शून्य भाजक: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
[[सार बीजगणित|अमूर्त बीजगणित]] में, एक [[अंगूठी (बीजगणित)|वलय (बीजगणित)]] {{math|''R''}} के [[तत्व (गणित)]] {{math|''a''}} को '''बायाँ शून्य भाजक''' कहा जाता है यदि {{math|''R''}} मे कोई गैर-शून्य {{math|''x''}} सम्मिलित है जैसे कि {{math|1=''ax'' = 0}},<ref>{{citation |author= N. Bourbaki |author-link= N. Bourbaki |title=Algebra I, Chapters 1–3 |page=98 |publisher=Springer-Verlag |year=1989}}</ref> या समकक्ष यदि {{math|''R''}} से {{math|''R''}} का मानचित्र जो {{math|''x''}} को {{math|''ax''}} भेजता है, अंतःक्षेपक नहीं है।{{efn|1=Since the map is not injective, we have {{math|1=''ax'' = ''ay''}}, in which {{math|''x''}} differs from {{math|''y''}}, and thus {{math|1=''a''(''x'' − ''y'') = 0}}.}} इसी प्रकार, तत्व (गणित) {{math|''a''}} को '''दायाँ शून्य भाजक''' कहा जाता है यदि {{math|''R''}} एक शून्येतर {{math|''y''}} सम्मिलित जैसे कि {{math|1=''ya'' = 0}} यह वलयों में विभाज्यता (वलय प्रमेय) की आंशिक स्थिति है। तत्व जो बाएँ या दाएँ शून्य भाजक है, उसे '''शून्य भाजक''' कहा जाता है।<ref>{{citation |author= Charles Lanski |year=2005 |title=Concepts in Abstract Algebra |publisher=American Mathematical Soc. |page=342 }}</ref> तत्व {{math|''a''}} जो बाएँ और दाएँ शून्य भाजक दोनों का शून्य भाजक है, उसे '''द्विपक्षी शून्य भाजक''' कहा जाता है (गैर-शून्य {{math|''x''}} ऐसा है कि {{math|1=''ax'' = 0}} गैर-शून्य {{math|''y''}} से भिन्न हो सकता है जैसे कि {{math|1=''ya'' = 0}}) यदि वलय क्रमविनिमेय है, तो बाएँ और दाएँ शून्य भाजक समान हैं। | [[सार बीजगणित|अमूर्त बीजगणित]] में, एक [[अंगूठी (बीजगणित)|वलय (बीजगणित)]] {{math|''R''}} के [[तत्व (गणित)]] {{math|''a''}} को '''बायाँ शून्य भाजक''' कहा जाता है यदि {{math|''R''}} मे कोई गैर-शून्य {{math|''x''}} सम्मिलित है जैसे कि {{math|1=''ax'' = 0}},<ref>{{citation |author= N. Bourbaki |author-link= N. Bourbaki |title=Algebra I, Chapters 1–3 |page=98 |publisher=Springer-Verlag |year=1989}}</ref> या समकक्ष यदि {{math|''R''}} से {{math|''R''}} का मानचित्र जो {{math|''x''}} को {{math|''ax''}} भेजता है, अंतःक्षेपक नहीं है।{{efn|1=Since the map is not injective, we have {{math|1=''ax'' = ''ay''}}, in which {{math|''x''}} differs from {{math|''y''}}, and thus {{math|1=''a''(''x'' − ''y'') = 0}}.}} इसी प्रकार, तत्व (गणित) {{math|''a''}} को '''दायाँ शून्य भाजक''' कहा जाता है यदि {{math|''R''}} एक शून्येतर {{math|''y''}} सम्मिलित जैसे कि {{math|1=''ya'' = 0}} यह वलयों में विभाज्यता (वलय प्रमेय) की आंशिक स्थिति है। तत्व जो बाएँ या दाएँ शून्य भाजक है, उसे '''शून्य भाजक''' कहा जाता है।