अप्रत्यक्ष इंजेक्शन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Engine fuel delivery method}}
{{short description|Engine fuel delivery method}}
[[आंतरिक दहन इंजन]] में अप्रत्यक्ष इंजेक्शन [[ईंधन इंजेक्शन]] होता है जहां [[दहन कक्ष]] में ईंधन को सीधे इंजेक्ट नहीं किया जाता है।
[[आंतरिक दहन इंजन]] में अप्रत्यक्ष इंजेक्शन एक प्रकार का  [[ईंधन इंजेक्शन]] होता है जहां [[दहन कक्ष]] में ईंधन को सीधे इंजेक्ट नहीं किया जाता है।


अप्रत्यक्ष इंजेक्शन प्रणाली से लैस [[पेट्रोल इंजन]], जिसमें एक [[ईंधन इंजेक्टर]] [[पॉपट वॉल्व]] से पहले किसी बिंदु पर ईंधन वितरित करता है, अधिकांश [[गैसोलीन प्रत्यक्ष इंजेक्शन]] के पक्ष में नहीं है। चूंकि , वोक्सवैगन, टोयोटा और फोर्ड जैसे कुछ निर्माताओं ने एक 'दोहरी इंजेक्शन' प्रणाली विकसित की है, जो प्रत्यक्ष इंजेक्टरों को पोर्ट (अप्रत्यक्ष) इंजेक्टरों के साथ जोड़ती है, दोनों प्रकार के ईंधन इंजेक्शन के लाभों को जोड़ती है। प्रत्यक्ष इंजेक्शन ईंधन को उच्च दबाव के अनुसार दहन कक्ष में स्पष्ट रूप से मापने की अनुमति देता है जिससे अधिक शक्ति, ईंधन दक्षता हो सकती है। प्रत्यक्ष इंजेक्शन के साथ समस्या यह है कि यह आम तौर पर अधिक मात्रा में कणों की ओर जाता है और ईंधन अब सेवन वाल्वों से संपर्क नहीं करता है, कार्बन समय के साथ सेवन वाल्वों पर जमा हो सकता है। अप्रत्यक्ष इंजेक्शन जोड़ने से सेवन वाल्वों पर ईंधन का छिड़काव होता रहता है, सेवन वाल्वों पर कार्बन संचय को कमअथवा समाप्त कर देता है और कम भार की स्थिति में, अप्रत्यक्ष इंजेक्शन बेहतर ईंधन-वायु मिश्रण की अनुमति देता है। अतिरिक्त व्यय और जटिलता के कारण इस प्रणाली का मुख्य रूप से उच्च लागत वाले मॉडल में उपयोग किया जाता है।
अप्रत्यक्ष इंजेक्शन प्रणाली से लैस [[पेट्रोल इंजन]], जिसमें एक [[ईंधन इंजेक्टर]] [[पॉपट वॉल्व|इंटेक वॉल्व]] से पहले किसी अन्य  बिंदु पर ईंधन वितरित करता है, अधिकांश [[गैसोलीन प्रत्यक्ष इंजेक्शन]] के पक्ष में नहीं है। चूंकि , वोक्सवैगन, टोयोटा और फोर्ड जैसे कुछ निर्माताओं ने एक 'दोहरी इंजेक्शन' प्रणाली विकसित की है, जो प्रत्यक्ष इंजेक्टरों को पोर्ट (अप्रत्यक्ष) इंजेक्टरों के साथ जोड़ती है, दोनों प्रकार के ईंधन इंजेक्शन के लाभों को जोड़ती है। प्रत्यक्ष इंजेक्शन ईंधन को उच्च दबाव के अनुसार दहन कक्ष में स्पष्ट रूप से मापने की अनुमति देता है जिससे अधिक शक्ति, ईंधन दक्षता हो सकती है। प्रत्यक्ष इंजेक्शन के साथ समस्या यह है कि यह सामान्यतः  अधिक मात्रा में कणों की ओर जाता है और ईंधन अब सेवन वाल्वों से संपर्क नहीं करता है, कार्बन समय के साथ सेवन वाल्वों पर जमा हो सकता है। अप्रत्यक्ष इंजेक्शन जोड़ने से सेवन वाल्वों पर ईंधन का छिड़काव होता रहता है, सेवन वाल्वों पर कार्बन संचय को कमया समाप्त कर देता है और कम भार की स्थिति में, अप्रत्यक्ष इंजेक्शन बेहतर ईंधन-वायु मिश्रण की अनुमति देता है। अतिरिक्त व्यय और जटिलता के कारण इस प्रणाली का मुख्य रूप से उच्च लागत वाले मॉडल में उपयोग किया जाता है।  


पोर्ट इंजेक्शन इंटेक वाल्व के पीछे ईंधन के छिड़काव को संदर्भित करता है, जो इसके वाष्पीकरण को गति देता है।<ref>{{cite web|last1=Kerr|first1=Jim|title=Direct vs. port injection|url=http://thechronicleherald.ca/wheelsnews/26226-direct-vs.-port-injection|website=The Chronicle Herald|access-date=28 June 2016}}</ref>
पोर्ट इंजेक्शन इंटेक वाल्व के पीछे ईंधन के छिड़काव को संदर्भित करता है, जो इसके वाष्पीकरण को गति देता है।<ref>{{cite web|last1=Kerr|first1=Jim|title=Direct vs. port injection|url=http://thechronicleherald.ca/wheelsnews/26226-direct-vs.-port-injection|website=The Chronicle Herald|access-date=28 June 2016}}</ref>
एक अप्रत्यक्ष इंजेक्शन [[डीजल इंजन]] दहन कक्ष से एक कक्ष में ईंधन वितरित करता है,अथवा तो एक पूर्व कक्षअथवा भंवर कक्ष, जहां दहन शुरू होता है और फिर मुख्य दहन कक्ष में फैलता है। प्रीचैम्बर को सावधानीपूर्वक डिज़ाइन किया किया है जिससेसंपीड़न-गर्म हवा के साथ परमाणु ईंधन के पर्याप्त मिश्रण को सुनिश्चित किया जा सके।
 
एक अप्रत्यक्ष इंजेक्शन [[डीजल इंजन]] दहन कक्ष से एक कक्ष में ईंधन वितरित करता है,या तो एक पूर्व कक्षया भंवर कक्ष, जहां दहन शुरू होता है और फिर मुख्य दहन कक्ष में फैलता है। प्रीचैम्बर को सावधानीपूर्वक डिज़ाइन किया किया है जिससेसंपीड़न-गर्म हवा के साथ परमाणु ईंधन के पर्याप्त मिश्रण को सुनिश्चित किया जा सके।


== गैसोलीन इंजन ==
== गैसोलीन इंजन ==
Line 28: Line 29:


==== वायु कोशिका कक्ष ====
==== वायु कोशिका कक्ष ====
[[File:Acro-Luftspeicher.jpg|thumb|एक्रो-टाइप इंजेक्शन प्रणाली , लानोवा के पूर्ववर्ती, जिसे फ्रांज लैंग द्वारा भी डिजाइन किया किया था]]वायुकोशिका एक छोटा बेलनाकार कक्ष होता है जिसके एक सिरे में छिद्र होता है। यह इंजेक्टर के साथ अधिकअथवा कम समाक्षीय रूप से लगाया जाता है, कहा जाता है कि अक्ष पिस्टन मुकुट के समानांतर होता है, जिसमें इंजेक्टर एक छोटे से गुहा में फायरिंग करता है जो वायु कोशिका के अंत में छेद में सिलेंडर के लिए खुला होता है। सिर के द्रव्यमान के साथ थर्मल संपर्क को कम करने के लिए एयर सेल को माउंट किया जाता है। एक संकीर्ण स्प्रे पैटर्न के साथ एक पिंटल इंजेक्टर का उपयोग किया जाता है। इसके शीर्ष मृत केंद्र (TDC) में अधिकांश आवेश द्रव्यमान गुहा और वायु कोशिका में निहित होता है।{{Citation needed|date=October 2008}}
[[File:Acro-Luftspeicher.jpg|thumb|'''एक्रो-टाइप इंजेक्शन प्रणाली ,''' लानोवा के पूर्ववर्ती एक्रो-टाइप इंजेक्शन प्रणाली , जिसे फ्रांज लैंग द्वारा भी डिजाइन किया किया था।]]वायुकोशिका एक छोटा बेलनाकार कक्ष होता है जिसके एक सिरे में छिद्र होता है। यह इंजेक्टर के साथ अधिकया कम समाक्षीय रूप से लगाया जाता है, कहा जाता है कि अक्ष पिस्टन मुकुट के समानांतर होता है, जिसमें इंजेक्टर एक छोटे से गुहा में फायरिंग करता है जो वायु कोशिका के अंत में छेद में सिलेंडर के लिए खुला होता है। सिर के द्रव्यमान के साथ थर्मल संपर्क को कम करने के लिए एयर सेल को माउंट किया जाता है। एक संकीर्ण स्प्रे पैटर्न के साथ एक पिंटल इंजेक्टर का उपयोग किया जाता है। इसके शीर्ष मृत केंद्र (TDC) में अधिकांश आवेश द्रव्यमान गुहा और वायु कोशिका में निहित होता है।{{Citation needed|date=October 2008}}
जब इंजेक्टर में आग लगती है, तो ईंधन का जेट वायु कक्ष में प्रवेश करता है और प्रज्वलित होता है। इसका परिणाम यह होता है कि ज्वाला का एक जेट एयर सेल से सीधे इंजेक्टर से निकलने वाले ईंधन के जेट में वापस आ जाता है। गर्मी और विक्षोभ उत्कृष्ट ईंधन वाष्पीकरण और मिश्रण गुण प्रदान करते हैं। इसके अतिरिक्त , चूंकि अधिकांश दहन वायु कक्ष के बाहर गुहा में होता है, जो सीधे सिलेंडर के साथ संचार करता है, दहन चार्ज को सिलेंडर में स्थानांतरित करने में कम गर्मी का हानि होता है।
जब इंजेक्टर में आग लगती है, तो ईंधन का जेट वायु कक्ष में प्रवेश करता है और प्रज्वलित होता है। इसका परिणाम यह होता है कि ज्वाला का एक जेट एयर सेल से सीधे इंजेक्टर से निकलने वाले ईंधन के जेट में वापस आ जाता है। गर्मी और विक्षोभ उत्कृष्ट ईंधन वाष्पीकरण और मिश्रण गुण प्रदान करते हैं। इसके अतिरिक्त , चूंकि अधिकांश दहन वायु कक्ष के बाहर गुहा में होता है, जो सीधे सिलेंडर के साथ संचार करता है, दहन चार्ज को सिलेंडर में स्थानांतरित करने में कम गर्मी का हानि होता है।


एयर सेल इंजेक्शन को अप्रत्यक्ष और प्रत्यक्ष इंजेक्शन के बीच एक समझौता माना जा सकता है, अप्रत्यक्ष इंजेक्शन के विकास की सादगी और आसानी को बनाए रखते हुए प्रत्यक्ष इंजेक्शन के कुछ दक्षता लाभ प्राप्त करना।{{Citation needed|date=October 2008}}
एयर सेल इंजेक्शन को अप्रत्यक्ष और प्रत्यक्ष इंजेक्शन के बीच एक समझौता माना जा सकता है, अप्रत्यक्ष इंजेक्शन के विकास की सादगी और आसानी को बनाए रखते हुए प्रत्यक्ष इंजेक्शन के कुछ दक्षता लाभ प्राप्त करना।{{Citation needed|date=October 2008}}
वायु कोशिका कक्षों को आमतौर पर लानोवा वायु कक्षों का नाम दिया जाता है।<ref name="google2">{{cite book|title=Troubleshooting and Repairing Diesel Engines|author=Dempsey, P.|date=1995|publisher=TAB Books|isbn=9780070163485|url=https://books.google.com/books?id=5nHW-USbN6wC&pg=PA128|page=128|access-date=8 January 2017}}</ref> लानोवा दहन प्रणाली को लानोवा कंपनी द्वारा विकसित किया किया था, जिसकी स्थापना 1929 में फ्रांज लैंग, गॉथर्ड वीलिच और अल्बर्ट वीलिच ने की थी।<ref>{{cite journal|title=The Lanova Combustion System|journal=The Commercial Motor|date=6 January 1933|url=http://archive.commercialmotor.com/article/6th-january-1933/38/the-lanova-combustion-system|access-date=11 November 2017}}</ref>
वायु कोशिका कक्षों को सामान्यतः  लानोवा वायु कक्षों का नाम दिया जाता है।<ref name="google2">{{cite book|title=Troubleshooting and Repairing Diesel Engines|author=Dempsey, P.|date=1995|publisher=TAB Books|isbn=9780070163485|url=https://books.google.com/books?id=5nHW-USbN6wC&pg=PA128|page=128|access-date=8 January 2017}}</ref> लानोवा दहन प्रणाली को लानोवा कंपनी द्वारा विकसित किया किया था, जिसकी स्थापना 1929 में फ्रांज लैंग, गॉथर्ड वीलिच और अल्बर्ट वीलिच ने की थी।<ref>{{cite journal|title=The Lanova Combustion System|journal=The Commercial Motor|date=6 January 1933|url=http://archive.commercialmotor.com/article/6th-january-1933/38/the-lanova-combustion-system|access-date=11 November 2017}}</ref>
यूएस में, [[मैक ट्रक]]ों द्वारा लानोवा प्रणाली का उपयोग किया किया था। एक उदाहरण [[मैक एनआर]] ट्रक में फिट किया किया मैक-लानोवा ईडी डीजल इंजन है।
 
यूएस में, [[मैक ट्रक|मैक ट्रकों]] ों द्वारा लानोवा प्रणाली का उपयोग किया किया था। एक उदाहरण [[मैक एनआर]] ट्रक में फिट किया किया मैक-लानोवा ईडी डीजल इंजन है।


