आवेग (भौतिकी): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 19: Line 19:
आवेग परिणामी बल का अभिन्न अंग है ({{mvar|F}}) समय के संबंध में:
आवेग परिणामी बल का अभिन्न अंग है ({{mvar|F}}) समय के संबंध में:
<math display=block>J = \int F \,\mathrm{d}t.</math>
<math display=block>J = \int F \,\mathrm{d}t.</math>
<big>'''निरंतर द्रव्यमान की वस्तु के मामले में गणितीय व्युत्पत्ति'''</big>
<big>'''निरंतर द्रव्यमान की वस्तु के मामले में गणितीय व्युत्पत्ति-'''</big>


आवेग {{math|'''J'''}} समय से उत्पादित {{math|''t''<sub>1</sub>}} को {{math|''t''<sub>2</sub>}} होना परिभाषित किया गया है<ref>{{cite book|title=Engineering Mechanics |url=https://archive.org/details/staticsstudypack00russ |url-access=registration |edition=12th |first1=Russell C.|last1=Hibbeler|publisher=Pearson Prentice Hall|year=2010|isbn=978-0-13-607791-6|page=222}}</ref>
आवेग {{math|'''J'''}} समय से उत्पादित {{math|''t''<sub>1</sub>}} को {{math|''t''<sub>2</sub>}} होना परिभाषित किया गया है<ref>{{cite book|title=Engineering Mechanics |url=https://archive.org/details/staticsstudypack00russ |url-access=registration |edition=12th |first1=Russell C.|last1=Hibbeler|publisher=Pearson Prentice Hall|year=2010|isbn=978-0-13-607791-6|page=222}}</ref>
Line 36: Line 36:
नतीजतन, एक आवेग को किसी वस्तु की गति में परिवर्तन के रूप में भी माना जा सकता है जिसके परिणामस्वरूप बल लगाया जाता है। द्रव्यमान स्थिर होने पर आवेग को सरल रूप में व्यक्त किया जा सकता है:
नतीजतन, एक आवेग को किसी वस्तु की गति में परिवर्तन के रूप में भी माना जा सकता है जिसके परिणामस्वरूप बल लगाया जाता है। द्रव्यमान स्थिर होने पर आवेग को सरल रूप में व्यक्त किया जा सकता है:
<math display=block qid=Q837940>\mathbf{J} = \int_{t_1}^{t_2} \mathbf{F}\, \mathrm{d}t =  \Delta\mathbf{p} = m \mathbf{v_2} - m \mathbf{v_1},</math>
<math display=block qid=Q837940>\mathbf{J} = \int_{t_1}^{t_2} \mathbf{F}\, \mathrm{d}t =  \Delta\mathbf{p} = m \mathbf{v_2} - m \mathbf{v_1},</math>
[[File:Armedforces jeffery tee shot.jpg|thumbnail|बहुत कम अवधि के लिए लगाए गए एक बड़े बल, जैसे कि गोल्फ शॉट, को अक्सर गेंद को एक आवेग देने वाले क्लब के रूप में वर्णित किया जाता है।]]<!-- This may look like a strange place to put this, but the intent is to keep the bottom of the caption even with the end of this section. --> '''जहाँ पे -'''
[[File:Armedforces jeffery tee shot.jpg|thumbnail|बहुत कम अवधि के लिए लगाए गए एक बड़े बल, जैसे कि गोल्फ शॉट, को अक्सर गेंद को एक आवेग देने वाले क्लब के रूप में वर्णित किया जाता है।]]'''जहाँ पे -'''
*{{math|'''F'''}} परिणामी बल लगाया जाता है,
*{{math|'''F'''}} परिणामी बल लगाया जाता है,
*{{math|''t''<sub>1</sub>}} और {{math|''t''<sub>2</sub>}} ऐसे समय होते हैं जब आवेग क्रमशः शुरू और समाप्त होता है,
*{{math|''t''<sub>1</sub>}} और {{math|''t''<sub>2</sub>}} ऐसे समय होते हैं जब आवेग क्रमशः शुरू और समाप्त होता है,
Line 48: Line 48:


== चर द्रव्यमान ==
== चर द्रव्यमान ==
<big>'''अग्रिम जानकरी:विशिष्ट आवेग'''</big>  
<big>'''''अग्रिम जानकरी:विशिष्ट आवेग'''''</big>  


