ओवरहेड पावर लाइन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
'' 'ओवरहेड पावर लाइन' ''एक संरचना होती है,जिसका उपयोग विद्युत शक्ति संचरण और [[इलेक्ट्रिक पावर डिस्ट्रीब्यूशन | वितरण]]  में बड़ी दूरियों में [[विद्युत ऊर्जा]] संचारित करने के लिए किया जाता है। इसमें एक या अधिक असंयमीकृत विद्युत के तार ( [[विद्युत केबल]]) होते हैं, जिन्हें [[ट्रांसमिशन टॉवर |टावर्स]] या [[यूटिलिटी पोल]] खंभों द्वारा(आमतौर पर तीन के गुणकों के लिए  [[तीन-चरण शक्ति]]) निलंबित किया जाता है।
'' 'ओवरहेड पावर लाइन' ''एक संरचना होती है,जिसका उपयोग विद्युत शक्ति संचरण और [[इलेक्ट्रिक पावर डिस्ट्रीब्यूशन | वितरण]]  में बड़ी दूरियों में [[विद्युत ऊर्जा]] संचारित करने के लिए किया जाता है। इसमें एक या अधिक असंयमीकृत विद्युत के तार ( [[विद्युत केबल]]) होते हैं, जिन्हें [[ट्रांसमिशन टॉवर |टावर्स]] या [[यूटिलिटी पोल]] खंभों द्वारा(आमतौर पर तीन के गुणकों के लिए  [[तीन-चरण शक्ति]]) निलंबित किया जाता है।


चूंकि अधिकांश [[इन्सुलेटर (बिजली) | इन्सुलेशन]]  आसपास की हवा द्वारा प्रदान किया जाता है, ओवरहेड पावर लाइन आम तौर पर बड़ी मात्रा में विद्युत ऊर्जा के संचार (ट्रांसमिशन का सबसे कम खर्चीला तरीका है।  
चूंकि अधिकांश [[इन्सुलेटर (बिजली) | इन्सुलेशन]]  आसपास की हवा द्वारा प्रदान किया जाता है, ओवरहेड पावर लाइन आम तौर पर बड़ी मात्रा में विद्युत ऊर्जा के संचार (ट्रांसमिशन का सबसे कम खर्चीला तरीका है।  
[[File:Overhead power lines in Dnipro, Ukraine.jpg|thumb|upright|320 and 150 kV in Dnipro]]
==संरचना==
[[File:Переходная опора ЛЭП 330 кВ Crossing electricity pylon 330 kV.jpg|thumb|upright|Overhead powerline [[Dnieper]] crossing, [[Ukraine]]]]
में पॉवरलाइन पर काम करने वाला एक व्यक्ति]]लाइनों के समर्थन के लिए टावर लकड़ी से बने होते हैं या तो उगाए जाते हैं या [[स्टील]] टुकड़े या [[एल्यूमीनियम|एल्यूमीनियम टुकड़े]] (या तो जाली संरचनाएं या ट्यूबलर पोल), कंक्रीट, और कभी-कभी मजबूत प्लास्टिक होते हैं। लाइन पर नंगे तार कंडक्टर आम तौर पर एल्यूमीनियम से बने होते हैं (या तो सादे या [[स्टील या मिश्रित सामग्री जैसे कार्बन और ग्लास फाइबर के साथ प्रबलित]] ), हालांकि कुछ तांबे के तारों का उपयोग मध्यम-वोल्टेज वितरण और ग्राहक परिसर के लिए कम-वोल्टेज संपर्क (कनेक्शन) में किया जाता है। ओवरहेड पावर लाइन की रुपरेखा (डिजाइन) का एक प्रमुख लक्ष्य ऊर्जायुक्त कंडक्टरों और जमीन के बीच पर्याप्त निकासी बनाए रखना है ताकि लाइन के साथ खतरनाक संपर्क को रोका जा सके और कंडक्टरों के लिए विश्वसनीय समर्थन प्रदान किया जा सके। [1] आज ओवरहेड लाइनों को नियमित रूप से 765,000 वोल्ट से अधिक वोल्टेज पर संचालित किया जाता है।


== संरचना ==
==संचरण लाइनों का वर्गीकरण==
[[File:NAURU JULY 2007 (10709113444).jpg|thumb|upright|[[Nauru]] (2007)] में पॉवरलाइन पर काम करने वाला एक व्यक्ति]]लाइनों के समर्थन के लिए टावर लकड़ी से बने होते हैं या तो उगाए जाते हैं या [[स्टील]] टुकड़े या [[एल्यूमीनियम|एल्यूमीनियम टुकड़े]] (या तो जाली संरचनाएं या ट्यूबलर पोल), कंक्रीट, और कभी-कभी मजबूत प्लास्टिक होते हैं। लाइन पर नंगे तार कंडक्टर आम तौर पर एल्यूमीनियम से बने होते हैं (या तो सादे या [[स्टील या मिश्रित सामग्री जैसे कार्बन और ग्लास फाइबर के साथ प्रबलित]] ), हालांकि कुछ तांबे के तारों का उपयोग मध्यम-वोल्टेज वितरण और ग्राहक परिसर के लिए कम-वोल्टेज संपर्क (कनेक्शन) में किया जाता है। ओवरहेड पावर लाइन की रुपरेखा (डिजाइन) का एक प्रमुख लक्ष्य ऊर्जायुक्त कंडक्टरों और जमीन के बीच पर्याप्त निकासी बनाए रखना है ताकि लाइन के साथ खतरनाक संपर्क को रोका जा सके और कंडक्टरों के लिए विश्वसनीय समर्थन प्रदान किया जा सके। [1] आज ओवरहेड लाइनों को नियमित रूप से 765,000 वोल्ट से अधिक वोल्टेज पर संचालित किया जाता है।
===ऑपरेटिंग वोल्टेज द्वारा===
 
[[File:NAURU JULY 2007 (10709113444).jpg|thumb|upright|[[Nauru]] (2007)]  
== संचरण लाइनों का वर्गीकरण ==
=== ऑपरेटिंग वोल्टेज द्वारा ===
ओवरहेड पावर संचार (ट्रांसमिशन) लाइनों को विद्युत ऊर्जा उद्योग में वोल्टेज की श्रेणी के अनुसार वर्गीकृत किया जाता है:
ओवरहेड पावर संचार (ट्रांसमिशन) लाइनों को विद्युत ऊर्जा उद्योग में वोल्टेज की श्रेणी के अनुसार वर्गीकृत किया जाता है:
* कम वोल्टेज (एलवी), 1000 वोल्ट से कम एक आवासीय या छोटे वाणिज्यिक ग्राहक और उपयोगिता के बीच संबंध के लिए उपयोग किया जाता है।
* कम वोल्टेज (एलवी), 1000 वोल्ट से कम एक आवासीय या छोटे वाणिज्यिक ग्राहक और उपयोगिता के बीच संबंध के लिए उपयोग किया जाता है।
Line 16: Line 17:
* अल्ट्रा हाई वोल्टेज (यूएचवी), अक्सर पंक्ति के 800 केवीडीसी और के (k) 1000 केवीडीसी लंबाई के साथ जुड़ा हुआ है
* अल्ट्रा हाई वोल्टेज (यूएचवी), अक्सर पंक्ति के 800 केवीडीसी और के (k) 1000 केवीडीसी लंबाई के साथ जुड़ा हुआ है
[[File:High-voltage overhead power lines.jpg|thumb|right|220px | मध्यम सबस्टेशन पर 430 और 250 kV]]
[[File:High-voltage overhead power lines.jpg|thumb|right|220px | मध्यम सबस्टेशन पर 430 और 250 kV]]


के (k) संचार (ट्रांसमिशन) रेखा (लाइन) को आम तौर पर तीन वर्गों में वर्गीकृत किया जाता है<ref>{{cite book|first=CL|last=Wadhwa|title=Electrical Power Systems|edition=Seventh Multicolour|publisher=New Age International (P) Limited|location=New Delhi|year=2017|isbn=978-93-86070-19-7|chapter=2: ''Performance of Lines''}}</ref> रेखा (लाइन) की लंबाई के आधार पर:
के (k) संचार (ट्रांसमिशन) रेखा (लाइन) को आम तौर पर तीन वर्गों में वर्गीकृत किया जाता है<ref>{{cite book|first=CL|last=Wadhwa|title=Electrical Power Systems|edition=Seventh Multicolour|publisher=New Age International (P) Limited|location=New Delhi|year=2017|isbn=978-93-86070-19-7|chapter=2: ''Performance of Lines''}}</ref> रेखा (लाइन) की लंबाई के आधार पर:
* 50 किलोमीटर से छोटी रेखा (लाइन) को आमतौर पर [[प्रदर्शन और एसी ट्रांसमिशन का मॉडलिंग#शॉर्ट ट्रांसमिशन लाइन |शॉर्ट]] संचार (ट्रांसमिशन) स्र्क्काएं (लाइन्स) के रूप में जाना जाता हैं।
<nowiki>*</nowiki> 50 किलोमीटर से छोटी रेखा (लाइन) को आमतौर पर [[प्रदर्शन और एसी ट्रांसमिशन का मॉडलिंग#शॉर्ट ट्रांसमिशन लाइन |शॉर्ट]] संचार (ट्रांसमिशन) स्र्क्काएं (लाइन्स) के रूप में जाना जाता हैं।
* 50 . के बीच की रेखाएं&nbsp;किमी और 150&nbsp;किमी को आम तौर पर [[मध्यम]] संचरण रेखाओ के रूप में जाना जाता है।
<nowiki>*</nowiki> 50 . के बीच की रेखाएं&nbsp;किमी और 150&nbsp;किमी को आम तौर पर [[मध्यम]] संचरण रेखाओ के रूप में जाना जाता है।
* 150 किमी से अधिक लंबी रेखाओ (लाइनें) किमी [[लंबी]] संचार (ट्रांसमिशन) रेखा (लाइन) मानी जाती है।
<nowiki>*</nowiki> 150 किमी से अधिक लंबी रेखाओ (लाइनें) किमी [[लंबी]] संचार (ट्रांसमिशन) रेखा (लाइन) मानी जाती है।


यह वर्गीकरण मुख्य रूप से पावर इंजीनियरों द्वारा संचार (ट्रांसमिशन) लाइनों के प्रदर्शन विश्लेषण में आसानी के लिए किया जाता है।
यह वर्गीकरण मुख्य रूप से पावर इंजीनियरों द्वारा संचार (ट्रांसमिशन) लाइनों के प्रदर्शन विश्लेषण में आसानी के लिए किया जाता है।


== संरचनाओं ==
==संरचनाओं==
ऊपरी रेखाओ (लाइनों) के लिए संरचना लाइन के प्रकार के आधार पर विभिन्न प्रकार के आकार लेती है। संरचना उतनी ही सरल हो सकती है जितनी लकड़ी के खंभों को सीधे पृथ्वी पर स्थापित किया जा सकता है, जिसमें एक या अधिक क्रॉस-आर्म बीम होते हैं, जो कंडक्टरों का समर्थन करते हैं, या खंभे के बगल से जुड़े इंसुलेटर पर समर्थित कंडक्टरों के साथ बेतरतीब निर्माण करते हैं। ट्यूबलर इस्पात  (स्टील)के खंभों का उपयोग आम तौर पर शहरी क्षेत्रों में किया जाता है।उच्च-वोल्टेज रेखाओ (लाइनों) को अक्सर जाली-प्रकार के [[स्टील टावरों]] या तोरणों पर ले जाया जाता है। दूरस्थ क्षेत्रों के लिए, एल्युमीनियम टावरों को [[हेलीकॉप्टरों]] द्वारा रखा जा सकता है। <ref>{{Cite web|url=http://www.verticalmag.com/news/article/PoweringUp|archive-url=https://web.archive.org/web/20151004113042/http://www.verticalmag.com/news/article/PoweringUp|title=Powering Up - Vertical Magazine - The Pulse of the Helicopter Industry|archive-date=4 October 2015|website=verticalmag.com|access-date=4 October 2015}}</ref> <ref>{{YouTube|GBWHUdPQCH8|Sunrise Powerlink Helicopter Operations}}</ref> कंक्रीट के खंभों का भी प्रयोग किया गया है। <ref name="Fink783">{{Cite book|first=Donald G.|last=Fink|first2=H. Wayne|last2=Beaty|title=Standard Handbook for Electrical Engineers|edition=11|publisher=McGraw-Hill|location=New York|year=1978|isbn=0-07-020974-X|chapter=14: ''Overhead Power Transmission''}}</ref> [[प्रबलित प्लास्टिक से बने डंडे भी उपलब्ध हैं]], लेकिन उनकी उच्च लागत अनुप्रयोग को प्रतिबंधित करती है।
ऊपरी रेखाओ (लाइनों) के लिए संरचना लाइन के प्रकार के आधार पर विभिन्न प्रकार के आकार लेती है। संरचना उतनी ही सरल हो सकती है जितनी लकड़ी के खंभों को सीधे पृथ्वी पर स्थापित किया जा सकता है, जिसमें एक या अधिक क्रॉस-आर्म बीम होते हैं, जो कंडक्टरों का समर्थन करते हैं, या खंभे के बगल से जुड़े इंसुलेटर पर समर्थित कंडक्टरों के साथ बेतरतीब निर्माण करते हैं। ट्यूबलर इस्पात  (स्टील)के खंभों का उपयोग आम तौर पर शहरी क्षेत्रों में किया जाता है।उच्च-वोल्टेज रेखाओ (लाइनों) को अक्सर जाली-प्रकार के [[स्टील टावरों]] या तोरणों पर ले जाया जाता है। दूरस्थ क्षेत्रों के लिए, एल्युमीनियम टावरों को [[हेलीकॉप्टरों]] द्वारा रखा जा सकता है। <ref>{{Cite web|url=http://www.verticalmag.com/news/article/PoweringUp|archive-url=https://web.archive.org/web/20151004113042/http://www.verticalmag.com/news/article/PoweringUp|title=Powering Up - Vertical Magazine - The Pulse of the Helicopter Industry|archive-date=4 October 2015|website=verticalmag.com|access-date=4 October 2015}}</ref> <ref>{{YouTube|GBWHUdPQCH8|Sunrise Powerlink Helicopter Operations}}</ref> कंक्रीट के खंभों का भी प्रयोग किया गया है। <ref name="Fink783">{{Cite book|first=Donald G.|last=Fink|first2=H. Wayne|last2=Beaty|title=Standard Handbook for Electrical Engineers|edition=11|publisher=McGraw-Hill|location=New York|year=1978|isbn=0-07-020974-X|chapter=14: ''Overhead Power Transmission''}}</ref> [[प्रबलित प्लास्टिक से बने डंडे भी उपलब्ध हैं]], लेकिन उनकी उच्च लागत अनुप्रयोग को प्रतिबंधित करती है।


Line 40: Line 40:
बिजली से सुरक्षा प्रदान करने के लिए कभी-कभी टावरों के शीर्ष पर एक ग्राउंडेड तार लगाया जाता है। एक [[ऑप्टिकल ग्राउंड वायर]] संचार के लिए एम्बेडेड [[ऑप्टिकल फाइबर]] के साथ एक अधिक उन्नत संस्करण है। [[अंतर्राष्ट्रीय नागरिक उड्डयन संगठन]] की सिफारिशों को पूरा करने के लिए जमीन के तार पर [[ओवरहेड वायर मार्कर]] लगाए जा सकते हैं। <ref>{{Cite web|date=2004-11-25|title=Chapter 6. Visual aids for denoting obstacles|url=http://www.avaids.com/icao.pdf|archive-url=https://web.archive.org/web/20181005180106/http://www.avaids.com/icao.pdf|archive-date=5 October 2018|access-date=1 June 2011|website=Annex 14 Volume I Aerodrome design and operations|publisher=[[International Civil Aviation Organization]]|quote=6.2.8. spherical. diameter of not less than 60 cm. 6.2.10. should be of one colour.}}</ref> कुछ मार्करों में रात के समय चेतावनी के लिए [[चमकती लैंप]] शामिल हैं।
बिजली से सुरक्षा प्रदान करने के लिए कभी-कभी टावरों के शीर्ष पर एक ग्राउंडेड तार लगाया जाता है। एक [[ऑप्टिकल ग्राउंड वायर]] संचार के लिए एम्बेडेड [[ऑप्टिकल फाइबर]] के साथ एक अधिक उन्नत संस्करण है। [[अंतर्राष्ट्रीय नागरिक उड्डयन संगठन]] की सिफारिशों को पूरा करने के लिए जमीन के तार पर [[ओवरहेड वायर मार्कर]] लगाए जा सकते हैं। <ref>{{Cite web|date=2004-11-25|title=Chapter 6. Visual aids for denoting obstacles|url=http://www.avaids.com/icao.pdf|archive-url=https://web.archive.org/web/20181005180106/http://www.avaids.com/icao.pdf|archive-date=5 October 2018|access-date=1 June 2011|website=Annex 14 Volume I Aerodrome design and operations|publisher=[[International Civil Aviation Organization]]|quote=6.2.8. spherical. diameter of not less than 60 cm. 6.2.10. should be of one colour.}}</ref> कुछ मार्करों में रात के समय चेतावनी के लिए [[चमकती लैंप]] शामिल हैं।


=== सर्किट ===
===सर्किट===
एकल सर्किट संचार रेखा (ट्रांसमिशन लाइन) में केवल एक सर्किट के लिए कंडक्टर होते हैं।  [[तीन-चरण इलेक्ट्रिक पावर | तीन-चरण]] प्रणाली के लिए, इसका तात्पर्य यह है कि प्रत्येक टॉवर तीन कंडक्टर का समर्थन करता है।
एकल सर्किट संचार रेखा (ट्रांसमिशन लाइन) में केवल एक सर्किट के लिए कंडक्टर होते हैं।  [[तीन-चरण इलेक्ट्रिक पावर | तीन-चरण]] प्रणाली के लिए, इसका तात्पर्य यह है कि प्रत्येक टॉवर तीन कंडक्टर का समर्थन करता है।


Line 51: Line 51:
सबसे बड़ी दुगुनी सर्किट संचार रेखा (ट्रांसमिशन लाइन) [[किता-इवाकी पॉवरलाइन]] है।
सबसे बड़ी दुगुनी सर्किट संचार रेखा (ट्रांसमिशन लाइन) [[किता-इवाकी पॉवरलाइन]] है।


== रोधक (इंसुलेटर) ==
==रोधक (इंसुलेटर)==
[[File:Power line with ceramic insulators.jpg|thumb|कैलिफोर्निया में सिरेमिक इंसुलेटर के साथ मध्यम-वोल्टेज पावर लाइन्स]]
[[File:Power line with ceramic insulators.jpg|thumb|कैलिफोर्निया में सिरेमिक इंसुलेटर के साथ मध्यम-वोल्टेज पावर लाइन्स]]
[[File:Pylon.detail.arp.750pix.jpg|thumb|मॉड्यूलर सस्पेंशन इंसुलेटर का उपयोग उच्च-वोल्टेज लाइनों के लिए किया जाता है।इन्सुलेटर के निचले भाग के पास कंडक्टरों से जुड़ी वस्तुएं हैं [[स्टॉकब्रिज डैम्पर्स]]]]
[[File:Pylon.detail.arp.750pix.jpg|thumb|मॉड्यूलर सस्पेंशन इंसुलेटर का उपयोग उच्च-वोल्टेज लाइनों के लिए किया जाता है।इन्सुलेटर के निचले भाग के पास कंडक्टरों से जुड़ी वस्तुएं हैं [[स्टॉकब्रिज डैम्पर्स]]]]
Line 68: Line 68:
200 केवी से अधिक उच्च वोल्टेज के लिए इनसुलेटर के टर्मिनलों पर [[ग्रेडिंग रिंग]] स्थापित हो सकते हैं। यह इन्सुलेटर के आसपास विद्युत क्षेत्र वितरण में सुधार करता है और वोल्टेज बढ़ने के दौरान फ्लैश-ओवर के लिए इसे अधिक प्रतिरोधी बनाता है।
200 केवी से अधिक उच्च वोल्टेज के लिए इनसुलेटर के टर्मिनलों पर [[ग्रेडिंग रिंग]] स्थापित हो सकते हैं। यह इन्सुलेटर के आसपास विद्युत क्षेत्र वितरण में सुधार करता है और वोल्टेज बढ़ने के दौरान फ्लैश-ओवर के लिए इसे अधिक प्रतिरोधी बनाता है।


== कंडक्टर ==
==कंडक्टर==
[[File:Sample cross-section of high tension power (pylon) line.jpg|thumb|ACSR पावर लाइन का नमूना क्रॉस-सेक्शन]]
[[File:Sample cross-section of high tension power (pylon) line.jpg|thumb|ACSR पावर लाइन का नमूना क्रॉस-सेक्शन]]


Line 93: Line 93:


जबकि पवन प्रतिरोध अधिक है, पवन-प्रेरित दोलन को बंडल स्पैकर्स पर अवमन्दित (डम्प) किया जा सकता है। बंडल कंडक्टरों की बर्फ और हवा की लोडिंग उसी कुल विशेष अंश (क्रॉस सेक्शन) के एकल कंडक्टर से अधिक होगी, और बंडल कंडक्टर एकल कंडक्टर की तुलना में अधिक कठिन हैं। [[एओलियन कंपन]] आमतौर पर बंडल कंडक्टरों पर कम स्पष्ट किया जाता है क्योंकि रेखा (लाइन) के साथ अपेक्षाकृत निकट अंतराल पर स्थापित स्पाइसर और स्पाइसर डम्पर के प्रभाव के कारण। <ref>{{Cite web|url=https://studyelectrical.com/2019/01/bundled-conductors.html|title=Bundled Conductors in Transmission Lines|date=2019-01-13|website=StudyElectrical.Com|language=en-US|access-date=2019-07-13}}</ref>
जबकि पवन प्रतिरोध अधिक है, पवन-प्रेरित दोलन को बंडल स्पैकर्स पर अवमन्दित (डम्प) किया जा सकता है। बंडल कंडक्टरों की बर्फ और हवा की लोडिंग उसी कुल विशेष अंश (क्रॉस सेक्शन) के एकल कंडक्टर से अधिक होगी, और बंडल कंडक्टर एकल कंडक्टर की तुलना में अधिक कठिन हैं। [[एओलियन कंपन]] आमतौर पर बंडल कंडक्टरों पर कम स्पष्ट किया जाता है क्योंकि रेखा (लाइन) के साथ अपेक्षाकृत निकट अंतराल पर स्थापित स्पाइसर और स्पाइसर डम्पर के प्रभाव के कारण। <ref>{{Cite web|url=https://studyelectrical.com/2019/01/bundled-conductors.html|title=Bundled Conductors in Transmission Lines|date=2019-01-13|website=StudyElectrical.Com|language=en-US|access-date=2019-07-13}}</ref>


<big>'''जमीन''' '''के''' '''तार'''</big>[[File:Al OC.jpg|thumb|एल्यूमीनियम कंडक्टर क्रॉसलिंक्ड पॉलीइथाइलीन इन्सुलेशन तार।इसका उपयोग 6600V बिजली लाइनों के लिए किया जाता है।]]
<big>'''जमीन''' '''के''' '''तार'''</big>[[File:Al OC.jpg|thumb|एल्यूमीनियम कंडक्टर क्रॉसलिंक्ड पॉलीइथाइलीन इन्सुलेशन तार।इसका उपयोग 6600V बिजली लाइनों के लिए किया जाता है।]]
Line 105: Line 104:
पूर्व सोवियत संघ में बहुत उच्च वोल्टेज के लिए कुछ बिजली  रेखाओ (लाइनों) पर, ग्राउंड तार का उपयोग[[पावर-लाइन संचार | पीएलसी-रेडियो]]  प्रणाली (सिस्टम) के लिए किया जाता है और पाइलों पर इंसुलेटर पर लगाया जाता है।
पूर्व सोवियत संघ में बहुत उच्च वोल्टेज के लिए कुछ बिजली  रेखाओ (लाइनों) पर, ग्राउंड तार का उपयोग[[पावर-लाइन संचार | पीएलसी-रेडियो]]  प्रणाली (सिस्टम) के लिए किया जाता है और पाइलों पर इंसुलेटर पर लगाया जाता है।


=== अछूता कंडक्टर और केबल ===
===अछूता कंडक्टर और केबल===
ओवरहेड इनसुलेटेड तारो (केबल)  का उपयोग शायद ही कभी किया जाता है, आमतौर पर छोटी दूरी (एक किलोमीटर से कम) के लिए। इनुलेटेड तारो (केबल) को बिना इन्सुलेटिंग सपोर्ट के सीधे संरचनाओं में लगाया जा सकता है। हवा द्वारा इंसुलेटेड नंगे कंडक्टरों के साथ एक ओवरहेड लाइन आम तौर पर इंसुलेटेड कंडक्टर के साथ एक तारो (केबल) से कम महंगी होती है।
ओवरहेड इनसुलेटेड तारो (केबल)  का उपयोग शायद ही कभी किया जाता है, आमतौर पर छोटी दूरी (एक किलोमीटर से कम) के लिए। इनुलेटेड तारो (केबल) को बिना इन्सुलेटिंग सपोर्ट के सीधे संरचनाओं में लगाया जा सकता है। हवा द्वारा इंसुलेटेड नंगे कंडक्टरों के साथ एक ओवरहेड लाइन आम तौर पर इंसुलेटेड कंडक्टर के साथ एक तारो (केबल) से कम महंगी होती है।


एक अधिक सामान्य दृष्टिकोण कवर लाइन तार है। इसे नंगी तारो (केबल) के रूप में माना जाता है, लेकिन अक्सर वन्यजीव के लिए सुरक्षित है, क्योंकि तारो (केबल) पर इन्सुलेशन से रेखाओ (लाइनों) के साथ ब्रश से बचने के लिए एक बड़े विंग-स्पैन रैप्टर की संभावना बढ़ जाती है, और रेखाओ (लाइनों) के समग्र खतरे को थोड़ा कम कर देता है। इन प्रकार की रेखाओ (लाइनों) को अक्सर पूर्वी संयुक्त राज्य अमेरिका और भारी लकड़ी वाले क्षेत्रों में देखा जाता है, जहां ट्री- रेखा (लाइन)  संपर्क होने की संभावना है। केवल एक गड्ढा लागत है, क्योंकि इनसुलेटेड तार अक्सर अपने नंगे समकक्ष की तुलना में महंगा होता है। कई उपयोगिता कंपनियां कवर रेखाओ (लाइनों) तार को जम्पर सामग्री के रूप में लागू करती हैं जहां तार अक्सर पोल पर एक-दूसरे के करीब होते हैं, जैसे कि एक भूमिगत रिसर / [[पोथेड]], और रिक्लोजर, कटआउट और अन्य।
एक अधिक सामान्य दृष्टिकोण कवर लाइन तार है। इसे नंगी तारो (केबल) के रूप में माना जाता है, लेकिन अक्सर वन्यजीव के लिए सुरक्षित है, क्योंकि तारो (केबल) पर इन्सुलेशन से रेखाओ (लाइनों) के साथ ब्रश से बचने के लिए एक बड़े विंग-स्पैन रैप्टर की संभावना बढ़ जाती है, और रेखाओ (लाइनों) के समग्र खतरे को थोड़ा कम कर देता है। इन प्रकार की रेखाओ (लाइनों) को अक्सर पूर्वी संयुक्त राज्य अमेरिका और भारी लकड़ी वाले क्षेत्रों में देखा जाता है, जहां ट्री- रेखा (लाइन)  संपर्क होने की संभावना है। केवल एक गड्ढा लागत है, क्योंकि इनसुलेटेड तार अक्सर अपने नंगे समकक्ष की तुलना में महंगा होता है। कई उपयोगिता कंपनियां कवर रेखाओ (लाइनों) तार को जम्पर सामग्री के रूप में लागू करती हैं जहां तार अक्सर पोल पर एक-दूसरे के करीब होते हैं, जैसे कि एक भूमिगत रिसर / [[पोथेड]], और रिक्लोजर, कटआउट और अन्य।


=== डैम्पर्स ===
===डैम्पर्स===
[[File:Stockbridge_damper_POV.jpg|thumb|एक स्टॉकब्रिज डम्पर]]
[[File:Stockbridge_damper_POV.jpg|thumb|एक स्टॉकब्रिज डम्पर]]
क्योंकि बिजली की लाइनें हवा से चलने वाले[[एरोएलेस्टिकिटी#फ्लटर | एरोलेस्टिक फ्लटर]] और गॉलोपिंग दोलन से पीड़ित हो सकती हैं, ट्यून किए गए द्रव्यमान डैम्पर्स अक्सर  रेखा (लाइन) से जुड़े होते हैं, रेखा (लाइन) के भौतिक दोलन की विशेषताओं को बदलने के लिए। एक आम प्रकार [[स्टॉकब्रिज डम्पर]] है।
क्योंकि बिजली की लाइनें हवा से चलने वाले[[एरोएलेस्टिकिटी#फ्लटर | एरोलेस्टिक फ्लटर]] और गॉलोपिंग दोलन से पीड़ित हो सकती हैं, ट्यून किए गए द्रव्यमान डैम्पर्स अक्सर  रेखा (लाइन) से जुड़े होते हैं, रेखा (लाइन) के भौतिक दोलन की विशेषताओं को बदलने के लिए। एक आम प्रकार [[स्टॉकब्रिज डम्पर]] है।


== कॉम्पैक्ट ट्रांसमिशन लाइनें ==
==कॉम्पैक्ट ट्रांसमिशन लाइनें==
[[File:ถ.กิ่งแก้ว - panoramio.jpg|thumb]] एक कॉम्पैक्ट ओवरहेड संचार रेखा (ट्रांसमिशन लाइन)  के लिए एक मानक ओवरहेड पावर लाइन की तुलना में छोटे अधिकार की आवश्यकता होती है। कंडक्टर एक दूसरे के बहुत करीब नहीं होना चाहिए। इसे या तो कम अवधि की लंबाई और क्रॉसबारों को इंसुलेट करके या इंसुलेटर के साथ स्पैन में कंडक्टर को अलग करके हासिल किया जा सकता है। पहले प्रकार का निर्माण करना आसान है क्योंकि इसके लिए अवधि में इन्सुलेटर की आवश्यकता नहीं होती है, जिसे स्थापित करना और बनाए रखना मुश्किल हो सकता है।
[[File:ถ.กิ่งแก้ว - panoramio.jpg|thumb]] एक कॉम्पैक्ट ओवरहेड संचार रेखा (ट्रांसमिशन लाइन)  के लिए एक मानक ओवरहेड पावर लाइन की तुलना में छोटे अधिकार की आवश्यकता होती है। कंडक्टर एक दूसरे के बहुत करीब नहीं होना चाहिए। इसे या तो कम अवधि की लंबाई और क्रॉसबारों को इंसुलेट करके या इंसुलेटर के साथ स्पैन में कंडक्टर को अलग करके हासिल किया जा सकता है। पहले प्रकार का निर्माण करना आसान है क्योंकि इसके लिए अवधि में इन्सुलेटर की आवश्यकता नहीं होती है, जिसे स्थापित करना और बनाए रखना मुश्किल हो सकता है।


कॉम्पैक्ट लाइनों के उदाहरण हैं:
कॉम्पैक्ट लाइनों के उदाहरण हैं:


* लुत्स्क कॉम्पैक्ट ओवरहेड पावर रेखा (लाइन)  (50.774673°n 25.3852–15°e)
<nowiki>*</nowiki> लुत्स्क कॉम्पैक्ट ओवरहेड पावर रेखा (लाइन)  (50.774673°n 25.3852–15°e)


* हिलपरटसाऊ-वीजनबैक कॉम्पैक्ट ओवरहेड रेखा (लाइन)  (48.737898°n 8.355660°e)
<nowiki>*</nowiki> हिलपरटसाऊ-वीजनबैक कॉम्पैक्ट ओवरहेड रेखा (लाइन)  (48.737898°n 8.355660°e)


कॉम्पैक्ट संचार रेखा (ट्रांसमिशन लाइन) को मौजूदा लाइनों के वोल्टेज उन्नयन के लिए रुपरेखा (डिजाइन) किया जा सकता है ताकि बिजली को बढ़ाया जा सके जो मौजूदा अधिकार पर संचारित किया जा सकता है। [ 20]
कॉम्पैक्ट संचार रेखा (ट्रांसमिशन लाइन) को मौजूदा लाइनों के वोल्टेज उन्नयन के लिए रुपरेखा (डिजाइन) किया जा सकता है ताकि बिजली को बढ़ाया जा सके जो मौजूदा अधिकार पर संचारित किया जा सकता है। [ 20]


== कम वोल्टेज ==
==कम वोल्टेज==
एरियल बंडल्ड केबल [https://alpha.indicwiki.in/%E0%A4%93%E0%A4%B2%E0%A5%8D%E0%A4%A1%20%E0%A4%95%E0%A5%82%E0%A4%B2%E0%A5%8D%E0%A4%B8%E0%A4%A1%E0%A4%A8 ओल्ड कूल्सडन] में, [https://alpha.indicwiki.in/%E0%A4%B8%E0%A4%B0%E0%A5%87 सरे] कम वोल्टेज ओवरहेड लाइनें या तो नंगे कंडक्टरों का उपयोग कांच या सिरेमिक इंसुलेटर या एक [https://alpha.indicwiki.in/%E0%A4%8F%E0%A4%B0%E0%A4%BF%E0%A4%AF%E0%A4%B2%20%E0%A4%AC%E0%A4%82%E0%A4%A1%E0%A4%B2%20%E0%A4%95%E0%A5%87%E0%A4%AC%E0%A4%B2 एरियल बंडल केबल] प्रणाली पर कर सकती हैं।कंडक्टरों की संख्या दो (सबसे अधिक संभावना एक चरण और तटस्थ) के बीच कहीं भी हो सकती है, जो कि छह (तीन चरण कंडक्टर, अलग तटस्थ और पृथ्वी प्लस स्ट्रीट लाइटिंग एक सामान्य स्विच द्वारा आपूर्ति की जाती है) तक हो सकती है;एक सामान्य मामला चार (तीन चरण और तटस्थ, जहां तटस्थ भी एक सुरक्षात्मक अर्थिंग कंडक्टर के रूप में काम कर सकता है) है।
एरियल बंडल्ड केबल [https://alpha.indicwiki.in/%E0%A4%93%E0%A4%B2%E0%A5%8D%E0%A4%A1%20%E0%A4%95%E0%A5%82%E0%A4%B2%E0%A5%8D%E0%A4%B8%E0%A4%A1%E0%A4%A8 ओल्ड कूल्सडन] में, [https://alpha.indicwiki.in/%E0%A4%B8%E0%A4%B0%E0%A5%87 सरे] कम वोल्टेज ओवरहेड लाइनें या तो नंगे कंडक्टरों का उपयोग कांच या सिरेमिक इंसुलेटर या एक [https://alpha.indicwiki.in/%E0%A4%8F%E0%A4%B0%E0%A4%BF%E0%A4%AF%E0%A4%B2%20%E0%A4%AC%E0%A4%82%E0%A4%A1%E0%A4%B2%20%E0%A4%95%E0%A5%87%E0%A4%AC%E0%A4%B2 एरियल बंडल केबल] प्रणाली पर कर सकती हैं।कंडक्टरों की संख्या दो (सबसे अधिक संभावना एक चरण और तटस्थ) के बीच कहीं भी हो सकती है, जो कि छह (तीन चरण कंडक्टर, अलग तटस्थ और पृथ्वी प्लस स्ट्रीट लाइटिंग एक सामान्य स्विच द्वारा आपूर्ति की जाती है) तक हो सकती है;एक सामान्य मामला चार (तीन चरण और तटस्थ, जहां तटस्थ भी एक सुरक्षात्मक अर्थिंग कंडक्टर के रूप में काम कर सकता है) है।


== ट्रेन पावर ==
==ट्रेन पावर==
Main article: [https://alpha.indicwiki.in/Overhead%20line Overhead line]
Main article: [https://alpha.indicwiki.in/Overhead%20line Overhead line]


ओवरहेड लाइनों या ओवरहेड तारों का उपयोग विद्युत ऊर्जा को ट्राम, ट्रॉलीब्यूस और ट्रेनों तक पहुंचाने के लिए किया जाता है।ओवरहेड लाइनें रेल पटरियों पर स्थित एक या एक से अधिक ओवरहेड तारों के सिद्धांत पर डिज़ाइन की गई हैं।उच्च-वोल्टेज ग्रिड से ओवरहेड लाइन आपूर्ति शक्ति के साथ नियमित अंतराल पर फीडर स्टेशन।कुछ मामलों में, कम-आवृत्ति एसी का उपयोग किया जाता है, और एक विशेष [https://alpha.indicwiki.in/%E0%A4%9F%E0%A5%8D%E0%A4%B0%E0%A5%88%E0%A4%95%E0%A5%8D%E0%A4%B6%E0%A4%A8%20%E0%A4%95%E0%A4%B0%E0%A4%82%E0%A4%9F ट्रैक्शन करंट] नेटवर्क द्वारा वितरित किया जाता है।
ओवरहेड लाइनों या ओवरहेड तारों का उपयोग विद्युत ऊर्जा को ट्राम, ट्रॉलीब्यूस और ट्रेनों तक पहुंचाने के लिए किया जाता है।ओवरहेड लाइनें रेल पटरियों पर स्थित एक या एक से अधिक ओवरहेड तारों के सिद्धांत पर डिज़ाइन की गई हैं।उच्च-वोल्टेज ग्रिड से ओवरहेड लाइन आपूर्ति शक्ति के साथ नियमित अंतराल पर फीडर स्टेशन।कुछ मामलों में, कम-आवृत्ति एसी का उपयोग किया जाता है, और एक विशेष [https://alpha.indicwiki.in/%E0%A4%9F%E0%A5%8D%E0%A4%B0%E0%A5%88%E0%A4%95%E0%A5%8D%E0%A4%B6%E0%A4%A8%20%E0%A4%95%E0%A4%B0%E0%A4%82%E0%A4%9F ट्रैक्शन करंट] नेटवर्क द्वारा वितरित किया जाता है।


== आगे के आवेदन ==
==आगे के आवेदन ==
ओवरहेड लाइनों का उपयोग कभी -कभी एंटेना की आपूर्ति करने के लिए भी किया जाता है, विशेष रूप से लंबी, मध्यम और छोटी तरंगों के कुशल संचरण के लिए।इस उद्देश्य के लिए एक कंपित सरणी लाइन का उपयोग अक्सर किया जाता है।एक कंपित सरणी लाइन के साथ-साथ प्रसवोत्तर एंटीना की पृथ्वी जाल की आपूर्ति के लिए कंडक्टर केबल एक अंगूठी के बाहरी हिस्से पर जुड़े होते हैं, जबकि रिंग के अंदर कंडक्टर को इंसुलेटरों के लिए उपवास किया जाता है, जो एंटीना के उच्च-वोल्टेज स्टैंडिंग फीडर के लिए अग्रणी होता है।।
ओवरहेड लाइनों का उपयोग कभी -कभी एंटेना की आपूर्ति करने के लिए भी किया जाता है, विशेष रूप से लंबी, मध्यम और छोटी तरंगों के कुशल संचरण के लिए।इस उद्देश्य के लिए एक कंपित सरणी लाइन का उपयोग अक्सर किया जाता है।एक कंपित सरणी लाइन के साथ-साथ प्रसवोत्तर एंटीना की पृथ्वी जाल की आपूर्ति के लिए कंडक्टर केबल एक अंगूठी के बाहरी हिस्से पर जुड़े होते हैं, जबकि रिंग के अंदर कंडक्टर को इंसुलेटरों के लिए उपवास किया जाता है, जो एंटीना के उच्च-वोल्टेज स्टैंडिंग फीडर के लिए अग्रणी होता है।।


== ओवरहेड पावर लाइनों के तहत क्षेत्र का उपयोग ==
==ओवरहेड पावर लाइनों के तहत क्षेत्र का उपयोग==
एक ओवरहेड लाइन के नीचे के क्षेत्र का उपयोग सीमित है क्योंकि वस्तुओं को ऊर्जावान कंडक्टरों के बहुत करीब नहीं आना चाहिए। ओवरहेड लाइनें और संरचनाएं बर्फ बहा सकती हैं, जिससे एक खतरा पैदा हो सकता है। रेडियो रिसेप्शन को एक पावर लाइन के तहत बिगड़ा जा सकता है, दोनों ओवरहेड कंडक्टरों द्वारा एक रिसीवर एंटीना की परिरक्षण के कारण, और इंसुलेटर और कंडक्टरों के तेज बिंदुओं पर आंशिक निर्वहन द्वारा जो रेडियो शोर बनाता है।
एक ओवरहेड लाइन के नीचे के क्षेत्र का उपयोग सीमित है क्योंकि वस्तुओं को ऊर्जावान कंडक्टरों के बहुत करीब नहीं आना चाहिए। ओवरहेड लाइनें और संरचनाएं बर्फ बहा सकती हैं, जिससे एक खतरा पैदा हो सकता है। रेडियो रिसेप्शन को एक पावर लाइन के तहत बिगड़ा जा सकता है, दोनों ओवरहेड कंडक्टरों द्वारा एक रिसीवर एंटीना की परिरक्षण के कारण, और इंसुलेटर और कंडक्टरों के तेज बिंदुओं पर आंशिक निर्वहन द्वारा जो रेडियो शोर बनाता है।


Line 149: Line 148:
उच्च वोल्टेज बिजली लाइनों के पास रहने के बारे में स्वास्थ्य चिंताओं को निर्णायक रूप से प्रदर्शित नहीं किया गया है
उच्च वोल्टेज बिजली लाइनों के पास रहने के बारे में स्वास्थ्य चिंताओं को निर्णायक रूप से प्रदर्शित नहीं किया गया है


== विमानन दुर्घटनाएँ ==
==विमानन दुर्घटनाएँ==
एक उच्च-वोल्टेज ओवरहेड ट्रांसमिशन लाइन पर एक विमानन अवरोध मार्कर एक ओवरहेड लाइन की उपस्थिति के पायलटों को याद दिलाता है।कुछ मार्करों को रात में जलाया जाता है या स्ट्रोब लाइट्स होते हैं।
एक उच्च-वोल्टेज ओवरहेड ट्रांसमिशन लाइन पर एक विमानन अवरोध मार्कर एक ओवरहेड लाइन की उपस्थिति के पायलटों को याद दिलाता है।कुछ मार्करों को रात में जलाया जाता है या स्ट्रोब लाइट्स होते हैं।


Line 156: Line 155:
सामान्य विमानन, हैंग ग्लाइडिंग, पैराग्लाइडिंग, स्काइडाइविंग, बैलून, और पतंग उड़ान को बिजली लाइनों के साथ आकस्मिक संपर्क से बचना चाहिए।लगभग हर पतंग उत्पाद उपयोगकर्ताओं को बिजली लाइनों से दूर रहने के लिए चेतावनी देता है।मौतें तब होती हैं जब विमान बिजली लाइनों में दुर्घटनाग्रस्त हो जाता है।कुछ बिजली लाइनों को अवरोध निर्माताओं के साथ चिह्नित किया जाता है, विशेष रूप से वायु स्ट्रिप्स के पास या जलमार्ग पर जो फ्लोटप्लेन संचालन का समर्थन कर सकते हैं।पावर लाइनों का प्लेसमेंट कभी -कभी उन साइटों का उपयोग करता है जो अन्यथा हैंग ग्लाइडर्स द्वारा उपयोग किए जाते हैं
सामान्य विमानन, हैंग ग्लाइडिंग, पैराग्लाइडिंग, स्काइडाइविंग, बैलून, और पतंग उड़ान को बिजली लाइनों के साथ आकस्मिक संपर्क से बचना चाहिए।लगभग हर पतंग उत्पाद उपयोगकर्ताओं को बिजली लाइनों से दूर रहने के लिए चेतावनी देता है।मौतें तब होती हैं जब विमान बिजली लाइनों में दुर्घटनाग्रस्त हो जाता है।कुछ बिजली लाइनों को अवरोध निर्माताओं के साथ चिह्नित किया जाता है, विशेष रूप से वायु स्ट्रिप्स के पास या जलमार्ग पर जो फ्लोटप्लेन संचालन का समर्थन कर सकते हैं।पावर लाइनों का प्लेसमेंट कभी -कभी उन साइटों का उपयोग करता है जो अन्यथा हैंग ग्लाइडर्स द्वारा उपयोग किए जाते हैं


== इतिहास ==
==इतिहास==
एक विस्तारित दूरी पर विद्युत आवेगों का पहला संचरण 14 जुलाई, 1729 को भौतिक विज्ञानी द्वारा प्रदर्शित किया गया था [https://alpha.indicwiki.in/%E0%A4%B8%E0%A5%8D%E0%A4%9F%E0%A5%80%E0%A4%AB%E0%A4%A8%20%E0%A4%97%E0%A5%8D%E0%A4%B0%E0%A5%87%20(%E0%A4%B5%E0%A5%88%E0%A4%9C%E0%A5%8D%E0%A4%9E%E0%A4%BE%E0%A4%A8%E0%A4%BF%E0%A4%95) स्टीफन ग्रे]<sup>[''citation needed'']</sup> प्रदर्शन ने रेशम के धागे द्वारा निलंबित नम गांजा डोरियों का उपयोग किया (उस समय धातु कंडक्टरों के कम प्रतिरोध की सराहना नहीं की जा रही है)।
एक विस्तारित दूरी पर विद्युत आवेगों का पहला संचरण 14 जुलाई, 1729 को भौतिक विज्ञानी द्वारा प्रदर्शित किया गया था [https://alpha.indicwiki.in/%E0%A4%B8%E0%A5%8D%E0%A4%9F%E0%A5%80%E0%A4%AB%E0%A4%A8%20%E0%A4%97%E0%A5%8D%E0%A4%B0%E0%A5%87%20(%E0%A4%B5%E0%A5%88%E0%A4%9C%E0%A5%8D%E0%A4%9E%E0%A4%BE%E0%A4%A8%E0%A4%BF%E0%A4%95) स्टीफन ग्रे]<sup>[''citation needed''<nowiki>]</nowiki></sup> प्रदर्शन ने रेशम के धागे द्वारा निलंबित नम गांजा डोरियों का उपयोग किया (उस समय धातु कंडक्टरों के कम प्रतिरोध की सराहना नहीं की जा रही है)।


हालांकि ओवरहेड लाइनों का पहला व्यावहारिक उपयोग [https://alpha.indicwiki.in/%E0%A4%87%E0%A4%B2%E0%A5%87%E0%A4%95%E0%A5%8D%E0%A4%9F%E0%A5%8D%E0%A4%B0%E0%A4%BF%E0%A4%95%E0%A4%B2%20%E0%A4%9F%E0%A5%87%E0%A4%B2%E0%A5%80%E0%A4%97%E0%A5%8D%E0%A4%B0%E0%A4%BE%E0%A4%AB टेलीग्राफी] के संदर्भ में था। 1837 तक प्रायोगिक वाणिज्यिक टेलीग्राफ सिस्टम 20 & nbsp; किमी (13 मील) तक चला। इलेक्ट्रिक पावर ट्रांसमिशन 1882 में [https://alpha.indicwiki.in/Miesbach-Munich%20%E0%A4%AA%E0%A4%BE%E0%A4%B5%E0%A4%B0%20%E0%A4%9F%E0%A5%8D%E0%A4%B0%E0%A4%BE%E0%A4%82%E0%A4%B8%E0%A4%AE%E0%A4%BF%E0%A4%B6%E0%A4%A8 म्यूनिख और Miesbach] के बीच पहले उच्च-वोल्टेज ट्रांसमिशन के साथ पूरा किया गया था (60 & nbsp; km)। 1891 में पहले तीन-चरण [https://alpha.indicwiki.in/%E0%A4%AC%E0%A4%BE%E0%A4%B0%E0%A5%80-%E0%A4%AC%E0%A4%BE%E0%A4%B0%E0%A5%80%20%E0%A4%B8%E0%A5%87%20%E0%A4%B5%E0%A4%B0%E0%A5%8D%E0%A4%A4%E0%A4%AE%E0%A4%BE%E0%A4%A8 बारी-बारी से वर्तमान] के निर्माण को [https://alpha.indicwiki.in/%E0%A4%AB%E0%A5%8D%E0%A4%B0%E0%A5%88%E0%A4%82%E0%A4%95%E0%A4%AB%E0%A4%B0%E0%A5%8D%E0%A4%9F फ्रैंकफर्ट] और फ्रैंकफर्ट के बीच [https://alpha.indicwiki.in/%E0%A4%AB%E0%A5%8D%E0%A4%B0%E0%A5%88%E0%A4%82%E0%A4%95%E0%A4%AB%E0%A4%B0%E0%A5%8D%E0%A4%9F फ्रैंकफर्ट] में अंतर्राष्ट्रीय बिजली प्रदर्शनी के अवसर पर ओवरहेड लाइन देखा गया।
हालांकि ओवरहेड लाइनों का पहला व्यावहारिक उपयोग [https://alpha.indicwiki.in/%E0%A4%87%E0%A4%B2%E0%A5%87%E0%A4%95%E0%A5%8D%E0%A4%9F%E0%A5%8D%E0%A4%B0%E0%A4%BF%E0%A4%95%E0%A4%B2%20%E0%A4%9F%E0%A5%87%E0%A4%B2%E0%A5%80%E0%A4%97%E0%A5%8D%E0%A4%B0%E0%A4%BE%E0%A4%AB टेलीग्राफी] के संदर्भ में था। 1837 तक प्रायोगिक वाणिज्यिक टेलीग्राफ सिस्टम 20 & nbsp; किमी (13 मील) तक चला। इलेक्ट्रिक पावर ट्रांसमिशन 1882 में [https://alpha.indicwiki.in/Miesbach-Munich%20%E0%A4%AA%E0%A4%BE%E0%A4%B5%E0%A4%B0%20%E0%A4%9F%E0%A5%8D%E0%A4%B0%E0%A4%BE%E0%A4%82%E0%A4%B8%E0%A4%AE%E0%A4%BF%E0%A4%B6%E0%A4%A8 म्यूनिख और Miesbach] के बीच पहले उच्च-वोल्टेज ट्रांसमिशन के साथ पूरा किया गया था (60 & nbsp; km)। 1891 में पहले तीन-चरण [https://alpha.indicwiki.in/%E0%A4%AC%E0%A4%BE%E0%A4%B0%E0%A5%80-%E0%A4%AC%E0%A4%BE%E0%A4%B0%E0%A5%80%20%E0%A4%B8%E0%A5%87%20%E0%A4%B5%E0%A4%B0%E0%A5%8D%E0%A4%A4%E0%A4%AE%E0%A4%BE%E0%A4%A8 बारी-बारी से वर्तमान] के निर्माण को [https://alpha.indicwiki.in/%E0%A4%AB%E0%A5%8D%E0%A4%B0%E0%A5%88%E0%A4%82%E0%A4%95%E0%A4%AB%E0%A4%B0%E0%A5%8D%E0%A4%9F फ्रैंकफर्ट] और फ्रैंकफर्ट के बीच [https://alpha.indicwiki.in/%E0%A4%AB%E0%A5%8D%E0%A4%B0%E0%A5%88%E0%A4%82%E0%A4%95%E0%A4%AB%E0%A4%B0%E0%A5%8D%E0%A4%9F फ्रैंकफर्ट] में अंतर्राष्ट्रीय बिजली प्रदर्शनी के अवसर पर ओवरहेड लाइन देखा गया।
Line 167: Line 166:
* लुत्स्क कॉम्पैक्ट ओवरहेड पावर रेखा (लाइन) (50.774673°n 25.3852–15°e)
* लुत्स्क कॉम्पैक्ट ओवरहेड पावर रेखा (लाइन) (50.774673°n 25.3852–15°e)


* हिलपरटसाऊ-वीजनबैक कॉम्पैक्ट ओवरहेड रेखा (लाइन) (48.737898°n 8.355660°e)
*हिलपरटसाऊ-वीजनबैक कॉम्पैक्ट ओवरहेड रेखा (लाइन) (48.737898°n 8.355660°e)


कॉम्पैक्ट संचार रेखा (ट्रांसमिशन लाइन) को मौजूदा लाइनों के वोल्टेज उन्नयन के लिए रुपरेखा (डिजाइन) किया जा सकता है ताकि बिजली को बढ़ाया जा सके जो मौजूदा अधिकार पर संचारित किया जा सकता है। [ 20]
कॉम्पैक्ट संचार रेखा (ट्रांसमिशन लाइन) को मौजूदा लाइनों के वोल्टेज उन्नयन के लिए रुपरेखा (डिजाइन) किया जा सकता है ताकि बिजली को बढ़ाया जा सके जो मौजूदा अधिकार पर संचारित किया जा सकता है। [ 20]


== गणितीय विश्लेषण ==
==गणितीय विश्लेषण==
एक ओवरहेड पावर लाइन एक [[ट्रांसमिशन लाइन]] का एक उदाहरण है। पावर सिस्टम आवृत्तियों पर, कई उपयोगी सरलीकरण विशिष्ट लंबाई की लाइनों के लिए किए जा सकते हैं। विद्युत प्रणालियों के विश्लेषण के लिए, वितरित प्रतिरोध, श्रृंखला इंडक्टेंस, शंट लीकेज प्रतिरोध और शंट कैपेसिटी को उपयुक्त एकमुश्त मूल्यों या सरलीकृत नेटवर्क के साथ प्रतिस्थापित किया जा सकता है।
एक ओवरहेड पावर लाइन एक [[ट्रांसमिशन लाइन]] का एक उदाहरण है। पावर सिस्टम आवृत्तियों पर, कई उपयोगी सरलीकरण विशिष्ट लंबाई की लाइनों के लिए किए जा सकते हैं। विद्युत प्रणालियों के विश्लेषण के लिए, वितरित प्रतिरोध, श्रृंखला इंडक्टेंस, शंट लीकेज प्रतिरोध और शंट कैपेसिटी को उपयुक्त एकमुश्त मूल्यों या सरलीकृत नेटवर्क के साथ प्रतिस्थापित किया जा सकता है।


=== छोटी और मध्यम रेखा मॉडल ===
===छोटी और मध्यम रेखा मॉडल===
एक पावर लाइन (80 किमी से कम) की एक छोटी लंबाई को एक इंडक्टेंस के साथ श्रृंखला में प्रतिरोध के साथ और शंट एडमिटेंस की उपेक्षा के साथ अनुमानित किया जा सकता है। यह मान लाइन की कुल प्रतिबाधा नहीं है, बल्कि लाइन की प्रति यूनिट लंबाई पर श्रृंखला प्रतिबाधा है। लंबी लाइन (80 से 250 किलोमीटर) के लिए, मॉडल में एक शंट कैपेसिटी जोड़ा जाता है। इस मामले में लाइन के प्रत्येक हिस्से में कुल संधारिता का आधा हिस्सा वितरित करना आम है। नतीजतन, पावर लाइन को [[दो-पोर्ट नेटवर्क]] के रूप में दर्शाया जा सकता है, जैसे कि एबीसीडी मापदंडों के साथ।<ref name=Glover21>{{cite book|first1=J.|last1=Glover|first2=M.|last2=Sarma|first3=T.|last3=Overbye|title=Power System Analysis and Design|edition=5|publisher=Cengage Learning|location=Connecticut|year=2012|isbn=978-1-111-42577-7|chapter=5: ''Transmission Lines: Steady-State Operation''}}</ref>
एक पावर लाइन (80 किमी से कम) की एक छोटी लंबाई को एक इंडक्टेंस के साथ श्रृंखला में प्रतिरोध के साथ और शंट एडमिटेंस की उपेक्षा के साथ अनुमानित किया जा सकता है। यह मान लाइन की कुल प्रतिबाधा नहीं है, बल्कि लाइन की प्रति यूनिट लंबाई पर श्रृंखला प्रतिबाधा है। लंबी लाइन (80 से 250 किलोमीटर) के लिए, मॉडल में एक शंट कैपेसिटी जोड़ा जाता है। इस मामले में लाइन के प्रत्येक हिस्से में कुल संधारिता का आधा हिस्सा वितरित करना आम है। नतीजतन, पावर लाइन को [[दो-पोर्ट नेटवर्क]] के रूप में दर्शाया जा सकता है, जैसे कि एबीसीडी मापदंडों के साथ।<ref name="Glover21">{{cite book|first1=J.|last1=Glover|first2=M.|last2=Sarma|first3=T.|last3=Overbye|title=Power System Analysis and Design|edition=5|publisher=Cengage Learning|location=Connecticut|year=2012|isbn=978-1-111-42577-7|chapter=5: ''Transmission Lines: Steady-State Operation''}}</ref>


सर्किट की विशेषता हो सकती है
सर्किट की विशेषता हो सकती है
Line 195: Line 194:
</gallery>
</gallery>


== See also ==
==See also==
{{div col|colwidth=23em}}
{{div col|colwidth=23em}}
* [[Aerial cable]]
* [[Aerial cable]]
Line 211: Line 210:


==References==
==References==
{{Reflist|30em
<nowiki>{{Reflist|30em
}
}</nowiki>
==Further reading==
==Further reading==
{{Refbegin}}
{{Refbegin}}
Line 226: Line 225:
{{DEFAULTSORT:Overhead power line}}
{{DEFAULTSORT:Overhead power line}}


[[Category:Articles with hatnote templates targeting a nonexistent page|Overhead power line]]
<references />
[[Category:Articles with short description|Overhead power line]]
[[Category:CS1|Overhead power line]]
[[Category:CS1 maint|Overhead power line]]
[[Category:Machine Translated Page|Overhead power line]]
[[Category:Pages with broken file links|Overhead power line]]
[[Category:Pages with reference errors|Overhead power line]]
[[Category:Pages with script errors|Overhead power line]]
[[Category:Pages with template loops|Overhead power line]]
[[Category:Template documentation pages|Documentation/doc]]

Revision as of 11:50, 22 August 2022

'ओवरहेड पावर लाइन' एक संरचना होती है,जिसका उपयोग विद्युत शक्ति संचरण और वितरण में बड़ी दूरियों में विद्युत ऊर्जा संचारित करने के लिए किया जाता है। इसमें एक या अधिक असंयमीकृत विद्युत के तार ( विद्युत केबल) होते हैं, जिन्हें टावर्स या यूटिलिटी पोल खंभों द्वारा(आमतौर पर तीन के गुणकों के लिए तीन-चरण शक्ति) निलंबित किया जाता है।

चूंकि अधिकांश इन्सुलेशन आसपास की हवा द्वारा प्रदान किया जाता है, ओवरहेड पावर लाइन आम तौर पर बड़ी मात्रा में विद्युत ऊर्जा के संचार (ट्रांसमिशन का सबसे कम खर्चीला तरीका है।

320 and 150 kV in Dnipro

संरचना

Overhead powerline Dnieper crossing, Ukraine
में पॉवरलाइन पर काम करने वाला एक व्यक्ति]]लाइनों के समर्थन के लिए टावर लकड़ी से बने होते हैं या तो उगाए जाते हैं या स्टील टुकड़े या एल्यूमीनियम टुकड़े (या तो जाली संरचनाएं या ट्यूबलर पोल), कंक्रीट, और कभी-कभी मजबूत प्लास्टिक होते हैं। लाइन पर नंगे तार कंडक्टर आम तौर पर एल्यूमीनियम से बने होते हैं (या तो सादे या स्टील या मिश्रित सामग्री जैसे कार्बन और ग्लास फाइबर के साथ प्रबलित ), हालांकि कुछ तांबे के तारों का उपयोग मध्यम-वोल्टेज वितरण और ग्राहक परिसर के लिए कम-वोल्टेज संपर्क (कनेक्शन) में किया जाता है। ओवरहेड पावर लाइन की रुपरेखा (डिजाइन) का एक प्रमुख लक्ष्य ऊर्जायुक्त कंडक्टरों और जमीन के बीच पर्याप्त निकासी बनाए रखना है ताकि लाइन के साथ खतरनाक संपर्क को रोका जा सके और कंडक्टरों के लिए विश्वसनीय समर्थन प्रदान किया जा सके। [1] आज ओवरहेड लाइनों को नियमित रूप से 765,000 वोल्ट से अधिक वोल्टेज पर संचालित किया जाता है।

संचरण लाइनों का वर्गीकरण

ऑपरेटिंग वोल्टेज द्वारा

[[File:NAURU JULY 2007 (10709113444).jpg|thumb|upright|Nauru (2007)] ओवरहेड पावर संचार (ट्रांसमिशन) लाइनों को विद्युत ऊर्जा उद्योग में वोल्टेज की श्रेणी के अनुसार वर्गीकृत किया जाता है:

  • कम वोल्टेज (एलवी), 1000 वोल्ट से कम एक आवासीय या छोटे वाणिज्यिक ग्राहक और उपयोगिता के बीच संबंध के लिए उपयोग किया जाता है।
  • शहरी और ग्रामीण क्षेत्रों में वितरण के लिए 1000 वोल्ट (1 केवी) और 69 केवी के बीच मध्यम वोल्टेज (एमवी; वितरण)
  • उच्च वोल्टेज (एचवी; सबट्रांसमिशन 100 . से कम केवी; 115 जैसे वोल्टेज पर सबट्रांसमिशन या ट्रांसमिशन केवी और 138 केवी), जिसका उपयोग भारी मात्रा में विद्युत शक्ति के उप-संचरण और पारेषण और बहुत बड़े उपभोक्ताओं से कनेक्शन के लिए किया जाता है।
  • अतिरिक्त उच्च वोल्टेज (ईएचवी; ट्रांसमिशन) - 345 केवी से लगभग 800 केवी तक, [1]  का उपयोग लंबी दूरी, बहुत उच्च शक्ति संचरण के लिए किया जाता है।
  • अल्ट्रा हाई वोल्टेज (यूएचवी), अक्सर पंक्ति के 800 केवीडीसी और के (k) 1000 केवीडीसी लंबाई के साथ जुड़ा हुआ है
मध्यम सबस्टेशन पर 430 और 250 kV

के (k) संचार (ट्रांसमिशन) रेखा (लाइन) को आम तौर पर तीन वर्गों में वर्गीकृत किया जाता है[2] रेखा (लाइन) की लंबाई के आधार पर: * 50 किलोमीटर से छोटी रेखा (लाइन) को आमतौर पर शॉर्ट संचार (ट्रांसमिशन) स्र्क्काएं (लाइन्स) के रूप में जाना जाता हैं। * 50 . के बीच की रेखाएं किमी और 150 किमी को आम तौर पर मध्यम संचरण रेखाओ के रूप में जाना जाता है। * 150 किमी से अधिक लंबी रेखाओ (लाइनें) किमी लंबी संचार (ट्रांसमिशन) रेखा (लाइन) मानी जाती है।

यह वर्गीकरण मुख्य रूप से पावर इंजीनियरों द्वारा संचार (ट्रांसमिशन) लाइनों के प्रदर्शन विश्लेषण में आसानी के लिए किया जाता है।

संरचनाओं

ऊपरी रेखाओ (लाइनों) के लिए संरचना लाइन के प्रकार के आधार पर विभिन्न प्रकार के आकार लेती है। संरचना उतनी ही सरल हो सकती है जितनी लकड़ी के खंभों को सीधे पृथ्वी पर स्थापित किया जा सकता है, जिसमें एक या अधिक क्रॉस-आर्म बीम होते हैं, जो कंडक्टरों का समर्थन करते हैं, या खंभे के बगल से जुड़े इंसुलेटर पर समर्थित कंडक्टरों के साथ बेतरतीब निर्माण करते हैं। ट्यूबलर इस्पात (स्टील)के खंभों का उपयोग आम तौर पर शहरी क्षेत्रों में किया जाता है।उच्च-वोल्टेज रेखाओ (लाइनों) को अक्सर जाली-प्रकार के स्टील टावरों या तोरणों पर ले जाया जाता है। दूरस्थ क्षेत्रों के लिए, एल्युमीनियम टावरों को हेलीकॉप्टरों द्वारा रखा जा सकता है। [3] [4] कंक्रीट के खंभों का भी प्रयोग किया गया है। [5] प्रबलित प्लास्टिक से बने डंडे भी उपलब्ध हैं, लेकिन उनकी उच्च लागत अनुप्रयोग को प्रतिबंधित करती है।

प्रत्येक संरचना कंडक्टर द्वारा उस पर लगाए गए भार के लिए रुपरेखा (डिजाइन) की जानी चाहिए। [6] कंडक्टर के वजन का समर्थन किया जाना चाहिए, साथ ही हवा और बर्फ के संचय और कंपन के प्रभाव के कारण गतिशील भार। जहां कंडक्टर एक सीधी रेखा में हैं, टावरों को केवल वजन का विरोध करने की आवश्यकता होती है क्योंकि कंडक्टरों में तनाव लगभग संतुलन होता है और संरचना पर कोई परिणामी बल नहीं होता है। उनके सिरों पर समर्थित लचीले कंडक्टर एक कैटेनरी के रूप का अनुमान लगाते हैं, और संचार रेखाओ (ट्रांसमिशन लाइनों) के निर्माण के लिए विश्लेषण का अधिकांश इस रूप के गुणों पर निर्भर करता है।[6]

एक बड़ी संचार रेखाओ (ट्रांसमिशन लाइनों) परियोजना में कई प्रकार के टावर हो सकते हैं, जिसमें "स्पर्शरेखा" ("सस्पेंशन" या "लाइन" टावर, यूके) टावर हैं जो अधिकांश पदों के लिए अभिप्रेत हैं और एक कोण के माध्यम से रेखा (लाइन) को मोड़ने के लिए उपयोग किए जाने वाले एक रेखा (लाइन) या महत्वपूर्ण नदी या सड़क पार करने के लिए उपयोग किया जाता है। एक विशेष रेखा (लाइन) के लिए रुपरेखा (डिजाइन) मानदंडों के आधार पर, अर्ध-लचीनी प्रकार की संरचनाएं प्रत्येक टॉवर के दोनों किनारों पर संतुलित होने के लिए कंडक्टरों के वजन पर भरोसा कर सकती हैं। अधिक कठोर संरचनाओं का इरादा एक या एक से अधिक कंडक्टरों के टूटने पर भी खड़े रहने के लिए किया जा सकता है। इस तरह की संरचनाओं को ऊर्जा रेखाओ (पॉवर लाइनों) में अंतराल पर स्थापित किया जा सकता है ताकि कैस्केडिंग टॉवर विफलताओं के पैमाने को सीमित किया जा सके।[7]

टॉवर संरचनाओं के लिए नींव बड़ी और महंगी हो सकती है, विशेष रूप से अगर जमीनी स्थितियां खराब हैं, जैसे आर्द्रभूमि में। प्रत्येक संरचना को कंडक्टर द्वारा लागू कुछ बलों को रोकने के लिए गाइ वायर के उपयोग से प्रत्येक संरचना को काफी हद तक स्थिर किया जा सकता है। [[Image:Einebenenleitung.jpg|thumb|एयरफील्ड] के पास लो-प्रोफाइल पावर लाइन्स]] विद्युत लाइनें और सहायक संरचनाएं दृश्य प्रदूषण का एक रूप हो सकती हैं। कुछ मामलों में इससे बचने के लिए लाइनों को दबा दिया जाता हैं, लेकिन यह "भूमिगत" अधिक महंगा है और इसलिए आम नहीं है।

एक एकल लकड़ी उपयोगिता ध्रुव संरचना के लिए, एक पोल को जमीन में रखा जाता है, फिर तीन क्रॉसआर्म इस से या तो अलग या सभी एक तरफ तक विस्तारित होते हैं। इंसुलेटर क्रॉसआर्म्स से जुड़े होते हैं। एक "एच"-टाइप लकड़ी के ध्रुव संरचना के लिए, दो डंडे जमीन में रखे जाते हैं, फिर इनके ऊपर एक क्रॉसबार रखा जाता है, जो दोनों तरफ फैला होता है। इंसुलेटर सिरों और बीच में लगे होते हैं। जाली टॉवर संरचनाओं के दो सामान्य रूप हैं। एक में एक पिरामिडनुमा आधार होता है, फिर एक ऊर्ध्वाधर खंड, जहां तीन क्रॉसआर्म्स बाहर निकलते हैं, आमतौर पर कंपित। स्ट्रेन इंसुलेटर क्रