द्विपद (बहुपद): Difference between revisions
From Vigyanwiki
No edit summary |
No edit summary |
||
Line 48: | Line 48: | ||
* रैखिक द्विपदों {{math|(''ax'' + ''b'')}} और {{math|(''cx'' + ''d'' )}} की जोड़ी का गुणनफल एक [[त्रिनाम|त्रिपद]] है: | * रैखिक द्विपदों {{math|(''ax'' + ''b'')}} और {{math|(''cx'' + ''d'' )}} की जोड़ी का गुणनफल एक [[त्रिनाम|त्रिपद]] है: | ||
:: <math> (ax+b)(cx+d) = acx^2+(ad+bc)x+bd.</math> | :: <math> (ax+b)(cx+d) = acx^2+(ad+bc)x+bd.</math> | ||
* एक द्विपद को | *एक द्विपद को {{math|''n''}}<sup>वें [[घातांक]], के रूप में प्रतिनिधित्व किया {{math|(''x'' + ''y'')<sup>''n''</sup>}} पास्कल के त्रिकोण का उपयोग करके, [[द्विपद प्रमेय]] के माध्यम से या समकक्ष रूप से विस्तारित किया जा सकता है। उदाहरण के लिए, [[वर्ग (बीजगणित)]] {{math|(''x'' + ''y'')<sup>2</sup>}} द्विपद का {{math|(''x'' + ''y'')}} दो शब्दों के वर्गों के योग के बराबर है और शब्दों के उत्पाद का दोगुना है, जो है: | ||
::<math> (x + y)^2 = x^2 + 2xy + y^2.</math> | ::<math> (x + y)^2 = x^2 + 2xy + y^2.</math> | ||
:इस विस्तार में पदों के लिए गुणक के रूप में दिखाई देने वाली संख्याएं (1, 2, 1) [[द्विपद गुणांक]] हैं जो पास्कल के त्रिकोण के ऊपर से दो पंक्तियां नीचे हैं। | :इस विस्तार में पदों के लिए गुणक के रूप में दिखाई देने वाली संख्याएं (1, 2, 1) [[द्विपद गुणांक]] हैं जो पास्कल के त्रिकोण के ऊपर से दो पंक्तियां नीचे हैं। {{math|''n''}}<sup>वी घात का विस्तार त्रिकोण के शीर्ष से नीचे की ओर {{math|''n''}} पंक्तियों की संख्या का उपयोग करता है। | ||
*एक द्विपद के वर्ग के लिए उपरोक्त सूत्र का एक अनुप्रयोग है{{math|(''m'', ''n'')}}-पायथागॉरियन त्रिक उत्पन्न करने के लिए सूत्र: | *एक द्विपद के वर्ग के लिए उपरोक्त सूत्र का एक अनुप्रयोग है, {{math|(''m'', ''n'')}}-पायथागॉरियन त्रिक उत्पन्न करने के लिए सूत्र: | ||
: | :{{math|''m'' < ''n''}} के लिए, मान लीजिए {{math|''a'' {{=}} ''n''<sup>2</sup> − ''m''<sup>2</sup>}}, {{math|''b'' {{=}} 2''mn''}}, और {{math|''c'' {{=}} ''n''<sup>2</sup> + ''m''<sup>2</sup>}}; तब {{math|''a''<sup>2</sup> + ''b''<sup>2</sup> {{=}} ''c''<sup>2</sup>}}. | ||
* द्विपद जो योग या [[घन (बीजगणित)]] के अंतर हैं, उन्हें बहुपद बहुपदों की छोटी-छोटी डिग्री में विभाजित किया जा सकता है: | * द्विपद जो योग या [[घन (बीजगणित)]] के अंतर हैं, उन्हें बहुपद बहुपदों की छोटी-छोटी डिग्री में विभाजित किया जा सकता है: | ||
::<math> x^3 + y^3 = (x + y)(x^2 - xy + y^2) </math> | ::<math> x^3 + y^3 = (x + y)(x^2 - xy + y^2) </math> |
