ओबेरथ प्रभाव: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
{{Distinguish|Gravity assist}} | {{Distinguish|Gravity assist}} | ||
{{Astrodynamics}} | {{Astrodynamics}} | ||
[[अन्तरिक्ष]] में संचालित ओबेरथ प्रभाव वह युक्ति है जिसमें अंतरिक्ष यान गुरुत्वाकर्षण कुएं में गिरता है और फिर अपने इंजनों को आगे बढ़ने के लिए उपयोग करता है क्योंकि यह गिर रहा है, | [[अन्तरिक्ष]] में संचालित ओबेरथ प्रभाव वह युक्ति है जिसमें अंतरिक्ष यान गुरुत्वाकर्षण कुएं में गिरता है और फिर अपने इंजनों को आगे बढ़ने के लिए उपयोग करता है क्योंकि यह गिर रहा होता है, जिसके कारण अतिरिक्त गति प्राप्त होती है।<ref name=TwoBurn>{{cite report|url=https://ntrs.nasa.gov/api/citations/20100033146/downloads/20100033146.pdf|title=Using the Two-Burn Escape Maneuver for Fast Transfers in the Solar System and Beyond|author=Robert B. Adams, Georgia A. Richardson|date=25 July 2010|publisher=[[NASA]]|access-date=15 May 2015 |archive-url=https://web.archive.org/web/20220211014418/https://ntrs.nasa.gov/api/citations/20100033146/downloads/20100033146.pdf |archive-date=11 February 2022 |url-status=live }}</ref> परिणामस्वरूप पैंतरेबाज़ी गुरुत्वाकर्षण कुएं के बाहर समान [[आवेग (भौतिकी)]] को लागू करने की तुलना में [[गतिज ऊर्जा]] प्राप्त करने की अधिक कुशल विधि है। दक्षता के लाभ को ओबेरथ प्रभाव द्वारा समझाया गया है, जिसमें कि उच्च गति पर [[प्रतिक्रिया इंजन]] का उपयोग कम गति पर इसके उपयोग की तुलना में यांत्रिक ऊर्जा में अधिक परिवर्तन उत्पन्न करता है। व्यावहारिक रूप से इसका तात्पर्य है कि अंतरिक्ष यान को अपने ईंधन को [[दहन]] करने के लिए ऊर्जा-कुशल विधि का सबसे कम संभव [[एप्स]] है, जब इसकी कक्षीय वेग (और इसलिए इसकी गतिज ऊर्जा) सबसे बड़ी होती है।<ref name=TwoBurn />कुछ स्थितियों में ओबेरथ प्रभाव की क्षमता का लाभ उठाने के लिए अंतरिक्ष यान के गुरुत्वाकर्षण कुएं को धीमा करने पर ईंधन उपयोग करने योग्य होता है।<ref name=TwoBurn/>युद्धाभ्यास और प्रभाव का नाम [[हरमन ओबेरथ]],[[ऑस्ट्रिया-हंगरी]] के नाम पर रखा गया है ऑस्ट्रो-हंगरी का जन्म सन् 1927 में हुआ था। ऑस्ट्रो-हंगरी [[जर्मनी]] के [[भौतिक विज्ञानी|भौतिक विज्ञान]] और आधुनिक [[राकेट]] के संस्थापक थे।<ref name=ways>{{cite web|url=https://archive.org/details/nasa_techdoc_19720008133|title=Ways to spaceflight|volume=NASA TT F-622|others=Translation of the German language original "Wege zur Raumschiffahrt," (1920)|location=Tunis, Tunisia|year=1970|author=Hermann Oberth|publisher=Agence Tunisienne de Public-Relations}}</ref> | ||
चुकीं वाहन केवल थोड़े समय के लिए पेरियाप्सिस के पास रहता है जिस कारण ओबेरथ पैंतरेबाज़ी में सबसे प्रभावी होने के कारण वाहन को कम से कम समय में जितना संभव हो उतना आवेग उत्पन्न करने में सक्षम होता है। परिणाम स्वरुप ओबेरथ पैंतरेबाज़ी तरल-प्रणोदक रॉकेट जैसे उच्च-जोर वाले रॉकेट इंजनों के लिए अधिक उपयोगी है और [[आयन ड्राइव]] कम-जोर प्रतिक्रिया इंजनों के उपयोग लिए कम उपयोगी है जो कि गति प्राप्त करने में अधिक समय लेते हैं। बहु-स्तरीय रॉकेटों के व्यवहार को समझने के लिए ओबेरथ प्रभाव का भी उपयोग किया जा सकता है। ऊपरी चरण प्रणोदकों में कुल रासायनिक ऊर्जा की तुलना में अधिक उपयोगी गतिज ऊर्जा उत्पन्न कर सकता है।<ref name="ways" /> | |||
सम्मलित ऊर्जाओं के संदर्भ में कह सकते है कि उच्च गति पर ओबेरथ प्रभाव अधिक प्रभावी होता है क्योंकि उच्च गति पर प्रणोदक में इसकी रासायनिक संभावित ऊर्जा के अतिरिक्त महत्वपूर्ण गतिज ऊर्जा होती है।<ref name=ways/>{{rp|204}} उच्च गति पर वाहन प्रणोदक की गतिज ऊर्जा में अधिक परिवर्तन (कमी) को नियोजित करने में सक्षम होता है क्योंकि यह पीछे की ओर समाप्त हो जाता है जिस कारण कम गति और गतिज ऊर्जा कम हो जाती है और वाहन की गतिज ऊर्जा में अधिक वृद्धि उत्पन्न करने के लिए उपयोग होता है।<ref name=ways/>{{rp|204}} | |||
== संवेग और गतिज ऊर्जा के संदर्भ में व्याख्या == | == संवेग और गतिज ऊर्जा के संदर्भ में व्याख्या == | ||
रॉकेट अपने प्रणोदक में संवेग स्थानांतरित करके कार्य करता है।<ref>[https://www.nasa.gov/audience/forstudents/k-4/stories/nasa-knows/what-is-a-rocket-k4.html What Is a Rocket?] 13 July 2011/ 7 August 2017 ''www.nasa.gov'', accessed 9 January 2021.</ref> निश्चित निकास वेग पर यह प्रणोदक के प्रति इकाई गति की निश्चित मात्रा होती है।<ref>[https://www.grc.nasa.gov/WWW/k-12/rocket/rockth.html Rocket thrust] 12 June 2014, ''www.grc.nasa.gov'', accessed 9 January 2021.</ref> रॉकेट के दिए गए द्रव्यमान (शेष प्रणोदक सहित) के लिए, इसका तात्पर्य प्रणोदक की प्रति इकाई वेग में निश्चित परिवर्तन से है क्योंकि गतिज ऊर्जा mv<sup>2</sup>/2 के बराबर होती है वेग में यह परिवर्तन कम वेग की तुलना में उच्च वेग पर गतिज ऊर्जा में अधिक वृद्धि प्रदान करता है। उदाहरण के लिए, 2 किलो के रॉकेट पर विचार करना इत्यदि। | |||
* 1 मी/से पर | * 1 मी/से पर रॉकेट 1<sup>2</sup> = 1 J गतिज ऊर्जा से प्रारंभ होता है। 3 J के लाभ के लिए 1 मी/से जोड़ने पर गतिज ऊर्जा 2<sup>2</sup> = 4 J तक बढ़ जाती है। | ||
* 10 मीटर/सेकेंड पर | * 10 मीटर/सेकेंड पर रॉकेट 10<sup>2</sup> = 100 J गतिज ऊर्जा से प्रारंभ होता है। 21 J के लाभ के लिए1 m/s जोड़ने पर गतिज ऊर्जा 11<sup>2</sup> = 121 J तक बढ़ जाती है। | ||
