शून्य भाजक: Difference between revisions
No edit summary |
No edit summary |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Ring element that can be multiplied by a non-zero element to equal 0}} | {{Short description|Ring element that can be multiplied by a non-zero element to equal 0}} | ||
[[सार बीजगणित|अमूर्त बीजगणित]] में, एक [[अंगूठी (बीजगणित)|वलय (बीजगणित)]] {{math|''R''}} के [[तत्व (गणित)]] {{math|''a''}} को '''बायाँ शून्य भाजक''' कहा जाता है यदि {{math|''R''}} मे कोई गैर-शून्य {{math|''x''}} सम्मिलित है जैसे कि {{math|1=''ax'' = 0}},<ref>{{citation |author= N. Bourbaki |author-link= N. Bourbaki |title=Algebra I, Chapters 1–3 |page=98 |publisher=Springer-Verlag |year=1989}}</ref> या समकक्ष यदि {{math|''R''}} से {{math|''R''}} का मानचित्र जो {{math|''x''}} को {{math|''ax''}} भेजता है, अंतःक्षेपक नहीं है।{{efn|1=Since the map is not injective, we have {{math|1=''ax'' = ''ay''}}, in which {{math|''x''}} differs from {{math|''y''}}, and thus {{math|1=''a''(''x'' − ''y'') = 0}}.}} इसी प्रकार, तत्व (गणित) {{math|''a''}} को '''दायाँ शून्य भाजक''' कहा जाता है यदि {{math|''R''}} एक शून्येतर {{math|''y''}} सम्मिलित जैसे कि {{math|1=''ya'' = 0}} यह वलयों में विभाज्यता (वलय प्रमेय) की आंशिक स्थिति है। तत्व जो बाएँ या दाएँ शून्य भाजक है, उसे '''शून्य भाजक''' कहा जाता है।<ref>{{citation |author= Charles Lanski |year=2005 |title=Concepts in Abstract Algebra |publisher=American Mathematical Soc. |page=342 }}</ref> तत्व {{math|''a''}} जो बाएँ और दाएँ शून्य भाजक दोनों का शून्य भाजक है, उसे '''द्विपक्षी शून्य भाजक''' कहा जाता है (गैर-शून्य {{math|''x''}} ऐसा है कि {{math|1=''ax'' = 0}} गैर-शून्य {{math|''y''}} से भिन्न हो सकता है जैसे कि {{math|1=''ya'' = 0}}) यदि वलय क्रमविनिमेय है, तो बाएँ और दाएँ शून्य भाजक समान हैं। | |||
[[सार बीजगणित]] में, एक [[ | |||
वलय का एक तत्व जो बाएं शून्य विभाजक नहीं है, उसे '''बाएं सममित''' या '''बाएं रद्द करने योग्य''' कहा जाता है। इसी तरह, वलय का एक तत्व जो दायाँ शून्य विभाजक नहीं है, उसे '''दायाँ''' '''सममित''' या '''दायाँ''' '''रद्द करने योग्य''' कहा जाता है। वलय का एक तत्व जो बाएं और दाएं रद्द करने योग्य है, और इसलिए शून्य विभाजक नहीं है, '''सममित''' या '''रद्द करने योग्य''' या '''गैर-शून्य-भाजक''' कहा जाता है।{{refn|{{cite book|author=Nicolas Bourbaki|year=1998|title=Algebra I|publisher=[[Springer Science+Business Media]]|page=15}}}} शून्य भाजक जो गैर-शून्य है, उसे गैर-शून्य भाजक या असाधारण शून्य भाजक कहा जाता है। गैर-शून्य वलय जिसमें कोई असाधारण शून्य विभाजक नहीं है, एक [[डोमेन (रिंग थ्योरी)|प्रक्षेत्र (वलय प्रमेय)]] कहलाता है। | |||
वलय का एक तत्व जो बाएं और दाएं रद्द करने योग्य है, और इसलिए शून्य विभाजक नहीं है, | |||
