गुरुत्वाकर्षण त्वरण: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Change in speed due only to gravity}} {{Use American English|date=October 2022}} {{broader|Classical mechanics}} {{more citations needed|date=December 2010...")
 
No edit summary
Line 1: Line 1:
{{Short description|Change in speed due only to gravity}}
{{Short description|Change in speed due only to gravity}}
{{Use American English|date=October 2022}}
 
{{broader|Classical mechanics}}
{{broader|Classical mechanics}}
{{more citations needed|date=December 2010}}
भौतिकी में, गुरुत्वाकर्षण [[त्वरण]] एक निर्वात के भीतर (और इस प्रकार ड्रैग (भौतिकी) का अनुभव किए बिना) एक वस्तु का त्वरण है। यह विशेष रूप से [[गुरुत्वाकर्षण आकर्षण]] बल के कारण गति में स्थिर वृद्धि है। पिंडों के [[द्रव्यमान]] या संघटन की परवाह किए बिना, सभी पिंड निर्वात में समान दर से गति करते हैं;<ref>
भौतिकी में, गुरुत्वाकर्षण [[त्वरण]] एक निर्वात के भीतर (और इस प्रकार ड्रैग (भौतिकी) का अनुभव किए बिना) एक वस्तु का त्वरण है। यह विशेष रूप से [[गुरुत्वाकर्षण आकर्षण]] बल के कारण गति में स्थिर वृद्धि है। पिंडों के [[द्रव्यमान]] या संघटन की परवाह किए बिना, सभी पिंड निर्वात में समान दर से गति करते हैं;<ref>
{{cite book  
{{cite book  
Line 55: Line 54:
:<math>\mathbf{F} = m\mathbf{g}</math>
:<math>\mathbf{F} = m\mathbf{g}</math>
यहां <math>\mathbf{g}</math> नमूना द्रव्यमान द्वारा निरंतर घर्षण रहित, मुक्त-पतन त्वरण है <math>m</math> गुरुत्वाकर्षण स्रोत के आकर्षण के तहत।
यहां <math>\mathbf{g}</math> नमूना द्रव्यमान द्वारा निरंतर घर्षण रहित, मुक्त-पतन त्वरण है <math>m</math> गुरुत्वाकर्षण स्रोत के आकर्षण के तहत।
यह त्वरण इकाइयों में मापे गए परिमाण के क्षेत्र स्रोत की ओर उन्मुख एक सदिश है। गुरुत्वीय त्वरण सदिश केवल इस बात पर निर्भर करता है कि क्षेत्र स्रोत कितना विशाल है <math>M</math> है और नमूना द्रव्यमान के लिए 'r' दूरी पर है <math>m</math>. यह छोटे नमूने के द्रव्यमान के परिमाण पर निर्भर नहीं करता है।
यह त्वरण इकाइयों में मापे गए परिमाण के क्षेत्र स्रोत की ओर उन्मुख एक सदिश है। गुरुत्वीय त्वरण सदिश केवल इस बात पर निर्भर करता है कि क्षेत्र स्रोत कितना विशाल है <math>M</math> है और नमूना द्रव्यमान के लिए 'r' दूरी पर है <math>m</math>. यह छोटे नमूने के द्रव्यमान के परिमाण पर निर्भर नहीं करता है।


यह मॉडल एक विशाल पिंड से जुड़े दूर-क्षेत्र गुरुत्वाकर्षण त्वरण का प्रतिनिधित्व करता है। जब किसी पिंड के आयाम रुचि की दूरियों की तुलना में तुच्छ नहीं होते हैं, तो निकट-क्षेत्र गुरुत्वाकर्षण त्वरण का अधिक विस्तृत मॉडल प्राप्त करने के लिए [[सुपरपोज़िशन सिद्धांत]] का उपयोग पूरे शरीर में एक अनुमानित [[घनत्व]] वितरण के लिए विभेदक द्रव्यमान के लिए किया जा सकता है। कक्षा में उपग्रहों के लिए, दूर-क्षेत्र का मॉडल ऊंचाई बनाम कक्षीय अवधि की अनुमानित गणना के लिए पर्याप्त है, लेकिन कई कक्षाओं के बाद भविष्य के स्थान के सटीक अनुमान के लिए नहीं।
यह मॉडल एक विशाल पिंड से जुड़े दूर-क्षेत्र गुरुत्वाकर्षण त्वरण का प्रतिनिधित्व करता है। जब किसी पिंड के आयाम रुचि की दूरियों की तुलना में तुच्छ नहीं होते हैं, तो निकट-क्षेत्र गुरुत्वाकर्षण त्वरण का अधिक विस्तृत मॉडल प्राप्त करने के लिए [[सुपरपोज़िशन सिद्धांत]] का उपयोग पूरे शरीर में एक अनुमानित [[घनत्व]] वितरण के लिए विभेदक द्रव्यमान के लिए किया जा सकता है। कक्षा में उपग्रहों के लिए, दूर-क्षेत्र का मॉडल ऊंचाई बनाम कक्षीय अवधि की अनुमानित गणना के लिए पर्याप्त है, लेकिन कई कक्षाओं के बाद भविष्य के स्थान के सटीक अनुमान के लिए नहीं।


अधिक विस्तृत मॉडल में शामिल हैं (अन्य बातों के अलावा) पृथ्वी के लिए [[भूमध्यरेखीय उभार]], और चंद्रमा के लिए अनियमित द्रव्यमान सांद्रता (उल्का प्रभावों के कारण)। [[ग्रेविटी रिकवरी और क्लाइमेट एक्सपेरिमेंट]] (GRACE) मिशन को 2002 में लॉन्च किया गया था, जिसमें पृथ्वी के चारों ओर ध्रुवीय कक्षा में टॉम एंड जेरी नामक दो जांच शामिल हैं, जो पृथ्वी के चारों ओर गुरुत्वाकर्षण क्षेत्र को अधिक सटीक रूप से निर्धारित करने के लिए दो जांचों के बीच की दूरी में अंतर को मापते हैं। , और समय के साथ होने वाले परिवर्तनों को ट्रैक करने के लिए। इसी तरह, 2011-2012 से [[ग्रेविटी रिकवरी और आंतरिक प्रयोगशाला]] मिशन में चंद्रमा के चारों ओर ध्रुवीय कक्षा में दो जांच (ईबीबी और फ्लो) शामिल थे, जो भविष्य के नौवहन उद्देश्यों के लिए गुरुत्वाकर्षण क्षेत्र को अधिक सटीक रूप से निर्धारित करने और चंद्रमा के भौतिक श्रृंगार के बारे में जानकारी का अनुमान लगाने के लिए थे।
अधिक विस्तृत मॉडल में शामिल हैं (अन्य बातों के अतिरिक्त) पृथ्वी के लिए [[भूमध्यरेखीय उभार]], और चंद्रमा के लिए अनियमित द्रव्यमान सांद्रता (उल्का प्रभावों के कारण)। [[ग्रेविटी रिकवरी और क्लाइमेट एक्सपेरिमेंट]] (अनुग्रह) मिशन को 2002 में लॉन्च किया गया था, जिसमें पृथ्वी के चारों ओर ध्रुवीय कक्षा में टॉम एंड जेरी नामक दो जांच शामिल हैं, जो पृथ्वी के चारों ओर गुरुत्वाकर्षण क्षेत्र को अधिक सटीक रूप से निर्धारित करने के लिए दो जांचों के बीच की दूरी में अंतर को मापते हैं। , और समय के साथ होने वाले परिवर्तनों को ट्रैक करने के लिए। इसी तरह, 2011-2012 से [[ग्रेविटी रिकवरी और आंतरिक प्रयोगशाला]] मिशन में चंद्रमा के चारों ओर ध्रुवीय कक्षा में दो जांच (ईबीबी और फ्लो) शामिल थे, जो भविष्य के नौवहन उद्देश्यों के लिए गुरुत्वाकर्षण क्षेत्र को अधिक सटीक रूप से निर्धारित करने और चंद्रमा के भौतिक श्रृंगार के बारे में जानकारी का अनुमान लगाने के लिए थे।


