanomaterials. 10 (4): 779. doi:10.3390/nano10040779. ISSN 2079-4991. PMC 7221772. PMID 32325680.
  21. "Zirconium Oxide Zr02 For Optical Coating". Materion. Archived from the original on October 20, 2013. Retrieved April 30, 2013.
  22. "Omega Co-Axial Chronograph 44.25 mm". OMEGA Watches (in English). Archived from the original on 2016-03-26. Retrieved 2016-03-27.
  23. "Speedmaster Moonwatch Dark Side Of The Moon | OMEGA". Omega (in British English). Archived from the original on 2018-02-09. Retrieved 2018-02-08.
  24. Arc-Zone.com (2009). p=2 "Tungsten Selection". Carlsbad, California: Arc-Zone.com. Retrieved 15 June 2015. {{cite web}}: Check |url= value (help)


आगे की पढाई

  • Green, D. J.; Hannink, R.; Swain, M. V. (1989). Transformation Toughening of Ceramics. Boca Raton: CRC Press. ISBN 0-8493-6594-5.
  • Heuer, A.H.; Hobbs, L.W., eds. (1981). Science and Technology of Zirconia. Advances in Ceramics. Vol. 3. Columbus, OH: American Ceramic Society. p. 475.
  • Claussen, N.; Rühle, M.; Heuer, A.H., eds. (1984). Proc. 2nd Int'l Conf. on Science and Technology of Zirconia. Advances in Ceramics. Vol. 11. Columbus, OH: American Ceramic Society.


बाहरी कड़ियाँ