== उदाहरण == | == उदाहरण == | ||
* | * वलय में <math>\mathbb{Z}/4\mathbb{Z}</math>, अवशेष वर्ग <math>\overline{2}</math> के बाद से एक शून्य विभाजक है क्योंकि <math>\overline{2} \times \overline{2}=\overline{4}=\overline{0}</math> | ||
* वलय | * पूर्णांकों के वलय <math>\mathbb{Z}</math> का एकमात्र शून्य भाजक <math>0</math> है। | ||
* | * गैर-शून्य वलय का एक [[nilpotent|शून्यंभावी]] तत्व सदैव दो पक्षीय शून्य का भाजक होता है। | ||
* | * वर्गसम तत्व (वलय प्रमेय) <math>e\ne 1</math> एक वलय का सदैव एक दो पक्षीय शून्य विभाजक होता है, क्योंकि <math>e(1-e)=0=(1-e)e</math> | ||
* | * क्षेत्र (गणित) पर <math>n \times n</math> आव्यूह (मैट्रिक्स) में गैर-शून्य शून्य विभाजक हैं यदि <math> n \geq 2</math> की वलय में शून्य विभाजक के उदाहरण <math>2\times 2</math> आव्यूह (किसी भी शून्य वलय पर) यहां दिखाए गए हैं: <math display="block">\begin{pmatrix}1&1\\2&2\end{pmatrix}\begin{pmatrix}1&1\\-1&-1\end{pmatrix}=\begin{pmatrix}-2&1\\-2&1\end{pmatrix}\begin{pmatrix}1&1\\2&2\end{pmatrix}=\begin{pmatrix}0&0\\0&0\end{pmatrix} ,</math> <math display="block">\begin{pmatrix}1&0\\0&0\end{pmatrix}\begin{pmatrix}0&0\\0&1\end{pmatrix} | ||
=\begin{pmatrix}0&0\\0&1\end{pmatrix}\begin{pmatrix}1&0\\0&0\end{pmatrix} | =\begin{pmatrix}0&0\\0&1\end{pmatrix}\begin{pmatrix}1&0\\0&0\end{pmatrix} | ||
=\begin{pmatrix}0&0\\0&0\end{pmatrix}.</math> | =\begin{pmatrix}0&0\\0&0\end{pmatrix}.</math> | ||
*दो या दो से अधिक शून्य | *दो या दो से अधिक गैर-शून्य वलयों के प्रत्यक्ष उत्पाद में सदैव अशून्य शून्य भाजक होते हैं। उदाहरण के लिए, में <math>R_1 \times R_2</math> प्रत्येक के साथ <math>R_i</math> गैर-शून्य, <math>(1,0)(0,1) = (0,0)</math>, इसलिए <math>(1,0)</math> एक शून्य विभाजक है। | ||
* | *मान लो <math>K</math> के एक क्षेत्र हो (गणित) और <math>G</math> एक [[समूह (गणित)]] हो। मान लीजिए कि <math>G</math> एक तत्व है <math>g</math> परिमित क्रम [[आदेश (समूह सिद्धांत)|(समूह सिद्धांत)]] <math>n>1</math> तब [[समूह की अंगूठी|समूह की वलय]] में <math>K[G]</math> किसी के पास <math>(1-g)(1+g+ \cdots +g^{n-1})=1-g^{n}=0</math>, जिसमें कोई भी कारक शून्य नहीं है, इसलिए, <math>1-g</math> में एक शून्येतर शून्य भाजक <math>K[G]</math> है। | ||
=== एक | === एक पक्षीय शून्य-भाजक === | ||