<ref>{{citation |author= Charles Lanski |year=2005 |title=Concepts in Abstract Algebra |publisher=American Mathematical Soc. |page=342 }}</ref> तत्व {{math|''a''}} जो बाएँ और दाएँ शून्य भाजक दोनों का शून्य भाजक है, उसे '''द्विपक्षी शून्य भाजक''' कहा जाता है (गैर-शून्य {{math|''x''}} ऐसा है कि {{math|1=''ax'' = 0}} गैर-शून्य {{math|''y''}} से भिन्न हो सकता है जैसे कि {{math|1=''ya'' = 0}}) यदि वलय क्रमविनिमेय है, तो बाएँ और दाएँ शून्य भाजक समान हैं। | ||
वलय का एक तत्व जो बाएं शून्य विभाजक नहीं है, उसे '''बाएं सममित''' या '''बाएं रद्द करने योग्य''' कहा जाता है। इसी तरह, वलय का एक तत्व जो दायाँ शून्य विभाजक नहीं है, उसे '''दायाँ''' '''सममित''' या '''दायाँ''' '''रद्द करने योग्य''' कहा जाता है। वलय का एक तत्व जो बाएं और दाएं रद्द करने योग्य है, और इसलिए शून्य विभाजक नहीं है, '''सममित''' या '''रद्द करने योग्य''' या '''गैर-शून्य-भाजक''' कहा जाता है।{{refn|{{cite book|author=Nicolas Bourbaki|year=1998|title=Algebra I|publisher=[[Springer Science+Business Media]]|page=15}}}} शून्य भाजक जो गैर-शून्य है, उसे गैर-शून्य भाजक या | वलय का एक तत्व जो बाएं शून्य विभाजक नहीं है, उसे '''बाएं सममित''' या '''बाएं रद्द करने योग्य''' कहा जाता है। इसी तरह, वलय का एक तत्व जो दायाँ शून्य विभाजक नहीं है, उसे '''दायाँ''' '''सममित''' या '''दायाँ''' '''रद्द करने योग्य''' कहा जाता है। वलय का एक तत्व जो बाएं और दाएं रद्द करने योग्य है, और इसलिए शून्य विभाजक नहीं है, '''सममित''' या '''रद्द करने योग्य''' या '''गैर-शून्य-भाजक''' कहा जाता है।{{refn|{{cite book|author=Nicolas Bourbaki|year=1998|title=Algebra I|publisher=[[Springer Science+Business Media]]|page=15}}}} शून्य भाजक जो गैर-शून्य है, उसे गैर-शून्य भाजक या असाधारण शून्य भाजक कहा जाता है। गैर-शून्य वलय जिसमें कोई असाधारण शून्य विभाजक नहीं है, एक [[डोमेन (रिंग थ्योरी)|प्रक्षेत्र (वलय प्रमेय)]] कहलाता है। | ||
== उदाहरण == | == उदाहरण == | ||
* | * वलय में <math>\mathbb{Z}/4\mathbb{Z}</math>, अवशेष वर्ग <math>\overline{2}</math> के बाद से एक शून्य विभाजक है क्योंकि <math>\overline{2} \times \overline{2}=\overline{4}=\overline{0}</math> | ||
* वलय | * पूर्णांकों के वलय <math>\mathbb{Z}</math> का एकमात्र शून्य भाजक <math>0</math> है। | ||
* | * गैर-शून्य वलय का एक [[nilpotent|शून्यंभावी]] तत्व सदैव दो पक्षीय शून्य का भाजक होता है। | ||
* | * वर्गसम तत्व (वलय प्रमेय) <math>e\ne 1</math> एक वलय का सदैव एक दो पक्षीय शून्य विभाजक होता है, क्योंकि <math>e(1-e)=0=(1-e)e</math> | ||
* | * क्षेत्र (गणित) पर <math>n \times n</math> आव्यूह में गैर-शून्य शून्य विभाजक हैं यदि <math> n \geq 2</math> की वलय में शून्य विभाजक के उदाहरण <math>2\times 2</math> आव्यूह (किसी भी शून्य वलय पर) यहां दिखाए गए हैं: <math display="block">\begin{pmatrix}1&1\\2&2\end{pmatrix}\begin{pmatrix}1&1\\-1&-1\end{pmatrix}=\begin{pmatrix}-2&1\\-2&1\end{pmatrix}\begin{pmatrix}1&1\\2&2\end{pmatrix}=\begin{pmatrix}0&0\\0&0\end{pmatrix} ,</math> <math display="block">\begin{pmatrix}1&0\\0&0\end{pmatrix}\begin{pmatrix}0&0\\0&1\end{pmatrix} | ||
=\begin{pmatrix}0&0\\0&1\end{pmatrix}\begin{pmatrix}1&0\\0&0\end{pmatrix} | =\begin{pmatrix}0&0\\0&1\end{pmatrix}\begin{pmatrix}1&0\\0&0\end{pmatrix} | ||
=\begin{pmatrix}0&0\\0&0\end{pmatrix}.</math> | =\begin{pmatrix}0&0\\0&0\end{pmatrix}.</math> | ||
*दो या दो से अधिक शून्य | *दो या दो से अधिक गैर-शून्य वलयों के प्रत्यक्ष उत्पाद में सदैव अशून्य शून्य भाजक होते हैं। उदाहरण के लिए, में <math>R_1 \times R_2</math> प्रत्येक के साथ <math>R_i</math> गैर-शून्य, <math>(1,0)(0,1) = (0,0)</math>, इसलिए <math>(1,0)</math> एक शून्य विभाजक है। | ||
* | *मान लो <math>K</math> के एक क्षेत्र हो (गणित) और <math>G</math> एक [[समूह (गणित)]] हो। मान लीजिए कि <math>G</math> एक तत्व है <math>g</math> परिमित क्रम [[आदेश (समूह सिद्धांत)|(समूह सिद्धांत)]] <math>n>1</math> तब [[समूह की अंगूठी|समूह की वलय]] में <math>K[G]</math> किसी के पास <math>(1-g)(1+g+ \cdots +g^{n-1})=1-g^{n}=0</math>, जिसमें कोई भी कारक शून्य नहीं है, इसलिए, <math>1-g</math> में एक शून्येतर शून्य भाजक <math>K[G]</math> है। | ||
=== एक | === एक पक्षीय शून्य-भाजक === | ||
* (औपचारिक) | * (औपचारिक) आव्यूह की वलय पर विचार करें <math>\begin{pmatrix}x&y\\0&z\end{pmatrix}</math> साथ <math>x,z\in\mathbb{Z}</math> और <math>y\in\mathbb{Z}/2\mathbb{Z}</math> तब <math>\begin{pmatrix}x&y\\0&z\end{pmatrix}\begin{pmatrix}a&b\\0&c\end{pmatrix}=\begin{pmatrix}xa&xb+yc\\0&zc\end{pmatrix}</math> और <math>\begin{pmatrix}a&b\\0&c\end{pmatrix}\begin{pmatrix}x&y\\0&z\end{pmatrix}=\begin{pmatrix}xa&ya+zb\\0&zc\end{pmatrix}</math> यदि <math>x\ne0\ne z</math>, तब <math>\begin{pmatrix}x&y\\0&z\end{pmatrix}</math> बायाँ शून्य विभाजक है यदि और केवल यदि <math>x</math> सम <math>\begin{pmatrix}x&y\\0&z\end{pmatrix}\begin{pmatrix}0&1\\0&0\end{pmatrix}=\begin{pmatrix}0&x\\0&0\end{pmatrix}</math> है, और यह एक दायाँ शून्य भाजक है यदि और केवल यदि <math>z</math> समान कारणों से भी है। यदि दोनों में से कोई <math>x,z</math> है <math>0</math>, तो यह दो पक्षीय शून्य-भाजक है। | ||