Revision as of 17:58, 8 February 2023
बीजगणित में, एक द्विपद एक बहुपद है जो दो शब्दों का योग है, जिनमें से प्रत्येक एक एकपदी है।[1] यह एकपदी के बाद विरल बहुपद का सबसे सरल प्रकार है।
परिभाषा
एक द्विपद एक बहुपद है जो दो एकपदी का योग है। एक एकल अनिश्चित (चर) में एक द्विपद (जिसे एक अविभाज्य द्विपद के रूप में भी जाना जाता है) के रूप में लिखा जा सकता है
जहाँ a और b संख्याएँ हैं, और m और n विशिष्ट गैर-ऋणात्मक पूर्णांक हैं और x एक प्रतीक है जिसे अनिश्चित (चर) या, ऐतिहासिक कारणों से, एक चर (गणित) कहा जाता है। लॉरेंट बहुपदों के संदर्भ में, एक लॉरेंट द्विपद, जिसे अधिकांश द्विपद कहा जाता है, समान रूप से परिभाषित किया जाता है, लेकिन प्रतिपादक m और n ऋणात्मक हो सकता है।
अधिक सामान्यतः, एक द्विपद लिखा जा सकता है[2] जैसे:
उदाहरण
सरल द्विपदों पर संक्रियाएं
- द्विपद x2 − y2 को दो अन्य द्विपदों के गुणनफल के रूप में गुणनखंडित किया जा सकता है:
- यह अधिक सामान्य सूत्र का एक विशेष मामला है:
- सम्मिश्र संख्याओं पर कार्य करते समय, इसे निम्न तक भी बढ़ाया जा सकता है:
- रैखिक द्विपदों (ax + b) और (cx + d ) की जोड़ी का गुणनफल एक त्रिपद है:
- एक द्विपद को nवें घातांक, के रूप में प्रतिनिधित्व किया (x + y)n पास्कल के त्रिकोण का उपयोग करके, द्विपद प्रमेय के माध्यम से या समकक्ष रूप से विस्तारित किया जा सकता है। उदाहरण के लिए, वर्ग (बीजगणित) (x + y)2 द्विपद का (x + y) दो शब्दों के वर्गों के योग के बराबर है और शब्दों के उत्पाद का दोगुना है, जो है:
- इस विस्तार में पदों के लिए गुणक के रूप में दिखाई देने वाली संख्याएं (1, 2, 1) द्विपद गुणांक हैं जो पास्कल के त्रिकोण के ऊपर से दो पंक्तियां नीचे हैं। nवी घात का विस्तार त्रिकोण के शीर्ष से नीचे की ओर n पंक्तियों की संख्या का उपयोग करता है।
- एक द्विपद के वर्ग के लिए उपरोक्त सूत्र का एक अनुप्रयोग है, (m, n)-पायथागॉरियन त्रिक उत्पन्न करने के लिए सूत्र:
- m < n के लिए, मान लीजिए a = n2 − m2, b = 2mn, और c = n2 + m2; तब a2 + b2 = c2.
- द्विपद जो योग या घन (बीजगणित) के अंतर हैं, उन्हें बहुपद बहुपदों की छोटी-छोटी डिग्री में विभाजित किया जा सकता है:
यह भी देखें
- वर्ग पूरा करना
- द्विपद वितरण
- तथ्यात्मक और द्विपद विषयों की सूची (जिसमें बड़ी संख्या में संबंधित लिंक शामिल हैं)
टिप्पणियाँ
- ↑ Weisstein, Eric. "Binomial". Wolfram MathWorld. Retrieved 29 March 2011.
- ↑ Sturmfels, Bernd (2002). Solving Systems of Polynomial Equations. p. 62. ISBN 9780821889411.
{{cite book}}
:|journal=
ignored (help)
संदर्भ
- Bostock, L.; Chandler, S. (1978). Pure Mathematics 1. Oxford University Press. p. 36. ISBN 0-85950-092-6.