* (औपचारिक) | * (औपचारिक) आव्यूह की वलय पर विचार करें <math>\begin{pmatrix}x&y\\0&z\end{pmatrix}</math> साथ <math>x,z\in\mathbb{Z}</math> और <math>y\in\mathbb{Z}/2\mathbb{Z}</math> तब <math>\begin{pmatrix}x&y\\0&z\end{pmatrix}\begin{pmatrix}a&b\\0&c\end{pmatrix}=\begin{pmatrix}xa&xb+yc\\0&zc\end{pmatrix}</math> और <math>\begin{pmatrix}a&b\\0&c\end{pmatrix}\begin{pmatrix}x&y\\0&z\end{pmatrix}=\begin{pmatrix}xa&ya+zb\\0&zc\end{pmatrix}</math> यदि <math>x\ne0\ne z</math>, तब <math>\begin{pmatrix}x&y\\0&z\end{pmatrix}</math> बायाँ शून्य विभाजक है यदि और केवल यदि <math>x</math> सम <math>\begin{pmatrix}x&y\\0&z\end{pmatrix}\begin{pmatrix}0&1\\0&0\end{pmatrix}=\begin{pmatrix}0&x\\0&0\end{pmatrix}</math> है, और यह एक दायाँ शून्य भाजक है यदि और केवल यदि <math>z</math> समान कारणों से भी है। यदि दोनों में से कोई <math>x,z</math> है <math>0</math>, तो यह दो पक्षीय शून्य-भाजक है। | ||
*यहां एक तत्व के साथ एक वलय का | *यहां एक तत्व के साथ एक वलय का अन्य उदाहरण है जो केवल एक पक्षीय शून्य विभाजक है। मान लीजिए <math>S</math> पूर्णांकों के सभी अनुक्रमों का समुच्चय हो <math>(a_1,a_2,a_3,...)</math>. वलय के लिए सभी [[योगात्मक नक्शा|योगात्मक मानचित्र]] लें <math>S</math> को <math>S</math>, वलय संक्रिया के रूप में [[बिंदुवार]] जोड़ और संरचना हो। (अर्थात हमारी वलय <math>\mathrm{End}(S)</math> है, योगात्मक समूह की [[एंडोमोर्फिज्म रिंग|अंतराकारिता वलय]] <math>S</math> है।) इस वलय के तत्वों के तीन उदाहरण दाएँ स्थानांतरण <math>R(a_1,a_2,a_3,...)=(0,a_1,a_2,...)</math>, बाईं पारी <math>L(a_1,a_2,a_3,...)=(a_2,a_3,a_4,...)</math> है, और पहले कारक पर <math>P(a_1,a_2,a_3,...)=(a_1,0,0,...)</math> प्रक्षेपण मानचित्र है। ये तीनों योगात्मक मानचित्र शून्य नहीं हैं, बल्कि सम्मिश्र <math>LP</math> और <math>PR</math> दोनों शून्य हैं, इसलिए <math>L</math> एक बायां शून्य विभाजक है और<math>R</math>, <math>S</math> से <math>S</math> योगात्मक नक्शों के वलय में एक दायाँ शून्य भाजक है। हालाँकि, <math>L</math> एक दायाँ शून्य भाजक नहीं है और <math>R</math> बायाँ शून्य भाजक नहीं है: समग्र <math>LR</math> सर्वसमिका है। <math>RL</math> चूंकि दो पक्षीय शून्य-भाजक है क्योंकि <math>RLP=0=PRL</math>, जबकि <math>LR=1</math> किसी दिशा में नहीं है। | ||
== गैर-उदाहरण == | == गैर-उदाहरण == | ||
* पूर्णांक [[मॉड्यूलर अंकगणित]] की वलय | * पूर्णांक [[मॉड्यूलर अंकगणित|मापांक अंकगणित]] की वलय [[अभाज्य संख्या]] में कोई गैर-शून्य शून्य विभाजक नहीं है। चूँकि प्रत्येक गैर-शून्य तत्व एक इकाई (वलय प्रमेय) है, यह वलय एक [[परिमित क्षेत्र]] है। | ||
* अधिक सामान्य रूप से, एक विभाजन वलय में शून्येतर शून्य भाजक नहीं होते हैं। | * अधिक सामान्य रूप से, एक विभाजन वलय में शून्येतर शून्य भाजक नहीं होते हैं। | ||
* | * शून्य वलय क्रमविनिमेय वलय जिसका केवल शून्य भाजक 0 है, एक [[अभिन्न डोमेन|अभिन्न प्रक्षेत्र]] कहलाता है। | ||
== गुण == | == गुण == | ||
* | * क्षेत्र (गणित) पर {{mvar|n}}-द्वारा-{{mvar|n}} आव्यूह के वलय मे, बाएँ और दाएँ शून्य विभाजक अनुरूप होते हैं; वे परिशुद्ध रूप से विलक्षण [[एकवचन मैट्रिक्स|आव्यूह]] हैं। अभिन्न प्रक्षेत्र पर {{math|''n''}}-द्वारा-{{math|''n''}} आव्यूह के वलय, शून्य विभाजक निश्चित रूप से निर्धारक [[0 (संख्या)]] के साथ आव्यूह होते हैं। | ||
