दृढ़ पिण्ड: Difference between revisions

From Vigyanwiki
(TEXT)
(TEXT)
Line 93: Line 93:
=== अन्य मात्राएँ ===
=== अन्य मात्राएँ ===


यदि C एक स्थानीय समन्वय प्रणाली L का मूल है, दृढ़ से जुड़ा हुआ है, दृढ़ पिंड के स्थानिक या विकृत त्वरण को C के [[स्थानिक त्वरण]] के रूप में परिभाषित किया गया है (उपरोक्त भौतिक त्वरण के विपरीत):<math display="block"> \boldsymbol\psi(t,\mathbf{r}_0) = \mathbf{a}(t,\mathbf{r}_0) - \boldsymbol\omega(t) \times \mathbf{v}(t,\mathbf{r}_0) = \boldsymbol\psi_c(t) + \boldsymbol\alpha(t) \times A(t) \mathbf{r}_0</math>
यदि C एक स्थानीय समन्वय प्रणाली L का मूल है, दृढ़ से जुड़ा हुआ है, दृढ़ पिंड के स्थानिक या विकृत त्वरण को C के [[स्थानिक त्वरण]] के रूप में परिभाषित किया गया है (उपरोक्त भौतिक त्वरण के विपरीत):<math display="block"> \boldsymbol\psi(t,\mathbf{r}_0) = \mathbf{a}(t,\mathbf{r}_0) - \boldsymbol\omega(t) \times \mathbf{v}(t,\mathbf{r}_0) = \boldsymbol\psi_c(t) + \boldsymbol\alpha(t) \times A(t) \mathbf{r}_0</math><br />जहाँ
 
*<math> \mathbf{r}_0 </math> स्थानीय समन्वय प्रणाली L के संदर्भ में पिंड के संदर्भ बिंदु / कण की स्थिति का प्रतिनिधित्व करता है (पिंड की दृढता का अर्थ है कि यह समय पर आश्रित नहीं करता है)
 
जहाँ
*<math> \mathbf{r}_0 </math> स्थानीय समन्वय प्रणाली L के संदर्भ में पिंड के संदर्भ बिंदु / कण की स्थिति का प्रतिनिधित्व करता है (पिंड की दृढता का अर्थ है कि यह समय पर निर्भर नहीं करता है)
* <math>A(t)\, </math> अभिविन्यास आव्यूह है, निर्धारक 1 के साथ एक [[ऑर्थोगोनल मैट्रिक्स|लांबिक आव्यूह]], स्थानीय समन्वय प्रणाली L के [[अभिविन्यास (कठोर शरीर)|अभिविन्यास]] (कोणीय स्थिति) का प्रतिनिधित्व करता है, किसी अन्य समन्वय प्रणाली G के यादृच्छिक संदर्भ अभिविन्यास के संबंध में।। इस आव्यूह को तीन लांबिक ईकाई सदिश के रूप में सोचें, प्रत्येक स्तंभ में एक, जो G के संबंध में L के अक्षों के उन्मुखीकरण को परिभाषित करता है।
* <math>A(t)\, </math> अभिविन्यास आव्यूह है, निर्धारक 1 के साथ एक [[ऑर्थोगोनल मैट्रिक्स|लांबिक आव्यूह]], स्थानीय समन्वय प्रणाली L के [[अभिविन्यास (कठोर शरीर)|अभिविन्यास]] (कोणीय स्थिति) का प्रतिनिधित्व करता है, किसी अन्य समन्वय प्रणाली G के यादृच्छिक संदर्भ अभिविन्यास के संबंध में।। इस आव्यूह को तीन लांबिक ईकाई सदिश के रूप में सोचें, प्रत्येक स्तंभ में एक, जो G के संबंध में L के अक्षों के उन्मुखीकरण को परिभाषित करता है।
*<math>\boldsymbol\omega(t)</math> दृढ़ पिंड के कोणीय वेग का प्रतिनिधित्व करता है
*<math>\boldsymbol\omega(t)</math> दृढ़ पिंड के कोणीय वेग का प्रतिनिधित्व करता है
Line 111: Line 108:


== गतिकी ==
== गतिकी ==
{{Main|Rigid body dynamics}}
{{Main|दृढ़ पिंड गतिकी }}
कोई भी बिंदु जो पिंड से दृढ़ता से जुड़ा हुआ है, पिंड के रैखिक गति का वर्णन करने के लिए संदर्भ बिंदु (समन्वय प्रणाली एल की उत्पत्ति) के रूप में उपयोग किया जा सकता है (रैखिक स्थिति, वेग और त्वरण वैक्टर पसंद पर निर्भर करते हैं)।
 