गतिज ऊर्जा में यह बड़ा परिवर्तन रॉकेट को कम गति से जलाए जाने की तुलना में गुरुत्वाकर्षण | गतिज ऊर्जा में यह बड़ा परिवर्तन रॉकेट को कम गति से जलाए जाने की तुलना में गुरुत्वाकर्षण को उच्च स्तर पर ले जा सकता है। | ||
==काम की दृष्टि से विवरण== | ==काम की दृष्टि से विवरण== |
Revision as of 20:12, 30 January 2023
Part of a series on |
Astrodynamics |
---|
अन्तरिक्ष में संचालित ओबेरथ प्रभाव वह युक्ति है जिसमें अंतरिक्ष यान गुरुत्वाकर्षण कुएं में गिरता है और फिर अपने इंजनों को आगे बढ़ने के लिए उपयोग करता है क्योंकि यह गिर रहा होता है, जिसके कारण अतिरिक्त गति प्राप्त होती है।[1] परिणामस्वरूप पैंतरेबाज़ी गुरुत्वाकर्षण कुएं के बाहर समान आवेग (भौतिकी) को लागू करने की तुलना में गतिज ऊर्जा प्राप्त करने की अधिक कुशल विधि है। दक्षता के लाभ को ओबेरथ प्रभाव द्वारा समझाया गया है, जिसमें कि उच्च गति पर प्रतिक्रिया इंजन का उपयोग कम गति पर इसके उपयोग की तुलना में यांत्रिक ऊर्जा में अधिक परिवर्तन उत्पन्न करता है। व्यावहारिक रूप से इसका तात्पर्य है कि अंतरिक्ष यान को अपने ईंधन को दहन करने के लिए ऊर्जा-कुशल विधि का सबसे कम संभव एप्स है, जब इसकी कक्षीय वेग (और इसलिए इसकी गतिज ऊर्जा) सबसे बड़ी होती है।[1]कुछ स्थितियों में ओबेरथ प्रभाव की क्षमता का लाभ उठाने के लिए अंतरिक्ष यान के गुरुत्वाकर्षण कुएं को धीमा करने पर ईंधन उपयोग करने योग्य होता है।[1]युद्धाभ्यास और प्रभाव का नाम हरमन ओबेरथ,ऑस्ट्रिया-हंगरी के नाम पर रखा गया है ऑस्ट्रो-हंगरी का जन्म सन् 1927 में हुआ था। ऑस्ट्रो-हंगरी जर्मनी के भौतिक विज्ञान और आधुनिक राकेट के संस्थापक थे।[2]
चुकीं वाहन केवल थोड़े समय के लिए पेरियाप्सिस के पास रहता है जिस कारण ओबेरथ पैंतरेबाज़ी में सबसे प्रभावी होने के कारण वाहन को कम से कम समय में जितना संभव हो उतना आवेग उत्पन्न करने में सक्षम होता है। परिणाम स्वरुप ओबेरथ पैंतरेबाज़ी तरल-प्रणोदक रॉकेट जैसे उच्च-जोर वाले रॉकेट इंजनों के लिए अधिक उपयोगी है और आयन ड्राइव कम-जोर प्रतिक्रिया इंजनों के उपयोग लिए कम उपयोगी है जो कि गति प्राप्त करने में अधिक समय लेते हैं। बहु-स्तरीय रॉकेटों के व्यवहार को समझने के लिए ओबेरथ प्रभाव का भी उपयोग किया जा सकता है। ऊपरी चरण प्रणोदकों में कुल रासायनिक ऊर्जा की तुलना में अधिक उपयोगी गतिज ऊर्जा उत्पन्न कर सकता है।[2]
सम्मलित ऊर्जाओं के संदर्भ में कह सकते है कि उच्च गति पर ओबेरथ प्रभाव अधिक प्रभावी होता है क्योंकि उच्च गति पर प्रणोदक में इसकी रासायनिक संभावित ऊर्जा के अतिरिक्त महत्वपूर्ण गतिज ऊर्जा होती है।[2]: 204 उच्च गति पर वाहन प्रणोदक की गतिज ऊर्जा में अधिक परिवर्तन (कमी) को नियोजित करने में सक्षम होता है क्योंकि यह पीछे की ओर समाप्त हो जाता है जिस कारण कम गति और गतिज ऊर्जा कम हो जाती है और वाहन की गतिज ऊर्जा में अधिक वृद्धि उत्पन्न करने के लिए उपयोग होता है।[2]: 204
संवेग और गतिज ऊर्जा के संदर्भ में व्याख्या
रॉकेट अपने प्रणोदक में संवेग स्थानांतरित करके कार्य करता है।[3] निश्चित निकास वेग पर यह प्रणोदक के प्रति इकाई गति की निश्चित मात्रा होती है।[4] रॉकेट के दिए गए द्रव्यमान (शेष प्रणोदक सहित) के लिए, इसका तात्पर्य प्रणोदक की प्रति इकाई वेग में निश्चित परिवर्तन से है क्योंकि गतिज ऊर्जा mv2/2 के बराबर होती है वेग में यह परिवर्तन कम वेग की तुलना में उच्च वेग पर गतिज ऊर्जा में अधिक वृद्धि प्रदान करता है। उदाहरण के लिए, 2 किलो के रॉकेट पर विचार करना इत्यदि।
- 1 मी/से पर रॉकेट 12 = 1 J गतिज ऊर्जा से प्रारंभ होता है। 3 J के लाभ के लिए 1 मी/से जोड़ने पर गतिज ऊर्जा 22 = 4 J तक बढ़ जाती है।
- 10 मीटर/सेकेंड पर रॉकेट 102 = 100 J गतिज ऊर्जा से प्रारंभ होता है। 21 J के लाभ के लिए1 m/s जोड़ने पर गतिज ऊर्जा 112 = 121 J तक बढ़ जाती है।
गतिज ऊर्जा में यह बड़ा परिवर्तन रॉकेट को कम गति से जलाए जाने की तुलना में गुरुत्वाकर्षण को उच्च स्तर पर ले जा सकता है।
काम की दृष्टि से विवरण
रॉकेट इंजन अपने वेग की परवाह किए बिना समान बल उत्पन्न करते हैं। स्थिर वस्तु पर कार्य करने वाला रॉकेट, जैसा कि स्थिर फायरिंग में होता है, कोई उपयोगी कार्य नहीं करता है; रॉकेट की संग्रहीत ऊर्जा पूरी तरह से इसके प्रणोदक को निकास के रूप में तेज करने पर खर्च की जाती है। लेकिन जब रॉकेट चलता है, तो उसका जोर उसके चलने की दूरी के माध्यम से कार्य करता है। दूरी से गुणा बल यांत्रिक कार्य की परिभाषा है। तो जलने के दौरान रॉकेट और पेलोड जितना आगे बढ़ते हैं (अर्थात वे जितनी तेज़ी से आगे बढ़ते हैं), उतनी ही अधिक गतिज ऊर्जा रॉकेट और उसके पेलोड को प्रदान की जाती है और उसके निकास को कम।
इसे इस प्रकार दिखाया गया है। रॉकेट पर किया गया यांत्रिक कार्य () इंजन के थ्रस्ट के बल के डॉट उत्पाद के रूप में परिभाषित किया गया है () और वह विस्थापन जो जलने के दौरान यात्रा करता है ():
यदि जला प्रतिगामी और आगे बढ़ने की दिशा में बनाया गया है, . कार्य के परिणामस्वरूप गतिज ऊर्जा में परिवर्तन होता है
समय के संबंध में अंतर करने पर, हम प्राप्त करते हैं
या
कहाँ पे वेग है। तात्कालिक द्रव्यमान से विभाजित करना इसे विशिष्ट ऊर्जा#एस्ट्रोडायनामिक्स के संदर्भ में व्यक्त करने के लिए (), हम पाते हैं
कहाँ पे उचित त्वरण वेक्टर है।
इस प्रकार यह आसानी से देखा जा सकता है कि रॉकेट के प्रत्येक भाग की विशिष्ट ऊर्जा के लाभ की दर गति के समानुपाती होती है और इसे देखते हुए, रॉकेट की विशिष्ट ऊर्जा में समग्र वृद्धि की गणना करने के लिए समीकरण को एकीकृत (संख्यात्मक एकीकरण या अन्यथा) किया जा सकता है। राकेट।
आवेगी जलन