* बाएँ या दाएँ शून्य | * बाएँ या दाएँ शून्य भाजक कभी भी इकाई नहीं हो सकते, क्योंकि यदि a व्युत्क्रमणीय है और {{math|1=''ax'' = 0}} कुछ गैर शून्य के लिए {{math|''x''}}, तब {{math|1=0 = ''a''<sup>−1</sup>0 = ''a''<sup>−1</sup>''ax'' = ''x''}}, सर्व असत्य है। | ||
* | * तत्व उस तरफ रद्द करने योग्य है जिस पर यह नियमित है। अर्थात यदि {{math|''a''}} बाएं सममित {{math|1=''ax'' = ''ay''}} है, इसका आशय है {{math|1=''x'' = ''y''}}, और इसी तरह सही सममित के लिए है। | ||
स्थिति | == शून्य एक शून्य भाजक के रूप में == | ||
* | स्थिति {{math|1=''a'' = 0}} के लिए एक अलग अभिसमय की कोई आवश्यकता नहीं है, क्योंकि परिभाषा इस स्थिति में भी लागू होती है: | ||
* | * यदि {{math|''R''}} तब शून्य वलय के अतिरिक्त कोई वलय है तो {{math|0}} एक (दो पक्षीय) शून्य विभाजक है, क्योंकि कोई भी गैर-शून्य तत्व {{mvar|x}} {{math|1=0''x'' = 0 = ''x''0}} को पूरा करता है। | ||
*यदि {{math|''R''}} शून्य वलय है, जिसमें {{math|1=0 = 1}}, तब {{math|0}} एक शून्य विभाजक नहीं है, क्योंकि कोई गैर-शून्य तत्व नहीं है, जिसे 0 से गुणा करने पर 0 प्राप्त होता है। | |||
कुछ संदर्भों में | कुछ संदर्भों में समागम द्वारा सभी वलयों में शून्य विभाजक के रूप में 0 को सम्मिलित या बहिष्कृत किया जाता है, लेकिन फिर वे निम्नलिखित जैसे वर्णन में आक्षेप को प्रस्तुत करने से बुरी तरह प्रभावित होते हैं: | ||
* एक क्रमविनिमेय वलय में {{math|''R''}}, गैर-शून्य-भाजक का समुच्चय एक [[गुणक सेट|गुणक समुच्चय]] है | * एक क्रमविनिमेय वलय में {{math|''R''}}, गैर-शून्य-भाजक का समुच्चय {{mvar|R}} एक [[गुणक सेट|गुणक समुच्चय]] है (यह, परिणामस्वरूप, कुल भागफल वलय की परिभाषा के लिए महत्वपूर्ण है।) वही गैर-बाएँ-शून्य-भाजक के समुच्चय और गैर-दाएँ-शून्य-भाजक के समुच्चय के लिए एकपक्षीय वलय, क्रमविनिमेय है। या नहीं। | ||
* क्रमविनिमेय नॉथेरियन वलय | * क्रमविनिमेय नॉथेरियन वलय {{math|''R''}} में, शून्य भाजक का समुच्चय {{math|''R''}} संबंधित अभाज्य गुणजावली का जोड़ है। | ||
== | == मापांक पर शून्य विभाजक == | ||
{{mvar|R}} को क्रमविनिमेय वलय शून्य भाजक मान लीजिए {{mvar|M}} को {{mvar|R}}-[[मॉड्यूल (गणित)|मापांक (गणित)]] मान ले और {{mvar|R}} का एक {{mvar|a}} तत्व,मान लीजिए कि {{mvar|a}}, {{mvar|M}}-सममित है यदि गुणा {{mvar|a}} करके मानचित्र <math>M \,\stackrel{a}\to\, M</math> अंतःक्षेपक है, और वह {{mvar|a}}, {{mvar|M}} एक शून्य विभाजक है अन्यथा।<ref name="Matsumura-p12">{{citation |author=Hideyuki Matsumura |author-link=Hideyuki Matsumura |year=1980 |title=Commutative algebra, 2nd edition |publisher=The Benjamin/Cummings Publishing Company, Inc. |page=12}}</ref> {{mvar|M}}-सममित तत्वों का समुच्चय {{mvar|R}} में गुणक समुच्चय है।<ref name="Matsumura-p12" /> | |||
स्थिति मे {{mvar|M}}-सममित और <nowiki>''</nowiki>{{mvar|M}} पर शून्य विभाजक" की परिभाषा {{math|1=''M'' = ''R''}} इस आलेख में पहले दिए गए " योग्य" और "शून्य विभाजक" की परिभाषाओं को पुन: प्राप्त करता है। | |||
== यह भी देखें == | == यह भी देखें == | ||
* [[शून्य-उत्पाद संपत्ति]] | * [[शून्य-उत्पाद संपत्ति|शून्य-उत्पाद गुण]] | ||
* [[क्रमविनिमेय बीजगणित की शब्दावली]] ( | * [[क्रमविनिमेय बीजगणित की शब्दावली]] (परिशुद्ध शून्य भाजक) | ||
* [[शून्य भाजक ग्राफ]] | * [[शून्य भाजक ग्राफ|शून्य-विभाजक ग्राफ]] | ||
== टिप्पणियाँ == | == टिप्पणियाँ == | ||
Line 66: | Line 63: | ||
* {{citation |year=2004 |title=Algebras, rings and modules |volume=1 |publisher=Springer |isbn=1-4020-2690-0 |author1 = Michiel Hazewinkel|author2 = Nadiya Gubareni|author3=Nadezhda Mikhaĭlovna Gubareni |author4=Vladimir V. Kirichenko. |author-link1=Michiel Hazewinkel }} | * {{citation |year=2004 |title=Algebras, rings and modules |volume=1 |publisher=Springer |isbn=1-4020-2690-0 |author1 = Michiel Hazewinkel|author2 = Nadiya Gubareni|author3=Nadezhda Mikhaĭlovna Gubareni |author4=Vladimir V. Kirichenko. |author-link1=Michiel Hazewinkel }} | ||
* {{MathWorld |title=Zero Divisor |urlname=ZeroDivisor }} | * {{MathWorld |title=Zero Divisor |urlname=ZeroDivisor }} | ||
[[Category: | [[Category:0 (संख्या)]] | ||
[[Category:Created On 07/02/2023]] | [[Category:Created On 07/02/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:रिंग थ्योरी]] | |||
[[Category:सार बीजगणित]] |
Latest revision as of 12:14, 14 February 2023
अमूर्त बीजगणित में, एक वलय (बीजगणित) R के तत्व (गणित) a को बायाँ शून्य भाजक कहा जाता है यदि R मे कोई गैर-शून्य x सम्मिलित है जैसे कि ax = 0,[1] या समकक्ष यदि R से R का मानचित्र जो x को ax भेजता है, अंतःक्षेपक नहीं है।[lower-alpha 1] इसी प्रकार, तत्व (गणित) a को दायाँ शून्य भाजक कहा जाता है यदि R एक शून्येतर y सम्मिलित जैसे कि ya = 0 यह वलयों में विभाज्यता (वलय प्रमेय) की आंशिक स्थिति है। तत्व जो बाएँ या दाएँ शून्य भाजक है, उसे शून्य भाजक कहा जाता है।[2] तत्व a जो बाएँ और दाएँ शून्य भाजक दोनों का शून्य भाजक है, उसे द्विपक्षी शून्य भाजक कहा जाता है (गैर-शून्य x ऐसा है कि ax = 0 गैर-शून्य y से भिन्न हो सकता है जैसे कि ya = 0) यदि वलय क्रमविनिमेय है, तो बाएँ और दाएँ शून्य भाजक समान हैं।
वलय का एक तत्व जो बाएं शून्य विभाजक नहीं है, उसे बाएं सममित या बाएं रद्द करने योग्य कहा जाता है। इसी तरह, वलय का एक तत्व जो दायाँ शून्य विभाजक नहीं है, उसे दायाँ सममित या दायाँ रद्द करने योग्य कहा जाता है। वलय का एक तत्व जो बाएं और दाएं रद्द करने योग्य है, और इसलिए शून्य विभाजक नहीं है, सममित या रद्द करने योग्य या गैर-शून्य-भाजक कहा जाता है।[3] शून्य भाजक जो गैर-शून्य है, उसे गैर-शून्य भाजक या असाधारण शून्य भाजक कहा जाता है। गैर-शून्य वलय जिसमें कोई असाधारण शून्य विभाजक नहीं है, एक प्रक्षेत्र (वलय प्रमेय) कहलाता है।