== पृथ्वी, सूर्य, चंद्रमा और ग्रहों का तुलनात्मक गुरुत्वाकर्षण ==
== पृथ्वी, सूर्य, चंद्रमा और ग्रहों का तुलनात्मक गुरुत्वाकर्षण ==
नीचे दी गई तालिका सूर्य, पृथ्वी के चंद्रमा, सौर मंडल के प्रत्येक ग्रह और उनके प्रमुख चंद्रमाओं, सेरेस, प्लूटो और एरिस की सतह पर तुलनात्मक गुरुत्वाकर्षण त्वरण दिखाती है। गैसीय पिंडों के लिए, सतह को दृश्यमान सतह के रूप में लिया जाता है: [[गैस दिग्गज]]ों (बृहस्पति, शनि, यूरेनस और नेपच्यून) के बादल सबसे ऊपर हैं, और सूर्य का प्रकाशमंडल। ग्रह के घूर्णन (और गैस दिग्गजों के लिए बादल-शीर्ष हवा की गति) के केन्द्रापसारक बल प्रभाव के लिए तालिका में मूल्यों को डी-रेटेड नहीं किया गया है और इसलिए, आम तौर पर बोलना, वास्तविक गुरुत्वाकर्षण के समान है जो ध्रुवों के पास अनुभव किया जाएगा। . संदर्भ के लिए किसी वस्तु को 100 मीटर गिरने में लगने वाला समय, गगनचुंबी इमारत की ऊंचाई, अधिकतम गति तक पहुंचने के साथ दिखाया गया है। वायु प्रतिरोध की उपेक्षा की जाती है।
नीचे दी गई तालिका सूर्य, पृथ्वी के चंद्रमा, सौर मंडल के प्रत्येक ग्रह और उनके प्रमुख चंद्रमाओं, सेरेस, प्लूटो और एरिस की सतह पर तुलनात्मक गुरुत्वाकर्षण त्वरण दिखाती है। गैसीय पिंडों के लिए, सतह को दृश्यमान सतह के रूप में लिया जाता है: [[गैस दिग्गज|गैस दिग्गजों]] (बृहस्पति, शनि, यूरेनस और नेपच्यून) के बादल सबसे ऊपर हैं, और सूर्य का प्रकाशमंडल। ग्रह के घूर्णन (और गैस दिग्गजों के लिए बादल-शीर्ष हवा की गति) के केन्द्रापसारक बल प्रभाव के लिए तालिका में मूल्यों को डी-रेटेड नहीं किया गया है और इसलिए, आम तौर पर बोलना, वास्तविक गुरुत्वाकर्षण के समान है जो ध्रुवों के पास अनुभव किया जाएगा। संदर्भ के लिए किसी वस्तु को 100 मीटर गिरने में लगने वाला समय, गगनचुंबी इमारत की ऊंचाई, अधिकतम गति तक पहुंचने के साथ दिखाया गया है। वायु प्रतिरोध की उपेक्षा की जाती है।
{|class="wikitable sortable"
{|class="wikitable sortable"
|-
|-
Line 198: Line 198:
|15.8 s || {{convert|46|km/h|abbr=on}}
|15.8 s || {{convert|46|km/h|abbr=on}}
|}
|}
== सामान्य सापेक्षता ==
== सामान्य सापेक्षता ==
{{See also|Gravitational field#General relativity|Gravitational potential#General relativity}}
{{See also|गुरुत्वाकर्षण क्षेत्र # सामान्य सापेक्षता|गुरुत्वाकर्षण क्षमता # सामान्य सापेक्षता}}
आइंस्टीन के [[सामान्य सापेक्षता]] के सिद्धांत में, गुरुत्वाकर्षण पिंडों के बीच फैले बल के कारण होने के बजाय घुमावदार [[अंतरिक्ष समय]] का गुण है। आइंस्टीन के सिद्धांत में, द्रव्यमान अपने आसपास के क्षेत्र में स्पेसटाइम को विकृत करते हैं, और अन्य कण स्पेसटाइम की ज्यामिति द्वारा निर्धारित प्रक्षेपवक्र में चलते हैं। गुरुत्वाकर्षण बल एक काल्पनिक बल है#गुरुत्व एक काल्पनिक बल के रूप में। इसमें कोई गुरुत्वीय त्वरण नहीं है, इसमें [[उचित त्वरण]] और इसलिए फ्री फॉल में वस्तुओं का [[चार-त्वरण]] शून्य है। एक त्वरण से गुजरने के बजाय, फ्री फॉल में वस्तुएं घुमावदार स्पेसटाइम पर सीधी रेखाओं ([[जियोडेसिक (सामान्य सापेक्षता)]]) के साथ यात्रा करती हैं।
आइंस्टीन के [[सामान्य सापेक्षता]] के सिद्धांत में, गुरुत्वाकर्षण पिंडों के बीच फैले बल के कारण होने के बजाय घुमावदार [[अंतरिक्ष समय]] का गुण है। आइंस्टीन के सिद्धांत में, द्रव्यमान अपने आसपास के क्षेत्र में स्पेसटाइम को विकृत करते हैं, और अन्य कण स्पेसटाइम की ज्यामिति द्वारा निर्धारित प्रक्षेपवक्र में चलते हैं। गुरुत्वाकर्षण बल एक काल्पनिक बल है गुरुत्व एक काल्पनिक बल के रूप में। इसमें कोई गुरुत्वीय त्वरण नहीं है, इसमें [[उचित त्वरण]] और इसलिए फ्री फॉल में वस्तुओं का [[चार-त्वरण]] शून्य है। एक त्वरण से गुजरने के बजाय, फ्री फॉल में वस्तुएं घुमावदार स्पेसटाइम पर सीधी रेखाओं ([[जियोडेसिक (सामान्य सापेक्षता)]]) के साथ यात्रा करती हैं।


== यह भी देखें ==
== यह भी देखें ==
Line 215: Line 213:
== टिप्पणियाँ ==
== टिप्पणियाँ ==
{{Notelist}}
{{Notelist}}
== संदर्भ ==
== संदर्भ ==
{{Reflist}}
{{Reflist}}
{{Authority control}}


{{DEFAULTSORT:Gravitational Acceleration}}[[Category: ग्रेविमेट्री]] [[Category: गुरुत्वाकर्षण]] [[Category: त्वरण]] [[Category: अस्थायी दरें]]  
{{DEFAULTSORT:Gravitational Acceleration}}[[Category: ग्रेविमेट्री]] [[Category: गुरुत्वाकर्षण]] [[Category: त्वरण]] [[Category: अस्थायी दरें]]  

Revision as of 16:16, 31 January 2023

भौतिकी में, गुरुत्वाकर्षण त्वरण एक निर्वात के भीतर (और इस प्रकार ड्रैग (भौतिकी) का अनुभव किए बिना) एक वस्तु का त्वरण है। यह विशेष रूप से गुरुत्वाकर्षण आकर्षण बल के कारण गति में स्थिर वृद्धि है। पिंडों के द्रव्यमान या संघटन की परवाह किए बिना, सभी पिंड निर्वात में समान दर से गति करते हैं;[1] इन दरों के मापन और विश्लेषण को गुरुत्वमिति के रूप में जाना जाता है।

सतह पर एक निश्चित बिंदु पर, पृथ्वी के गुरुत्वाकर्षण का परिमाण | पृथ्वी का गुरुत्वाकर्षण गुरुत्वाकर्षण के संयुक्त प्रभाव और पृथ्वी के घूर्णन से केन्द्रापसारक बल का परिणाम है।[2][3] पृथ्वी की सतह पर अलग-अलग बिंदुओं पर मुक्त पतन त्वरण की सीमा होती है 9.764 to 9.834 m/s2 (32.03 to 32.26 ft/s2),[4] ऊंचाई, अक्षांश और देशांतर के आधार पर। एक पारंपरिक मानक गुरुत्वाकर्षण को बिल्कुल इस रूप में परिभाषित किया गया है 9.80665 m/s2 (32.1740 ft/s2). इस मान से महत्वपूर्ण भिन्नता वाले स्थानों को गुरुत्व विसंगति के रूप में जाना जाता है। यह अन्य प्रभावों को ध्यान में नहीं रखता है, जैसे उछाल या ड्रैग।

सार्वभौम कानून से संबंध

न्यूटन के सार्वभौमिक गुरुत्वाकर्षण के नियम में कहा गया है कि किन्हीं भी दो द्रव्यमानों के बीच एक गुरुत्वाकर्षण बल होता है जो प्रत्येक द्रव्यमान के परिमाण में बराबर होता है, और दो द्रव्यमानों को एक दूसरे की ओर खींचने के लिए संरेखित होता है। सूत्र है:

कहाँ पे और कोई दो द्रव्यमान हैं, गुरुत्वाकर्षण स्थिरांक है, और दो बिंदु जैसे द्रव्यमान के बीच की दूरी है।

द्रव्यमान के अपने केंद्र की परिक्रमा करने वाले दो पिंड (रेड क्रॉस)

गॉस के नियम के अभिन्न रूप का उपयोग करते हुए, इस सूत्र को वस्तुओं के किसी भी जोड़े तक बढ़ाया जा सकता है, जिनमें से एक दूसरे की तुलना में कहीं अधिक विशाल है - जैसे किसी मानव-स्तर की कलाकृति के सापेक्ष ग्रह। ग्रहों के बीच और ग्रहों और सूर्य के बीच की दूरी (परिमाण के कई आदेशों द्वारा) सूर्य और ग्रहों के आकार से बड़ी है। परिणामस्वरूप सूर्य और ग्रह दोनों को बिंदु द्रव्यमान माना जा सकता है और ग्रहों की गति के लिए समान सूत्र लागू किया जा सकता है। (चूंकि ग्रह और प्राकृतिक उपग्रह तुलनीय द्रव्यमान के जोड़े बनाते हैं, दूरी 'आर' ग्रह केंद्रों के बीच की सीधी कुल दूरी के बजाय प्रत्येक जोड़ी के द्रव्यमान के सामान्य केंद्र से मापी जाती है।)

यदि एक द्रव्यमान दूसरे की तुलना में बहुत बड़ा है, तो इसे अवलोकन संबंधी संदर्भ के रूप में लेना सुविधाजनक है और इसे परिमाण और अभिविन्यास के गुरुत्वाकर्षण क्षेत्र के स्रोत के रूप में परिभाषित किया गया है:[5]

कहाँ पे क्षेत्र स्रोत (बड़ा) का द्रव्यमान है, और क्षेत्र स्रोत से नमूना (छोटे) द्रव्यमान के लिए निर्देशित एक इकाई वेक्टर है। ऋणात्मक चिह्न इंगित करता है कि बल आकर्षक है (पीछे की ओर इंगित करता है, स्रोत की ओर)।

फिर आकर्षण बल एक नमूना द्रव्यमान पर वेक्टर के रूप में व्यक्त किया जा सकता है:

यहां नमूना द्रव्यमान द्वारा निरंतर घर्षण रहित, मुक्त-पतन त्वरण है गुरुत्वाकर्षण स्रोत के आकर्षण के तहत।

यह त्वरण इकाइयों में मापे गए परिमाण के क्षेत्र स्रोत की ओर उन्मुख एक सदिश है। गुरुत्वीय त्वरण सदिश केवल इस बात पर निर्भर करता है कि क्षेत्र स्रोत कितना विशाल है है और नमूना द्रव्यमान के लिए 'r' दूरी पर है . यह छोटे नमूने के द्रव्यमान के परिमाण पर निर्भर नहीं करता है।

यह मॉडल एक विशाल पिंड से जुड़े दूर-क्षेत्र गुरुत्वाकर्षण त्वरण का प्रतिनिधित्व करता है। जब किसी पिंड के आयाम रुचि की दूरियों की तुलना में तुच्छ नहीं होते हैं, तो निकट-क्षेत्र गुरुत्वाकर्षण त्वरण का अधिक विस्तृत मॉडल प्राप्त करने के लिए सुपरपोज़िशन सिद्धांत का उपयोग पूरे शरीर में एक अनुमानित घनत्व वितरण के लिए विभेदक द्रव्यमान के लिए किया जा सकता है। कक्षा में उपग्रहों के लिए, दूर-क्षेत्र का मॉडल ऊंचाई बनाम कक्षीय अवधि की अनुमानित गणना के लिए पर्याप्त है, लेकिन कई कक्षाओं के बाद भविष्य के स्थान के सटीक अनुमान के लिए नहीं।

अधिक विस्तृत मॉडल में शामिल हैं (अन्य बातों के अतिरिक्त) पृथ्वी के लिए भूमध्यरेखीय उभार, और चंद्रमा के लिए अनियमित द्रव्यमान सांद्रता (उल्का प्रभावों के कारण)। ग्रेविटी रिकवरी और क्लाइमेट एक्सपेरिमेंट (अनुग्रह) मिशन को 2002 में लॉन्च किया गया था, जिसमें पृथ्वी के चारों ओर ध्रुवीय कक्षा में टॉम एंड जेरी नामक दो जांच शामिल हैं, जो पृथ्वी के चारों ओर गुरुत्वाकर्षण क्षेत्र को अधिक सटीक रूप से निर्धारित करने के लिए दो जांचों के बीच की दूरी में अंतर को मापते हैं। , और समय के साथ होने वाले परिवर्तनों को ट्रैक करने के लिए। इसी तरह, 2011-2012 से ग्रेविटी रिकवरी और आंतरिक प्रयोगशाला मिशन में चंद्रमा के चारों ओर ध्रुवीय कक्षा में दो जांच (ईबीबी और फ्लो) शामिल थे, जो भविष्य के नौवहन उद्देश्यों के लिए गुरुत्वाकर्षण क्षेत्र को अधिक सटीक रूप से निर्धारित करने और चंद्रमा के भौतिक श्रृंगार के बारे में जानकारी का अनुमान लगाने के लिए थे।

पृथ्वी, सूर्य, चंद्रमा और ग्रहों का तुलनात्मक गुरुत्वाकर्षण

नीचे दी गई तालिका सूर्य, पृथ्वी के चंद्रमा, सौर मंडल के प्रत्येक ग्रह और उनके प्रमुख चंद्रमाओं, सेरेस, प्लूटो और एरिस की सतह पर तुलनात्मक गुरुत्वाकर्षण त्वरण दिखाती है। गैसीय पिंडों के लिए, सतह को दृश्यमान सतह के रूप में लिया जाता है: गैस दिग्गजों (बृहस्पति, शनि, यूरेनस और नेपच्यून) के बादल सबसे ऊपर हैं, और सूर्य का प्रकाशमंडल। ग्रह के घूर्णन (और गैस दिग्गजों के लिए बादल-शीर्ष हवा की गति) के केन्द्रापसारक बल प्रभाव के लिए तालिका में मूल्यों को डी-रेटेड नहीं किया गया है और इसलिए, आम तौर पर बोलना, वास्तविक गुरुत्वाकर्षण के समान है जो ध्रुवों के पास अनुभव किया जाएगा। संदर्भ के लिए किसी वस्तु को 100 मीटर गिरने में लगने वाला समय, गगनचुंबी इमारत की ऊंचाई, अधिकतम गति तक पहुंचने के साथ दिखाया गया है। वायु प्रतिरोध की उपेक्षा की जाती है।

Body Multiple of
Earth gravity
m/s2 ft/s2 Notes Time to fall 100 m and
maximum speed reached
Sun 27.90 274.1 899 0.85 s 843 km/h (524 mph)
Mercury 0.3770 3.703 12.15 7.4 s 98 km/h (61 mph)
Venus 0.9032 8.872 29.11 4.8 s 152 km/h (94 mph)
Earth 1 9.8067 32.174 [lower-alpha 1] 4.5 s 159 km/h (99 mph)
Moon 0.1655 1.625 5.33 11.1 s 65 km/h (40 mph)
Mars 0.3895 3.728 12.23 7.3 s 98 km/h (61 mph)
Ceres 0.029 0.28 0.92 26.7 s 27 km/h (17 mph)
Jupiter 2.640 25.93 85.1 2.8 s 259 km/h (161 mph)
Io 0.182 1.789 5.87 10.6 s 68 km/h (42 mph)
Europa 0.134 1.314 4.31 12.3 s 58 km/h (36 mph)
Ganymede 0.145 1.426 4.68 11.8 s 61 km/h (38 mph)
Callisto 0.126 1.24 4.1 12.7 s 57 km/h (35 mph)
Saturn 1.139 11.19 36.7 4.2 s 170 km/h (110 mph)
Titan 0.138 1.3455 4.414 12.2 s 59 km/h (37 mph)
Uranus 0.917 9.01 29.6 4.7 s 153 km/h (95 mph)
Titania 0.039 0.379 1.24 23.0 s 31 km/h (19 mph)
Oberon 0.035 0.347 1.14 24.0 s 30 km/h (19 mph)
Neptune 1.148 11.28 37.0 4.2 s 171 km/h (106 mph)
Triton 0.079 0.779 2.56 16.0 s 45 km/h (28 mph)
Pluto 0.0621 0.610 2.00 18.1 s 40 km/h (25 mph)
Eris 0.0814 0.8 2.6 (approx.) 15.8 s 46 km/h (29 mph)

सामान्य सापेक्षता

आइंस्टीन के सामान्य सापेक्षता के सिद्धांत में, गुरुत्वाकर्षण पिंडों के बीच फैले बल के कारण होने के बजाय घुमावदार अंतरिक्ष समय का गुण है। आइंस्टीन के सिद्धांत में, द्रव्यमान अपने आसपास के क्षेत्र में स्पेसटाइम को विकृत करते हैं, और अन्य कण स्पेसटाइम की ज्यामिति द्वारा निर्धारित प्रक्षेपवक्र में चलते हैं। गुरुत्वाकर्षण बल एक काल्पनिक बल है गुरुत्व एक काल्पनिक बल के रूप में। इसमें कोई गुरुत्वीय त्वरण नहीं है, इसमें उचित त्वरण और इसलिए फ्री फॉल में वस्तुओं का चार-त्वरण शून्य है। एक त्वरण से गुजरने के बजाय, फ्री फॉल में वस्तुएं घुमावदार स्पेसटाइम पर सीधी रेखाओं (जियोडेसिक (सामान्य सापेक्षता)) के साथ यात्रा करती हैं।

यह भी देखें

टिप्पणियाँ

  1. This value excludes the adjustment for centrifugal force due to Earth's rotation and is therefore greater than the 9.80665 m/s2 value of standard gravity.

संदर्भ

  1. Gerald James Holton and Stephen G. Brush (2001). Physics, the human adventure: from Copernicus to Einstein and beyond (3rd ed.). Rutgers University Press. p. 113. ISBN 978-0-8135-2908-0.
  2. Boynton, Richard (2001). "Precise Measurement of Mass" (PDF). Sawe Paper No. 3147. Arlington, Texas: S.A.W.E., Inc. Retrieved 2007-01-21.
  3. Hofmann-Wellenhof, B.; Moritz, H. (2006). Physical Geodesy (2nd ed.). Springer. ISBN 978-3-211-33544-4. § 2.1: "The total force acting on a body at rest on the earth’s surface is the resultant of gravitational force and the centrifugal force of the earth’s rotation and is called gravity."{{cite book}}: CS1 maint: postscript (link)
  4. Hirt, C.; Claessens, S.; Fecher, T.; Kuhn, M.; Pail, R.; Rexer, M. (2013). "New ultrahigh-resolution picture of Earth's gravity field". Geophysical Research Letters. 40 (16): 4279–4283. Bibcode:2013GeoRL..40.4279H. doi:10.1002/grl.50838.
  5. Fredrick J. Bueche (1975). Introduction to Physics for Scientists and Engineers, 2nd Ed. USA: Von Hoffmann Press. ISBN 978-0-07-008836-8.