कोई भी बिंदु जो पिंड से दृढ़ता से जुड़ा हुआ है, पिंड के रैखिक गति का वर्णन करने के लिए संदर्भ बिंदु (समन्वय प्रणाली L की उत्पत्ति) के रूप में उपयोग किया जा सकता है (रैखिक स्थिति, वेग और त्वरण वैक्टर विकल्प पर आश्रित करते हैं)।


हालाँकि, आवेदन के आधार पर, एक सुविधाजनक विकल्प हो सकता है:
तथापि, आवेदन के आधार पर, एक सुविधाजनक विकल्प हो सकता है:
*पूरे सिस्टम के द्रव्यमान का केंद्र, जिसमें सामान्यतः अंतरिक्ष में स्वतंत्र रूप से घूमने वाले पिंड के लिए सबसे सरल गति होती है;
*संपूर्ण प्रणाली के द्रव्यमान का केंद्र, जिसमें सामान्यतः स्थल में स्वतंत्र रूप से गतिशील पिंड के लिए सबसे सरलतम गति होती है;
* एक बिंदु ऐसा है कि स्थानांतरीय गति शून्य या सरलीकृत है, उदा। एक धुरी या कब्जे पर, एक गेंद और सॉकेट जोड़ आदि के केंद्र में।
* एक बिंदु ऐसा है कि स्थानांतरीय गति शून्य या सरलीकृत है, उदाहरणार्थ एक धुरी या हिंज पर, एक अंडकोष और सॉकेट संयुक्त, आदि के केंद्र में।


जब द्रव्यमान के केंद्र को संदर्भ बिंदु के रूप में प्रयोग किया जाता है:
जब द्रव्यमान के केंद्र को संदर्भ बिंदु के रूप में प्रयोग किया जाता है:
* (रैखिक) संवेग घूर्णी गति से स्वतंत्र है। किसी भी समय यह कठोर पिंड के कुल द्रव्यमान के गुणन के स्थानांतरीय वेग के समान होता है।
* (रैखिक) गति घूर्णी गति से स्वतंत्र है। किसी भी समय यह दृढ़ पिंड के कुल द्रव्यमान के गुणन के स्थानांतरीय वेग के समान होता है।
* द्रव्यमान के केंद्र के संबंध में [[कोणीय गति]] बिना अनुवाद के समान है: किसी भी समय यह कोणीय वेग जड़ता के क्षण के समान होता है। जब कोणीय वेग को एक समन्वय प्रणाली के संबंध में व्यक्त किया जाता है जो पिंड के जड़ता # जड़ता के क्षण के साथ मेल खाता है, तो कोणीय गति का प्रत्येक घटक जड़ता के क्षण (जड़ता टेंसर का एक प्रमुख मूल्य) के गुणनफल का गुणनफल होता है। कोणीय वेग का संगत घटक; बल आघूर्ण जड़त्व टेंसर गुणा कोणीय त्वरण है।
* द्रव्यमान के केंद्र के संबंध में [[कोणीय गति]] बिना अनुवाद के समान है: किसी भी समय यह जड़त्व प्रदिश गुणा कोणीय वेग के क्षण के समान होता है। जब कोणीय वेग को पिंड के प्रमुख अक्षों के साथ संयोगात्मक वाली समन्वय प्रणाली के संबंध में व्यक्त किया जाता है, तो कोणीय गति का प्रत्येक घटक जड़ता के क्षण (जड़त्व प्रदिश का एक प्रमुख मूल्य)के संबंधित घटक के गुणनफल का होता है। बल आघूर्ण, कोणीय त्वरण का जड़त्व प्रदिश गुणा है।
* बाहरी बलों की अनुपस्थिति में संभावित गति निरंतर वेग के साथ अनुवाद, एक निश्चित मुख्य अक्ष के बारे में स्थिर घूर्णन, और टोक़-मुक्त पुरस्सरण भी हैं।
* बाह्य बल की अनुपस्थिति में संभावित गति निरंतर वेग के साथ अनुवादित होती है, एक निश्चित मुख्य अक्ष के बारे में स्थिर घूर्णन, और आघूर्ण-मुक्त पुरस्सरण भी हैं।
*कठोर पिंड पर शुद्ध बाहरी बल हमेशा स्थानांतरीय त्वरण के कुल द्रव्यमान गुणन के समान होता है (अर्थात्, न्यूटन के गति के नियम| न्यूटन का दूसरा नियम अनुवाद संबंधी गति के लिए लागू होता है, तब भी जब शुद्ध बाहरी बलाघूर्ण शून्य न हो, और/या पिंड घूमता है)।
*दृढ़ पिंड पर कुल बाह्य बल हमेशा स्थानांतरीय त्वरण के कुल द्रव्यमान गुणा के समान होता है (अर्थात्, न्यूटन का दूसरा नियम स्थानांतरीय गति के लिए मान्य है,तब भी जब मूल्य बाह्य बलाघूर्ण अशून्य न हो, और/या पिंड घूर्णन है)।
* कुल गतिज ऊर्जा केवल स्थानांतरण और [[घूर्णी ऊर्जा]] का योग है।
* कुल गतिज ऊर्जा केवल स्थानांतरण और [[घूर्णी ऊर्जा]] का योग है।


Line 138: Line 136:
*छवि वाली शीट की सतह में एक समरूपता अक्ष है - दोनों पक्ष समान हैं
*छवि वाली शीट की सतह में एक समरूपता अक्ष है - दोनों पक्ष समान हैं


== कॉन्फ़िगरेशन स्पेस ==
== विन्यास स्थल ==
एक स्थिर बिंदु (अर्थात्, शून्य स्थानान्तरण गति वाला एक पिंड) के साथ एक दृढ़ पिंड का [[विन्यास स्थान (भौतिकी)]] घूर्णन समूह SO(3) के अंतर्निहित [[कई गुना]] द्वारा दिया जाता है। एक गैर-स्थिर (गैर-शून्य अनुवाद संबंधी गति के साथ) दृढ़ पिंड का विन्यास स्थान यूक्लिडियन समूह # प्रत्यक्ष और अप्रत्यक्ष समरूपता है। ई<sup>+</sup>(3), [[यूक्लिडियन समूह]] का उपसमूह#तीन आयामों ([[अनुवाद (ज्यामिति)]] और घूर्णन के संयोजन) में यूक्लिडियन समूह के प्रत्यक्ष और अप्रत्यक्ष आइसोमेट्रीज़।
एक स्थिर बिंदु के साथ एक दृढ़ पिंड का [[विन्यास स्थान (भौतिकी)|विन्यास स्थान]] (अर्थात्, शून्य स्थानान्तरण गति वाला एक पिंड) घूर्णन समूह SO(3) के अंतर्निहित [[कई गुना]] द्वारा दिया जाता है। एक गैर-स्थायी (शून्येतर अनुवाद संबंधी गति के साथ) दृढ़ पिंड का विन्यास स्थान E+(3) है। [[यूक्लिडियन समूह]] के समदूरीकता का उपसमूह तीन आयामों (अनुवाद और घूर्णन के संयोजन) में है।


== यह भी देखें ==
== यह भी देखें ==
*कोणीय वेग
*[[कोणीय वेग]]
* [[अक्ष सम्मेलन]]
* [[अक्ष सम्मेलन]]
* [[कठोर शरीर की गतिशीलता|दृढ़ पिंड की गतिशीलता]]
* [[कठोर शरीर की गतिशीलता|दृढ़ पिंड की गतिशीलता]]
*तिरछा-सममित आव्यूह#अनंत सूक्ष्म घुमाव
*[[अत्यणु घूर्णन]]
*यूलर के समीकरण (दृढ़ पिंड गतिकी)
*[[यूलर के समीकरण (दृढ़ पिंड की गतिशीलता)]]
*यूलर के नियम
*[[यूलर के नियम]]
* पैदाइशी कठोरता
* [[जन्म से दृढ़ता]]
* [[कठोर रोटर]]
* [[कठोर रोटर|दृढ़ घूर्णक]]  
*[[कठोर परिवर्तन]]
*[[कठोर परिवर्तन|दृढ़ रूपांतरण]]  
*[[ज्यामितीय यांत्रिकी]]
*[[ज्यामितीय यांत्रिकी]]
* शास्त्रीय यांत्रिकी (गोल्डस्टीन पुस्तक) | शास्त्रीय यांत्रिकी (गोल्डस्टीन)
* [[चिरसम्मत यांत्रिकी (गोल्डस्टीन)]]


== टिप्पणियाँ ==
== टिप्पणियाँ ==

Revision as of 12:42, 9 February 2023

एक दृढ़ पिंड की स्थिति उसके द्रव्यमान के केंद्र की स्थिति और उसके दृष्टिकोण (ज्यामिति) (कुल मिलाकर कम से कम छह पैरामीटर) द्वारा निर्धारित की जाती है।[1]

भौतिकी में, एक दृढ़ पिंड (जिसे कठोर वस्तु के रूप में भी जाना जाता है[2]) एक ठोस पिंड होता है जिसमें विरूपण शून्य या इतना छोटा है कि इसे उपेक्षित किया जा सकता है। दृढ़ पिंड पर दिए गए किन्हीं दो बिंदुओं के बीच की दूरी बाह्य शक्ति या उस पर लगाए गए क्षणों पर ध्यान दिए बिना समय में स्थिर रहती है। एक दृढ़ पिंड को सामान्यतः द्रव्यमान का निरंतर वितरण माना जाता है।

विशिष्ट आपेक्षिकता के अध्ययन में, एक पूरी तरह से दृढ़ पिंड प्रचलित नहीं है; और वस्तुओं को केवल तभी दृढ़ माना जा सकता है जब वे प्रकाश की गति के निकट नहीं चल रहे हों। क्वांटम यांत्रिकी में, एक दृढ़ पिंड को सामान्यतः बिंदु द्रव्यमानों के संग्रह के रूप में माना जाता है। उदाहरण के लिए, अणु (बिंदु द्रव्यमान से मिलकर: इलेक्ट्रॉन और नाभिक) को प्रायः दृढ़ पिंड के रूप में देखा जाता है (कठोर घूर्णक के रूप में अणुओं का वर्गीकरण देखें)।

शुद्धगतिक विज्ञान

रैखिक और कोणीय स्थिति

दृढ़ पिंड की स्थिति उन सभी कणों की स्थिति है जिनसे यह बना है। इस स्थिति के विवरण को सरल बनाने के लिए, हम उस संपत्ति का उपयोग करते हैं जो पिंड कठोर है, अर्थात् इसके सभी कण एक दूसरे के सापेक्ष समान दूरी बनाए रखते हैं। यदि पिंड दृढ़ है, तो यह कम से कम तीन असंरेखीय कणों की स्थिति का वर्णन करने के लिए पर्याप्त है। यह अन्य सभी कणों की स्थिति को फिर से बनाना संभव बनाता है, प्रविहित तीन चयनित कणों के सापेक्ष उनकी काल-अपरिवर्तनीय स्थिति ज्ञात हो। तथापि, सामान्यतः एक अलग, गणितीय रूप से अधिक सुविधाजनक, लेकिन समतुल्य दृष्टिकोण का उपयोग किया जाता है। पूरे पिंड की स्थिति को निम्न द्वारा दर्शाया जाता है:

  1. पिंड की रैखिक स्थिति या स्थिति, अर्थात् पिंड के कणों में से एक की स्थिति, विशेष रूप से एक संदर्भ बिंदु के रूप में चुनी गई (सामान्यतः द्रव्यमान के केंद्र या पिंड के केन्द्रक के साथ संयोगात्मक होती है), साथ में
  2. पिंड की कोणीय स्थिति (अभिविन्यास या दृष्टिकोण के रूप में भी जाना जाता है)।

इस प्रकार, एक दृढ़ पिंड की स्थिति में दो घटक होते हैं: क्रमशः रैखिक और कोणीय।[3] एक दृढ़ पिंड की गति का वर्णन करने वाली अन्य शुद्धगतिक और गतिज मात्राओं के लिए भी यही सच है, जैसे रैखिक और कोणीय वेग, त्वरण, संवेग, आवेग (भौतिकी), और गतिज ऊर्जा[4]

रेखीय स्थिति के अंतराल में एक स्वेच्छ संदर्भ बिंदु (एक चुनिंदा समन्वय प्रणाली की उत्पत्ति) और इसकी सलाह दृढ़ पिंड पर रुचि के स्वेच्छ बिंदु पर, सामान्यतः इसके द्रव्यमान या केन्द्रक के केंद्र के साथ संयोगात्मक है। यह संदर्भ बिंदु पिंड के लिए निर्धारित समन्वय प्रणाली की उत्पत्ति को परिभाषित कर सकता है।

तीन ऑयलर कोण का एक समुच्चय, एक चतुर्धातुक, या एक दिशा कोसाइन आव्यूह (जिसे घूर्णन आव्यूह भी कहा जाता है) समेत एक दृढ़ पिंड के उन्मुखीकरण का संख्यात्मक रूप से वर्णन करने की कई शैली हैं। ये सभी विधियाँ वास्तव में एक आधार समुच्चय (या समन्वय प्रणाली) के अभिविन्यास को परिभाषित करती हैं, जिसमें पिंड के सापेक्ष एक निश्चित अभिविन्यास होता है (अर्थात पिंड के साथ घूमता है), दूसरे आधार समुच्चय (या समन्वय प्रणाली) के सापेक्ष, जिससे दृढ़ पिंड की गति देखी जाती है। उदाहरण के लिए, एक हवाई जहाज के सापेक्ष निश्चित अभिविन्यास के साथ निर्धारित आधार को तीन लंबकोणीय इकाई सदिश b1, b2, b3, के समुच्चय के रूप में परिभाषित किया जा सकता है, जैसे कि b1 विंग की जीवा लाइन के समानांतर है और आगे की ओर निर्देशित है, b2 समरूपता के सतह के लिए सामान्य है और दाईं ओर निर्देशित है, और b3 सदिश गुणनफल द्वारा दिया जाता है। .

सामान्यतः, जब एक दृढ़ पिंड चलता है, तो समय के साथ इसकी स्थिति और अभिविन्यास दोनों अलग-अलग होते हैं। शुद्धगतिक अर्थ में, इन परिवर्तनों को क्रमशः अनुवाद और घूर्णन के रूप में संदर्भित किया जाता है। वास्तव में, एक दृढ़ पिंड की स्थिति को एक काल्पनिक संदर्भ स्थिति से प्रारम्भ होने वाले पिंड के एक काल्पनिक अनुवाद और घूर्णन (घूर्णी-अनुवाद) के रूप में देखा जा सकता है (आवश्यक रूप से पिंड द्वारा अपनी गति के समय वास्तव में ली गई स्थिति के साथ संयोगात्मक नहीं रहा है)।

रैखिक और कोणीय वेग

वेग (जिसे रेखीय वेग भी कहा जाता है) और कोणीय वेग को संदर्भ के एक फ्रेम के संबंध में मापा जाता है।

दृढ़ पिंड का रेखीय वेग एक सदिश राशि है, जो इसकी रैखिक स्थिति के परिवर्तन की समय दर के समान है। इस प्रकार, यह पिंड के लिए निर्धारित एक संदर्भ बिंदु का वेग है। पूर्णतः स्थानांतरीय गति (घूर्णन रहित गति) के समय, दृढ़ पिंड में सभी बिंदु समान वेग से गति करते हैं। तथापि, जब गति में घूर्णन सम्मिलित होता है, तो पिंड पर किन्हीं दो बिंदुओं का तात्कालिक वेग सामान्यतः समान नहीं होगा। एक घूर्णन पिंड के दो बिंदुओं का तात्क्षणिक वेग तभी होगा जब वे घूर्णन के तात्क्षणिक अक्ष के समांतर अक्ष पर हों।

कोणीय वेग एक सदिश राशि है जो कोणीय गति का वर्णन करता है जिस पर दृढ़ पिंड का अभिविन्यास परिवर्ती हो रहा है और तात्कालिक अक्ष जिसके बारे में यह घूर्णन कर रहा है (इस तात्कालिक अक्ष का अस्तित्व यूलर के घूर्णन प्रमेय द्वारा अधिपत्रित है)। दृढ़ पिंड के सभी बिंदु हर समय समान कोणीय वेग का अनुभव करते हैं। पूर्णतः स्थानांतरीय गति के समय, पिंड के सभी बिंदुओं की स्थिति बदल जाती है अलावा उनके जो घूर्णन के तात्क्षणिक अक्ष पर स्थित होते हैं। अभिविन्यास और कोणीय वेग के मध्य का संबंध सीधे स्थिति और वेग के मध्य के संबंध के अनुरूप नहीं है। कोणीय वेग अभिविन्यास के परिवर्तन की समय दर नहीं है, क्योंकि अभिविन्यास सदिश के रूप में ऐसी कोई अवधारणा नहीं है जिसे कोणीय वेग प्राप्त करने के लिए विभेदित किया जा सके।

शुद्धगतिकीय समीकरण

कोणीय वेग के लिए जोड़ प्रमेय

एक संदर्भ फ्रेम N में एक दृढ़ पिंड B का कोणीय वेग, N में एक दृढ़ पिंड D के कोणीय वेग और D के संबंध में B के कोणीय वेग के योग के समान है:[5]

इस स्थिति में, दृढ़ पिंड और संदर्भ फ़्रेम अप्रभेद्य और पूरी तरह से विनिमेय हैं।

स्थिति के लिए अतिरिक्त प्रमेय

तीन बिंदुओं P, Q, और R के किसी भी समुच्चय के लिए, P से R तक की स्थिति सदिश , P से Q की स्थिति सदिश और Q से R की स्थिति सदिश का योग है:

स्थिति सदिश का मानक स्थानिक दूरी है। यहाँ सभी तीन सदिशों के निर्देशांकों को समान अभिविन्यास वाले निर्देशांक फ़्रेमों में व्यक्त किया जाना चाहिए।

वेग की गणितीय परिभाषा

संदर्भ फ्रेम N में बिंदु P के वेग को O से P तक की स्थिति सदिश के N में समय व्युत्पन्न के रूप में परिभाषित किया गया है:[6]

जहां O संदर्भ फ्रेम N में निर्धारित किया गया कोई यादृच्छिक बिंदु है, और d/dt संचालक के बाईं ओर N इंगित करता है कि व्युत्पन्न को संदर्भ फ्रेम N में लिया जाता है। परिणाम O के चयन से तब तक स्वतंत्र होता है जब तक O, N में स्थिर रहता है।

त्वरण की गणितीय परिभाषा

संदर्भ फ्रेम N में बिंदु P के त्वरण को इसके वेग के N में समय व्युत्पन्न के रूप में परिभाषित किया गया है:[6]

दृढ़ पिण्ड पर स्थिर दो बिन्दुओं का वेग

दो बिंदु P और Q के लिए जो एक कठोर पिंड B पर स्थिर हैं, जहाँ B का कोणीय वेग है संदर्भ फ्रेम N में, N में Q के वेग को N में P के वेग के फलन के रूप में व्यक्त किया जा सकता है:[7]

जहां , P से Q तक स्थिति सदिश है।[7] N में व्यक्त निर्देशांक के साथ (या N के समान अभिविन्यास वाला एक फ्रेम।) यह संबंध P और Q के मध्य मानक दूरी के अस्थायी निश्चरता से प्राप्त किया जा सकता है।

दृढ़ पिण्ड पर स्थिर दो बिन्दुओं का त्वरण

समय के संबंध में N में एक दृढ़ पिंड पर स्थिर दो बिंदुओं के वेग के समीकरण को अलग करके, एक दृढ़ पिंड B पर स्थिर बिंदु Q के संदर्भ फ्रेम N में त्वरण के रूप में व्यक्त किया जा सकता है

जहाँ संदर्भ फ्रेम N में B का कोणीय त्वरण है।[7]

दृढ़ पिंड पर स्थिर दो बिंदुओं का कोणीय वेग और त्वरण

जैसा कि ऊपर उल्लेख किया गया है, एक दृढ़ पिंड B पर सभी बिंदुओं में एक निश्चित संदर्भ फ्रेम N में समान कोणीय वेग है, और इस प्रकार समान कोणीय त्वरण है।

दृढ़ पिंड पर गतिमान एक बिंदु का वेग

यदि बिंदु R दृढ़ पिंड B में गतिमान है यद्यपि B संदर्भ फ्रेम N में चलता है, तो N में R का वेग है

जहां Q, B में स्थिर बिंदु है जो कि ब्याज के क्षण पर R के साथ तत्क्षण संपाती है।[8] यह संबंध प्रायः एक दृढ़ पिंड पर स्थिर दो बिंदुओं के वेग के संबंध के साथ संयुक्त होता है।

दृढ़ पिंड पर गति करते हुए एक बिंदु का त्वरण

बिंदु R के संदर्भ फ्रेम N में त्वरण पिंड B में गतिशील है यद्यपि B फ्रेम N में गतिमान है, द्वारा दिए गए

जहां Q, B में स्थिर बिंदु है जो ब्याज की क्षण पर R के साथ तत्क्षण संपाती है।[8] यह समीकरण प्रायः दृढ़ पिंड पर स्थिर दो बिंदुओं के त्वरण के साथ जोड़ा जाता है।

अन्य मात्राएँ

यदि C एक स्थानीय समन्वय प्रणाली L का मूल है, दृढ़ से जुड़ा हुआ है, दृढ़ पिंड के स्थानिक या विकृत त्वरण को C के स्थानिक त्वरण के रूप में परिभाषित किया गया है (उपरोक्त भौतिक त्वरण के विपरीत):


जहाँ

  • स्थानीय समन्वय प्रणाली L के संदर्भ में पिंड के संदर्भ बिंदु / कण की स्थिति का प्रतिनिधित्व करता है (पिंड की दृढता का अर्थ है कि यह समय पर आश्रित नहीं करता है)
  • अभिविन्यास आव्यूह है, निर्धारक 1 के साथ एक लांबिक आव्यूह, स्थानीय समन्वय प्रणाली L के अभिविन्यास (कोणीय स्थिति) का प्रतिनिधित्व करता है, किसी अन्य समन्वय प्रणाली G के यादृच्छिक संदर्भ अभिविन्यास के संबंध में।। इस आव्यूह को तीन लांबिक ईकाई सदिश के रूप में सोचें, प्रत्येक स्तंभ में एक, जो G के संबंध में L के अक्षों के उन्मुखीकरण को परिभाषित करता है।
  • दृढ़ पिंड के कोणीय वेग का प्रतिनिधित्व करता है
  • बिंदु/कण के कुल वेग का प्रतिनिधित्व करता है
  • बिंदु/कण के कुल त्वरण का प्रतिनिधित्व करता है
  • दृढ़ पिंड के कोणीय त्वरण का प्रतिनिधित्व करता है
  • बिंदु/कण के स्थानिक त्वरण का प्रतिनिधित्व करता है
  • दृढ़ पिंड के स्थानिक त्वरण का प्रतिनिधित्व करता है (अर्थात् L की उत्पत्ति का स्थानिक त्वरण)।

2D में, कोणीय वेग एक अदिश राशि है, और आव्यूह A(t) केवल एक कोण द्वारा xy-तल में एक घूर्णन का प्रतिनिधित्व करता है जो समय के साथ कोणीय वेग का अभिन्न अंग है।