उदाहरण
- वलय में , अवशेष वर्ग के बाद से एक शून्य विभाजक है क्योंकि
- पूर्णांकों के वलय का एकमात्र शून्य भाजक है।
- गैर-शून्य वलय का एक शून्यंभावी तत्व सदैव दो पक्षीय शून्य का भाजक होता है।
- वर्गसम तत्व (वलय प्रमेय) एक वलय का सदैव एक दो पक्षीय शून्य विभाजक होता है, क्योंकि
- क्षेत्र (गणित) पर आव्यूह (मैट्रिक्स) में गैर-शून्य शून्य विभाजक हैं यदि की वलय में शून्य विभाजक के उदाहरण आव्यूह (किसी भी शून्य वलय पर) यहां दिखाए गए हैं:
- दो या दो से अधिक गैर-शून्य वलयों के प्रत्यक्ष उत्पाद में सदैव अशून्य शून्य भाजक होते हैं। उदाहरण के लिए, में प्रत्येक के साथ गैर-शून्य, , इसलिए एक शून्य विभाजक है।
- मान लो के एक क्षेत्र हो (गणित) और एक समूह (गणित) हो। मान लीजिए कि एक तत्व है परिमित क्रम (समूह सिद्धांत) तब समूह की वलय में किसी के पास , जिसमें कोई भी कारक शून्य नहीं है, इसलिए, में एक शून्येतर शून्य भाजक है।
एक पक्षीय शून्य-भाजक
- (औपचारिक) आव्यूह की वलय पर विचार करें साथ और तब और यदि , तब बायाँ शून्य विभाजक है यदि और केवल यदि सम है, और यह एक दायाँ शून्य भाजक है यदि और केवल यदि समान कारणों से भी है। यदि दोनों में से कोई है , तो यह दो पक्षीय शून्य-भाजक है।
- यहां एक तत्व के साथ एक वलय का अन्य उदाहरण है जो केवल एक पक्षीय शून्य विभाजक है। मान लीजिए पूर्णांकों के सभी अनुक्रमों का समुच्चय हो . वलय के लिए सभी योगात्मक मानचित्र लें को , वलय संक्रिया के रूप में बिंदुवार जोड़ और संरचना हो। (अर्थात हमारी वलय है, योगात्मक समूह की अंतराकारिता वलय है।) इस वलय के तत्वों के तीन उदाहरण दाएँ स्थानांतरण , बाईं पारी है, और पहले कारक पर प्रक्षेपण मानचित्र है। ये तीनों योगात्मक मानचित्र शून्य नहीं हैं, बल्कि सम्मिश्र और दोनों शून्य हैं, इसलिए एक बायां शून्य विभाजक है और, से योगात्मक नक्शों के वलय में एक दायाँ शून्य भाजक है। हालाँकि, एक दायाँ शून्य भाजक नहीं है और बायाँ शून्य भाजक नहीं है: समग्र सर्वसमिका है। चूंकि दो पक्षीय शून्य-भाजक है क्योंकि , जबकि किसी दिशा में नहीं है।
गैर-उदाहरण
- पूर्णांक मापांक अंकगणित की वलय अभाज्य संख्या में कोई गैर-शून्य शून्य विभाजक नहीं है। चूँकि प्रत्येक गैर-शून्य तत्व एक इकाई (वलय प्रमेय) है, यह वलय एक परिमित क्षेत्र है।
- अधिक सामान्य रूप से, एक विभाजन वलय में शून्येतर शून्य भाजक नहीं होते हैं।
- शून्य वलय क्रमविनिमेय वलय जिसका केवल शून्य भाजक 0 है, एक अभिन्न प्रक्षेत्र कहलाता है।
गुण
- क्षेत्र (गणित) पर n-द्वारा-n आव्यूह के वलय मे, बाएँ और दाएँ शून्य विभाजक अनुरूप होते हैं; वे परिशुद्ध रूप से विलक्षण आव्यूह हैं। अभिन्न प्रक्षेत्र पर n-द्वारा-n आव्यूह के वलय, शून्य विभाजक निश्चित रूप से निर्धारक 0 (संख्या) के साथ आव्यूह होते हैं।