=== अप्रत्यक्ष इंजेक्शन दहन कक्षों के लाभ ===
=== अप्रत्यक्ष इंजेक्शन दहन कक्षों के लाभ ===
* छोटे डीजल का उत्पादन किया जा सकता है।
* छोटे डीजल का उत्पादन किया जा सकता है।
* आवश्यक इंजेक्शन दबाव कम है, इसलिए इंजेक्टर का उत्पादन सस्ता है।
* आवश्यक इंजेक्शन दबाव कम होने के कारण इस  इंजेक्टर का उत्पादन सस्ता है।
* इंजेक्शन की दिशा का कम महत्व है।
* इंजेक्शन की दिशा का '''कम''' महत्व कम  है।
* अप्रत्यक्ष इंजेक्शन विशेष रूप से गैसोलीन इंजनों के लिए डिजाइन और निर्माण के लिए बहुत आसान है। कम इंजेक्टर विकास की आवश्यकता होती है और इंजेक्शन दबाव कम होते हैं (प्रत्यक्ष इंजेक्शन के लिए 1500 psi/100 बार बनाम 5000 psi/345 बार और अधिक)
* अप्रत्यक्ष इंजेक्शन विशेष रूप से गैसोलीन इंजनों के लिए डिजाइन और निर्माण के लिए बहुत आसान है। क्योंकि इसमें  कम इंजेक्टर विकास की आवश्यकता होती है और इंजेक्शन दबाव(प्रत्यक्ष इंजेक्शन के लिए 1500 psi/100 बार बनाम 5000 psi/345 बार और इससे अधिक) कम होते हैं '''(प्रत्यक्ष इंजेक्शन के लिए 1500 psi/100 बार बनाम 5000 psi/345 बार और इससे अधिक)'''
* कम दबाव जो आंतरिक घटकों पर अप्रत्यक्ष इंजेक्शन लगाता है, का कारण है कि एक ही मूल इंजन के [[पेट्रोल]] और अप्रत्यक्ष इंजेक्शन डीजल संस्करणों का उत्पादन संभव है। इस तरह के सबसे अच्छे प्रकार केवल सिलेंडर हेड में भिन्न होते हैं और डीजल में [[इंजेक्शन पंप]] और ईंधन इंजेक्टर को फिट करने के समय पेट्रोल संस्करण में एक [[वितरक]] और [[स्पार्क प्लग]] लगाने की आवश्यकता होती है। उदाहरणों में BMC BMC A-सीरीज़ इंजन|A-सीरीज़ और BMC B-सीरीज़ इंजन|B-सीरीज़ इंजन और [[लैंड रोवर]] 2.25/2.5-[[लीटर]] 4-सिलेंडर प्रकार सम्मिलित हैं। इस तरह के डिजाइन एक ही वाहन के पेट्रोल और डीजल संस्करणों को उनके बीच न्यूनतम डिजाइन परिवर्तन के साथ बनाने की अनुमति देते हैं।
* '''कम दबाव''' '''जो''' आंतरिक घटकों पर अप्रत्यक्ष इंजेक्शन जो कम दबाव लगाता है, उसका कारण है कि एक ही मूल इंजन के [[पेट्रोल]] और अप्रत्यक्ष इंजेक्शन डीजल संस्करणों का उत्पादन संभव है। इस तरह के सबसे अच्छे प्रकार केवल सिलेंडर हेड में भिन्न होते हैं और डीजल में [[इंजेक्शन पंप]] और ईंधन इंजेक्टर को फिट करने के समय पेट्रोल संस्करण में एक [[वितरक]] और [[स्पार्क प्लग]] लगाने की आवश्यकता होती है। उदाहरणों में बीएमसी , बीएमसी  A-सीरीज़ इंजन'''|A-सीरीज़''' और बीएमसी  B-सीरीज़ इंजन'''|B-सीरीज़ इंजन''' और [[लैंड रोवर]] 2.25/2.5-[[लीटर]] 4-सिलेंडर इत्यादि  प्रकार सम्मिलित हैं। इस तरह के डिजाइन एक ही वाहन के पेट्रोल और डीजल संस्करणों को उनके बीच न्यूनतम डिजाइन परिवर्तन के साथ बनाने की अनुमति देते हैं।
* उच्च इंजन की गति तक पहुंचा जा सकता है, क्योंकि प्रीचैम्बर में जलना जारी है।
* उच्च इंजन की गति तक पहुंचा जा सकता है क्योंकि प्रीचैम्बर में जलना जारी है।
* [[बायो-डीजल]] और [[अपशिष्ट वनस्पति तेल]] जैसे वैकल्पिक ईंधन से अप्रत्यक्ष-इंजेक्शन डीजल इंजन में ईंधन प्रणाली को हानि होने की संभावना कम होती है, क्योंकि उच्च इंजेक्शन दबाव की आवश्यकता नहीं होती है। प्रत्यक्ष-इंजेक्शन इंजनों में (विशेष रूप से उच्च दबाव वाले सामान्य रेल ईंधन प्रणालियों का उपयोग करने वाले आधुनिक इंजन), ईंधन फिल्टर को अच्छी स्थिति में रखना अधिक महत्वपूर्ण है क्योंकि अपशिष्ट वनस्पति तेलअथवा अपशिष्ट इंजन तेल का उपयोग करने पर मलबे पंपों और इंजेक्टरों को हानि पहुंचा सकते हैं।
* [[बायो-डीजल]] और [[अपशिष्ट वनस्पति तेल]] जैसे वैकल्पिक ईंधन से अप्रत्यक्ष-इंजेक्शन डीजल इंजन में ईंधन प्रणाली को हानि होने की संभावना कम होती है, क्योंकि इसमें  उच्च इंजेक्शन दबाव की आवश्यकता नहीं होती है। प्रत्यक्ष-इंजेक्शन इंजनों में (विशेष रूप से उच्च दबाव वाले सामान्य रेल ईंधन प्रणालियों का उपयोग करने वाले आधुनिक इंजन), ईंधन फिल्टर को अच्छी स्थिति में रखना अधिक महत्वपूर्ण है क्योंकि अपशिष्ट वनस्पति तेल या अपशिष्ट इंजन तेल का उपयोग करने पर अपशिष्ट  पंपों और इंजेक्टरों को हानि पहुंचा सकते हैं।


=== हानि ===
=== हानि ===
* डीजल इंजनों के साथ [[ईंधन दक्षता]] प्रत्यक्ष इंजेक्शन की तुलना में कम है क्योंकि बड़े खुले क्षेत्रों में अधिक गर्मी फैलती है और बंदरगाहों के माध्यम से चलने वाली हवा दबाव की बूंदों को बढ़ाती है। चूंकि , उच्च संपीड़न अनुपात का उपयोग इस अक्षमता को कुछ हद तक नकार देगा।
* डीजल इंजनों के साथ [[ईंधन दक्षता]] प्रत्यक्ष इंजेक्शन की तुलना में कम है क्योंकि बड़े खुले क्षेत्रों में अधिक गर्मी फैलती है और बंदरगाहों के माध्यम से चलने वाली हवा दबाव की बूंदों को बढ़ाती है। चूंकि , उच्च संपीड़न अनुपात का उपयोग इस अक्षमता को एक सीमा तक नकार देगा।
* डीज़ल इंजनों पर कोल्ड इंजन स्टार्ट करने के लिए ग्लो प्लग की आवश्यकता होती है; कई अप्रत्यक्ष इंजेक्शन डीजल इंजन ठंड के मौसम में चमक प्लग के बिना शुरू नहीं हो सकते।
* डीज़ल इंजनों पर कोल्ड इंजन स्टार्ट करने के लिए ग्लो प्लग की आवश्यकता होती है; कई अप्रत्यक्ष इंजेक्शन डीजल इंजन ठंड के मौसम में ग्लो प्लग के बिना शुरू नहीं हो सकते।
* क्योंकि दहन की गर्मी और दबाव [[पिस्टन]] पर एक बहुत छोटे क्षेत्र में प्रयुक्त होता है क्योंकि यह पूर्व दहन कक्षअथवा भंवर कक्ष से बाहर निकलता है, ऐसे इंजन उच्च शक्ति-से-भार अनुपात आउटपुट (जैसे [[टर्बोचार्जर]], [[सुपरचार्जर]], या) के लिए कम अनुकूल होते हैं। ट्यूनिंग) प्रत्यक्ष इंजेक्शन डीजल की तुलना में। पिस्टन क्राउन के एक हिस्से पर बढ़ा हुआ तापमान और दबाव असमान विस्तार का कारण बनता है जिससे दरार, विरूपणअथवा अन्य क्षति हो सकती है, चूंकि निर्माण विधियों में प्रगति ने निर्माताओं को असमान विस्तार के प्रभाव को निश्चित सीमा तक कम करने की अनुमति दी है, जिससे अप्रत्यक्ष इंजेक्शन डाइसेल्स की अनुमति मिलती है। टर्बोचार्जिंग का उपयोग करें।
* क्योंकि दहन की गर्मी और दबाव [[पिस्टन]] पर एक बहुत छोटे क्षेत्र में प्रयुक्त होता है क्योंकि यह पूर्व दहन कक्ष या भंवर कक्ष से बाहर निकलता है, ऐसे इंजन प्रत्यक्ष इंजेक्शन डीजल की तुलना में उच्च विशिष्ट शक्ति आउटपुट'''आउटपुट''' (जैसे [[टर्बोचार्जर]], [[सुपरचार्जर]], या ट्यूनिंग) के लिए कम अनुकूल होते हैं। '''ट्यूनिंग)''' '''प्रत्यक्ष इंजेक्शन डीजल की तुलना में'''। पिस्टन क्राउन के एक हिस्से पर बढ़ा हुआ तापमान और दबाव असमान विस्तार का कारण बनता है जिससे दरार, विरूपण या अन्य क्षति हो सकती है, चूंकि निर्माण विधियों में प्रगति ने निर्माताओं को असमान विस्तार के प्रभाव को निश्चित सीमा तक कम करने की अनुमति दी है, जिससे टर्बोचार्जिंग का उपयोग करने के लिए '''अप्रत्यक्ष इंजेक्शन डीजल की अनुमति।''' अप्रत्यक्ष इंजेक्शन डाइसेल्स की अनुमति मिलती है। '''टर्बोचार्जिंग का उपयोग करें।'''
* प्रत्यक्ष इंजेक्शन आम-रेल इंजनों की तुलना में अप्रत्यक्ष इंजन अधिकांशतः अधिक शोर करते हैं।
* प्रत्यक्ष इंजेक्शन सामान्य-रेल इंजनों की तुलना में अप्रत्यक्ष इंजन अधिकांशतः अधिक शोर करते हैं।
* प्रारंभिक तरल पदार्थ (ईथर) का उपयोग अधिकांशतः एक अप्रत्यक्ष इंजेक्शन डीजल इंजन में नहीं किया जा सकता है क्योंकि प्रत्यक्ष इंजेक्शन डीजल की तुलना में ग्लो प्लग पूर्व प्रज्वलन के कठिन परिस्थिति को बहुत बढ़ा देते हैं।
* प्रारंभिक तरल पदार्थ (ईथर) का उपयोग अधिकांशतः एक अप्रत्यक्ष इंजेक्शन डीजल इंजन में नहीं किया जा सकता है क्योंकि प्रत्यक्ष इंजेक्शन डीजल की तुलना में ग्लो प्लग पूर्व प्रज्वलन के कठिन परिस्थिति को बहुत बढ़ा देते हैं।


== यह भी देखें ==
== यह भी देखें ==
* हैरी रिकार्डो
* हैरी रिकार्डो
* समृद्ध 'ऑरेंज
* समृद्ध एल'ऑरेंज(प्रॉस्पर एल'ऑरेंज)
* [[प्रीमिक्स्ड फ्लेम]]
* [[प्रीमिक्स्ड फ्लेम]]



Revision as of 17:36, 5 February 2023

आंतरिक दहन इंजन में अप्रत्यक्ष इंजेक्शन एक प्रकार का ईंधन इंजेक्शन होता है जहां दहन कक्ष में ईंधन को सीधे इंजेक्ट नहीं किया जाता है।

अप्रत्यक्ष इंजेक्शन प्रणाली से लैस पेट्रोल इंजन, जिसमें एक ईंधन इंजेक्टर इंटेक वॉल्व से पहले किसी अन्य बिंदु पर ईंधन वितरित करता है, अधिकांश गैसोलीन प्रत्यक्ष इंजेक्शन के पक्ष में नहीं है। चूंकि , वोक्सवैगन, टोयोटा और फोर्ड जैसे कुछ निर्माताओं ने एक 'दोहरी इंजेक्शन' प्रणाली विकसित की है, जो प्रत्यक्ष इंजेक्टरों को पोर्ट (अप्रत्यक्ष) इंजेक्टरों के साथ जोड़ती है, दोनों प्रकार के ईंधन इंजेक्शन के लाभों को जोड़ती है। प्रत्यक्ष इंजेक्शन ईंधन को उच्च दबाव के अनुसार दहन कक्ष में स्पष्ट रूप से मापने की अनुमति देता है जिससे अधिक शक्ति, ईंधन दक्षता हो सकती है। प्रत्यक्ष इंजेक्शन के साथ समस्या यह है कि यह सामान्यतः अधिक मात्रा में कणों की ओर जाता है और ईंधन अब सेवन वाल्वों से संपर्क नहीं करता है, कार्बन समय के साथ सेवन वाल्वों पर जमा हो सकता है। अप्रत्यक्ष इंजेक्शन जोड़ने से सेवन वाल्वों पर ईंधन का छिड़काव होता रहता है, सेवन वाल्वों पर कार्बन संचय को कमया समाप्त कर देता है और कम भार की स्थिति में, अप्रत्यक्ष इंजेक्शन बेहतर ईंधन-वायु मिश्रण की अनुमति देता है। अतिरिक्त व्यय और जटिलता के कारण इस प्रणाली का मुख्य रूप से उच्च लागत वाले मॉडल में उपयोग किया जाता है।

पोर्ट इंजेक्शन इंटेक वाल्व के पीछे ईंधन के छिड़काव को संदर्भित करता है, जो इसके वाष्पीकरण को गति देता है।[1]

एक अप्रत्यक्ष इंजेक्शन डीजल इंजन दहन कक्ष से एक कक्ष में ईंधन वितरित करता है,या तो एक पूर्व कक्षया भंवर कक्ष, जहां दहन शुरू होता है और फिर मुख्य दहन कक्ष में फैलता है। प्रीचैम्बर को सावधानीपूर्वक डिज़ाइन किया किया है जिससेसंपीड़न-गर्म हवा के साथ परमाणु ईंधन के पर्याप्त मिश्रण को सुनिश्चित किया जा सके।

गैसोलीन इंजन

अप्रत्यक्ष इंजेक्शन गैसोलीन इंजन बनाम प्रत्यक्ष इंजेक्शन गैसोलीन इंजन का एक फायदा यह है कि क्रैंककेस वेंटिलेशन प्रणाली से इनटेक वाल्व पर जमा ईंधन द्वारा धोया जाता है।[2] अप्रत्यक्ष इंजेक्शन इंजन भी प्रत्यक्ष इंजेक्शन इंजन की तुलना में कम मात्रा में कण पदार्थ का उत्पादन करते हैं क्योंकि ईंधन और हवा अधिक समान रूप से मिश्रित होते हैं।

डीजल इंजन

सिंहावलोकन

विभाजित दहन कक्ष का उद्देश्य दहन प्रक्रिया को गति देना और इंजन की गति को बढ़ाकर बिजली उत्पादन में वृद्धि करना है।[3] एक प्रीचैम्बर जोड़ने से शीतलन प्रणाली में गर्मी का हानि बढ़ जाता है और इस तरह इंजन की दक्षता कम हो जाती है। इंजन को स्टार्ट करने के लिए गुल्ली को चमकओ की आवश्यकता होती है। एक अप्रत्यक्ष इंजेक्शन प्रणाली में हवा तेजी से चलती है, ईंधन और हवा को मिलाती है। यह इंजन (पिस्टन क्राउन, हेड, वाल्व, इंजेक्टर, प्रीचैम्बर, आदि) डिज़ाइन को सरल बनाता है और कम सख्त सहनशील डिज़ाइनों के उपयोग की अनुमति देता है जो निर्माण के लिए सरल और अधिक विश्वसनीय हैं। ईंधन इंजेक्शन#डायरेक्ट इंजेक्शन प्रणाली , इसके विपरीत, धीमी गति से चलने वाली हवा और तेजी से चलने वाले ईंधन का उपयोग करता है; इंजेक्टरों का डिज़ाइन और निर्माण दोनों ही अधिक कठिन हैं। इन-सिलेंडर वायु प्रवाह का अनुकूलन प्रीचैम्बर को डिजाइन करने से कहीं अधिक कठिन है। इंजेक्टर और इंजन के डिज़ाइन के बीच बहुत अधिक एकीकरण है।[4] यह इस कारण से है कि कार डीजल इंजन लगभग सभी अप्रत्यक्ष इंजेक्शन थे जब तक कि शक्तिशाली कम्प्यूटेशनल द्रव गतिकी सिमुलेशन प्रणाली की तैयार उपलब्धता ने प्रत्यक्ष इंजेक्शन को अपनाने को व्यावहारिक नहीं बनाया।[citation needed]


अप्रत्यक्ष दहन कक्षों का वर्गीकरण

भंवर कक्ष

रिकार्डो धूमकेतु भंवर कक्ष

भंवर कक्ष सिलेंडर सिर में स्थित गोलाकार गुहा होते हैं और एक स्पर्शरेखा गले से इंजन सिलेंडर से अलग होते हैं। इंजन के संपीड़न स्ट्रोक के समय लगभग 50% हवा भंवर कक्ष में प्रवेश करती है, जिससे भंवर उत्पन्न होता है।[5]

दहन के बाद, उत्पाद उसी गले के माध्यम से मुख्य सिलेंडर में बहुत अधिक वेग से लौटते हैं, इसलिए मार्ग की दीवारों में अधिक गर्मी खो जाती है। इस प्रकार के चैंबर का उपयोग उन इंजनों में होता है जिनमें ईंधन नियंत्रण और इंजन की स्थिरता ईंधन अर्थव्यवस्था से अधिक महत्वपूर्ण होती है। इन्हें रिकार्डो चैंबर भी कहा जाता है, जिसका नाम आविष्कारक हैरी रिकार्डो के नाम पर रखा किया है।[6][7]


पूर्व दहन कक्ष

यह चैम्बर सिलेंडर हेड पर स्थित होता है और छोटे छिद्रों द्वारा इंजन सिलेंडर से जुड़ा होता है। यह कुल सिलेंडर वॉल्यूम का 40% हिस्सा है। संपीड़न स्ट्रोक के समय , मुख्य सिलेंडर से हवा पूर्व-दहन कक्ष में प्रवेश करती है। इस समय, ईंधन को पूर्व दहन कक्ष में इंजेक्ट किया जाता है और दहन शुरू होता है। दबाव बढ़ता है और ईंधन की बूंदों को छोटे छिद्रों के माध्यम से मुख्य सिलेंडर में धकेल दिया जाता है, जिसके परिणामस्वरूप ईंधन और हवा का बहुत अच्छा मिश्रण होता है। अधिकांश दहन वास्तव में मुख्य सिलेंडर में होता है। इस प्रकार के दहन कक्ष में बहु-ईंधन क्षमता होती है क्योंकि मुख्य दहन घटना होने से पहले प्रीचैम्बर का तापमान ईंधन को वाष्पीकृत कर देता है।[8]


वायु कोशिका कक्ष

एक्रो-टाइप इंजेक्शन प्रणाली , लानोवा के पूर्ववर्ती एक्रो-टाइप इंजेक्शन प्रणाली , जिसे फ्रांज लैंग द्वारा भी डिजाइन किया किया था।

वायुकोशिका एक छोटा बेलनाकार कक्ष होता है जिसके एक सिरे में छिद्र होता है। यह इंजेक्टर के साथ अधिकया कम समाक्षीय रूप से लगाया जाता है, कहा जाता है कि अक्ष पिस्टन मुकुट के समानांतर होता है, जिसमें इंजेक्टर एक छोटे से गुहा में फायरिंग करता है जो वायु कोशिका के अंत में छेद में सिलेंडर के लिए खुला होता है। सिर के द्रव्यमान के साथ थर्मल संपर्क को कम करने के लिए एयर सेल को माउंट किया जाता है। एक संकीर्ण स्प्रे पैटर्न के साथ एक पिंटल इंजेक्टर का उपयोग किया जाता है। इसके शीर्ष मृत केंद्र (TDC) में अधिकांश आवेश द्रव्यमान गुहा और वायु कोशिका में निहित होता है।[citation needed]

जब इंजेक्टर में आग लगती है, तो ईंधन का जेट वायु कक्ष में प्रवेश करता है और प्रज्वलित होता है। इसका परिणाम यह होता है कि ज्वाला का एक जेट एयर सेल से सीधे इंजेक्टर से निकलने वाले ईंधन के जेट में वापस आ जाता है। गर्मी और विक्षोभ उत्कृष्ट ईंधन वाष्पीकरण और मिश्रण गुण प्रदान करते हैं। इसके अतिरिक्त , चूंकि अधिकांश दहन वायु कक्ष के बाहर गुहा में होता है, जो सीधे सिलेंडर के साथ संचार करता है, दहन चार्ज को सिलेंडर में स्थानांतरित करने में कम गर्मी का हानि होता है।

एयर सेल इंजेक्शन को अप्रत्यक्ष और प्रत्यक्ष इंजेक्शन के बीच एक समझौता माना जा सकता है, अप्रत्यक्ष इंजेक्शन के विकास की सादगी और आसानी को बनाए रखते हुए प्रत्यक्ष इंजेक्शन के कुछ दक्षता लाभ प्राप्त करना।[citation needed] वायु कोशिका कक्षों को सामान्यतः लानोवा वायु कक्षों का नाम दिया जाता है।[9] लानोवा दहन प्रणाली को लानोवा कंपनी द्वारा विकसित किया किया था, जिसकी स्थापना 1929 में फ्रांज लैंग, गॉथर्ड वीलिच और अल्बर्ट वीलिच ने की थी।[10]

यूएस में, मैक ट्रकों ों द्वारा लानोवा प्रणाली का उपयोग किया किया था। एक उदाहरण मैक एनआर ट्रक में फिट किया किया मैक-लानोवा ईडी डीजल इंजन है।

अप्रत्यक्ष इंजेक्शन दहन कक्षों के लाभ

  • छोटे डीजल का उत्पादन किया जा सकता है।
  • आवश्यक इंजेक्शन दबाव कम होने के कारण इस इंजेक्टर का उत्पादन सस्ता है।
  • इंजेक्शन की दिशा का कम महत्व कम है।
  • अप्रत्यक्ष इंजेक्शन विशेष रूप से गैसोलीन इंजनों के लिए डिजाइन और निर्माण के लिए बहुत आसान है। क्योंकि इसमें कम इंजेक्टर विकास की आवश्यकता होती है और इंजेक्शन दबाव(प्रत्यक्ष इंजेक्शन के लिए 1500 psi/100 बार बनाम 5000 psi/345 बार और इससे अधिक) कम होते हैं (प्रत्यक्ष इंजेक्शन के लिए 1500 psi/100 बार बनाम 5000 psi/345 बार और इससे अधिक)
  • कम दबाव जो आंतरिक घटकों पर अप्रत्यक्ष इंजेक्शन जो कम दबाव लगाता है, उसका कारण है कि एक ही मूल इंजन के पेट्रोल और अप्रत्यक्ष इंजेक्शन डीजल संस्करणों का उत्पादन संभव है। इस तरह के सबसे अच्छे प्रकार केवल सिलेंडर हेड में भिन्न होते हैं और डीजल में इंजेक्शन पंप और ईंधन इंजेक्टर को फिट करने के समय पेट्रोल संस्करण में एक वितरक और स्पार्क प्लग लगाने की आवश्यकता होती है। उदाहरणों में बीएमसी , बीएमसी A-सीरीज़ इंजन|A-सीरीज़ और बीएमसी B-सीरीज़ इंजन|B-सीरीज़ इंजन और लैंड रोवर 2.25/2.5-लीटर 4-सिलेंडर इत्यादि प्रकार सम्मिलित हैं। इस तरह के डिजाइन एक ही वाहन के पेट्रोल और डीजल संस्करणों को उनके बीच न्यूनतम डिजाइन परिवर्तन के साथ बनाने की अनुमति देते हैं।
  • उच्च इंजन की गति तक पहुंचा जा सकता है क्योंकि प्रीचैम्बर में जलना जारी है।
  • बायो-डीजल और अपशिष्ट वनस्पति तेल जैसे वैकल्पिक ईंधन से अप्रत्यक्ष-इंजेक्शन डीजल इंजन में ईंधन प्रणाली को हानि होने की संभावना कम होती है, क्योंकि इसमें उच्च इंजेक्शन दबाव की आवश्यकता नहीं होती है। प्रत्यक्ष-इंजेक्शन इंजनों में (विशेष रूप से उच्च दबाव वाले सामान्य रेल ईंधन प्रणालियों का उपयोग करने वाले आधुनिक इंजन), ईंधन फिल्टर को अच्छी स्थिति में रखना अधिक महत्वपूर्ण है क्योंकि अपशिष्ट वनस्पति तेल या अपशिष्ट इंजन तेल का उपयोग करने पर अपशिष्ट पंपों और इंजेक्टरों को हानि पहुंचा सकते हैं।