जलने की अवधि कम होने पर उपरोक्त ऊर्जा समीकरण को एकीकृत करना अधिकांशतः अनावश्यक होता है। Periapsis या अन्य जगहों के करीब रासायनिक रॉकेट इंजनों की छोटी जलन सामान्यतः गणितीय रूप से आवेगी जलन के रूप में तैयार की जाती है, जहां इंजन का बल किसी भी अन्य बल पर हावी होता है जो जलने पर वाहन की ऊर्जा को बदल सकता है।
उदाहरण के लिए, जैसे ही कोई वाहन किसी भी कक्षा (बंद या बच निकलने वाली कक्षा) में पेरीपसिस की ओर गिरता है, केंद्रीय निकाय के सापेक्ष वेग बढ़ जाता है। इंजन को संक्षिप्त रूप से जलाना (एक "आवेगपूर्ण जला") पेरीएप्सिस पर प्रोग्रेस मोशन किसी अन्य समय की तरह उसी वृद्धि से वेग को बढ़ाती है (डेल्टा-वी।). चूंकि, चूंकि वाहन की गतिज ऊर्जा उसके वेग के वर्ग से संबंधित है, वेग में इस वृद्धि का वाहन की गतिज ऊर्जा पर गैर-रैखिक प्रभाव पड़ता है, जिससे इसे उच्च ऊर्जा के साथ छोड़ दिया जाता है, यदि जला किसी अन्य समय प्राप्त किया गया हो।[5]
एक परवलयिक कक्षा के लिए ओबेरथ गणना
यदि डेल्टा-v|Δv का आवेगी जलन परवलयिक प्रक्षेपवक्र में पेरीएप्सिस पर किया जाता है, तो जलने से पहले पेरीएप्सिस पर वेग एस्केप वेलोसिटी (V) के बराबर होता है।esc), और जलने के बाद विशिष्ट गतिज ऊर्जा है[6]
कहाँ पे .
जब वाहन गुरुत्वाकर्षण क्षेत्र को छोड़ता है, विशिष्ट गतिज ऊर्जा का नुकसान होता है
इसलिए यह ऊर्जा को निरंतर रखता है
जो गुरुत्वाकर्षण क्षेत्र के बाहर जलने की ऊर्जा से अधिक है () द्वारा
जब वाहन ने गुरुत्वाकर्षण को अच्छी तरह से छोड़ दिया है, तो वह गति से यात्रा कर रहा है
ऐसे मामले के लिए जहां जोड़ा गया आवेग Δv बचने के वेग की तुलना में छोटा है, 1 को अनदेखा किया जा सकता है, और आवेगी जलने के प्रभावी Δv को केवल कारक से गुणा किया जा सकता है
- और मिलता है
- ≈
इसी तरह के प्रभाव बंद और अतिशयोक्तिपूर्ण प्रक्षेपवक्र में होते हैं।
परवलयिक उदाहरण
यदि वाहन जलने की प्रारंभ में v वेग से यात्रा करता है जो वेग को Δv से बदलता है, तो नई कक्षा के कारण विशिष्ट कक्षीय ऊर्जा (SOE) में परिवर्तन होता है
एक बार जब अंतरिक्ष यान फिर से ग्रह से दूर हो जाता है, तो SOE पूरी तरह से गतिज हो जाता है, क्योंकि गुरुत्वाकर्षण ऊर्जा शून्य तक पहुंच जाती है। इसलिए, जलने के समय v जितना बड़ा होगा, अंतिम गतिज ऊर्जा उतनी ही अधिक होगी और अंतिम वेग उतना ही अधिक होगा।
प्रभाव केंद्रीय निकाय के करीब अधिक स्पष्ट हो जाता है, या अधिक सामान्य रूप से, गुरुत्वाकर्षण क्षेत्र की क्षमता में गहरा होता है जिसमें जलन होती है, क्योंकि वहां वेग अधिक होता है।
इसलिए यदि कोई अंतरिक्ष यान बृहस्पति के परवलयिक प्रक्षेपवक्र पर 50 किमी/सेकेंड के पेरीएप्सिस वेग के साथ है और 5 किमी/सेकेंड का दहन करता है, तो यह पता चलता है कि बड़ी दूरी पर अंतिम वेग परिवर्तन 22.9 किमी/सेकेंड है, जो गुणन देता है जला 4.58 बार।
विरोधाभास
ऐसा लग सकता है कि रॉकेट मुफ्त में ऊर्जा प्राप्त कर रहा है, जो ऊर्जा के संरक्षण का उल्लंघन करेगा। चूंकि, रॉकेट की गतिज ऊर्जा में किसी भी तरह के लाभ को गतिज ऊर्जा में सापेक्ष कमी से संतुलित किया जाता है, जिसके साथ निकास छोड़ दिया जाता है (निकास की गतिज ऊर्जा अभी भी बढ़ सकती है, लेकिन यह उतनी नहीं बढ़ती है)।[2]: 204 इसकी तुलना स्टैटिक फायरिंग की स्थिति से करें, जहां इंजन की गति शून्य पर तय की जाती है। इसका मतलब यह है कि इसकी गतिज ऊर्जा बिल्कुल नहीं बढ़ती है, और ईंधन द्वारा जारी सभी रासायनिक ऊर्जा निकास की गतिज ऊर्जा (और गर्मी) में परिवर्तित हो जाती है।
बहुत तेज गति पर रॉकेट को प्रदान की जाने वाली यांत्रिक शक्ति प्रणोदक के दहन में मुक्त कुल शक्ति से अधिक हो सकती है; यह ऊर्जा के संरक्षण का उल्लंघन भी प्रतीत हो सकता है। लेकिन तेज गति वाले रॉकेट में प्रणोदक न केवल रासायनिक रूप से, बल्कि अपनी स्वयं की गतिज ऊर्जा में भी ऊर्जा ले जाते हैं, जो कुछ किलोमीटर प्रति सेकंड से ऊपर की गति पर रासायनिक घटक से अधिक होती है। जब इन प्रणोदकों को जलाया जाता है, तो जलने से निकलने वाली रासायनिक ऊर्जा के साथ इस गतिज ऊर्जा का कुछ हिस्सा रॉकेट में स्थानांतरित हो जाता है।[7] इसलिए ओबेरथ प्रभाव आंशिक रूप से रॉकेट की उड़ान में बेहद कम दक्षता के लिए तैयार हो सकता है जब यह केवल धीरे-धीरे आगे बढ़ रहा हो। उड़ान के आरंभ में रॉकेट द्वारा किए गए अधिकांश कार्य प्रणोदक की गतिज ऊर्जा में निवेश किए जाते हैं जो अभी तक नहीं जले हैं, जिसका हिस्सा वे बाद में जलाए जाने पर जारी करेंगे।
यह भी देखें
संदर्भ
- ↑ 1.0 1.1 1.2 Robert B. Adams, Georgia A. Richardson (25 July 2010). Using the Two-Burn Escape Maneuver for Fast Transfers in the Solar System and Beyond (PDF) (Report). NASA. Archived (PDF) from the original on 11 February 2022. Retrieved 15 May 2015.
- ↑ 2.0 2.1 2.2 2.3 2.4 Hermann Oberth (1970). "Ways to spaceflight". Translation of the German language original "Wege zur Raumschiffahrt," (1920). Tunis, Tunisia: Agence Tunisienne de Public-Relations.
- ↑ What Is a Rocket? 13 July 2011/ 7 August 2017 www.nasa.gov, accessed 9 January 2021.
- ↑ Rocket thrust 12 June 2014, www.grc.nasa.gov, accessed 9 January 2021.
- ↑ Atomic Rockets web site: nyrath@projectrho.com. Archived July 1, 2007, at the Wayback Machine
- ↑ Following the calculation on rec.arts.sf.science.
- ↑ Blanco, Philip; Mungan, Carl (October 2019). "Rocket propulsion, classical relativity, and the Oberth effect". The Physics Teacher. 57 (7): 439–441. Bibcode:2019PhTea..57..439B. doi:10.1119/1.5126818.
बाहरी कड़ियाँ
- Animation (MP4) of the Oberth effect in orbit from the Blanco and Mungan paper cited above.