वाहन, चलने वाले लोग आदि सामान्यतः वेग की दिशा में परिवर्तन के अनुसार घूर्णन हैं: वे अपने स्वयं के अभिविन्यास के संबंध में आगे बढ़ते हैं। फिर, यदि पिंड एक तल में बंद कक्ष का अनुसरण करता है, कोणीय वेग एक समय अंतराल पर एकीकृत होता है जिसमें कक्ष एक बार पूरी हो जाती है, एक पूर्णांक गुणा 360° है। वेग की उत्पत्ति के संबंध में यह पूर्णांक कुंडलन संख्या है। किसी बहुभुज के शीर्षों से संबंधित घूर्णन की मात्रा की तुलना करें।

गतिकी

कोई भी बिंदु जो पिंड से दृढ़ता से जुड़ा हुआ है, पिंड के रैखिक गति का वर्णन करने के लिए संदर्भ बिंदु (समन्वय प्रणाली L की उत्पत्ति) के रूप में उपयोग किया जा सकता है (रैखिक स्थिति, वेग और त्वरण वैक्टर विकल्प पर आश्रित करते हैं)।

तथापि, आवेदन के आधार पर, एक सुविधाजनक विकल्प हो सकता है:

  • संपूर्ण प्रणाली के द्रव्यमान का केंद्र, जिसमें सामान्यतः स्थल में स्वतंत्र रूप से गतिशील पिंड के लिए सबसे सरलतम गति होती है;
  • एक बिंदु ऐसा है कि स्थानांतरीय गति शून्य या सरलीकृत है, उदाहरणार्थ एक धुरी या हिंज पर, एक अंडकोष और सॉकेट संयुक्त, आदि के केंद्र में।

जब द्रव्यमान के केंद्र को संदर्भ बिंदु के रूप में प्रयोग किया जाता है:

  • (रैखिक) गति घूर्णी गति से स्वतंत्र है। किसी भी समय यह दृढ़ पिंड के कुल द्रव्यमान के गुणन के स्थानांतरीय वेग के समान होता है।
  • द्रव्यमान के केंद्र के संबंध में कोणीय गति बिना अनुवाद के समान है: किसी भी समय यह जड़त्व प्रदिश गुणा कोणीय वेग के क्षण के समान होता है। जब कोणीय वेग को पिंड के प्रमुख अक्षों के साथ संयोगात्मक वाली समन्वय प्रणाली के संबंध में व्यक्त किया जाता है, तो कोणीय गति का प्रत्येक घटक जड़ता के क्षण (जड़त्व प्रदिश का एक प्रमुख मूल्य)के संबंधित घटक के गुणनफल का होता है। बल आघूर्ण, कोणीय त्वरण का जड़त्व प्रदिश गुणा है।
  • बाह्य बल की अनुपस्थिति में संभावित गति निरंतर वेग के साथ अनुवादित होती है, एक निश्चित मुख्य अक्ष के बारे में स्थिर घूर्णन, और आघूर्ण-मुक्त पुरस्सरण भी हैं।
  • दृढ़ पिंड पर कुल बाह्य बल हमेशा स्थानांतरीय त्वरण के कुल द्रव्यमान गुणा के समान होता है (अर्थात्, न्यूटन का दूसरा नियम स्थानांतरीय गति के लिए मान्य है,तब भी जब मूल्य बाह्य बलाघूर्ण अशून्य न हो, और/या पिंड घूर्णन है)।
  • कुल गतिज ऊर्जा केवल स्थानांतरण और घूर्णी ऊर्जा का योग है।

ज्यामिति

दो कठोर पिंडों को समानता (ऑब्जेक्ट्स) कहा जाता है (कॉपी नहीं) यदि एक से दूसरे में उचित घूर्णन नहीं होता है। एक दृढ़ पिंड को चिरायता (गणित) कहा जाता है यदि इसकी दर्पण छवि उस अर्थ में भिन्न होती है, अर्थात, यदि इसमें या तो कोई समरूपता नहीं है या इसके समरूपता समूह में केवल उचित घुमाव हैं। विपरीत स्थिति में एक वस्तु को अचिरल कहा जाता है: दर्पण छवि एक प्रति है, अलग वस्तु नहीं। ऐसी वस्तु में समरूपता का तल हो सकता है, लेकिन जरूरी नहीं: प्रतिबिंब का एक तल भी हो सकता है जिसके संबंध में वस्तु की छवि एक घुमाया हुआ संस्करण है। उत्तरार्द्ध बिंदु समूहों के लिए तीन आयामों में लागू होता है। एस2nजिनमें से मामला n = 1 उलटा समरूपता है।