हानि

  • डीजल इंजनों के साथ ईंधन दक्षता प्रत्यक्ष इंजेक्शन की तुलना में कम है क्योंकि बड़े खुले क्षेत्रों में अधिक गर्मी फैलती है और बंदरगाहों के माध्यम से चलने वाली हवा दबाव की बूंदों को बढ़ाती है। चूंकि , उच्च संपीड़न अनुपात का उपयोग इस अक्षमता को एक सीमा तक नकार देगा।
  • डीज़ल इंजनों पर कोल्ड इंजन स्टार्ट करने के लिए ग्लो प्लग की आवश्यकता होती है; कई अप्रत्यक्ष इंजेक्शन डीजल इंजन ठंड के मौसम में ग्लो प्लग के बिना शुरू नहीं हो सकते।
  • क्योंकि दहन की गर्मी और दबाव पिस्टन पर एक बहुत छोटे क्षेत्र में प्रयुक्त होता है क्योंकि यह पूर्व दहन कक्ष या भंवर कक्ष से बाहर निकलता है, ऐसे इंजन प्रत्यक्ष इंजेक्शन डीजल की तुलना में उच्च विशिष्ट शक्ति आउटपुटआउटपुट (जैसे टर्बोचार्जर, सुपरचार्जर, या ट्यूनिंग) के लिए कम अनुकूल होते हैं। ट्यूनिंग) प्रत्यक्ष इंजेक्शन डीजल की तुलना में। पिस्टन क्राउन के एक हिस्से पर बढ़ा हुआ तापमान और दबाव असमान विस्तार का कारण बनता है जिससे दरार, विरूपण या अन्य क्षति हो सकती है, चूंकि निर्माण विधियों में प्रगति ने निर्माताओं को असमान विस्तार के प्रभाव को निश्चित सीमा तक कम करने की अनुमति दी है, जिससे टर्बोचार्जिंग का उपयोग करने के लिए अप्रत्यक्ष इंजेक्शन डीजल की अनुमति। अप्रत्यक्ष इंजेक्शन डाइसेल्स की अनुमति मिलती है। टर्बोचार्जिंग का उपयोग करें।
  • प्रत्यक्ष इंजेक्शन सामान्य-रेल इंजनों की तुलना में अप्रत्यक्ष इंजन अधिकांशतः अधिक शोर करते हैं।
  • प्रारंभिक तरल पदार्थ (ईथर) का उपयोग अधिकांशतः एक अप्रत्यक्ष इंजेक्शन डीजल इंजन में नहीं किया जा सकता है क्योंकि प्रत्यक्ष इंजेक्शन डीजल की तुलना में ग्लो प्लग पूर्व प्रज्वलन के कठिन परिस्थिति को बहुत बढ़ा देते हैं।

यह भी देखें

संदर्भ

  1. Kerr, Jim. "Direct vs. port injection". The Chronicle Herald. Retrieved 28 June 2016.
  2. Smith, Scott; Guinther, Gregory (2016-10-17). "Formation of Intake Valve Deposits in Gasoline Direct Injection Engines". SAE International Journal of Fuels and Lubricants (in English). 9 (3): 558–566. doi:10.4271/2016-01-2252. ISSN 1946-3960.
  3. Stone, Richard. "An introduction to ICE", Palgrace Macmillan, 1999, p. 224
  4. Two-stroke engine
  5. Electromechanical Prime Movers: Electric Motors. Macmillan International Higher Education. 18 June 1971. pp. 21–. ISBN 978-1-349-01182-7.
  6. "Sir Harry Ricardo". oldengine.org. Archived from the original on 17 October 2010. Retrieved 8 January 2017.
  7. Dempsey, P. (1995). Troubleshooting and Repairing Diesel Engines. TAB Books. p. 127. ISBN 9780070163485. Retrieved 8 January 2017.
  8. Dempsey, Paul (2007). Troubleshooting and Repair of Diesel Engines. McGraw Hill Professional. ISBN 9780071595186. Retrieved 2 December 2017.
  9. Dempsey, P. (1995). Troubleshooting and Repairing Diesel Engines. TAB Books. p. 128. ISBN 9780070163485. Retrieved 8 January 2017.
  10. "The Lanova Combustion System". The Commercial Motor. 6 January 1933. Retrieved 11 November 2017.