परिवर्तनशील द्रव्यमान के लिए न्यूटन के दूसरे नियम के अनुप्रयोग से आवेग और संवेग को जेट प्रणोदन- या [[ राकेट | राकेट]] -चालित वाहनों के लिए विश्लेषण उपकरण के रूप में उपयोग करने की अनुमति मिलती है। रॉकेट के मामले में, प्रदान किए गए आवेग को प्रदर्शन पैरामीटर, [[ विशिष्ट आवेग | विशिष्ट आवेग]] बनाने के लिए खर्च किए गए [[ रॉकेट प्रणोदक | रॉकेट प्रणोदक]] की इकाई द्वारा सामान्यीकृत किया जा सकता है। इस तथ्य का उपयोग [[ Tsiolkovsky रॉकेट समीकरण | Tsiolkovsky रॉकेट समीकरण]] को प्राप्त करने के लिए किया जा सकता है, जो इंजन के विशिष्ट आवेग (या नोजल निकास वेग) और वाहन के प्रणोदक-[[ द्रव्यमान अनुपात | द्रव्यमान अनुपात]] में वेग में वाहन के प्रणोदक परिवर्तन से संबंधित है।
परिवर्तनशील द्रव्यमान के लिए न्यूटन के दूसरे नियम के अनुप्रयोग से आवेग और संवेग को जेट प्रणोदन- या [[ राकेट | राकेट]] -चालित वाहनों के लिए विश्लेषण उपकरण के रूप में उपयोग करने की अनुमति मिलती है। रॉकेट के मामले में, प्रदान किए गए आवेग को प्रदर्शन पैरामीटर, [[ विशिष्ट आवेग | विशिष्ट आवेग]] बनाने के लिए खर्च किए गए [[ रॉकेट प्रणोदक | रॉकेट प्रणोदक]] की इकाई द्वारा सामान्यीकृत किया जा सकता है। इस तथ्य का उपयोग [[ Tsiolkovsky रॉकेट समीकरण | Tsiolkovsky रॉकेट समीकरण]] को प्राप्त करने के लिए किया जा सकता है, जो इंजन के विशिष्ट आवेग (या नोजल निकास वेग) और वाहन के प्रणोदक-[[ द्रव्यमान अनुपात | द्रव्यमान अनुपात]] में वेग में वाहन के प्रणोदक परिवर्तन से संबंधित है।
Line 57: Line 57:
** नॉनलाइनियर प्रकाशिकी
** नॉनलाइनियर प्रकाशिकी
** [[ ध्वनिक-ऑप्टिक न्यूनाधिक | ध्वनिक-प्रकाशिकी न्यूनाधिक]]
** [[ ध्वनिक-ऑप्टिक न्यूनाधिक | ध्वनिक-प्रकाशिकी न्यूनाधिक]]
**इलेक्ट्रॉन [[ फोनन | फोनन]] स्कैटरिंग
**इलेक्ट्रॉन [[ फोनन | फोनन]] प्रकीर्णन


* [[ डिराक डेल्टा समारोह ]], एक शुद्ध आवेग का गणितीय अमूर्तन
* [[ डिराक डेल्टा समारोह ]], एक शुद्ध आवेग का गणितीय अमूर्तन

Revision as of 11:54, 31 January 2023

Impulse
सामान्य प्रतीक
J, Imp
Si   इकाईnewton-second (Ns) (kgm/s in SI base units)
अन्य इकाइयां
pounds
संरक्षित?yes
आयामLMT-1

शास्त्रीय यांत्रिकी में, आवेग (J या Imp प्रतीक द्वारा ) एक बल का अभिन्न अंग है, F, समय अंतराल में, t, जिसके लिए यह कार्य करता है। चूंकि बल एक वेक्टर (भौतिकी) मात्रा है, आवेग भी एक वेक्टर मात्रा है। किसी वस्तु पर लागू किया गया आवेग समतुल्य वेक्टर गणितकलन और उसके रैखिक गति तथा परिणामी दिशा में विश्लेषण करता है। इकाइयों की अंतर्राष्ट्रीय प्रणाली आवेग ऑफ़ आवेग न्यूटन सेकंड (N⋅s) है, और गति की आकार जांच यूनिट किलोग्राम मीटर प्रति सेकंड (kg⋅m/s) है। संबंधित अंग्रेजी इंजीनियरिंग इकाई पाउंड (बल) सेकंड (lbf⋅s) है, और ब्रिटिश गुरुत्वाकर्षण प्रणाली में, इकाई स्लग फुट प्रति सेकंड (slug⋅ft/s) है।

एक परिणामी बल त्वरण का कारण बनता है और जब तक यह कार्य करता है तब तक शरीर के वेग में परिवर्तन होता रहता है। एक परिणामी बल लंबे समय तक लगाया जाता है, इसलिए, समान रूप से लगाए गए बल की तुलना में रैखिक गति में एक बड़ा परिवर्तन उत्पन्न होता है: गति में परिवर्तन औसत बल और अवधि के उत्पाद के बराबर होता है। इसके विपरीत, एक लंबे समय के लिए लगाया गया एक छोटा सा बल संवेग में समान परिवर्तन पैदा करता है - वही आवेग - जैसा कि एक बड़ा बल संक्षेप में लागू होता है।

आवेग परिणामी बल का अभिन्न अंग है (F) समय के संबंध में:
निरंतर द्रव्यमान की वस्तु के मामले में गणितीय व्युत्पत्ति-

आवेग J समय से उत्पादित t1 को t2 होना परिभाषित किया गया है[1]

जहां पे F से लागू परिणामी बल है t1 को t2.

न्यूटन के गति के दूसरे नियम से, बल संवेग से संबंधित है p द्वारा

इसलिए, जहाँ Δp समय से रैखिक गति में परिवर्तन है t1 को t2. इसे अक्सर आवेग-संवेग प्रमेय कहा जाता है[2] (कार्य-ऊर्जा प्रमेय के अनुरूप)।

नतीजतन, एक आवेग को किसी वस्तु की गति में परिवर्तन के रूप में भी माना जा सकता है जिसके परिणामस्वरूप बल लगाया जाता है। द्रव्यमान स्थिर होने पर आवेग को सरल रूप में व्यक्त किया जा सकता है:

बहुत कम अवधि के लिए लगाए गए एक बड़े बल, जैसे कि गोल्फ शॉट, को अक्सर गेंद को एक आवेग देने वाले क्लब के रूप में वर्णित किया जाता है।

जहाँ पे -

  • F परिणामी बल लगाया जाता है,
  • t1 और t2 ऐसे समय होते हैं जब आवेग क्रमशः शुरू और समाप्त होता है,
  • m वस्तु का द्रव्यमान है,
  • v2 समय अंतराल के अंत में वस्तु का अंतिम वेग है, और
  • v1 समय अंतराल शुरू होने पर वस्तु का प्रारंभिक वेग होता है।

आवेग की समान इकाइयाँ और आयाम हैं (MLT−1) गति के रूप में। इकाइयों की अंतर्राष्ट्रीय प्रणाली में, ये हैं kgm/s = Ns. अंग्रेजी इंजीनियरिंग इकाइयों में, वे हैं slugft/s = lbfs.

आवेग शब्द का उपयोग तेजी से कार्य करने वाली शक्ति या प्रभाव (यांत्रिकी) के संदर्भ में भी किया जाता है। इस प्रकार के आवेग को अक्सर आदर्श बनाया जाता है ताकि बल द्वारा उत्पन्न संवेग में परिवर्तन बिना समय परिवर्तन के हो। इस प्रकार का परिवर्तन एक चरण कार्य है, और यह भौतिक रूप से संभव नहीं है। हालांकि, यह आदर्श टक्करों के प्रभावों की गणना के लिए एक उपयोगी मॉडल है (जैसे कि खेल भौतिकी इंजनो में)। इसके अतिरिक्त, रॉकेटरी में, कुल आवेग शब्द का आमतौर पर उपयोग किया जाता है और इसे आवेग शब्द का पर्याय माना जाता है।

चर द्रव्यमान

अग्रिम जानकरी:विशिष्ट आवेग

परिवर्तनशील द्रव्यमान के लिए न्यूटन के दूसरे नियम के अनुप्रयोग से आवेग और संवेग को जेट प्रणोदन- या राकेट -चालित वाहनों के लिए विश्लेषण उपकरण के रूप में उपयोग करने की अनुमति मिलती है। रॉकेट के मामले में, प्रदान किए गए आवेग को प्रदर्शन पैरामीटर, विशिष्ट आवेग बनाने के लिए खर्च किए गए रॉकेट प्रणोदक की इकाई द्वारा सामान्यीकृत किया जा सकता है। इस तथ्य का उपयोग Tsiolkovsky रॉकेट समीकरण को प्राप्त करने के लिए किया जा सकता है, जो इंजन के विशिष्ट आवेग (या नोजल निकास वेग) और वाहन के प्रणोदक- द्रव्यमान अनुपात में वेग में वाहन के प्रणोदक परिवर्तन से संबंधित है।

यह भी देखें

टिप्पणियाँ

  1. Hibbeler, Russell C. (2010). Engineering Mechanics (12th ed.). Pearson Prentice Hall. p. 222. ISBN 978-0-13-607791-6.
  2. See, for example, section 9.2, page 257, of Serway (2004).


ग्रन्थसूची


बाहरी कड़ियाँ