*यहां एक तत्व के साथ एक वलय का | *यहां एक तत्व के साथ एक वलय का अन्य उदाहरण है जो केवल एक पक्षीय शून्य विभाजक है। मान लीजिए <math>S</math> पूर्णांकों के सभी अनुक्रमों का समुच्चय हो <math>(a_1,a_2,a_3,...)</math>. वलय के लिए सभी [[योगात्मक नक्शा|योगात्मक मानचित्र]] लें <math>S</math> को <math>S</math>, वलय संक्रिया के रूप में [[बिंदुवार]] जोड़ और संरचना हो। (अर्थात हमारी वलय <math>\mathrm{End}(S)</math> है, योगात्मक समूह की [[एंडोमोर्फिज्म रिंग|अंतराकारिता वलय]] <math>S</math> है।) इस वलय के तत्वों के तीन उदाहरण दाएँ स्थानांतरण <math>R(a_1,a_2,a_3,...)=(0,a_1,a_2,...)</math>, बाईं पारी <math>L(a_1,a_2,a_3,...)=(a_2,a_3,a_4,...)</math> है, और पहले कारक पर <math>P(a_1,a_2,a_3,...)=(a_1,0,0,...)</math> प्रक्षेपण मानचित्र है। ये तीनों योगात्मक मानचित्र शून्य नहीं हैं, बल्कि सम्मिश्र <math>LP</math> और <math>PR</math> दोनों शून्य हैं, इसलिए <math>L</math> एक बायां शून्य विभाजक है और<math>R</math>, <math>S</math> से <math>S</math> योगात्मक नक्शों के वलय में एक दायाँ शून्य भाजक है। हालाँकि, <math>L</math> एक दायाँ शून्य भाजक नहीं है और <math>R</math> बायाँ शून्य भाजक नहीं है: समग्र <math>LR</math> सर्वसमिका है। <math>RL</math> चूंकि दो पक्षीय शून्य-भाजक है क्योंकि <math>RLP=0=PRL</math>, जबकि <math>LR=1</math> किसी दिशा में नहीं है। | ||
== गैर-उदाहरण == | == गैर-उदाहरण == | ||
* पूर्णांक [[मॉड्यूलर अंकगणित]] की वलय | * पूर्णांक [[मॉड्यूलर अंकगणित|मापांक अंकगणित]] की वलय [[अभाज्य संख्या]] में कोई गैर-शून्य शून्य विभाजक नहीं है। चूँकि प्रत्येक गैर-शून्य तत्व एक इकाई (वलय प्रमेय) है, यह वलय एक [[परिमित क्षेत्र]] है। | ||
* अधिक सामान्य रूप से, एक विभाजन वलय में शून्येतर शून्य भाजक नहीं होते हैं। | * अधिक सामान्य रूप से, एक विभाजन वलय में शून्येतर शून्य भाजक नहीं होते हैं। | ||
* | * शून्य वलय क्रमविनिमेय वलय जिसका केवल शून्य भाजक 0 है, एक [[अभिन्न डोमेन|अभिन्न प्रक्षेत्र]] कहलाता है। | ||
== गुण == | == गुण == | ||
* के घेरे में {{mvar|n}}-द्वारा-{{mvar|n}} एक क्षेत्र (गणित) पर आव्यूह, बाएँ और दाएँ शून्य विभाजक मेल खाते हैं; वे ठीक [[एकवचन मैट्रिक्स]] हैं। के घेरे में {{math|''n''}}-द्वारा-{{math|''n''}} एक अभिन्न प्रक्षेत्र पर | * के घेरे में {{mvar|n}}-द्वारा-{{mvar|n}} एक क्षेत्र (गणित) पर आव्यूह, बाएँ और दाएँ शून्य विभाजक मेल खाते हैं; वे ठीक [[एकवचन मैट्रिक्स|एकवचन आव्यूह]] हैं। के घेरे में {{math|''n''}}-द्वारा-{{math|''n''}} एक अभिन्न प्रक्षेत्र पर आव्यूह, शून्य विभाजक निश्चित रूप से निर्धारक [[0 (संख्या)]] के साथ आव्यूह हैं। | ||
* बाएँ या दाएँ शून्य विभाजक कभी भी इकाई (वलय प्रमेय) नहीं हो सकते, क्योंकि यदि {{math|''a''}} उलटा है और {{math|1=''ax'' = 0}} कुछ गैर शून्य के लिए {{math|''x''}}, तब {{math|1=0 = ''a''<sup>−1</sup>0 = ''a''<sup>−1</sup>''ax'' = ''x''}}, एक विरोधाभास। | * बाएँ या दाएँ शून्य विभाजक कभी भी इकाई (वलय प्रमेय) नहीं हो सकते, क्योंकि यदि {{math|''a''}} उलटा है और {{math|1=''ax'' = 0}} कुछ गैर शून्य के लिए {{math|''x''}}, तब {{math|1=0 = ''a''<sup>−1</sup>0 = ''a''<sup>−1</sup>''ax'' = ''x''}}, एक विरोधाभास। | ||
* एक तत्व उस | * एक तत्व उस पक्षीय रद्दीकरण संपत्ति है जिस पर यह सममित है। अर्थात यदि {{math|''a''}} बाएं सममित है, {{math|1=''ax'' = ''ay''}} इसका आशय है {{math|1=''x'' = ''y''}}, और इसी तरह सही सममित के लिए। | ||
== शून्य एक शून्य भाजक के रूप में == | |||
स्थिति के लिए एक अलग सम्मेलन की कोई आवश्यकता नहीं है {{math|1=''a'' = 0}}, क्योंकि परिभाषा इस स्थिति में भी लागू होती है: | स्थिति के लिए एक अलग सम्मेलन की कोई आवश्यकता नहीं है {{math|1=''a'' = 0}}, क्योंकि परिभाषा इस स्थिति में भी लागू होती है: | ||
* यदि {{math|''R''}} तब शून्य वलय के अलावा कोई वलय है {{math|0}} एक (दो | * यदि {{math|''R''}} तब शून्य वलय के अलावा कोई वलय है {{math|0}} एक (दो पक्षीय) शून्य विभाजक है, क्योंकि कोई भी गैर-शून्य तत्व {{mvar|x}} संतुष्ट {{math|1=0''x'' = 0 = ''x''0}}. | ||
* यदि {{math|''R''}} शून्य वलय है, जिसमें {{math|1=0 = 1}}, तब {{math|0}} एक शून्य विभाजक नहीं है, क्योंकि कोई गैर-शून्य तत्व नहीं है, जब से गुणा किया जाता है {{math|0}} पैदावार {{math|0}}. | * यदि {{math|''R''}} शून्य वलय है, जिसमें {{math|1=0 = 1}}, तब {{math|0}} एक शून्य विभाजक नहीं है, क्योंकि कोई गैर-शून्य तत्व नहीं है, जब से गुणा किया जाता है {{math|0}} पैदावार {{math|0}}. | ||
Line 42: | Line 41: | ||
* क्रमविनिमेय नॉथेरियन वलय में {{math|''R''}}, शून्य भाजक का समुच्चय संबंधित अभाज्य का संघ है {{math|''R''}}. | * क्रमविनिमेय नॉथेरियन वलय में {{math|''R''}}, शून्य भाजक का समुच्चय संबंधित अभाज्य का संघ है {{math|''R''}}. | ||
== | == मापांक पर शून्य विभाजक == | ||
होने देना {{mvar|R}} क्रमविनिमेय वलय बनो, मान लीजिए {{mvar|M}} सेम {{mvar|R}}-[[मॉड्यूल (गणित)]], और चलो {{mvar|a}} का एक तत्व हो {{mvar|R}}. एक कहता है {{mvar|a}} है{{mvar|M}}-सममित यदि गुणा करके {{mvar|a}} | शून्य भाजक होने देना {{mvar|R}} क्रमविनिमेय वलय बनो, मान लीजिए {{mvar|M}} सेम {{mvar|R}}-[[मॉड्यूल (गणित)|मापांक (गणित)]], और चलो {{mvar|a}} का एक तत्व हो {{mvar|R}}. एक कहता है {{mvar|a}} है{{mvar|M}}-सममित यदि गुणा करके {{mvar|a}} मानचित्र <math>M \,\stackrel{a}\to\, M</math> अंतःक्षेपक है, और वह {{mvar|a}} एक शून्य विभाजक है {{mvar|M}}अन्यथा।<ref name="Matsumura-p12">{{citation |author=Hideyuki Matsumura |author-link=Hideyuki Matsumura |year=1980 |title=Commutative algebra, 2nd edition |publisher=The Benjamin/Cummings Publishing Company, Inc. |page=12}}</ref> के समुच्चय {{mvar|M}}-सममित तत्व एक गुणक समुच्चय है {{mvar|R}}.<ref name="Matsumura-p12" /> | ||
की परिभाषा विशेषज्ञता{{mvar|M}}-सममित और शून्य विभाजक चालू {{mvar|M}} स्थिति के लिए {{math|1=''M'' = ''R''}} इस आलेख में पहले दी गई सममित और शून्य विभाजक की परिभाषाओं को पुनर्प्राप्त करता है। | की परिभाषा विशेषज्ञता{{mvar|M}}-सममित और शून्य विभाजक चालू {{mvar|M}} स्थिति के लिए {{math|1=''M'' = ''R''}} इस आलेख में पहले दी गई सममित और शून्य विभाजक की परिभाषाओं को पुनर्प्राप्त करता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
* [[शून्य-उत्पाद संपत्ति]] | * [[शून्य-उत्पाद संपत्ति|शून्य-उत्पाद गुण]] | ||
* [[क्रमविनिमेय बीजगणित की शब्दावली]] (परिशुद्ध शून्य भाजक) | * [[क्रमविनिमेय बीजगणित की शब्दावली]] (परिशुद्ध शून्य भाजक) | ||
* [[शून्य भाजक ग्राफ]] | * [[शून्य भाजक ग्राफ|शून्य-विभाजक ग्राफ]] | ||
== टिप्पणियाँ == | == टिप्पणियाँ == |
Revision as of 17:21, 11 February 2023
अमूर्त बीजगणित में, एक वलय (बीजगणित) R के तत्व (गणित) a को बायाँ शून्य भाजक कहा जाता है यदि R मे कोई गैर-शून्य x सम्मिलित है जैसे कि ax = 0,[1] या समकक्ष यदि R से R का मानचित्र जो x को ax भेजता है, अंतःक्षेपक नहीं है।[lower-alpha 1] इसी प्रकार, तत्व (गणित) a को दायाँ शून्य भाजक कहा जाता है यदि R एक शून्येतर y सम्मिलित जैसे कि ya = 0 यह वलयों में विभाज्यता (वलय प्रमेय) की आंशिक स्थिति है। तत्व जो बाएँ या दाएँ शून्य भाजक है, उसे शून्य भाजक कहा जाता है।[2] तत्व a जो बाएँ और दाएँ शून्य भाजक दोनों का शून्य भाजक है, उसे द्विपक्षी शून्य भाजक कहा जाता है (गैर-शून्य x ऐसा है कि ax = 0 गैर-शून्य y से भिन्न हो सकता है जैसे कि ya = 0) यदि वलय क्रमविनिमेय है, तो बाएँ और दाएँ शून्य भाजक समान हैं।
वलय का एक तत्व जो बाएं शून्य विभाजक नहीं है, उसे बाएं सममित या बाएं रद्द करने योग्य कहा जाता है। इसी तरह, वलय का एक तत्व जो दायाँ शून्य विभाजक नहीं है, उसे दायाँ सममित या दायाँ रद्द करने योग्य कहा जाता है। वलय का एक तत्व जो बाएं और दाएं रद्द करने योग्य है, और इसलिए शून्य विभाजक नहीं है, सममित या रद्द करने योग्य या गैर-शून्य-भाजक कहा जाता है।[3] शून्य भाजक जो गैर-शून्य है, उसे गैर-शून्य भाजक या असाधारण शून्य भाजक कहा जाता है। गैर-शून्य वलय जिसमें कोई असाधारण शून्य विभाजक नहीं है, एक प्रक्षेत्र (वलय प्रमेय) कहलाता है।
उदाहरण
- वलय में , अवशेष वर्ग के बाद से एक शून्य विभाजक है क्योंकि
- पूर्णांकों के वलय का एकमात्र शून्य भाजक है।
- गैर-शून्य वलय का एक शून्यंभावी तत्व सदैव दो पक्षीय शून्य का भाजक होता है।
- वर्गसम तत्व (वलय प्रमेय) एक वलय का सदैव एक दो पक्षीय शून्य विभाजक होता है, क्योंकि
- क्षेत्र (गणित) पर आव्यूह में गैर-शून्य शून्य विभाजक हैं यदि की वलय में शून्य विभाजक के उदाहरण आव्यूह (किसी भी शून्य वलय पर) यहां दिखाए गए हैं:
