हीट फ्लक्स: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(10 intermediate revisions by 4 users not shown)
Line 5: Line 5:
| background =
| background =
| image = heatflux.png
| image = heatflux.png
| caption = Heat flux <math>\vec{\phi}_\mathrm{q}</math> through a surface.
| caption = हीट फ्लक्स <math>\vec{\phi}_\mathrm{q}</math> एक सतह के माध्यम से।
| unit = W/m<sup>2</sup>
| unit = W/m<sup>2</sup>
| otherunits = Btu/(h⋅ft<sup>2</sup>)
| otherunits = Btu/(h⋅ft<sup>2</sup>)
Line 17: Line 17:
| derivations =  
| derivations =  
}}
}}
हीट फ्लक्स या थर्मल फ्लक्स, जिसे कभी-कभी ''हीट फ्लक्स डेंसिटी'' भी कहा जाता है{{refn|The word "flux" is used in most physical disciplines to refer to the flow of a quantity (mass, heat, momentum, etc.) across a surface per unit [[time (physics)|time]] per unit [[area]], with the primary exception being in electromagnetism, where it refer to the integral of a vector quantity through a surface.<ref>{{Cite web |url=https://www.greenteg.com/heat-flux-sensor/about-heat-flux/what-is-heat-flux/ |title=greenTEG &#124; What is Heat Flux &#124; Learn all about heat flux and how to measure it|first=|last= |website=www.greenteg.com}}</ref><ref>{{Cite web| url=https://www.greenteg.com/heat-flux-sensor/about-heat-flux/3-types-of-heat-transfer/|title=greenTEG &#124; 3 Types of Heat Transfer &#124; Conduction, convection, and radiation: three types of heat transfer|first=|last= |website=www.greenteg.com}}</ref><ref>{{Cite web| url=https://www.greenteg.com/heat-flux-sensor/about-heat-flux/heat-flux-measurement-techniques/| title=greenTEG &#124; Heat Flux Measurement Techniques &#124; How to measure heat flux|first= |last= |website=www.greenteg.com}}</ref><ref>{{Cite web |url=https://www.greenteg.com/heat-flux-sensor/about-heat-flux/heat-flux-sensor-explanation/|title=greenTEG &#124; Heat Flux Sensor Explanation &#124; Explanation of the working principle of heat flux sensors |first=|last= |website=www.greenteg.com}}</ref> Refer to the [[Flux]] article for more detail.}}, ऊष्मा-प्रवाह घनत्व या ऊष्मा प्रवाह दर तीव्रता प्रति इकाई [[क्षेत्र]] प्रति इकाई [[समय (भौतिकी)]] में [[ऊर्जा]] का प्रवाह है। [[SI]] में इसका मात्रक [[वाट]] प्रति [[वर्ग मीटर]] (W/m<sup>2</sup>). इसमें दिशा और परिमाण दोनों हैं, और इसलिए यह एक [[वेक्टर (ज्यामितीय)]] मात्रा है। अंतरिक्ष में एक निश्चित बिंदु पर गर्मी के प्रवाह को परिभाषित करने के लिए, एक सीमित मामला होता है जहां सतह का आकार असीम रूप से छोटा हो जाता है।


हीट फ्लक्स को अक्सर निरूपित किया जाता है <math>\vec{\phi}_\mathrm{q}</math>, सबस्क्रिप्ट {{math|q}} [[द्रव्यमान प्रवाह]] या परिवहन परिघटना के विपरीत ऊष्मा प्रवाह को निर्दिष्ट करना। ऊष्मा चालन फूरियर का नियम|फूरियर का नियम इन अवधारणाओं का एक महत्वपूर्ण अनुप्रयोग है।
'''हीट फ्लक्स या थर्मल फ्लक्स''', जिसे कभी-कभी हीट फ्लक्स डेंसिटी भी कहा जाता है{{refn|The word "flux" is used in most physical disciplines to refer to the flow of a quantity (mass, heat, momentum, etc.) across a surface per unit [[time (physics)|time]] per unit [[area]], with the primary exception being in electromagnetism, where it refer to the integral of a vector quantity through a surface.<ref>{{Cite web |url=https://www.greenteg.com/heat-flux-sensor/about-heat-flux/what-is-heat-flux/ |title=greenTEG &#124; What is Heat Flux &#124; Learn all about heat flux and how to measure it|first=|last= |website=www.greenteg.com}}</ref><ref>{{Cite web| url=https://www.greenteg.com/heat-flux-sensor/about-heat-flux/3-types-of-heat-transfer/|title=greenTEG &#124; 3 Types of Heat Transfer &#124; Conduction, convection, and radiation: three types of heat transfer|first=|last= |website=www.greenteg.com}}</ref><ref>{{Cite web| url=https://www.greenteg.com/heat-flux-sensor/about-heat-flux/heat-flux-measurement-techniques/| title=greenTEG &#124; Heat Flux Measurement Techniques &#124; How to measure heat flux|first= |last= |website=www.greenteg.com}}</ref><ref>{{Cite web |url=https://www.greenteg.com/heat-flux-sensor/about-heat-flux/heat-flux-sensor-explanation/|title=greenTEG &#124; Heat Flux Sensor Explanation &#124; Explanation of the working principle of heat flux sensors |first=|last= |website=www.greenteg.com}}</ref> Refer to the [[Flux]] article for more detail.}}, ऊष्मा-प्रवाह घनत्व या ऊष्मा प्रवाह दर तीव्रता प्रति इकाई [[क्षेत्र]] प्रति इकाई [[समय (भौतिकी)]] [[क्षेत्र]] में [[ऊर्जा]] का प्रवाह है। [[SI|एसआई]] में इसका मात्रक [[वाट]] प्रति [[वर्ग मीटर]] (W/m<sup>2</sup>) होता है। इसमें दिशा और परिमाण दोनों हैं, और इसलिए यह एक [[वेक्टर (ज्यामितीय)]] मात्रा है। अंतरिक्ष में एक निश्चित बिंदु पर गर्मी के प्रवाह को परिभाषित करने के लिए, एक सीमित स्थिति होती  है जहां सतह का आकार असीम रूप से छोटा हो जाता है।
 
हीट फ्लक्स को अधिकांशतः  <math>\vec{\phi}_\mathrm{q}</math> निरूपित किया जाता है, [[द्रव्यमान प्रवाह]] या परिवहन परिघटना के विपरीत ऊष्मा प्रवाह को निर्दिष्ट करने वाला सबस्क्रिप्ट {{math|q}} है। ऊष्मा चालन फूरियर का नियम इन अवधारणाओं का एक महत्वपूर्ण अनुप्रयोग है।


== फूरियर का नियम ==
== फूरियर का नियम ==
{{main article|Thermal conduction#Fourier's law}}
{{main article|ऊष्मीय चालन #फूरियर का नियम}}
सामान्य परिस्थितियों में अधिकांश [[ठोस]] पदार्थों के लिए, मुख्य रूप से तापीय चालन द्वारा ऊष्मा का परिवहन किया जाता है और फूरियर के नियम द्वारा ऊष्मा प्रवाह को पर्याप्त रूप से वर्णित किया जाता है।
सामान्य परिस्थितियों में अधिकांश [[ठोस]] पदार्थों के लिए, मुख्य रूप से तापीय चालन द्वारा ऊष्मा का परिवहन किया जाता है और फूरियर के नियम द्वारा ऊष्मा प्रवाह को पर्याप्त रूप से वर्णित किया जाता है।


=== एक आयाम में फूरियर का नियम ===
=== एक आयाम में फूरियर का नियम ===
<math display="block">\phi_\text{q} = -k \frac{\mathrm{d}T(x)}{\mathrm{d}x}</math>
<math display="block">\phi_\text{q} = -k \frac{\mathrm{d}T(x)}{\mathrm{d}x}</math>
कहाँ पे <math>k</math> तापीय चालकता है। ऋणात्मक चिह्न दर्शाता है कि ऊष्मा प्रवाह उच्च तापमान वाले क्षेत्रों से निम्न तापमान वाले क्षेत्रों की ओर गति करता है।
जहां पर  <math>k</math> तापीय चालकता है। ऋणात्मक चिह्न दर्शाता है कि ऊष्मा प्रवाह उच्च तापमान वाले क्षेत्रों से निम्न तापमान वाले क्षेत्रों की ओर गति करता है।


=== बहुआयामी विस्तार ===
=== बहुआयामी विस्तार ===
[[File:Heat Flux from Temperature Differential Across Thermal Insulation.png|thumb|331x331px|तापीय चालकता, k, और मोटाई, x के साथ तापीय रोधन सामग्री के माध्यम से ऊष्मा के प्रवाह को दर्शाने वाला आरेख। तापमान संवेदकों का उपयोग करके सामग्री के दोनों ओर दो सतह तापमान मापों का उपयोग करके ऊष्मा प्रवाह को निर्धारित किया जा सकता है यदि सामग्री के k और x भी ज्ञात हों।]]
[[File:Heat Flux from Temperature Differential Across Thermal Insulation.png|thumb|331x331px|तापीय चालकता, के, और मोटाई, एक्स के साथ तापीय रोधन सामग्री के माध्यम से ऊष्मा के प्रवाह को दर्शाने वाला आरेख। तापमान संवेदकों का उपयोग करके सामग्री के दोनों ओर दो सतह तापमान मापों का उपयोग करके ऊष्मा प्रवाह को निर्धारित किया जा सकता है यदि सामग्री के के और एक्स भी ज्ञात हों।]]
[[File:Measuring Heat Flux Through Thermal Insulation Using A Heat Flux Sensor.png|thumb|332x332px|तापीय चालकता, k, और मोटाई, x के साथ तापीय रोधन सामग्री के माध्यम से ऊष्मा प्रवाह को दर्शाने वाला आरेख। हीट फ्लक्स को किसी भी सतह पर स्थित एकल हीट फ्लक्स सेंसर या सामग्री के भीतर एम्बेडेड का उपयोग करके सीधे मापा जा सकता है। इस पद्धति का उपयोग करते हुए, सामग्री के k और x के मान जानने की आवश्यकता नहीं है।]]बहु-आयामी मामला समान है, गर्मी का प्रवाह कम हो जाता है और इसलिए तापमान प्रवणता का नकारात्मक संकेत होता है:
[[File:Measuring Heat Flux Through Thermal Insulation Using A Heat Flux Sensor.png|thumb|332x332px|तापीय चालकता, के, और मोटाई, एक्स के साथ तापीय रोधन सामग्री के माध्यम से ऊष्मा प्रवाह को दर्शाने वाला आरेख। हीट फ्लक्स को किसी भी सतह पर स्थित एकल हीट फ्लक्स सेंसर या सामग्री के भीतर एम्बेडेड का उपयोग करके सीधे मापा जा सकता है। इस पद्धति का उपयोग करते हुए, सामग्री के और एक्स के मान जानने की आवश्यकता नहीं है।]]बहु-आयामी स्थिति समान है, गर्मी का प्रवाह कम हो जाता है और इसलिए तापमान प्रवणता का नकारात्मक संकेत होता है:


<math display="block">\vec{\phi}_\mathrm{q} = - k \nabla T</math>
<math display="block">\vec{\phi}_\mathrm{q} = - k \nabla T</math>
कहाँ पे <math>{\nabla}</math> [[ग्रेडिएंट ऑपरेटर]] है।
जहां पर <math>{\nabla}</math> [[ग्रेडिएंट ऑपरेटर]] है।


== नाप ==
== नाप ==
{{Main|Heat flux sensor}}
{{Main|हीट फ्लक्स सेंसर}}
ऊष्मा प्रवाह का मापन कुछ भिन्न तरीकों से किया जा सकता है। ज्ञात तापीय चालकता वाली सामग्री के एक टुकड़े पर तापमान के अंतर को मापकर एक सामान्य रूप से ज्ञात, लेकिन अक्सर अव्यवहारिक, विधि का प्रदर्शन किया जाता है। यह विधि विद्युत प्रवाह को मापने के मानक तरीके के समान है, जहां एक ज्ञात प्रतिरोधी पर [[वोल्टेज]] ड्रॉप को मापता है। आमतौर पर इस विधि का प्रदर्शन करना मुश्किल होता है क्योंकि परीक्षण की जा रही सामग्री का थर्मल प्रतिरोध अक्सर ज्ञात नहीं होता है। थर्मल प्रतिरोध को निर्धारित करने के लिए सामग्री की मोटाई और तापीय चालकता के लिए सटीक मूल्यों की आवश्यकता होगी। थर्मल प्रतिरोध का उपयोग करके, सामग्री के दोनों तरफ तापमान माप के साथ, गर्मी प्रवाह परोक्ष रूप से गणना की जा सकती है।
 
ऊष्मा प्रवाह का मापन कुछ भिन्न विधियों से किया जा सकता है। ज्ञात तापीय चालकता वाली सामग्री के एक टुकड़े पर तापमान के अंतर को मापकर सामान्य रूप से ज्ञात, लेकिन अधिकांशतः अव्यवहारिक, विधि का प्रदर्शन किया जाता है। यह विधि विद्युत प्रवाह को मापने के मानक विधि के समान है, जहां ज्ञात प्रतिरोधी पर [[वोल्टेज]] ड्रॉप को मापता है। सामान्यतः इस विधि का प्रदर्शन करना कठिन होता है क्योंकि परीक्षण की जा रही सामग्री का थर्मल प्रतिरोध अधिकांशतः ज्ञात नहीं होता है। थर्मल प्रतिरोध को निर्धारित करने के लिए सामग्री की मोटाई और तापीय चालकता के लिए सटीक मूल्यों की आवश्यकता होगी। थर्मल प्रतिरोध का उपयोग करके, सामग्री के दोनों तरफ तापमान माप के साथ, गर्मी प्रवाह परोक्ष रूप से गणना की जा सकती है।


हीट फ्लक्स को मापने का एक दूसरा तरीका [[हीट फ्लक्स सेंसर]] या हीट फ्लक्स ट्रांसड्यूसर का उपयोग करके है, जो हीट फ्लक्स सेंसर को माउंट करने वाली सतह से/से स्थानांतरित होने वाली गर्मी की मात्रा को सीधे मापने के लिए है। ताप प्रवाह संवेदक का सबसे सामान्य प्रकार एक अंतर तापमान [[थर्मापाइल]] है जो अनिवार्य रूप से उसी सिद्धांत पर संचालित होता है जो पहले माप पद्धति के रूप में वर्णित किया गया था, सिवाय इसके कि इसका लाभ यह है कि थर्मल प्रतिरोध/चालकता को ज्ञात पैरामीटर होने की आवश्यकता नहीं है। इन मापदंडों को जानने की जरूरत नहीं है क्योंकि [[थर्मोइलेक्ट्रिक प्रभाव]] का उपयोग करके हीट फ्लक्स सेंसर मौजूदा हीट फ्लक्स के इन-सीटू माप को सक्षम करता है। हालांकि, डिफरेंशियल थर्मोपाइल हीट फ्लक्स सेंसर को उनके आउटपुट सिग्नल [μV] को हीट फ्लक्स वैल्यू [W/(m) से संबंधित करने के लिए कैलिब्रेट करना पड़ता है।<sup>2</sup>⋅के)]। एक बार हीट फ्लक्स सेंसर को कैलिब्रेट करने के बाद इसका उपयोग थर्मल प्रतिरोध या तापीय चालकता के दुर्लभ ज्ञात मूल्य की आवश्यकता के बिना सीधे हीट फ्लक्स को मापने के लिए किया जा सकता है।
हीट फ्लक्स को मापने की एक दूसरी विधि [[हीट फ्लक्स सेंसर]] या हीट फ्लक्स ट्रांसड्यूसर का उपयोग करके है, जो हीट फ्लक्स सेंसर को माउंट करने वाली सतह से स्थानांतरित होने वाली गर्मी की मात्रा को सीधे मापने के लिए है। ताप प्रवाह संवेदक का सबसे सामान्य प्रकार का अंतर तापमान [[थर्मापाइल]] है जो अनिवार्य रूप से उसी सिद्धांत पर संचालित होता है जो पहले माप पद्धति के रूप में वर्णित किया गया था, अतिरिक्त इसके कि इसका लाभ यह है कि थर्मल प्रतिरोध/चालकता को ज्ञात पैरामीटर होने की आवश्यकता नहीं है। इन मापदंडों को जानने की आवश्यकता नहीं है क्योंकि [[थर्मोइलेक्ट्रिक प्रभाव]] का उपयोग करके हीट फ्लक्स सेंसर उपस्थित हीट फ्लक्स के इन-सीटू माप को सक्षम करता है। चूँकि, डिफरेंशियल थर्मोपाइल हीट फ्लक्स सेंसर को उनके आउटपुट सिग्नल [μV] को हीट फ्लक्स वैल्यू [W/(m<sup>2</sup>⋅K)] से संबंधित करने के लिए कैलिब्रेट करना पड़ता है। एक बार हीट फ्लक्स सेंसर को कैलिब्रेट करने के बाद इसका उपयोग थर्मल प्रतिरोध या तापीय चालकता के दुर्लभ ज्ञात मूल्य की आवश्यकता के बिना सीधे हीट फ्लक्स को मापने के लिए किया जा सकता है।


== विज्ञान और इंजीनियरिंग ==
== विज्ञान और इंजीनियरिंग ==


एक वैज्ञानिक या इंजीनियर के टूलबॉक्स में से एक उपकरण [[ऊष्मप्रवैगिकी का पहला नियम]] है। रासायनिक रिएक्टरों से लेकर जीवित जीवों तक, किसी भी भौतिक प्रणाली के लिए इस तरह का संतुलन स्थापित किया जा सकता है और आम तौर पर निम्नलिखित रूप लेता है
वैज्ञानिक या इंजीनियर के टूलबॉक्स में से एक उपकरण [[ऊष्मप्रवैगिकी का पहला नियम]] है। रासायनिक रिएक्टरों से लेकर जीवित जीवों तक, किसी भी भौतिक प्रणाली के लिए इस तरह का संतुलन स्थापित किया जा सकता है और सामान्यतः निम्नलिखित रूप लेता है


: <math>\big. \frac{\partial E_\mathrm{in}}{\partial t} - \frac{\partial E_\mathrm{out}}{\partial t} - \frac{\partial E_\mathrm{accumulated}}{\partial t} = 0</math>
: <math>\big. \frac{\partial E_\mathrm{in}}{\partial t} - \frac{\partial E_\mathrm{out}}{\partial t} - \frac{\partial E_\mathrm{accumulated}}{\partial t} = 0</math>
जहां तीन <math>\big. \frac{\partial E}{\partial t}</math> शब्द आने वाली ऊर्जा की कुल मात्रा, बाहर जाने वाली ऊर्जा की कुल मात्रा और संचित ऊर्जा की कुल मात्रा के परिवर्तन की समय दर के लिए खड़े हैं।
जहां तीन <math>\big. \frac{\partial E}{\partial t}</math> शब्द आने वाली ऊर्जा की कुल मात्रा, बाहर जाने वाली ऊर्जा की कुल मात्रा और संचित ऊर्जा की कुल मात्रा के परिवर्तन की समय दर के लिए स्थित हैं।


अब, यदि सिस्टम अपने परिवेश के साथ ऊर्जा का आदान-प्रदान करने का एकमात्र तरीका गर्मी हस्तांतरण के माध्यम से है, तो गर्मी दर का उपयोग ऊर्जा संतुलन की गणना के लिए किया जा सकता है, क्योंकि
अब, यदि सिस्टम अपने परिवेश के साथ ऊर्जा का आदान-प्रदान करने का एकमात्र विधि गर्मी हस्तांतरण के माध्यम से है, तो गर्मी दर का उपयोग ऊर्जा संतुलन की गणना के लिए किया जा सकता है, क्योंकि


: <math>\frac{\partial E_\mathrm{in}}{\partial t} - \frac{\partial E_\mathrm{out}}{\partial t} = \oint_S \vec{\phi}_\mathrm{q} \cdot \, \mathrm{d} \vec{S}</math>
: <math>\frac{\partial E_\mathrm{in}}{\partial t} - \frac{\partial E_\mathrm{out}}{\partial t} = \oint_S \vec{\phi}_\mathrm{q} \cdot \, \mathrm{d} \vec{S}</math>
जहां हमने हीट फ्लक्स को एकीकृत किया है <math>\vec{\phi}_\mathrm{q}</math> सतह के ऊपर <math>S</math> प्रणाली में।
जहां हमने हीट फ्लक्स को एकीकृत किया है <math>\vec{\phi}_\mathrm{q}</math> सतह के ऊपर <math>S</math> प्रणाली में है।


वास्तविक दुनिया के अनुप्रयोगों में कोई सतह पर हर बिंदु पर सटीक गर्मी प्रवाह को नहीं जान सकता है, लेकिन सन्निकटन योजनाओं का उपयोग इंटीग्रल की गणना के लिए किया जा सकता है, उदाहरण के लिए [[मोंटे कार्लो एकीकरण]]
वास्तविक दुनिया के अनुप्रयोगों में कोई सतह पर हर बिंदु पर सटीक गर्मी प्रवाह को नहीं जान सकता है, लेकिन सन्निकटन योजनाओं का उपयोग इंटीग्रल की गणना के लिए किया जा सकता है, उदाहरण के लिए [[मोंटे कार्लो एकीकरण]] है।


== यह भी देखें ==
== यह भी देखें ==
Line 61: Line 63:
* [[ऊष्मा प्रवाह की दर]]
* [[ऊष्मा प्रवाह की दर]]
*सूर्यपात
*सूर्यपात
[[अव्यक्त ताप प्रवाह]] सेंसर
 
* [[अव्यक्त ताप प्रवाह]] सेंसर
* आपेक्षिक ऊष्मा चालन
* आपेक्षिक ऊष्मा चालन


==टिप्पणियाँ==
==टिप्पणियाँ==
{{Reflist}}
{{Reflist}}
[[Category: थर्मोडायनामिक गुण]] [[Category: संयुक्त राज्य अमेरिका में माप की प्रथागत इकाइयाँ]] [[Category: संयुक्त राज्य अमेरिका में माप की प्रथागत इकाइयाँ]]
 
[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Created On 27/01/2023]]
[[Category:Created On 27/01/2023]]
[[Category:Infobox templates|physical quantity]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:थर्मोडायनामिक गुण]]
[[Category:संयुक्त राज्य अमेरिका में माप की प्रथागत इकाइयाँ]]

Latest revision as of 19:51, 3 February 2023

Heat flux
Heatflux.png
हीट फ्लक्स एक सतह के माध्यम से।
सामान्य प्रतीक
Si   इकाईW/m2
अन्य इकाइयां
Btu/(h⋅ft2)
SI आधार इकाइयाँ मेंkg⋅s−3
आयामScript error: The module returned a nil value. It is supposed to return an export table.

हीट फ्लक्स या थर्मल फ्लक्स, जिसे कभी-कभी हीट फ्लक्स डेंसिटी भी कहा जाता है[5], ऊष्मा-प्रवाह घनत्व या ऊष्मा प्रवाह दर तीव्रता प्रति इकाई क्षेत्र प्रति इकाई समय (भौतिकी) क्षेत्र में ऊर्जा का प्रवाह है। एसआई में इसका मात्रक वाट प्रति वर्ग मीटर (W/m2) होता है। इसमें दिशा और परिमाण दोनों हैं, और इसलिए यह एक वेक्टर (ज्यामितीय) मात्रा है। अंतरिक्ष में एक निश्चित बिंदु पर गर्मी के प्रवाह को परिभाषित करने के लिए, एक सीमित स्थिति होती है जहां सतह का आकार असीम रूप से छोटा हो जाता है।

हीट फ्लक्स को अधिकांशतः निरूपित किया जाता है, द्रव्यमान प्रवाह या परिवहन परिघटना के विपरीत ऊष्मा प्रवाह को निर्दिष्ट करने वाला सबस्क्रिप्ट q है। ऊष्मा चालन फूरियर का नियम इन अवधारणाओं का एक महत्वपूर्ण अनुप्रयोग है।

फूरियर का नियम

सामान्य परिस्थितियों में अधिकांश ठोस पदार्थों के लिए, मुख्य रूप से तापीय चालन द्वारा ऊष्मा का परिवहन किया जाता है और फूरियर के नियम द्वारा ऊष्मा प्रवाह को पर्याप्त रूप से वर्णित किया जाता है।

एक आयाम में फूरियर का नियम

जहां पर तापीय चालकता है। ऋणात्मक चिह्न दर्शाता है कि ऊष्मा प्रवाह उच्च तापमान वाले क्षेत्रों से निम्न तापमान वाले क्षेत्रों की ओर गति करता है।

बहुआयामी विस्तार

तापीय चालकता, के, और मोटाई, एक्स के साथ तापीय रोधन सामग्री के माध्यम से ऊष्मा के प्रवाह को दर्शाने वाला आरेख। तापमान संवेदकों का उपयोग करके सामग्री के दोनों ओर दो सतह तापमान मापों का उपयोग करके ऊष्मा प्रवाह को निर्धारित किया जा सकता है यदि सामग्री के के और एक्स भी ज्ञात हों।
तापीय चालकता, के, और मोटाई, एक्स के साथ तापीय रोधन सामग्री के माध्यम से ऊष्मा प्रवाह को दर्शाने वाला आरेख। हीट फ्लक्स को किसी भी सतह पर स्थित एकल हीट फ्लक्स सेंसर या सामग्री के भीतर एम्बेडेड का उपयोग करके सीधे मापा जा सकता है। इस पद्धति का उपयोग करते हुए, सामग्री के और एक्स के मान जानने की आवश्यकता नहीं है।

बहु-आयामी स्थिति समान है, गर्मी का प्रवाह कम हो जाता है और इसलिए तापमान प्रवणता का नकारात्मक संकेत होता है:

जहां पर ग्रेडिएंट ऑपरेटर है।

नाप

ऊष्मा प्रवाह का मापन कुछ भिन्न विधियों से किया जा सकता है। ज्ञात तापीय चालकता वाली सामग्री के एक टुकड़े पर तापमान के अंतर को मापकर सामान्य रूप से ज्ञात, लेकिन अधिकांशतः अव्यवहारिक, विधि का प्रदर्शन किया जाता है। यह विधि विद्युत प्रवाह को मापने के मानक विधि के समान है, जहां ज्ञात प्रतिरोधी पर वोल्टेज ड्रॉप को मापता है। सामान्यतः इस विधि का प्रदर्शन करना कठिन होता है क्योंकि परीक्षण की जा रही सामग्री का थर्मल प्रतिरोध अधिकांशतः ज्ञात नहीं होता है। थर्मल प्रतिरोध को निर्धारित करने के लिए सामग्री की मोटाई और तापीय चालकता के लिए सटीक मूल्यों की आवश्यकता होगी। थर्मल प्रतिरोध का उपयोग करके, सामग्री के दोनों तरफ तापमान माप के साथ, गर्मी प्रवाह परोक्ष रूप से गणना की जा सकती है।

हीट फ्लक्स को मापने की एक दूसरी विधि हीट फ्लक्स सेंसर या हीट फ्लक्स ट्रांसड्यूसर का उपयोग करके है, जो हीट फ्लक्स सेंसर को माउंट करने वाली सतह से स्थानांतरित होने वाली गर्मी की मात्रा को सीधे मापने के लिए है। ताप प्रवाह संवेदक का सबसे सामान्य प्रकार का अंतर तापमान थर्मापाइल है जो अनिवार्य रूप से उसी सिद्धांत पर संचालित होता है जो पहले माप पद्धति के रूप में वर्णित किया गया था, अतिरिक्त इसके कि इसका लाभ यह है कि थर्मल प्रतिरोध/चालकता को ज्ञात पैरामीटर होने की आवश्यकता नहीं है। इन मापदंडों को जानने की आवश्यकता नहीं है क्योंकि थर्मोइलेक्ट्रिक प्रभाव का उपयोग करके हीट फ्लक्स सेंसर उपस्थित हीट फ्लक्स के इन-सीटू माप को सक्षम करता है। चूँकि, डिफरेंशियल थर्मोपाइल हीट फ्लक्स सेंसर को उनके आउटपुट सिग्नल [μV] को हीट फ्लक्स वैल्यू [W/(m2⋅K)] से संबंधित करने के लिए कैलिब्रेट करना पड़ता है। एक बार हीट फ्लक्स सेंसर को कैलिब्रेट करने के बाद इसका उपयोग थर्मल प्रतिरोध या तापीय चालकता के दुर्लभ ज्ञात मूल्य की आवश्यकता के बिना सीधे हीट फ्लक्स को मापने के लिए किया जा सकता है।

विज्ञान और इंजीनियरिंग

वैज्ञानिक या इंजीनियर के टूलबॉक्स में से एक उपकरण ऊष्मप्रवैगिकी का पहला नियम है। रासायनिक रिएक्टरों से लेकर जीवित जीवों तक, किसी भी भौतिक प्रणाली के लिए इस तरह का संतुलन स्थापित किया जा सकता है और सामान्यतः निम्नलिखित रूप लेता है

जहां तीन शब्द आने वाली ऊर्जा की कुल मात्रा, बाहर जाने वाली ऊर्जा की कुल मात्रा और संचित ऊर्जा की कुल मात्रा के परिवर्तन की समय दर के लिए स्थित हैं।

अब, यदि सिस्टम अपने परिवेश के साथ ऊर्जा का आदान-प्रदान करने का एकमात्र विधि गर्मी हस्तांतरण के माध्यम से है, तो गर्मी दर का उपयोग ऊर्जा संतुलन की गणना के लिए किया जा सकता है, क्योंकि

जहां हमने हीट फ्लक्स को एकीकृत किया है सतह के ऊपर प्रणाली में है।

वास्तविक दुनिया के अनुप्रयोगों में कोई सतह पर हर बिंदु पर सटीक गर्मी प्रवाह को नहीं जान सकता है, लेकिन सन्निकटन योजनाओं का उपयोग इंटीग्रल की गणना के लिए किया जा सकता है, उदाहरण के लिए मोंटे कार्लो एकीकरण है।

यह भी देखें

टिप्पणियाँ

  1. "greenTEG | What is Heat Flux | Learn all about heat flux and how to measure it". www.greenteg.com.
  2. "greenTEG | 3 Types of Heat Transfer | Conduction, convection, and radiation: three types of heat transfer". www.greenteg.com.
  3. "greenTEG | Heat Flux Measurement Techniques | How to measure heat flux". www.greenteg.com.
  4. "greenTEG | Heat Flux Sensor Explanation | Explanation of the working principle of heat flux sensors". www.greenteg.com.
  5. The word "flux" is used in most physical disciplines to refer to the flow of a quantity (mass, heat, momentum, etc.) across a surface per unit time per unit area, with the primary exception being in electromagnetism, where it refer to the integral of a vector quantity through a surface.[1][2][3][4] Refer to the Flux article for more detail.