एक (कठोर) आयताकार पारदर्शी शीट के लिए, व्युत्क्रम समरूपता एक तरफ घूर्णी समरूपता के बिना एक छवि और दूसरी तरफ एक ऐसी छवि से मेल खाती है, जिसके माध्यम से जो चमकता है, वह ऊपर की तरफ छवि है, उल्टा। हम दो मामलों में अंतर कर सकते हैं:

  • छवि के साथ शीट की सतह सममित नहीं है - इस मामले में दोनों पक्ष अलग-अलग हैं, लेकिन वस्तु की दर्पण छवि समान है, दर्पण तल के लंबवत अक्ष के बारे में 180° घुमाने के बाद।
  • छवि के साथ शीट की सतह में एक समरूपता अक्ष है - इस मामले में दोनों पक्ष समान हैं, और वस्तु की दर्पण छवि भी समान है, फिर से दर्पण तल के लंबवत अक्ष के बारे में 180° घुमाने के बाद।

थ्रू और थ्रू इमेज वाली शीट अचिरल होती है। हम फिर से दो मामलों में अंतर कर सकते हैं:

  • छवि वाली शीट की सतह में कोई समरूपता अक्ष नहीं है - दोनों पक्ष अलग-अलग हैं
  • छवि वाली शीट की सतह में एक समरूपता अक्ष है - दोनों पक्ष समान हैं

विन्यास स्थल

एक स्थिर बिंदु के साथ एक दृढ़ पिंड का विन्यास स्थान (अर्थात्, शून्य स्थानान्तरण गति वाला एक पिंड) घूर्णन समूह SO(3) के अंतर्निहित कई गुना द्वारा दिया जाता है। एक गैर-स्थायी (शून्येतर अनुवाद संबंधी गति के साथ) दृढ़ पिंड का विन्यास स्थान E+(3) है। यूक्लिडियन समूह के समदूरीकता का उपसमूह तीन आयामों (अनुवाद और घूर्णन के संयोजन) में है।

यह भी देखें

टिप्पणियाँ

  1. Lorenzo Sciavicco, Bruno Siciliano (2000). "§2.4.2 Roll-pitch-yaw angles". Modelling and control of robot manipulators (2nd ed.). Springer. p. 32. ISBN 1-85233-221-2.
  2. Andy Ruina and Rudra Pratap (2015). Introduction to Statics and Dynamics. Oxford University Press. (link: [1])
  3. In general, the position of a point or particle is also known, in physics, as linear position, as opposed to the angular position of a line, or line segment (e.g., in circular motion, the "radius" joining the rotating point with the center of rotation), or basis set, or coordinate system.
  4. In kinematics, linear means "along a straight or curved line" (the path of the particle in space). In mathematics, however, linear has a different meaning. In both contexts, the word "linear" is related to the word "line". In mathematics, a line is often defined as a straight curve. For those who adopt this definition, a curve can be straight, and curved lines are not supposed to exist. In kinematics, the term line is used as a synonym of the term trajectory, or path (namely, it has the same non-restricted meaning as that given, in mathematics, to the word curve). In short, both straight and curved lines are supposed to exist. In kinematics and dynamics, the following words refer to the same non-restricted meaning of the term "line":
    • "linear" (= along a straight or curved line),
    • "rectilinear" (= along a straight line, from Latin rectus = straight, and linere = spread),
    • "curvilinear" (=along a curved line, from Latin curvus = curved, and linere = spread).
    In topology and meteorology, the term "line" has the same meaning; namely, a contour line is a curve.
  5. Kane, Thomas; Levinson, David (1996). "2-4 Auxiliary Reference Frames". Dynamics Online. Sunnyvale, California: OnLine Dynamics, Inc.
  6. 6.0 6.1 Kane, Thomas; Levinson, David (1996). "2-6 Velocity and Acceleration". Dynamics Online. Sunnyvale, California: OnLine Dynamics, Inc.
  7. 7.0 7.1 7.2 Kane, Thomas; Levinson, David (1996). "2-7 Two Points Fixed on a Rigid Body". Dynamics Online. Sunnyvale, California: OnLine Dynamics, Inc.
  8. 8.0 8.1 Kane, Thomas; Levinson, David (1996). "2-8 One Point Moving on a Rigid Body". Dynamics Online. Sunnyvale, California: OnLine Dynamics, Inc.


संदर्भ

  • Roy Featherstone (1987). Robot Dynamics Algorithms. Springer. ISBN 0-89838-230-0. This reference effectively combines screw theory with rigid body dynamics for robotic applications. The author also chooses to use spatial accelerations extensively in place of material accelerations as they simplify the equations and allow for compact notation.
  • JPL DARTS page has a section on spatial operator algebra (link: [2]) as well as an extensive list of references (link: [3]).
  • Andy Ruina and Rudra Pratap (2015). Introduction to Statics and Dynamics. Oxford University Press. (link: [4]).


बाहरी संबंध