- दो या दो से अधिक गैर-शून्य वलयों के प्रत्यक्ष उत्पाद में सदैव अशून्य शून्य भाजक होते हैं। उदाहरण के लिए, में प्रत्येक के साथ गैर-शून्य, , इसलिए एक शून्य विभाजक है।
- मान लो के एक क्षेत्र हो (गणित) और एक समूह (गणित) हो। मान लीजिए कि एक तत्व है परिमित क्रम (समूह सिद्धांत) तब समूह की वलय में किसी के पास , जिसमें कोई भी कारक शून्य नहीं है, इसलिए, में एक शून्येतर शून्य भाजक है।
एक पक्षीय शून्य-भाजक
- (औपचारिक) आव्यूह की वलय पर विचार करें साथ और तब और यदि , तब बायाँ शून्य विभाजक है यदि और केवल यदि सम है, और यह एक दायाँ शून्य भाजक है यदि और केवल यदि समान कारणों से भी है। यदि दोनों में से कोई है , तो यह दो पक्षीय शून्य-भाजक है।
- यहां एक तत्व के साथ एक वलय का अन्य उदाहरण है जो केवल एक पक्षीय शून्य विभाजक है। मान लीजिए पूर्णांकों के सभी अनुक्रमों का समुच्चय हो . वलय के लिए सभी योगात्मक मानचित्र लें को , वलय संक्रिया के रूप में बिंदुवार जोड़ और संरचना हो। (अर्थात हमारी वलय है, योगात्मक समूह की अंतराकारिता वलय है।) इस वलय के तत्वों के तीन उदाहरण दाएँ स्थानांतरण , बाईं पारी है, और पहले कारक पर प्रक्षेपण मानचित्र है। ये तीनों योगात्मक मानचित्र शून्य नहीं हैं, बल्कि सम्मिश्र और दोनों शून्य हैं, इसलिए एक बायां शून्य विभाजक है और, से योगात्मक नक्शों के वलय में एक दायाँ शून्य भाजक है। हालाँकि, एक दायाँ शून्य भाजक नहीं है और बायाँ शून्य भाजक नहीं है: समग्र सर्वसमिका है। चूंकि दो पक्षीय शून्य-भाजक है क्योंकि , जबकि किसी दिशा में नहीं है।
गैर-उदाहरण
- पूर्णांक मापांक अंकगणित की वलय अभाज्य संख्या में कोई गैर-शून्य शून्य विभाजक नहीं है। चूँकि प्रत्येक गैर-शून्य तत्व एक इकाई (वलय प्रमेय) है, यह वलय एक परिमित क्षेत्र है।
- अधिक सामान्य रूप से, एक विभाजन वलय में शून्येतर शून्य भाजक नहीं होते हैं।
- शून्य वलय क्रमविनिमेय वलय जिसका केवल शून्य भाजक 0 है, एक अभिन्न प्रक्षेत्र कहलाता है।
गुण
- के घेरे में n-द्वारा-n एक क्षेत्र (गणित) पर आव्यूह, बाएँ और दाएँ शून्य विभाजक मेल खाते हैं; वे ठीक एकवचन आव्यूह हैं। के घेरे में n-द्वारा-n एक अभिन्न प्रक्षेत्र पर आव्यूह, शून्य विभाजक निश्चित रूप से निर्धारक 0 (संख्या) के साथ आव्यूह हैं।
- बाएँ या दाएँ शून्य विभाजक कभी भी इकाई (वलय प्रमेय) नहीं हो सकते, क्योंकि यदि a उलटा है और ax = 0 कुछ गैर शून्य के लिए x, तब 0 = a−10 = a−1ax = x, एक विरोधाभास।
- एक तत्व उस पक्षीय रद्दीकरण संपत्ति है जिस पर यह सममित है। अर्थात यदि a बाएं सममित है, ax = ay इसका आशय है x = y, और इसी तरह सही सममित के लिए।
शून्य एक शून्य भाजक के रूप में
स्थिति के लिए एक अलग सम्मेलन की कोई आवश्यकता नहीं है a = 0, क्योंकि परिभाषा इस स्थिति में भी लागू होती है:
- यदि R तब शून्य वलय के अलावा कोई वलय है 0 एक (दो पक्षीय) शून्य विभाजक है, क्योंकि कोई भी गैर-शून्य तत्व x संतुष्ट 0x = 0 = x0.
- यदि R शून्य वलय है, जिसमें 0 = 1, तब 0 एक शून्य विभाजक नहीं है, क्योंकि कोई गैर-शून्य तत्व नहीं है, जब से गुणा किया जाता है 0 पैदावार 0.
कुछ संदर्भों में सम्मिलित या बहिष्कृत हैं 0 परिपाटी द्वारा सभी छल्लों में एक शून्य विभाजक के रूप में, लेकिन वे निम्नलिखित जैसे बयानों में अपवादों को पेश करने से पीड़ित हैं:
- एक क्रमविनिमेय वलय में R, गैर-शून्य-भाजक का समुच्चय एक गुणक समुच्चय है R. (यह, बदले में, कुल भागफल वलय की परिभाषा के लिए महत्वपूर्ण है।) वही गैर-बाएँ-शून्य-भाजक के समुच्चय और गैर-दाएँ-शून्य-भाजक के समुच्चय के लिए एक मनमाना वलय, क्रमविनिमेय है। या नहीं।
- क्रमविनिमेय नॉथेरियन वलय में R, शून्य भाजक का समुच्चय संबंधित अभाज्य का संघ है R.
मापांक पर शून्य विभाजक
शून्य भाजक होने देना R क्रमविनिमेय वलय बनो, मान लीजिए M सेम R-मापांक (गणित), और चलो a का एक तत्व हो R. एक कहता है a हैM-सममित यदि गुणा करके a मानचित्र अंतःक्षेपक है, और वह a एक शून्य विभाजक है Mअन्यथा।[4] के समुच्चय M-सममित तत्व एक गुणक समुच्चय है R.[4]
की परिभाषा विशेषज्ञताM-सममित और शून्य विभाजक चालू M स्थिति के लिए M = R इस आलेख में पहले दी गई सममित और शून्य विभाजक की परिभाषाओं को पुनर्प्राप्त करता है।
यह भी देखें
- शून्य-उत्पाद गुण
- क्रमविनिमेय बीजगणित की शब्दावली (परिशुद्ध शून्य भाजक)
- शून्य-विभाजक ग्राफ
टिप्पणियाँ
- ↑ Since the map is not injective, we have ax = ay, in which x differs from y, and thus a(x − y) = 0.
संदर्भ
- ↑ N. Bourbaki (1989), Algebra I, Chapters 1–3, Springer-Verlag, p. 98
- ↑ Charles Lanski (2005), Concepts in Abstract Algebra, American Mathematical Soc., p. 342
- ↑ Nicolas Bourbaki (1998). Algebra I. Springer Science+Business Media. p. 15.
- ↑ 4.0 4.1 Hideyuki Matsumura (1980), Commutative algebra, 2nd edition, The Benjamin/Cummings Publishing Company, Inc., p. 12
अग्रिम पठन
- "Zero divisor", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Michiel Hazewinkel; Nadiya Gubareni; Nadezhda Mikhaĭlovna Gubareni; Vladimir V. Kirichenko. (2004), Algebras, rings and modules, vol. 1, Springer, ISBN 1-4020-2690-0
- Weisstein, Eric W. "Zero Divisor". MathWorld.