अर्थिंग प्रणाली: Difference between revisions
No edit summary |
No edit summary |
||
Line 164: | Line 164: | ||
[[तटस्थ अर्थिंग रोकनेवाला|बलशून्य अर्थिंग प्रतिरोधक]] की निगरानी की जाती है ताकि बाधित भूमि सम्बन्ध का पता लगाया जा सके और अगर कोई खराबी पाई जाती है तो बिजली बंद कर दी जाए।<ref>[http://www.wmea.net/Tcechnical%20Papers/The%20Importance%20of%20the%20Neutral%20Grounding%20Resistor%20-%20Nov%2006.pdf], The Importance of the Neutral-Grounding Resistor</ref> | [[तटस्थ अर्थिंग रोकनेवाला|बलशून्य अर्थिंग प्रतिरोधक]] की निगरानी की जाती है ताकि बाधित भूमि सम्बन्ध का पता लगाया जा सके और अगर कोई खराबी पाई जाती है तो बिजली बंद कर दी जाए।<ref>[http://www.wmea.net/Tcechnical%20Papers/The%20Importance%20of%20the%20Neutral%20Grounding%20Resistor%20-%20Nov%2006.pdf], The Importance of the Neutral-Grounding Resistor</ref> | ||
===पृथ्वी रिसाव संरक्षण=== | ===पृथ्वी रिसाव संरक्षण=== | ||
आकस्मिक झटके से बचने के लिए, विद्युत धारा संवेदन परिपथ का उपयोग स्रोत पर बिजली को अलग करने के लिए किया जाता है जब विद्युत धारा रिसाव एक निश्चित सीमा से अधिक हो जाता है। इस उद्देश्य के लिए अवशिष्ट-वर्तमान उपकरण (RCDs, RCCBs या GFCIs) का उपयोग किया जाता है। पहले, एक [[अर्थ लीकेज सर्किट ब्रेकर|पृथ्वी रिसाव परिपथ भंजक]] का उपयोग किया जाता था। औद्योगिक अनुप्रयोगों में, अलग-अलग | आकस्मिक झटके से बचने के लिए, विद्युत धारा संवेदन परिपथ का उपयोग स्रोत पर बिजली को अलग करने के लिए किया जाता है जब विद्युत धारा रिसाव एक निश्चित सीमा से अधिक हो जाता है। इस उद्देश्य के लिए अवशिष्ट-वर्तमान उपकरण (RCDs, RCCBs या GFCIs) का उपयोग किया जाता है। पहले, एक [[अर्थ लीकेज सर्किट ब्रेकर|पृथ्वी रिसाव परिपथ भंजक]] का उपयोग किया जाता था। औद्योगिक अनुप्रयोगों में, अलग-अलग अंतर्भाग संतुलित विद्युत धारा परिवर्तक के साथ पृथ्वी रिसाव प्रसारण केंद्र का उपयोग किया जाता है।<ref>[https://books.google.com/books?id=oOUuBAAAQBAJ]; Electrical Notes, Volume 1, By Sir Arthur Schuster, p.317</ref> यह सुरक्षा मिली-एम्प्स की सीमा में काम करती है और इसे 30 mA से 3000 mA तक समुच्चय किया जा सकता है। | ||
===पृथ्वी संयोजकता जांच=== | ===पृथ्वी संयोजकता जांच=== | ||
Line 179: | Line 179: | ||
* TN में, एक रोधन दोष से उच्च लघु-परिपथ विद्युत धारा की संभावना होती है जो एक अतिप्रवाह विद्युत धारा परिपथ-भंजक या फ्यूज को शुरू करेगा और L सुचालक को अलग कर देगा। TT प्रणाली के साथ, पृथ्वी दोष पाश प्रतिबाधा ऐसा करने के लिए बहुत अधिक हो सकती है, या आवश्यक समय के भीतर इसे करने के लिए बहुत अधिक हो सकती है, इसलिए एक RCD (पूर्व ELCB) आमतौर पर नियोजित होती है। पहले TT प्रतिष्ठानों में इस महत्वपूर्ण सुरक्षा सुविधा की कमी हो सकती है, जिससे CPC (परिपथ सुरक्षात्मक सुचालक या PE) और शायद संबंधित धातु भागों को व्यक्तियों (उजागर-प्रवाहकीय-भागों और बाहरी-प्रवाहकीय-भागों) की पहुंच के भीतर दोष स्थितियों के तहत विस्तारित अवधि के लिए सक्रिय होने की अनुमति मिलती है, जो एक वास्तविक खतरा है। | * TN में, एक रोधन दोष से उच्च लघु-परिपथ विद्युत धारा की संभावना होती है जो एक अतिप्रवाह विद्युत धारा परिपथ-भंजक या फ्यूज को शुरू करेगा और L सुचालक को अलग कर देगा। TT प्रणाली के साथ, पृथ्वी दोष पाश प्रतिबाधा ऐसा करने के लिए बहुत अधिक हो सकती है, या आवश्यक समय के भीतर इसे करने के लिए बहुत अधिक हो सकती है, इसलिए एक RCD (पूर्व ELCB) आमतौर पर नियोजित होती है। पहले TT प्रतिष्ठानों में इस महत्वपूर्ण सुरक्षा सुविधा की कमी हो सकती है, जिससे CPC (परिपथ सुरक्षात्मक सुचालक या PE) और शायद संबंधित धातु भागों को व्यक्तियों (उजागर-प्रवाहकीय-भागों और बाहरी-प्रवाहकीय-भागों) की पहुंच के भीतर दोष स्थितियों के तहत विस्तारित अवधि के लिए सक्रिय होने की अनुमति मिलती है, जो एक वास्तविक खतरा है। | ||
* TN-S और TT प्रणाली में (और TN-C-S में विभाजन के बिंदु से परे), अतिरिक्त सुरक्षा के लिए अवशिष्ट-विद्युत धारा उपकरण का उपयोग किया जा सकता है। उपभोक्ता उपकरण में किसी भी रोधन दोष की अनुपस्थिति में, समीकरण ''I''<sub>L1</sub>+''I''<sub>L2</sub>+''I''<sub>L3</sub>+''I''<sub>N</sub> = 0 रहता है, और जैसे ही यह राशि एक सीमा (आमतौर पर 10 mA – 500 mA) तक पहुंचती है, एक RCD आपूर्ति को अलग कर सकता है। L या N और PE के बीच एक रोधन दोष उच्च संभावना वाले RCD को शुरू करेगा। | * TN-S और TT प्रणाली में (और TN-C-S में विभाजन के बिंदु से परे), अतिरिक्त सुरक्षा के लिए अवशिष्ट-विद्युत धारा उपकरण का उपयोग किया जा सकता है। उपभोक्ता उपकरण में किसी भी रोधन दोष की अनुपस्थिति में, समीकरण ''I''<sub>L1</sub>+''I''<sub>L2</sub>+''I''<sub>L3</sub>+''I''<sub>N</sub> = 0 रहता है, और जैसे ही यह राशि एक सीमा (आमतौर पर 10 mA – 500 mA) तक पहुंचती है, एक RCD आपूर्ति को अलग कर सकता है। L या N और PE के बीच एक रोधन दोष उच्च संभावना वाले RCD को शुरू करेगा। | ||
* IT और TN-C संजाल में, अवशिष्ट-विद्युत धारा उपकरण में रोधन दोष का पता लगाने की बहुत कम संभावना होती है। TN-C प्रणाली में, वे विभिन्न RCDs या वास्तविक भूमि पर परिपथ के पृथ्वी सुचालक के बीच संपर्क से अवांछित प्रवर्तन के लिए भी बहुत कमजोर होंगे, इस प्रकार उनका उपयोग अव्यावहारिक हो जाएगा। इसके अलावा, RCDs आमतौर पर बलशून्य | * IT और TN-C संजाल में, अवशिष्ट-विद्युत धारा उपकरण में रोधन दोष का पता लगाने की बहुत कम संभावना होती है। TN-C प्रणाली में, वे विभिन्न RCDs या वास्तविक भूमि पर परिपथ के पृथ्वी सुचालक के बीच संपर्क से अवांछित प्रवर्तन के लिए भी बहुत कमजोर होंगे, इस प्रकार उनका उपयोग अव्यावहारिक हो जाएगा। इसके अलावा, RCDs आमतौर पर बलशून्य अंतर्भाग को अलग करते हैं। चूंकि TN-C प्रणाली में ऐसा करना असुरक्षित है, TN-C पर RCD को केवल पंक्ति सुचालक को बाधित करने के लिए तार दिया जाना चाहिए। | ||
* एकल-अंत एकल-चरण प्रणालियों में जहां पृथ्वी और बलशून्य संयुक्त हैं (TN-C, और TN-C-S प्रणाली का हिस्सा जो संयुक्त बलशून्य और पृथ्वी | * एकल-अंत एकल-चरण प्रणालियों में जहां पृथ्वी और बलशून्य संयुक्त हैं (TN-C, और TN-C-S प्रणाली का हिस्सा जो संयुक्त बलशून्य और पृथ्वी अंतर्भाग का उपयोग करता है), यदि PEN सुचालक में संपर्क समस्या है, तो विराम से परे पृथ्वी प्रणाली के सभी हिस्से L सुचालक की क्षमता तक बढ़ जाएंगे। एक असंतुलित बहु-चरण प्रणाली में, अर्थिंग प्रणाली की क्षमता सबसे भारित पंक्ति सुचालक की ओर बढ़ जाएगी। विराम से परे बलशून्य की क्षमता में इस तरह की वृद्धि को बलशून्य व्युत्क्रम के रूप में जाना जाता है।<ref>Gates, B.G. (1936). [https://ieeexplore.ieee.org/document/5317048 Neutral inversion in power systems]. In ''Journal of the Institution of Electrical Engineers'' '''78''' (471): 317–325. Retrieved 2012-03-20.</ref> इसलिए, TN-C सम्बन्ध को प्लग/सॉकेट सम्बन्ध या लचीले मोटे तार के बीच नहीं जाना चाहिए, जहां निश्चित तारों की तुलना में संपर्क समस्याओं की संभावना अधिक होती है। एक मोटे तार क्षतिग्रस्त होने पर भी एक संकट होता है, जिसे केंद्रित मोटे तार निर्माण और कई पृथ्वी विद्युदग्र के उपयोग से कम किया जा सकता है। एक खतरनाक क्षमता के लिए 'मिट्टी वाले' धातु के काम को खोने के (छोटे) संकट के कारण, सच पृथ्वी के साथ अच्छे संपर्क के निकटता से बढ़ते झटके के संकट के साथ, यूके में कारवां स्थल और नौकाओं को किनारे की आपूर्ति के लिए TN-C-S आपूर्ति के उपयोग पर प्रतिबंध लगा दिया गया है, और खेतों और बाहरी निर्माण स्थलों पर उपयोग के लिए दृढ़ता से हतोत्साहित किया गया है। और ऐसे मामलों में RCD और एक अलग पृथ्वी विद्युदग्र के साथ सभी बाहरी तारों TT बनाने की सिफारिश की जाती है। | ||
* IT प्रणालियों में, एक एकल रोधन दोष के कारण पृथ्वी के संपर्क में मानव शरीर के माध्यम से खतरनाक धाराओं के प्रवाहित होने की संभावना नहीं है, क्योंकि इस तरह के विद्युत धारा के प्रवाह के लिए कोई कम-प्रतिबाधा परिपथ मौजूद नहीं है। हालांकि, पहले रोधन दोष प्रभावी रूप से एक IT प्रणाली को TN प्रणाली में बदल सकता है, और फिर एक दूसरा रोधन दोष खतरनाक शरीर की धाराओं को जन्म दे सकता है। इससे भी बदतर, एक बहु-चरण प्रणाली में, यदि पंक्ति सुचालक में से एक ने पृथ्वी के साथ संपर्क किया, तो यह अन्य चरण | * IT प्रणालियों में, एक एकल रोधन दोष के कारण पृथ्वी के संपर्क में मानव शरीर के माध्यम से खतरनाक धाराओं के प्रवाहित होने की संभावना नहीं है, क्योंकि इस तरह के विद्युत धारा के प्रवाह के लिए कोई कम-प्रतिबाधा परिपथ मौजूद नहीं है। हालांकि, पहले रोधन दोष प्रभावी रूप से एक IT प्रणाली को TN प्रणाली में बदल सकता है, और फिर एक दूसरा रोधन दोष खतरनाक शरीर की धाराओं को जन्म दे सकता है। इससे भी बदतर, एक बहु-चरण प्रणाली में, यदि पंक्ति सुचालक में से एक ने पृथ्वी के साथ संपर्क किया, तो यह अन्य चरण अंतर्भाग को चरण- बलशून्य विद्युत दाब के बजाय पृथ्वी के सापेक्ष चरण-चरण विद्युत दाब में वृद्धि का कारण बनेगा। IT प्रणाली भी अन्य प्रणालियों की तुलना में बड़े क्षणिक अधिक विद्युत दाब का अनुभव करते हैं। | ||
* TN-C और TN-C-S प्रणाली में, संयुक्त बलशून्य-और-पृथ्वी | * TN-C और TN-C-S प्रणाली में, संयुक्त बलशून्य-और-पृथ्वी अंतर्भाग और पृथ्वी के शरीर के बीच कोई भी सम्बन्ध सामान्य परिस्थितियों में महत्वपूर्ण धारा ले जा सकता है, और टूटी हुई बलशून्य स्थिति में और भी अधिक ले जा सकता है। इसलिए, मुख्य सुसज्जित संबंध सुचालक को इसे ध्यान में रखते हुए आकार देना चाहिए; पेट्रोल पम्प जैसी स्थितियों में TN-C-S का उपयोग करने की सलाह नहीं दी जाती है, जहां बहुत अधिक दबे हुए धातु कर्मण और विस्फोटक गैसों का संयोजन होता है। | ||
====विद्युत चुम्बकीय अनुकूलता ==== | ====विद्युत चुम्बकीय अनुकूलता ==== | ||
Line 191: | Line 191: | ||
* यूनाइटेड स्टेट्स [[राष्ट्रीय विद्युत कोड (यूएस)]] और [[कैनेडियन इलेक्ट्रिकल कोड]] में, वितरण परिवर्तक से फ़ीड एक संयुक्त बलशून्य और भूसंपर्कन सुचालक का उपयोग करता है, लेकिन संरचना के भीतर अलग-अलग बलशून्य और सुरक्षात्मक पृथ्वी सुचालक (TN-C-S) का उपयोग किया जाता है। बलशून्य को ग्राहक के अलग करने वाले स्विच के आपूर्ति पक्ष पर ही पृथ्वी से जोड़ा जाना चाहिए। | * यूनाइटेड स्टेट्स [[राष्ट्रीय विद्युत कोड (यूएस)]] और [[कैनेडियन इलेक्ट्रिकल कोड]] में, वितरण परिवर्तक से फ़ीड एक संयुक्त बलशून्य और भूसंपर्कन सुचालक का उपयोग करता है, लेकिन संरचना के भीतर अलग-अलग बलशून्य और सुरक्षात्मक पृथ्वी सुचालक (TN-C-S) का उपयोग किया जाता है। बलशून्य को ग्राहक के अलग करने वाले स्विच के आपूर्ति पक्ष पर ही पृथ्वी से जोड़ा जाना चाहिए। | ||
* [[अर्जेंटीना]], [[फ्रांस]] (TT) और [[ऑस्ट्रेलिया]] (TN-C-S) में, ग्राहकों को अपना स्वयं का भूमि सम्बन्ध प्रदान करना होगा। | * [[अर्जेंटीना]], [[फ्रांस]] (TT) और [[ऑस्ट्रेलिया]] (TN-C-S) में, ग्राहकों को अपना स्वयं का भूमि सम्बन्ध प्रदान करना होगा। | ||
* जापान में उपकरणों को PSE कानून का पालन करना चाहिए, और निर्माण | * जापान में उपकरणों को PSE कानून का पालन करना चाहिए, और निर्माण तारों में अधिकांश प्रतिष्ठानों में TT अर्थिंग का उपयोग किया जाता है। | ||
* ऑस्ट्रेलिया में, बहु-आधारित बलशून्य (MEN) अर्थिंग प्रणाली का उपयोग किया जाता है और AS/NZS 3000 की धारा 5 में इसका वर्णन किया गया है। एक LV ग्राहक के लिए, यह गली में परिवर्तक से परिसर तक एक TN-C प्रणाली है, (बलशून्य को इस खंड के साथ कई बार भू-सम्पर्कित किया जाता है), और मुख्य स्विचबोर्ड से नीचे की ओर प्रतिष्ठानों के अंदर एक TN-C-S प्रणाली है। समग्र रूप से देखा जाए तो यह एक TN-C-S प्रणाली है। | * ऑस्ट्रेलिया में, बहु-आधारित बलशून्य (MEN) अर्थिंग प्रणाली का उपयोग किया जाता है और AS/NZS 3000 की धारा 5 में इसका वर्णन किया गया है। एक LV ग्राहक के लिए, यह गली में परिवर्तक से परिसर तक एक TN-C प्रणाली है, (बलशून्य को इस खंड के साथ कई बार भू-सम्पर्कित किया जाता है), और मुख्य स्विचबोर्ड से नीचे की ओर प्रतिष्ठानों के अंदर एक TN-C-S प्रणाली है। समग्र रूप से देखा जाए तो यह एक TN-C-S प्रणाली है। | ||
* [[डेनमार्क]] में उच्च विद्युत दाब विनियमन (Stærkstrømsbekendtgørelsen) और [[मलेशिया]] विद्युत अध्यादेश 1994 में कहा गया है कि सभी उपभोक्ताओं को TT अर्थिंग का उपयोग करना चाहिए, हालांकि दुर्लभ मामलों में TN-C-S की अनुमति दी जा सकती है (यूनाइटेड स्टेट्स की तरह ही उपयोग किया जाता है)। जब बड़ी कंपनियों की बात आती है तो नियम अलग होते हैं। | * [[डेनमार्क]] में उच्च विद्युत दाब विनियमन (Stærkstrømsbekendtgørelsen) और [[मलेशिया]] विद्युत अध्यादेश 1994 में कहा गया है कि सभी उपभोक्ताओं को TT अर्थिंग का उपयोग करना चाहिए, हालांकि दुर्लभ मामलों में TN-C-S की अनुमति दी जा सकती है (यूनाइटेड स्टेट्स की तरह ही उपयोग किया जाता है)। जब बड़ी कंपनियों की बात आती है तो नियम अलग होते हैं। | ||
Line 197: | Line 197: | ||
=== | === अनुप्रयोग उदाहरण === | ||
* यू.के. के उन क्षेत्रों में जहाँ भूमिगत विद्युत | * यू.के. के उन क्षेत्रों में जहाँ भूमिगत विद्युत के मोटे तार बिछाना प्रचलित है, TN-S प्रणाली सामान्य है।<ref name="Linsley2011">{{cite book|author=Trevor Linsley|title=Basic Electrical Installation Work|year=2011|publisher=Routledge|isbn=978-1-136-42748-0|page=152}}</ref> | ||
* भारत में | * भारत में LT आपूर्ति आम तौर पर TN-S प्रणाली के माध्यम से होती है। शिरोपरि वितरण लाइन पर बलशून्य और पृथ्वी सुचालक अलग-अलग चलते हैं। पृथ्वी सम्बन्ध के लिए शिरोपरि लाइन और मोटे तार के कवच के लिए अलग सुचालक का उपयोग किया जाता है। पृथ्वी के लिए अतिरिक्त पथ प्रदान करने के लिए प्रत्येक उपयोगकर्ता छोर पर अतिरिक्त पृथ्वी विद्युदग्र/गड्ढे स्थापित किए गए हैं।<ref>{{cite web|title=Indian Standard 3043 Code of practice for electrical wiring installations |url=http://www.bis.org.in/sf/etd/ETD20(10375)_21062016.pdf|publisher=Bureau of Indian Standards|access-date=30 March 2018}}</ref> | ||
* [[यूनाइटेड किंगडम]] में पुराने शहरी और उपनगरीय घरों में | *यूरोप के अधिकांश आधुनिक घरों में TN-C-S अर्थिंग प्रणाली होता है।{{citation needed|date=September 2015}} संयुक्त बलशून्य और पृथ्वी निकटतम परिवर्तक उपकेंद्र और सेवा में कटौती (मीटर से पहले फ्यूज) के बीच होती है। इसके बाद सभी आंतरिक तारों में अलग-अलग पृथ्वी और बलशून्य अंतर्भाग का इस्तेमाल किया जाता है। | ||
* [[यूनाइटेड किंगडम]] में पुराने शहरी और उपनगरीय घरों में TN-S आपूर्ति होती है, जिसमें भूमिगत सीसा और कागज मोटे तारो के सीसा म्यान के माध्यम से पृथ्वी सम्बन्ध दिया जाता है। | |||
* [[नॉर्वे]] में चरणों के बीच 230V के साथ आईटी प्रणाली का काफी व्यापक रूप से उपयोग किया जाता है। यह अनुमान लगाया गया है कि सभी घरों में से 70% आईटी प्रणाली के माध्यम से ग्रिड से जुड़े हुए हैं।<ref>{{cite web |title=El-trøbbel i norske hjem |url=https://www.bygg.no/el-trobbel-i-norske-hjem/1292507!/ |website=bygg.no|date=31 October 2016 }}</ref> हालांकि नए आवासीय क्षेत्रों को ज्यादातर TN-C-S के साथ बनाया गया है, इस तथ्य से काफी हद तक संचालित है कि तीन-चरण विद्युत शक्ति|उपभोक्ता बाजार के लिए तीन-चरण उत्पाद - जैसे इलेक्ट्रिक वाहन चार्जिंग स्टेशन - यूरोपीय बाजार के लिए विकसित किए गए हैं जहां चरणों के बीच 400V वाले TN प्रणाली हावी हैं।<ref>{{cite web |title=Nettkundenes nytte av en oppgradering av lavspenningsnettet |url=https://publikasjoner.nve.no/eksternrapport/2019/eksternrapport2019_07.pdf |website=NVE |access-date=1 November 2021}}</ref> | * [[नॉर्वे]] में चरणों के बीच 230V के साथ आईटी प्रणाली का काफी व्यापक रूप से उपयोग किया जाता है। यह अनुमान लगाया गया है कि सभी घरों में से 70% आईटी प्रणाली के माध्यम से ग्रिड से जुड़े हुए हैं।<ref>{{cite web |title=El-trøbbel i norske hjem |url=https://www.bygg.no/el-trobbel-i-norske-hjem/1292507!/ |website=bygg.no|date=31 October 2016 }}</ref> हालांकि नए आवासीय क्षेत्रों को ज्यादातर TN-C-S के साथ बनाया गया है, इस तथ्य से काफी हद तक संचालित है कि तीन-चरण विद्युत शक्ति|उपभोक्ता बाजार के लिए तीन-चरण उत्पाद - जैसे इलेक्ट्रिक वाहन चार्जिंग स्टेशन - यूरोपीय बाजार के लिए विकसित किए गए हैं जहां चरणों के बीच 400V वाले TN प्रणाली हावी हैं।<ref>{{cite web |title=Nettkundenes nytte av en oppgradering av lavspenningsnettet |url=https://publikasjoner.nve.no/eksternrapport/2019/eksternrapport2019_07.pdf |website=NVE |access-date=1 November 2021}}</ref> | ||
* कुछ पुराने घर, विशेष रूप से वे जो रेजिडुअल-विद्युत धारापरिपथ ब्रेकर और वायर्ड होम एरिया संजाल के आविष्कार से पहले बनाए गए थे, इन-हाउस TN-C व्यवस्था का उपयोग करते हैं। यह अब अनुशंसित अभ्यास नहीं है। | * कुछ पुराने घर, विशेष रूप से वे जो रेजिडुअल-विद्युत धारापरिपथ ब्रेकर और वायर्ड होम एरिया संजाल के आविष्कार से पहले बनाए गए थे, इन-हाउस TN-C व्यवस्था का उपयोग करते हैं। यह अब अनुशंसित अभ्यास नहीं है। |
Revision as of 18:40, 3 February 2023
प्रासंगिक विषयों पर |
विद्युत स्थापना |
---|
क्षेत्र या देश द्वारा वायरिंग अभ्यास |
विद्युत प्रतिष्ठानों का विनियमन |
केबलिंग और सहायक उपकरण |
स्विचिंग और सुरक्षा उपकरण |
एक अर्थिंग प्रणाली (यूके और आईईसी) या भूसंपर्कन प्रणाली (यूएस) सुरक्षा और कार्यात्मक उद्देश्यों के लिए एक विद्युत शक्ति प्रणाली के विशिष्ट भागों को भूमि से जोड़ता है, आमतौर पर पृथ्वी की प्रवाहकीय सतह।[1] अर्थिंग प्रणाली का चुनाव स्थापना की सुरक्षा और विद्युत चुम्बकीय संगतता को प्रभावित कर सकता है। अर्थिंग प्रणाली के लिए विनियम देशों के बीच भिन्न होते हैं, हालांकि अधिकांश अंतर्राष्ट्रीय इंटरनेशनल इलेक्ट्रोटेक्नीकल कमीशन (आईईसी) की सिफारिशों का पालन करते हैं। विनियम खानों में, रोगी देखभाल क्षेत्रों में, या औद्योगिक संयंत्रों के खतरनाक क्षेत्रों में अर्थिंग के लिए विशेष मामलों की पहचान कर सकते हैं।
विद्युत शक्ति प्रणालियों के अतिरिक्त, अन्य प्रणालियों को सुरक्षा या कार्य के लिए भूसंपर्कन की आवश्यकता हो सकती है। बिजली के हमलों से बचाने के लिए लंबी संरचनाओं में बिजली की छड़ें एक प्रणाली के हिस्से के रूप में हो सकती हैं। तारप्रेषण (टेलीग्राफ) रेखाये पृथ्वी को एक परिपथ के एक सुचालक के रूप में उपयोग कर सकती है, जिससे एक लंबे परिपथ पर प्रतिवर्ती तार की स्थापना की लागत बचती है। रेडियो एंटीना को संचालन के लिए विशेष भूसंपर्कन की आवश्यकता हो सकती है, साथ ही स्थिर बिजली को नियंत्रित करने और बिजली की सुरक्षा प्रदान करने के लिए।
उद्देश्य
अर्थिंग के तीन मुख्य उद्देश्य हैं:
प्रणाली अर्थिंग
प्रणाली अर्थिंग पूरे प्रणाली में विद्युत सुरक्षा का एक उद्देश्य प्रदान करता है जो विद्युत दोष के कारण नहीं होता है। इसका मुख्य उद्देश्य स्थैतिक निर्माण को रोकना और पास में बिजली गिरने या स्विचिंग के कारण होने वाली बिजली की वृद्धि से बचाव करना है।[2] स्थैतिक निर्माण, उदाहरण के लिए घर्षण से प्रेरित, जैसे कि जब हवा एक रेडियो मास्ट पर उड़ती है, पृथ्वी पर फैल जाती है।[3] बिजली गिरने की स्थिति में, तड़ित रोधक, उछाल बन्दी (सर्ज अरेस्टर) या एसपीडी किसी उपकरण तक पहुँचने से पहले अतिरिक्त धारा को पृथ्वी की ओर मोड़ देगा।[4]
प्रणाली अर्थिंग भी सभी धातु कर्मण (मेटलवर्क्स) के बीच संभावित अंतर को रोकने के लिए समविभव बंधन की अनुमति देता है।[5] पृथ्वी को एक सामान्य संदर्भ बिंदु के रूप में रखने से विद्युत प्रणाली का संभावित अंतर आपूर्ति विद्युत दाब तक सीमित रहता है।[6]
उपकरण अर्थिंग
उपकरण अर्थिंग विद्युत दोष में विद्युत सुरक्षा के उद्देश्य से कार्य करता है। इसका मुख्य उद्देश्य उपकरण की क्षति और बिजली के झटके के संकट को रोकना है। इस प्रकार की अर्थिंग, तकनीकी रूप से अर्थिंग नहीं है।[7] जब एक पंक्ति सुचालक से पृथ्वी तार में विद्युत धारा प्रवाहित होता है, जैसा कि तब होता है जब एक पंक्ति सुचालक एक उपकरण वर्ग I उपकरण में एक पृथ्वी की सतह के साथ संपर्क बनाता है, परिपथ वियोजक या आरसीडी जैसे आपूर्ति (एडीएस) उपकरण का एक स्वचालित वियोग होगा त्रुटि को दूर करने के लिए स्वचालित रूप से परिपथ खोलें।[8]
कार्यात्मक अर्थिंग
कार्यात्मक अर्थिंग विद्युत सुरक्षा के अलावा अन्य उद्देश्य प्रदान करता है।[9] उदाहरण के उद्देश्यों में ईएमआई फिल्टर में विद्युत चुंबकीय व्यवधान (ईएमआई) फिल्टरिंग, और एकल-तार पृथ्वी वापसी वितरण प्रणाली में वापसी पथ के रूप में पृथ्वी का उपयोग शामिल है।
लो-विद्युत दाब प्रणाली
कम विद्युत दाब संजाल में, जो अंतिम उपयोगकर्ताओं के व्यापक वर्ग को विद्युत शक्ति वितरित करते हैं, अर्थिंग प्रणाली के अभिकल्पना के लिए मुख्य चिंता उन उपभोक्ताओं की सुरक्षा है जो बिजली के उपकरणों का उपयोग करते हैं और बिजली के झटके से उनकी सुरक्षा करते हैं। अर्थिंग प्रणाली, फ़्यूज़ और अवशिष्ट वर्तमान उपकरणों जैसे सुरक्षात्मक उपकरणों के संयोजन में, अंततः यह सुनिश्चित करना चाहिए कि एक व्यक्ति धातु की वस्तु के संपर्क में नहीं आता है, जिसकी क्षमता व्यक्ति की क्षमता के सापेक्ष एक सुरक्षित सीमा से अधिक है, आमतौर पर लगभग 50 V पर समुच्चय होती है .
अधिकांश विकसित देशों में, 220 V, 230 V, या 240 V सॉकेट्स के साथ भू-संपर्क द्वितीय विश्व युद्ध के ठीक पहले या बाद में शुरू किए गए थे, हालांकि काफी राष्ट्रीय भिन्नता के साथ। हालांकि संयुक्त राज्य अमेरिका और कनाडा में, जहां आपूर्ति विद्युत दाब केवल 120 वोल्ट है, 1960 के दशक के मध्य से पहले स्थापित पावर निर्गम में आम तौर पर भूमि पिन शामिल नहीं होता था। विकासशील दुनिया में, स्थानीय तारों का अभ्यास पृथ्वी से संबंध प्रदान कर सकता है या नहीं भी कर सकता है।
240 V से 690 V से अधिक चरण से बलशून्य (फेज टू न्यूट्रल) विद्युत दाब वाले कम विद्युत दाब वाले बिजली संजाल पर, जो सार्वजनिक रूप से सुलभ संजाल के बजाय ज्यादातर उद्योग, खनन उपकरण और मशीनों में उपयोग किए जाते हैं, अर्थिंग प्रणाली अभिकल्पना सुरक्षा के दृष्टिकोण से उतना ही महत्वपूर्ण है जितना कि घरेलू उपयोगकर्ता।
1947 से 1996 तक सीमाओं के लिए (अलग कुकटॉप और ओवन सहित) और 1953 से 1996 तक कपड़े सुखाने वालों के लिए, यूएस नेशनल इलेक्ट्रिकल कोड ने मुख्य सेवा चयनक में परिपथ की उत्पत्ति होने पर आपूर्ति बलशून्य तार को जमीन से उपकरण संलग्नक सम्बन्ध के रूप में उपयोग करने की अनुमति दी। प्लग-इन उपकरण और स्थायी रूप से जुड़े उपकरणों के लिए इसकी अनुमति दी गई थी। परिपथ में सामान्य असंतुलन भूमि विद्युत दाब के लिए छोटे उपकरण पैदा करेगा, बलशून्य सुचालक या सम्बन्ध की विफलता उपकरण को जमीन पर 120 वोल्ट पूर्ण करने की अनुमति देगी, एक आसानी से घातक स्थिति। 1996 और एनईसी के नए संस्करण अब इस अभ्यास की अनुमति नहीं देते हैं। इसी तरह के कारणों से, अधिकांश देशों ने अब उपभोक्ता तारों में समर्पित सुरक्षात्मक पृथ्वी सम्बन्ध अनिवार्य कर दिए हैं जो अब लगभग सार्वभौमिक हैं। वितरण संजाल में, जहां सम्बन्ध कम और कम असुरक्षित होते हैं, कई देश पृथ्वी और बलशून्य को सुचालक साझा करने की अनुमति देते हैं।
यदि गलती से सक्रिय वस्तुओं और आपूर्ति सम्बन्ध के बीच गलती पथ कम प्रतिबाधा है, तो गलती का प्रवाह इतना बड़ा होगा कि भूमि गलती को दूर करने के लिए परिपथ अतिप्रवाह सुरक्षा उपकरण (फ्यूज या परिपथ ब्रेकर) खुल जाएगा। जहां अर्थिंग प्रणाली उपकरण बाड़ों और आपूर्ति वापसी (जैसे कि टीटी अलग से अर्थिंग प्रणाली में) के बीच एक कम-प्रतिबाधा धातु सुचालक प्रदान नहीं करता है, गलती धाराएं छोटी होती हैं, और जरूरी नहीं कि अतिप्रवाह सुरक्षा उपकरण संचालित हो। ऐसे मामले में एक अवशिष्ट-वर्तमान उपकरण स्थापित किया जाता है ताकि वर्तमान क्षरण का पता लगाया जा सके और परिपथ को बाधित किया जा सके।
IEC शब्दावली
अंतर्राष्ट्रीय मानक IEC 60364 दो-अक्षर वाले संहिता TN, TT, और IT का उपयोग करते हुए अर्थिंग व्यवस्था के तीन परिवारों को अलग करता है।
पहला अक्षर पृथ्वी और बिजली आपूर्ति उपकरण (जनित्र या परिवर्तक) के बीच संबंध को इंगित करता है:
- "T" - पृथ्वी के साथ एक बिंदु का सीधा संबंध (लैटिन: टेरा)
- "I" - कोई भी बिंदु पृथ्वी से जुड़ा नहीं है (लैटिन: इंसुलातुम), सिवाय शायद एक उच्च प्रतिबाधा के माध्यम से।
दूसरा अक्षर पृथ्वी या संजाल और आपूर्ति किए जा रहे विद्युत उपकरण के बीच संबंध को इंगित करता है:
- "T" - पृथ्वी का सम्बन्ध पृथ्वी से स्थानीय प्रत्यक्ष सम्बन्ध (लैटिन: टेरा) द्वारा होता है, आमतौर पर पृष्ठभूमि रॉड के माध्यम से।
- "N" — पृथ्वी सम्बन्ध की आपूर्ति बिजली आपूर्ति संजाल द्वारा की जाती है, या तो बलशून्य सुचालक(TN-S) को अलग से, बलशून्य सुचालक(TN-C), या दोनों (TN-C-S) के साथ जोड़ा जाता है। इन पर नीचे चर्चा की गई है।
TN संजाल के प्रकार
टीएन अर्थिंग प्रणाली में, विद्युत जनित्र या परिवर्तक में से एक बिंदु पृथ्वी से जुड़ा होता है, आमतौर पर तीन-चरण प्रणाली में तारा बिंदु। परिवर्तक पर इस पृथ्वी सम्बन्ध के माध्यम से विद्युत उपकरण का शरीर पृथ्वी से जुड़ा हुआ है। यह व्यवस्था विशेष रूप से यूरोप में आवासीय और औद्योगिक विद्युत प्रणालियों के लिए एक मौजूदा मानक है।[10]
सुचालक जो उपभोक्ता की विद्युत स्थापना के उजागर धातु भागों को जोड़ता है उसे सुरक्षात्मक पृथ्वी (पीई; यह भी देखें:भूमि) कहा जाता है। सुचालक जो तीन-चरण प्रणाली में तारा बिंदु से जुड़ता है, या जो एकल-चरण प्रणाली में प्रतिफल विद्युत धारा को वहन करता है, उसे बलशून्य (N) कहा जाता है। TN प्रणाली के तीन रूपों को प्रतिष्ठित किया गया है:
- TN−S
- PE और N अलग सुचालक हैं जो केवल बिजली स्रोत के पास एक साथ जुड़े हुए हैं।
- TN−C
- एक संयुक्त PEN सुचालक PE और N सुचालक दोनों के कार्यों को पूरा करता है। (230/400 V प्रणाली पर आमतौर पर केवल वितरण संजाल के लिए उपयोग किया जाता है)
- TN−C−S
- प्रणाली का एक भाग एक संयुक्त PEN सुचालक का उपयोग करता है, जो किसी बिंदु पर अलग-अलग PE और N लाइनों में विभाजित हो जाता है। संयुक्त PEN सुचालक आमतौर पर उपकेंद्र और भवन में प्रवेश बिंदु के बीच होता है, और सेवा प्रमुख में पृथ्वी और बलशून्य अलग हो जाते हैं। यूके में, इस प्रणाली को सुरक्षात्मक गुणक अर्थिंग (पीएमई) के रूप में भी जाना जाता है, क्योंकि संयुक्त बलशून्य-और- पृथ्वी सुचालक को सबसे कम व्यावहारिक मार्ग के माध्यम से स्रोत पर और वितरण संजाल के साथ अंतराल पर स्थानीय पृथ्वी की छड़ से जोड़ने की प्रथा के कारण प्रत्येक परिसर में, इनमें से प्रत्येक स्थान पर प्रणाली अर्थिंग और उपकरण अर्थिंग दोनों प्रदान करने के लिए।[11][12] ऑस्ट्रेलिया और न्यूजीलैंड में इसी तरह की प्रणालियों को एकाधिक पृथ्वी बलशून्य (MGN) के रूप में बहु-आधारित बलशून्य (MEN) और उत्तरी अमेरिका में नामित किया गया है।
एक ही परिवर्तक से ली गई TN-S और TN-C-S दोनों आपूर्ति होना संभव है। उदाहरण के लिए, कुछ भूमिगत केबलों के आवरण खराब हो जाते हैं और अच्छे पृथ्वी सम्बन्ध प्रदान करना बंद कर देते हैं, और इसलिए जिन घरों में उच्च प्रतिरोध "खराब पृथ्वी" पाए जाते हैं उन्हें TN-C-S में परिवर्तित किया जा सकता है। यह केवल एक संजाल पर संभव है जब बलशून्य विफलता के खिलाफ उपयुक्त रूप से मजबूत होता है, और रूपांतरण हमेशा संभव नहीं होता है। PEN को विफलता के खिलाफ उपयुक्त रूप से प्रबलित किया जाना चाहिए, क्योंकि एक खुला परिपथ PEN विभाजित के अनुप्रवाह प्रणाली पृथ्वी से जुड़े किसी भी उजागर धातु पर पूर्ण चरण विद्युत दाब को प्रभावित कर सकता है। इसका विकल्प एक स्थानीय पृथ्वी प्रदान करना और TT में बदलना है। TN संजाल का मुख्य आकर्षण कम प्रतिबाधा पृथ्वी पथ एक लाइन-टू-PE लघु परिपथ के मामले में एक उच्च वर्तमान परिपथ पर आसान स्वचालित वियोग (ADS) की अनुमति देता है क्योंकि वही भंजक या फ्यूज L-N या L-PE के लिए काम करेगा। पृथ्वी के दोषों का पता लगाने के लिए आरसीडी की आवश्यकता नहीं है।
TT संजाल
एक TT (लैटिन: टेरा-टेरा) अर्थिंग प्रणाली में, उपभोक्ता के लिए सुरक्षात्मक पृथ्वी सम्बन्ध एक स्थानीय पृथ्वी विद्युदग्र (इलेक्ट्रोड) द्वारा प्रदान किया जाता है, (कभी-कभी इसे टेरा-फ़िरमा सम्बन्ध के रूप में संदर्भित किया जाता है) और जनित्र पर एक और स्वतंत्र रूप से स्थापित होता है। दोनों के बीच कोई ' पृथ्वी तार' नहीं है। दोष पाश प्रतिबाधा अधिक है, और जब तक विद्युदग्र प्रतिबाधा वास्तव में बहुत कम नहीं होती है, एक TT स्थापना में हमेशा एक RCD (GFCI) होना चाहिए जो इसके पहले विच्छेदक के रूप में हो।
TT अर्थिंग प्रणाली का बड़ा लाभ यह है कि अन्य उपयोगकर्ताओं के जुड़े उपकरणों से कम संचालित हस्तक्षेप होता है। TT हमेशा दूरसंचार स्थल जैसे विशेष अनुप्रयोगों के लिए बेहतर रहा है जो हस्तक्षेप मुक्त अर्थिंग से लाभान्वित होते हैं। साथ ही, बलशून्य के टूटने की स्थिति में TT संजाल कोई गंभीर जोखिम उत्पन्न नहीं करते हैं। इसके अलावा, उन स्थानों पर जहां बिजली उपरिव्यय वितरित की जाती है, पृथ्वी सुचालक को जीवन्त होने का खतरा नहीं होता है, अगर किसी उपरिव्यय वितरण सुचालक को गिरने वाले पेड़ या शाखा से खंडित किया जाता है।
पूर्व-आरसीडी युग में, TT अर्थिंग प्रणाली सामान्य उपयोग के लिए अनाकर्षक था क्योंकि लाइन-टू-PE लघु परिपथ के मामले में विश्वसनीय स्वचालित कनेक्शन (ADS) की व्यवस्था करने में कठिनाई होती थी (TN प्रणाली की तुलना में, जहां एक ही ब्रेकर या फ्यूज या तो L-N या L-PE दोषों के लिए काम करेगा)। लेकिन जैसा कि अवशिष्ट वर्तमान उपकरण इस नुकसान को कम करते हैं, TT अर्थिंग प्रणाली अधिक आकर्षक हो गया है, बशर्ते कि सभी AC शक्ति परिपथ RCD-संरक्षित हों। कुछ देशों (जैसे यूके) में TT को उन स्थितियों के लिए अनुशंसित किया जाता है जहां संबंध द्वारा बनाए रखने के लिए कम प्रतिबाधा समसंभाविक क्षेत्र अव्यावहारिक है, जहां महत्वपूर्ण बाहरी वायरिंग है, जैसे कि चलने वाले घरों और कुछ कृषि समायोजन को आपूर्ति, या जहां एक उच्च दोष प्रवाह अन्य खतरे पैदा कर सकता है, जैसे कि ईंधन डिपो या बंदरगाह।
TT अर्थिंग प्रणाली का उपयोग पूरे जापान में किया जाता है, RCD इकाइयों के साथ अधिकांश औद्योगिक समायोजन या घर पर भी। यह चर आवृत्ति ड्राइव और स्विच-मोड बिजली आपूर्ति पर अतिरिक्त आवश्यकताओं को लागू कर सकता है, जिसमें अक्सर पर्याप्त निस्पंदन होते हैं जो भूमि सुचालक को उच्च आवृत्ति शोर तक पहुंचाते हैं।
IT संजाल
एक IT संजाल (आइसोले-टेरे) में, विद्युत वितरण प्रणाली का धरती से बिल्कुल भी संबंध नहीं होता है, या इसका केवल एक उच्च-विद्युत प्रतिबाधा सम्बन्ध होता है।
तुलना
TT | IT | TN-S | TN-C | TN-C-S | |
---|---|---|---|---|---|
Earth fault loop impedance | High | Highest | Low | Low | Low |
RCD preferred? | Yes | Yes | Optional | No | Optional |
Need earth electrode at site? | Yes | Yes | No | No | Optional |
PE conductor cost | Low | Low | Highest | Least | High |
Risk of broken PEN-conductor | No | No | High | Highest | High |
Safety | Safe | Less Safe | Safest | Least Safe | Safe |
Electromagnetic interference | Least | Least | Low | High | Low |
Safety risks | High loop impedance (step voltages) | Double fault, overvoltage | Broken PEN | Broken PEN | |
Advantages | Safe and reliable | Continuity of operation, cost | Safest | Cost | Safety and cost |
अन्य शब्दावली
जबकि कई देशों की इमारतों के लिए राष्ट्रीय वायरिंग नियम IEC 60364 शब्दावली का पालन करते हैं, उत्तरी अमेरिका (संयुक्त राज्य अमेरिका और कनाडा) में, शब्द उपकरण भूसंपर्कन सुचालक शाखा परिपथ पर उपकरण के आधार और भूमि वायर को संदर्भित करता है, और "भूसंपर्कन विद्युदग्र सुचालक" का उपयोग पृथ्वी / भूमि के लिए छड़, विद्युदग्र या सेवा चयनक के समान सुचालक के लिए किया जाता है। भूसंपर्कन विद्युदग्र प्रत्येक इमारत में "प्रणाली भूसंपर्कन" प्रदान करता है [13] जहां इसे स्थापित किया गया है।
भूमिे विद्युत धारा ले जाने वाली सुचालक प्रणाली बलशून्य है। ऑस्ट्रेलियाई और न्यूजीलैंड के मानक एक संशोधित सुरक्षात्मक एकाधिक अर्थिंग (PME [14]) प्रणाली जिसे बहु-आधारित बलशून्य (MEN) कहा जाता है। बलशून्य को प्रत्येक उपभोक्ता सेवा बिंदु पर भूसंपर्कन (अर्थेड) किया जाता है, जिससे LV लाइनों की पूरी लंबाई के साथ बलशून्य संभावित अंतर को शून्य की ओर प्रभावी रूप से लाया जाता है। IEC 60364 शब्दावली में इसे TN-C-S कहा जाता है। उत्तरी अमेरिका में, "एकाधिक पृथ्वी बलशून्य" प्रणाली (MGN) शब्द का प्रयोग किया जाता है।[15]
यूके और कुछ राष्ट्रमंडल देशों में, शब्द "PNE", जिसका अर्थ है चरण-बलशून्य-पृथ्वी का उपयोग यह इंगित करने के लिए किया जाता है कि तीन (या गैर-एकल-चरण सम्बन्ध के लिए अधिक) सुचालक का उपयोग किया जाता है, अर्थात, PN-S।
प्रतिरोध-पृथ्वी बलशून्य (भारत)
केंद्रीय विद्युत प्राधिकरण विनियमों के अनुसार भारत में खनन के लिए एक प्रतिरोध पृथ्वी प्रणाली का उपयोग किया जाता है। बलशून्य से पृथ्वी के ठोस सम्बन्ध के बजाय, बलशून्य भूसंपर्कन प्रतिरोधक (NGR) का उपयोग भूमि पर विद्युत धाराको 750 mA से कम तक सीमित करने के लिए किया जाता है। दोष विद्युत धारा प्रतिबंध के कारण यह गैसीय खानों के लिए अधिक सुरक्षित है।[16] चूंकि पृथ्वी रिसाव प्रतिबंधित है, रिसाव संरक्षण उपकरणों को 750 mA से कम पर समुच्चय किया जा सकता है। तुलनात्मक रूप से, एक ठोस पृथ्वी प्रणाली में, पृथ्वी दोष वर्तमान उपलब्ध लघु परिपथ वर्तमान जितना हो सकता है।
बलशून्य अर्थिंग प्रतिरोधक की निगरानी की जाती है ताकि बाधित भूमि सम्बन्ध का पता लगाया जा सके और अगर कोई खराबी पाई जाती है तो बिजली बंद कर दी जाए।[17]
पृथ्वी रिसाव संरक्षण
आकस्मिक झटके से बचने के लिए, विद्युत धारा संवेदन परिपथ का उपयोग स्रोत पर बिजली को अलग करने के लिए किया जाता है जब विद्युत धारा रिसाव एक निश्चित सीमा से अधिक हो जाता है। इस उद्देश्य के लिए अवशिष्ट-वर्तमान उपकरण (RCDs, RCCBs या GFCIs) का उपयोग किया जाता है। पहले, एक पृथ्वी रिसाव परिपथ भंजक का उपयोग किया जाता था। औद्योगिक अनुप्रयोगों में, अलग-अलग अंतर्भाग संतुलित विद्युत धारा परिवर्तक के साथ पृथ्वी रिसाव प्रसारण केंद्र का उपयोग किया जाता है।[18] यह सुरक्षा मिली-एम्प्स की सीमा में काम करती है और इसे 30 mA से 3000 mA तक समुच्चय किया जा सकता है।
पृथ्वी संयोजकता जांच
तार की निरंतरता की निगरानी के लिए पृथ्वी तार के अलावा वितरण/ उपकरण आपूर्ति प्रणाली से एक अलग पायलट तार चलाया जाता है। इसका उपयोग खनन यंत्रसमूह के अनुगामी केबलों में किया जाता है।[19] यदि पृथ्वी का तार टूट गया है, तो पायलट तार मशीन को बिजली बाधित करने के लिए स्रोत के अंत में एक संवेदन उपकरण की अनुमति देता है। भूमिगत खानों में उपयोग किए जा रहे पोर्टेबल भारी विद्युत उपकरण (जैसे LHD (Load, Haul, Dump यंत्र)) के लिए इस प्रकार का परिपथ जरूरी है।
गुण
लागत
- TN संजाल प्रत्येक उपभोक्ता के स्थल पर कम-प्रतिबाधा वाले पृथ्वी सम्बन्ध की लागत को बचाते हैं। IT और TT प्रणाली में सुरक्षात्मक पृथ्वी प्रदान करने के लिए इस तरह के एक सम्बन्ध (एक दफन धातु संरचना) की आवश्यकता होती है।
- TN-C संजाल अलग-अलग N और PE सम्बन्ध के लिए आवश्यक अतिरिक्त सुचालक की लागत को बचाते हैं। हालांकि, टूटे हुए बलशून्य के संकट को कम करने के लिए, विशेष मोटे तार और पृथ्वी से कई सम्बन्धों की आवश्यकता होती है।
- TT संजाल को उचित RCD (भूमि दोष अवरोधक) सुरक्षा की आवश्यकता होती है।
सुरक्षा
- TN में, एक रोधन दोष से उच्च लघु-परिपथ विद्युत धारा की संभावना होती है जो एक अतिप्रवाह विद्युत धारा परिपथ-भंजक या फ्यूज को शुरू करेगा और L सुचालक को अलग कर देगा। TT प्रणाली के साथ, पृथ्वी दोष पाश प्रतिबाधा ऐसा करने के लिए बहुत अधिक हो सकती है, या आवश्यक समय के भीतर इसे करने के लिए बहुत अधिक हो सकती है, इसलिए एक RCD (पूर्व ELCB) आमतौर पर नियोजित होती है। पहले TT प्रतिष्ठानों में इस महत्वपूर्ण सुरक्षा सुविधा की कमी हो सकती है, जिससे CPC (परिपथ सुरक्षात्मक सुचालक या PE) और शायद संबंधित धातु भागों को व्यक्तियों (उजागर-प्रवाहकीय-भागों और बाहरी-प्रवाहकीय-भागों) की पहुंच के भीतर दोष स्थितियों के तहत विस्तारित अवधि के लिए सक्रिय होने की अनुमति मिलती है, जो एक वास्तविक खतरा है।
- TN-S और TT प्रणाली में (और TN-C-S में विभाजन के बिंदु से परे), अतिरिक्त सुरक्षा के लिए अवशिष्ट-विद्युत धारा उपकरण का उपयोग किया जा सकता है। उपभोक्ता उपकरण में किसी भी रोधन दोष की अनुपस्थिति में, समीकरण IL1+IL2+IL3+IN = 0 रहता है, और जैसे ही यह राशि एक सीमा (आमतौर पर 10 mA – 500 mA) तक पहुंचती है, एक RCD आपूर्ति को अलग कर सकता है। L या N और PE के बीच एक रोधन दोष उच्च संभावना वाले RCD को शुरू करेगा।
- IT और TN-C संजाल में, अवशिष्ट-विद्युत धारा उपकरण में रोधन दोष का पता लगाने की बहुत कम संभावना होती है। TN-C प्रणाली में, वे विभिन्न RCDs या वास्तविक भूमि पर परिपथ के पृथ्वी सुचालक के बीच संपर्क से अवांछित प्रवर्तन के लिए भी बहुत कमजोर होंगे, इस प्रकार उनका उपयोग अव्यावहारिक हो जाएगा। इसके अलावा, RCDs आमतौर पर बलशून्य अंतर्भाग को अलग करते हैं। चूंकि TN-C प्रणाली में ऐसा करना असुरक्षित है, TN-C पर RCD को केवल पंक्ति सुचालक को बाधित करने के लिए तार दिया जाना चाहिए।
- एकल-अंत एकल-चरण प्रणालियों में जहां पृथ्वी और बलशून्य संयुक्त हैं (TN-C, और TN-C-S प्रणाली का हिस्सा जो संयुक्त बलशून्य और पृथ्वी अंतर्भाग का उपयोग करता है), यदि PEN सुचालक में संपर्क समस्या है, तो विराम से परे पृथ्वी प्रणाली के सभी हिस्से L सुचालक की क्षमता तक बढ़ जाएंगे। एक असंतुलित बहु-चरण प्रणाली में, अर्थिंग प्रणाली की क्षमता सबसे भारित पंक्ति सुचालक की ओर बढ़ जाएगी। विराम से परे बलशून्य की क्षमता में इस तरह की वृद्धि को बलशून्य व्युत्क्रम के रूप में जाना जाता है।[20] इसलिए, TN-C सम्बन्ध को प्लग/सॉकेट सम्बन्ध या लचीले मोटे तार के बीच नहीं जाना चाहिए, जहां निश्चित तारों की तुलना में संपर्क समस्याओं की संभावना अधिक होती है। एक मोटे तार क्षतिग्रस्त होने पर भी एक संकट होता है, जिसे केंद्रित मोटे तार निर्माण और कई पृथ्वी विद्युदग्र के उपयोग से कम किया जा सकता है। एक खतरनाक क्षमता के लिए 'मिट्टी वाले' धातु के काम को खोने के (छोटे) संकट के कारण, सच पृथ्वी के साथ अच्छे संपर्क के निकटता से बढ़ते झटके के संकट के साथ, यूके में कारवां स्थल और नौकाओं को किनारे की आपूर्ति के लिए TN-C-S आपूर्ति के उपयोग पर प्रतिबंध लगा दिया गया है, और खेतों और बाहरी निर्माण स्थलों पर उपयोग के लिए दृढ़ता से हतोत्साहित किया गया है। और ऐसे मामलों में RCD और एक अलग पृथ्वी विद्युदग्र के साथ सभी बाहरी तारों TT बनाने की सिफारिश की जाती है।
- IT प्रणालियों में, एक एकल रोधन दोष के कारण पृथ्वी के संपर्क में मानव शरीर के माध्यम से खतरनाक धाराओं के प्रवाहित होने की संभावना नहीं है, क्योंकि इस तरह के विद्युत धारा के प्रवाह के लिए कोई कम-प्रतिबाधा परिपथ मौजूद नहीं है। हालांकि, पहले रोधन दोष प्रभावी रूप से एक IT प्रणाली को TN प्रणाली में बदल सकता है, और फिर एक दूसरा रोधन दोष खतरनाक शरीर की धाराओं को जन्म दे सकता है। इससे भी बदतर, एक बहु-चरण प्रणाली में, यदि पंक्ति सुचालक में से एक ने पृथ्वी के साथ संपर्क किया, तो यह अन्य चरण अंतर्भाग को चरण- बलशून्य विद्युत दाब के बजाय पृथ्वी के सापेक्ष चरण-चरण विद्युत दाब में वृद्धि का कारण बनेगा। IT प्रणाली भी अन्य प्रणालियों की तुलना में बड़े क्षणिक अधिक विद्युत दाब का अनुभव करते हैं।
- TN-C और TN-C-S प्रणाली में, संयुक्त बलशून्य-और-पृथ्वी अंतर्भाग और पृथ्वी के शरीर के बीच कोई भी सम्बन्ध सामान्य परिस्थितियों में महत्वपूर्ण धारा ले जा सकता है, और टूटी हुई बलशून्य स्थिति में और भी अधिक ले जा सकता है। इसलिए, मुख्य सुसज्जित संबंध सुचालक को इसे ध्यान में रखते हुए आकार देना चाहिए; पेट्रोल पम्प जैसी स्थितियों में TN-C-S का उपयोग करने की सलाह नहीं दी जाती है, जहां बहुत अधिक दबे हुए धातु कर्मण और विस्फोटक गैसों का संयोजन होता है।
विद्युत चुम्बकीय अनुकूलता
- TN-S और TT प्रणाली में, उपभोक्ता के पास पृथ्वी से कम शोर वाला सम्बन्ध होता है, जो वापसी धाराओं और उस सुचालक के प्रतिबाधा के परिणामस्वरूप N सुचालक पर दिखाई देने वाले विद्युत दाब से पीड़ित नहीं होता है। कुछ प्रकार के दूरसंचार और माप उपकरणों के साथ इसका विशेष महत्व है।
- TT प्रणाली में, प्रत्येक उपभोक्ता का पृथ्वी से अपना स्वयं का सम्बन्ध होता है, और साझा PE पंक्तिपर अन्य उपभोक्ताओं के कारण होने वाली किसी भी धारा पर ध्यान नहीं दिया जाएगा।
विनियम
- यूनाइटेड स्टेट्स राष्ट्रीय विद्युत कोड (यूएस) और कैनेडियन इलेक्ट्रिकल कोड में, वितरण परिवर्तक से फ़ीड एक संयुक्त बलशून्य और भूसंपर्कन सुचालक का उपयोग करता है, लेकिन संरचना के भीतर अलग-अलग बलशून्य और सुरक्षात्मक पृथ्वी सुचालक (TN-C-S) का उपयोग किया जाता है। बलशून्य को ग्राहक के अलग करने वाले स्विच के आपूर्ति पक्ष पर ही पृथ्वी से जोड़ा जाना चाहिए।
- अर्जेंटीना, फ्रांस (TT) और ऑस्ट्रेलिया (TN-C-S) में, ग्राहकों को अपना स्वयं का भूमि सम्बन्ध प्रदान करना होगा।
- जापान में उपकरणों को PSE कानून का पालन करना चाहिए, और निर्माण तारों में अधिकांश प्रतिष्ठानों में TT अर्थिंग का उपयोग किया जाता है।
- ऑस्ट्रेलिया में, बहु-आधारित बलशून्य (MEN) अर्थिंग प्रणाली का उपयोग किया जाता है और AS/NZS 3000 की धारा 5 में इसका वर्णन किया गया है। एक LV ग्राहक के लिए, यह गली में परिवर्तक से परिसर तक एक TN-C प्रणाली है, (बलशून्य को इस खंड के साथ कई बार भू-सम्पर्कित किया जाता है), और मुख्य स्विचबोर्ड से नीचे की ओर प्रतिष्ठानों के अंदर एक TN-C-S प्रणाली है। समग्र रूप से देखा जाए तो यह एक TN-C-S प्रणाली है।
- डेनमार्क में उच्च विद्युत दाब विनियमन (Stærkstrømsbekendtgørelsen) और मलेशिया विद्युत अध्यादेश 1994 में कहा गया है कि सभी उपभोक्ताओं को TT अर्थिंग का उपयोग करना चाहिए, हालांकि दुर्लभ मामलों में TN-C-S की अनुमति दी जा सकती है (यूनाइटेड स्टेट्स की तरह ही उपयोग किया जाता है)। जब बड़ी कंपनियों की बात आती है तो नियम अलग होते हैं।
- भारत में केन्द्रीय विद्युत प्राधिकरण विनियम, CEAR, 2010, नियम 41 के अनुसार अर्थिंग, 3-चरण के बलशून्य तार, 4-तार प्रणाली और 2-चरण, 3-तार प्रणाली के अतिरिक्त तीसरे तार का प्रावधान है। अर्थिंग दो अलग-अलग सम्बन्ध से की जानी है। उचित भूसंपर्कन को बेहतर ढंग से सुनिश्चित करने के लिए भूसंपर्कन प्रणाली में कम से कम दो या दो से अधिक पृथ्वी गड्ढे (विद्युदग्र) होने चाहिए। नियम 42 के अनुसार, 250 V से अधिक 5 kW से अधिक संबद्ध भार वाले प्रतिष्ठानों में पृथ्वी दोष या रिसाव के मामले में भार को अलग करने के लिए एक उपयुक्त पृथ्वी रिसाव सुरक्षात्मक उपकरण होना चाहिए।[21]
अनुप्रयोग उदाहरण
- यू.के. के उन क्षेत्रों में जहाँ भूमिगत विद्युत के मोटे तार बिछाना प्रचलित है, TN-S प्रणाली सामान्य है।[22]
- भारत में LT आपूर्ति आम तौर पर TN-S प्रणाली के माध्यम से होती है। शिरोपरि वितरण लाइन पर बलशून्य और पृथ्वी सुचालक अलग-अलग चलते हैं। पृथ्वी सम्बन्ध के लिए शिरोपरि लाइन और मोटे तार के कवच के लिए अलग सुचालक का उपयोग किया जाता है। पृथ्वी के लिए अतिरिक्त पथ प्रदान करने के लिए प्रत्येक उपयोगकर्ता छोर पर अतिरिक्त पृथ्वी विद्युदग्र/गड्ढे स्थापित किए गए हैं।[23]
- यूरोप के अधिकांश आधुनिक घरों में TN-C-S अर्थिंग प्रणाली होता है।[citation needed] संयुक्त बलशून्य और पृथ्वी निकटतम परिवर्तक उपकेंद्र और सेवा में कटौती (मीटर से पहले फ्यूज) के बीच होती है। इसके बाद सभी आंतरिक तारों में अलग-अलग पृथ्वी और बलशून्य अंतर्भाग का इस्तेमाल किया जाता है।
- यूनाइटेड किंगडम में पुराने शहरी और उपनगरीय घरों में TN-S आपूर्ति होती है, जिसमें भूमिगत सीसा और कागज मोटे तारो के सीसा म्यान के माध्यम से पृथ्वी सम्बन्ध दिया जाता है।
- नॉर्वे में चरणों के बीच 230V के साथ आईटी प्रणाली का काफी व्यापक रूप से उपयोग किया जाता है। यह अनुमान लगाया गया है कि सभी घरों में से 70% आईटी प्रणाली के माध्यम से ग्रिड से जुड़े हुए हैं।[24] हालांकि नए आवासीय क्षेत्रों को ज्यादातर TN-C-S के साथ बनाया गया है, इस तथ्य से काफी हद तक संचालित है कि तीन-चरण विद्युत शक्ति|उपभोक्ता बाजार के लिए तीन-चरण उत्पाद - जैसे इलेक्ट्रिक वाहन चार्जिंग स्टेशन - यूरोपीय बाजार के लिए विकसित किए गए हैं जहां चरणों के बीच 400V वाले TN प्रणाली हावी हैं।[25]
- कुछ पुराने घर, विशेष रूप से वे जो रेजिडुअल-विद्युत धारापरिपथ ब्रेकर और वायर्ड होम एरिया संजाल के आविष्कार से पहले बनाए गए थे, इन-हाउस TN-C व्यवस्था का उपयोग करते हैं। यह अब अनुशंसित अभ्यास नहीं है।
- प्रयोगशाला कक्ष, चिकित्सा सुविधाएं, निर्माण स्थल, मरम्मत कार्यशालाएं, मोबाइल विद्युत प्रतिष्ठान, और अन्य वातावरण जो विद्युत जनित्र#इंजन- जनित्र|इंजन-जेनरेटर के माध्यम से आपूर्ति किए जाते हैं, जहां इन्सुलेशन दोषों का जोखिम बढ़ जाता है, अक्सर आईटी अर्थिंग व्यवस्था का उपयोग करते हैं अलग परिवर्तक से सप्लाई आईटी प्रणाली के साथ दो-गलती के मुद्दों को कम करने के लिए, आइसोलेशन परिवर्तक को केवल कुछ ही लोड की आपूर्ति करनी चाहिए और एक इन्सुलेशन निगरानी उपकरण (आमतौर पर लागत के कारण केवल चिकित्सा, रेलवे या सैन्य आईटी प्रणाली द्वारा उपयोग किया जाता है) के साथ संरक्षित किया जाना चाहिए।
- दूरस्थ क्षेत्रों में, जहां एक अतिरिक्त पीई सुचालककी लागत एक स्थानीय पृथ्वी सम्बन्ध की लागत से अधिक हो जाती है, टीटी संजाल आमतौर पर कुछ देशों में उपयोग किए जाते हैं, विशेष रूप से पुरानी संपत्तियों में या ग्रामीण क्षेत्रों में, जहां सुरक्षा अन्यथा खतरे में पड़ सकती है पेड़ की एक गिरी हुई टहनी के द्वारा एक ओवरहेड पीई कंडक्टर। व्यक्तिगत संपत्तियों के लिए टीटी की आपूर्ति ज्यादातर टीएन-सी-एस प्रणालियों में भी देखी जाती है जहां एक व्यक्तिगत संपत्ति को टीएन-सी-एस आपूर्ति के लिए अनुपयुक्त माना जाता है।
- ऑस्ट्रेलिया, न्यूजीलैंड और इजराइल में TN-C-S प्रणाली उपयोग में है; हालाँकि, वायरिंग नियम बताते हैं कि, इसके अलावा, प्रत्येक ग्राहक को एक समर्पित पृथ्वी इलेक्ट्रोड के माध्यम से, पृथ्वी से एक अलग सम्बन्ध प्रदान करना होगा। (उपभोक्ता के परिसर में प्रवेश करने वाले किसी भी धातु के पानी के पाइप को वितरण स्विचबोर्ड/पैनल पर अर्थिंग बिंदु से भी जोड़ा जाना चाहिए।) ऑस्ट्रेलिया और न्यूजीलैंड में मुख्य स्विचबोर्ड/पैनल पर सुरक्षात्मक पृथ्वी बार और बलशून्य बार के बीच संबंध को कहा जाता है। मल्टीपल पृथ्वीेड न्यूट्रल लिंक या मेन लिंक। यह एमईएन लिंक स्थापना परीक्षण उद्देश्यों के लिए हटाने योग्य है, लेकिन सामान्य सेवा के दौरान या तो लॉकिंग प्रणाली (उदाहरण के लिए लॉकनट्स) या दो या अधिक स्क्रू से जुड़ा हुआ है। एमईएन प्रणाली में बलशून्य की अखंडता सर्वोपरि है। ऑस्ट्रेलिया में, नए प्रतिष्ठानों को भी गीले क्षेत्रों के तहत सुरक्षात्मक पृथ्वी सुचालक(AS3000) के तहत नींव कंक्रीट को फिर से लागू करना चाहिए, आमतौर पर अर्थिंग के आकार को बढ़ाना (यानी प्रतिरोध को कम करना), और बाथरूम जैसे क्षेत्रों में एक लैस विमान प्रदान करना। पुराने प्रतिष्ठानों में, केवल पानी के पाइप के बंधन को ढूंढना असामान्य नहीं है, और इसे ऐसे ही रहने दिया जाता है, लेकिन अगर कोई अपग्रेड कार्य किया जाता है तो अतिरिक्त पृथ्वी इलेक्ट्रोड स्थापित किया जाना चाहिए। आने वाली सुरक्षात्मक पृथ्वी/ बलशून्य सुचालकएक बलशून्य पट्टी (बिजली मीटर के बलशून्य सम्बन्ध के ग्राहक के पक्ष में स्थित) से जुड़ा हुआ है जो फिर ग्राहक के एमईएन लिंक के माध्यम से पृथ्वी पट्टी से जुड़ा हुआ है - इस बिंदु से परे, सुरक्षात्मक पृथ्वी और बलशून्य सुचालकअलग हैं।
हाई-विद्युत दाब प्रणाली
This section needs expansion. You can help by adding to it. (October 2013) |
उच्च-विद्युत दाब संजाल (1 kV से ऊपर) में, जो आम जनता के लिए बहुत कम सुलभ हैं, अर्थिंग प्रणाली डिज़ाइन का ध्यान सुरक्षा पर कम और आपूर्ति की विश्वसनीयता, सुरक्षा की विश्वसनीयता और उपकरणों पर प्रभाव पर अधिक होता है। एक शॉर्ट परिपथ। केवल फेज-टू- पृष्ठभूमि शॉर्ट परिपथ का परिमाण, जो सबसे आम हैं, अर्थिंग प्रणाली की पसंद से महत्वपूर्ण रूप से प्रभावित होता है, क्योंकि वर्तमान पथ ज्यादातर पृथ्वी के माध्यम से बंद होता है। वितरण विद्युत सबस्टेशनों में स्थित तीन-चरण एचवी/एमवी सत्ता स्थानांतरण, वितरण संजाल के लिए आपूर्ति का सबसे आम स्रोत हैं, और उनके बलशून्य के भूसंपर्कनका प्रकार अर्थिंग प्रणाली को निर्धारित करता है।
न्यूट्रल अर्थिंग पांच प्रकार की होती है:[26]
- सॉलिड- पृथ्वीेड न्यूट्रल
- बलशून्य का पता लगाया
- प्रतिरोध-पृथ्वी बलशून्य
- कम प्रतिरोध वाली अर्थिंग
- उच्च प्रतिरोध अर्थिंग
- प्रतिक्रिया-पृथ्वी बलशून्य
- अर्थिंग परिवर्तक (जैसे ज़िगज़ैग परिवर्तक) का उपयोग करना
ठोस-पृथ्वी बलशून्य
सॉलिड या डायरेक्ट पृथ्वीेड न्यूट्रल में परिवर्तक का स्टार पॉइंट सीधे जमीन से जुड़ा होता है। इस समाधान में, पृष्ठभूमि फॉल्ट विद्युत धाराको बंद करने के लिए एक कम-प्रतिबाधा पथ प्रदान किया जाता है और परिणामस्वरूप, उनका परिमाण तीन-चरण दोष धाराओं के साथ तुलनीय होता है।[26]चूंकि न्यूट्रल जमीन के करीब क्षमता पर रहता है, अप्रभावित चरणों में उच्च विद्युत दाब प्री-फॉल्ट वाले स्तरों के समान स्तर पर रहता है; इस कारण से, इस प्रणाली का नियमित रूप से उच्च-विद्युत दाब विद्युत शक्ति संचरण में उपयोग किया जाता है, जहां इन्सुलेशन लागत अधिक होती है।[27]
प्रतिरोध-पृथ्वी बलशून्य
शॉर्ट परिपथ पृथ्वी फॉल्ट को सीमित करने के लिए परिवर्तक स्टार पॉइंट और पृथ्वी के न्यूट्रल के बीच एक अतिरिक्त न्यूट्रल अर्थिंग रेसिस्टर (एनईआर) जोड़ा जाता है।
कम प्रतिरोध अर्थिंग
कम प्रतिरोध दोष के साथ वर्तमान सीमा अपेक्षाकृत अधिक है। भारत में यह केंद्रीय विद्युत प्राधिकरण विनियम, सीईएआर, 2010, नियम 100 के अनुसार खुली खदानों के लिए 50 ए तक सीमित है।
उच्च प्रतिरोध अर्थिंग
उच्च प्रतिरोध भूसंपर्कनप्रणाली एक प्रतिरोध के माध्यम से बलशून्य को पृष्ठभूमि करता है जो पृष्ठभूमि फॉल्ट विद्युत धाराको उस प्रणाली के कैपेसिटिव चार्जिंग विद्युत धाराके बराबर या उससे थोड़ा अधिक मूल्य तक सीमित करता है।
बलशून्यता का पता लगाया
खोजे गए, अलग-थलग या फ्लोटिंग न्यूट्रल प्रणाली में, जैसा कि आईटी प्रणाली में होता है, स्टार पॉइंट (या संजाल में कोई अन्य पॉइंट) और जमीन का कोई सीधा संबंध नहीं होता है। नतीजतन, पृष्ठभूमि गलती धाराओं के पास बंद होने का कोई रास्ता नहीं है और इस प्रकार नगण्य परिमाण हैं। हालांकि, व्यवहार में, फॉल्ट विद्युत धाराशून्य के बराबर नहीं होगा: परिपथ में सुचालक- विशेष रूप से भूमिगत केबल - में पृथ्वी की ओर एक अंतर्निहित समाई होती है, जो अपेक्षाकृत उच्च प्रतिबाधा का मार्ग प्रदान करती है।[28] आइसोलेटेड न्यूट्रल वाली प्रणालियाँ संचालन जारी रख सकती हैं और पृष्ठभूमि फॉल्ट की उपस्थिति में भी निर्बाध आपूर्ति प्रदान कर सकती हैं।[26]हालाँकि, जब गलती मौजूद होती है, तो जमीन के सापेक्ष अन्य दो चरणों की क्षमता पहुँच जाती है सामान्य ऑपरेटिंग विद्युत दाब का, इन्सुलेटर (विद्युत) के लिए अतिरिक्त तनाव पैदा करना; इन्सुलेशन विफलताओं से प्रणाली में अतिरिक्त जमीनी दोष हो सकते हैं, अब बहुत अधिक धाराओं के साथ।[27] निर्बाध पृष्ठभूमि फॉल्ट की उपस्थिति एक महत्वपूर्ण सुरक्षा जोखिम पैदा कर सकती है: यदि विद्युत धारा4A - 5 A से अधिक हो जाता है तो एक इलेक्ट्रिक आर्क विकसित होता है, जो फॉल्ट के साफ होने के बाद भी बना रह सकता है।[28]इस कारण से, वे मुख्य रूप से भूमिगत और पनडुब्बी संजाल और औद्योगिक अनुप्रयोगों तक सीमित हैं, जहां विश्वसनीयता की आवश्यकता अधिक है और मानव संपर्क की संभावना अपेक्षाकृत कम है। कई भूमिगत फीडर वाले शहरी वितरण संजाल में, कैपेसिटिव विद्युत धाराकई दसियों एम्पीयर तक पहुंच सकता है, जिससे उपकरण के लिए महत्वपूर्ण जोखिम पैदा हो सकता है।
इसके बाद लो फॉल्ट विद्युत धाराऔर निरंतर प्रणाली संचालनका लाभ अंतर्निहित दोष से ऑफसेट होता है कि फॉल्ट स्थान का पता लगाना कठिन होता है।[29]
भूसंपर्कनरॉड्स
IEEE मानकों के अनुसार, भूसंपर्कनरॉड्स को ताँबा और इस्पात जैसी सामग्री से बनाया जाता है। भूसंपर्कनरॉड चुनने के लिए कई चयन मानदंड हैं जैसे: संक्षारण प्रतिरोध, दोष वर्तमान, चालकता और अन्य के आधार पर व्यास।[30] कॉपर और स्टील से प्राप्त कई प्रकार हैं: कॉपर-बॉन्डेड, स्टेनलेस स्टील, सॉलिड कॉपर, गैल्वनाइज्ड स्टील पृष्ठभूमि। हाल के दशकों में, प्राकृतिक इलेक्ट्रोलाइटिक लवण युक्त कम प्रतिबाधा वाले पृष्ठभूमि के लिए रासायनिक भूसंपर्कनरॉड विकसित की गई हैं।[31] और नैनो-कार्बन फाइबर भूसंपर्कनरॉड्स।[32]
भूसंपर्कनकनेक्टर
अर्थिंग इंस्टालेशन के लिए कनेक्टर्स अर्थिंग और लाइटनिंग प्रोटेक्शन इंस्टॉलेशन ( अर्थिंग रॉड्स, अर्थिंग कंडक्टर, विद्युत धारालीड्स, बसबार्स, आदि) के विभिन्न घटकों के बीच संचार का एक साधन हैं।
उच्च विद्युत दाब प्रतिष्ठानों के लिए, भूमिगत सम्बन्ध के लिए एक्ज़ोथिर्मिक वेल्डिंग का उपयोग किया जाता है।
मृदा प्रतिरोध
अर्थिंग प्रणाली/भूसंपर्कनइंस्टालेशन के अभिकल्पना और गणना में मृदा प्रतिरोध एक प्रमुख पहलू है। इसका प्रतिरोध अवांछित धाराओं के मोड़ की क्षमता को शून्य क्षमता (जमीन) पर निर्धारित करता है। भूवैज्ञानिक सामग्री का प्रतिरोध कई घटकों पर निर्भर करता है: धातु अयस्कों की उपस्थिति, भूगर्भीय परत का तापमान, पुरातात्विक या संरचनात्मक विशेषताओं की उपस्थिति, भंग नमक की उपस्थिति, और दूषित पदार्थ, सरंध्रता और पारगम्यता। मिट्टी प्रतिरोध को मापने के लिए कई बुनियादी तरीके हैं। माप दो, तीन या चार इलेक्ट्रोड के साथ किया जाता है। माप विधियाँ हैं: ध्रुव-ध्रुव, द्विध्रुवीय-द्विध्रुवीय, ध्रुव-द्विध्रुवीय, वेनर विधि और शलम्बर विधि।
यह भी देखें
संदर्भ
- ↑ "Why is an Earthing System Important?". Manav Energy (in English). 2020-07-15. Retrieved 2020-10-20.
- ↑ "The impact of lightning and its effects". Retrieved 25 June 2022.
- ↑ "The Basics of Grounding Electrical Systems - Technical Articles". eepower.com (in English). Retrieved 7 July 2022.
- ↑ "Surge". Sunpower UK. Retrieved 25 June 2022.
- ↑ "Earthing connections". Retrieved 25 June 2022.
- ↑ The Electronics Handbook|Jerry C. Whitaker | 2018| page 2340: High-resistance grounding will limit ground fault current to a few amperes, thus removing the potential for arcing damage... Its function is to keep the entire grounding system at earth potential.
- ↑ Biesterveld, Jim. "Grounding And Bonding National Electric Code Article 250" (PDF).
- ↑ Czapp, Stanislaw (January 2020). "Testing Sensitivity of A-Type Residual Current Devices to Earth Fault Currents with Harmonics". Sensors (in English). 20 (7): 2044. Bibcode:2020Senso..20.2044C. doi:10.3390/s20072044. ISSN 1424-8220. PMID 32260579.
- ↑ BS7671:2008. Part 2 – definitions.
- ↑ Cahier Technique Merlin Gerin n° 173 / p.9|http://www.schneider-electric.com/en/download/document/ECT173/
- ↑ https://www.scribd.com/doc/31741300/Industrial-Power-Systems-Handbook-Donald-Beeman Chapter 5.
- ↑ MikeHoltNEC (14 November 2013). "Grounding - Safety Fundamentals (1hr:13min:19sec)". Archived from the original on 2021-12-21 – via YouTube.
- ↑ "Mike Holt Enterprises - the leader in electrical training".
- ↑ "The principles of Protective Multiple Earthing (PME)". medium.com. November 23, 2018. Retrieved 30 December 2021.
- ↑ "Grounding of Distribution Systems".
- ↑ [1]; Central Electricity Authority-(Measures relating to Safety and Electric Supply). Regulations, 2010; earthing system, rule 99 and protective devices, rule 100.
- ↑ [2], The Importance of the Neutral-Grounding Resistor
- ↑ [3]; Electrical Notes, Volume 1, By Sir Arthur Schuster, p.317
- ↑ Laughton, M A; Say, M G (2013). Electrical Engineer's Reference Book. Elsevier. p. 32. ISBN 9781483102634.
- ↑ Gates, B.G. (1936). Neutral inversion in power systems. In Journal of the Institution of Electrical Engineers 78 (471): 317–325. Retrieved 2012-03-20.
- ↑ [4]; Central Electricity Authority-(Measures relating to Safety and Electric Supply). Regulations, 2010; rule 41 and 42
- ↑ Trevor Linsley (2011). Basic Electrical Installation Work. Routledge. p. 152. ISBN 978-1-136-42748-0.
- ↑ "Indian Standard 3043 Code of practice for electrical wiring installations" (PDF). Bureau of Indian Standards. Retrieved 30 March 2018.
- ↑ "El-trøbbel i norske hjem". bygg.no. 31 October 2016.
- ↑ "Nettkundenes nytte av en oppgradering av lavspenningsnettet" (PDF). NVE. Retrieved 1 November 2021.
- ↑ 26.0 26.1 26.2 Parmar, Jignesh (6 February 2012), Types of neutral earthing in power distribution (part 1), EEP – Electrical Engineering Portal
- ↑ 27.0 27.1 Guldbrand, Anna (2006), System earthing (PDF), Industrial Electrical Engineering and Automation, Lund University
- ↑ 28.0 28.1 Bandyopadhyay, M. N. (2006). "21. Neutral earthing". Electrical Power Systems: Theory and Practice. PHI Learning Pvt. Ltd. pp. 488–491. ISBN 9788120327832.
- ↑ Fischer, Normann; Hou, Daqing (2006), Methods for detecting ground faults in medium-voltage distribution power systems, Schweitzer Engineering Laboratories, Inc., p. 15
- ↑ ENRICO The Pros and Cons of 4 Common Ground Rod Materials nvent.com/
- ↑ Chemical Ground Electrode erico.com/
- ↑ Jianli Zhao ; Xiaoyan Zhang ; Bo Chen ; Zhihui Zheng ; Yejun Liu ; Zhuohong Evaluation Method of Nano-Carbon Fiber Grounding Grid
- General
- IEC 60364-1: Electrical installations of buildings — Part 1: Fundamental principles, assessment of general characteristics, definitions. International Electrotechnical Commission, Geneva.
- John Whitfield: The Electricians Guide to the 16th Edition IEE Regulations, Section 5.2: Earthing systems, 5th edition.
- Geoff Cronshaw: Earthing: Your questions answered. IEE Wiring Matters, Autumn 2005.
- EU Leonardo ENERGY earthing systems education center: Earthing systems resources
- Dmitry Makarov: What Is a TN-C-S Earthing System? Definition, Meaning, Diagrams.