- बाएँ या दाएँ शून्य भाजक कभी भी इकाई नहीं हो सकते, क्योंकि यदि a व्युत्क्रमणीय है और ax = 0 कुछ गैर शून्य के लिए x, तब 0 = a−10 = a−1ax = x, सर्व असत्य है।
- तत्व उस तरफ रद्द करने योग्य है जिस पर यह नियमित है। अर्थात यदि a बाएं सममित ax = ay है, इसका आशय है x = y, और इसी तरह सही सममित के लिए है।
शून्य एक शून्य भाजक के रूप में
स्थिति a = 0 के लिए एक अलग अभिसमय की कोई आवश्यकता नहीं है, क्योंकि परिभाषा इस स्थिति में भी लागू होती है:
- यदि R तब शून्य वलय के अतिरिक्त कोई वलय है तो 0 एक (दो पक्षीय) शून्य विभाजक है, क्योंकि कोई भी गैर-शून्य तत्व x 0x = 0 = x0 को पूरा करता है।
- यदि R शून्य वलय है, जिसमें 0 = 1, तब 0 एक शून्य विभाजक नहीं है, क्योंकि कोई गैर-शून्य तत्व नहीं है, जिसे 0 से गुणा करने पर 0 प्राप्त होता है।
कुछ संदर्भों में समागम द्वारा सभी वलयों में शून्य विभाजक के रूप में 0 को सम्मिलित या बहिष्कृत किया जाता है, लेकिन फिर वे निम्नलिखित जैसे वर्णन में आक्षेप को प्रस्तुत करने से बुरी तरह प्रभावित होते हैं:
- एक क्रमविनिमेय वलय में R, गैर-शून्य-भाजक का समुच्चय R एक गुणक समुच्चय है (यह, परिणामस्वरूप, कुल भागफल वलय की परिभाषा के लिए महत्वपूर्ण है।) वही गैर-बाएँ-शून्य-भाजक के समुच्चय और गैर-दाएँ-शून्य-भाजक के समुच्चय के लिए एकपक्षीय वलय, क्रमविनिमेय है। या नहीं।
- क्रमविनिमेय नॉथेरियन वलय R में, शून्य भाजक का समुच्चय R संबंधित अभाज्य गुणजावली का जोड़ है।
मापांक पर शून्य विभाजक
R को क्रमविनिमेय वलय शून्य भाजक मान लीजिए M को R-मापांक (गणित) मान ले और R का एक a तत्व,मान लीजिए कि a, M-सममित है यदि गुणा a करके मानचित्र अंतःक्षेपक है, और वह a, M एक शून्य विभाजक है अन्यथा।[4] M-सममित तत्वों का समुच्चय R में गुणक समुच्चय है।[4]
स्थिति मे M-सममित और ''M पर शून्य विभाजक" की परिभाषा M = R इस आलेख में पहले दिए गए " योग्य" और "शून्य विभाजक" की परिभाषाओं को पुन: प्राप्त करता है।
यह भी देखें
- शून्य-उत्पाद गुण
- क्रमविनिमेय बीजगणित की शब्दावली (परिशुद्ध शून्य भाजक)
- शून्य-विभाजक ग्राफ
टिप्पणियाँ
- ↑ Since the map is not injective, we have ax = ay, in which x differs from y, and thus a(x − y) = 0.
संदर्भ
- ↑ N. Bourbaki (1989), Algebra I, Chapters 1–3, Springer-Verlag, p. 98
- ↑ Charles Lanski (2005), Concepts in Abstract Algebra, American Mathematical Soc., p. 342
- ↑ Nicolas Bourbaki (1998). Algebra I. Springer Science+Business Media. p. 15.
- ↑ 4.0 4.1 Hideyuki Matsumura (1980), Commutative algebra, 2nd edition, The Benjamin/Cummings Publishing Company, Inc., p. 12
अग्रिम पठन
- "Zero divisor", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Michiel Hazewinkel; Nadiya Gubareni; Nadezhda Mikhaĭlovna Gubareni; Vladimir V. Kirichenko. (2004), Algebras, rings and modules, vol. 1, Springer, ISBN 1-4020-2690-0
- Weisstein, Eric W. "Zero Divisor". MathWorld.