द्विपद (बहुपद): Difference between revisions
m (10 revisions imported from alpha:द्विपद_(बहुपद)) |
No edit summary |
||
Line 56: | Line 56: | ||
::<math> x^3 - y^3 = (x - y)(x^2 + xy + y^2) </math> | ::<math> x^3 - y^3 = (x - y)(x^2 + xy + y^2) </math> | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 80: | Line 80: | ||
{{polynomials}} | {{polynomials}} | ||
[[Category:Collapse templates]] | |||
[[Category: | |||
[[Category:Created On 03/02/2023]] | [[Category:Created On 03/02/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Lua-based templates]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:क्रमगुणित और द्विपद विषय]] | |||
[[Category:बीजगणित]] |
Revision as of 20:29, 9 February 2023
बीजगणित में, द्विपद फलन एक बहुपद है जो दो शब्दों का योग है, जिनमें से प्रत्येक एकपदी है।[1] यह एकपदी के बाद विरल बहुपद का सबसे सरल प्रकार है।
परिभाषा
द्विपद फलन एक बहुपद है जो दो एकपदी का योग है। एकल अनिश्चित (चर) में द्विपद (जिसे अविभाज्य द्विपद के रूप में भी जाना जाता है) के रूप में लिखा जा सकता है
जहाँ a और b संख्याएँ हैं, और m और n विशिष्ट गैर-ऋणात्मक पूर्णांक हैं और x प्रतीक है जिसे अनिश्चित (चर) या, ऐतिहासिक कारणों से, चर (गणित) कहा जाता है। लॉरेंट बहुपदों के संदर्भ में, लॉरेंट द्विपद, जिसे अधिकांश द्विपद कहा जाता है, समान रूप से परिभाषित किया जाता है, लेकिन प्रतिपादक m और n ऋणात्मक हो सकता है।
अधिक सामान्यतः, द्विपद लिखा जा सकता है[2] जैसे:
उदाहरण
सरल द्विपदों पर संक्रियाएं
- द्विपद x2 − y2 को दो अन्य द्विपदों के गुणनफल के रूप में गुणनखंडित किया जा सकता है:
- यह अधिक सामान्य सूत्र की विशेष स्थिति है:
- सम्मिश्र संख्याओं पर कार्य करते समय, इसे निम्न तक भी बढ़ाया जा सकता है:
- रैखिक द्विपदों (ax + b) और (cx + d ) की जोड़ी का गुणनफल त्रिपद है:
द्विपद को nth घातांक, के रूप में प्रतिनिधित्व किया (x + y)n पास्कल के त्रिकोण का उपयोग करके, द्विपद प्रमेय के माध्यम से या समकक्ष रूप से विस्तारित किया जा सकता है। उदाहरण के लिए, वर्ग (बीजगणित) (x + y)2 द्विपद का (x + y) दो शब्दों के वर्गों के योग के बराबर है और शब्दों के उत्पाद का दोगुना है, जो है:
- इस विस्तार में पदों के लिए गुणक के रूप में दिखाई देने वाली संख्याएं (1, 2, 1) द्विपद गुणांक हैं जो पास्कल के त्रिकोण के ऊपर से दो पंक्तियां नीचे हैं। nv घात का विस्तार त्रिकोण के शीर्ष से नीचे की ओर n पंक्तियों की संख्या का उपयोग करता है।
- द्विपद के वर्ग के लिए उपरोक्त सूत्र का अनुप्रयोग है, (m, n)-पायथागॉरियन त्रिक उत्पन्न करने के लिए सूत्र:
- m < n के लिए, मान लीजिए a = n2 − m2, b = 2mn, और c = n2 + m2; तब a2 + b2 = c2.
- द्विपद जो योग या घन (बीजगणित) के अंतर हैं, उन्हें बहुपद बहुपदों की छोटी-छोटी डिग्री में विभाजित किया जा सकता है:
यह भी देखें
- वर्ग पूरा करना
- द्विपद वितरण
- तथ्यात्मक और द्विपद विषयों की सूची (जिसमें बड़ी संख्या में संबंधित लिंक शामिल हैं)
टिप्पणियाँ
- ↑ Weisstein, Eric. "Binomial". Wolfram MathWorld. Retrieved 29 March 2011.
- ↑ Sturmfels, Bernd (2002). Solving Systems of Polynomial Equations. p. 62. ISBN 9780821889411.
{{cite book}}
:|journal=
ignored (help)
संदर्भ
- Bostock, L.; Chandler, S. (1978). Pure Mathematics 1. Oxford University Press. p. 36. ISBN 0-85950-092-6.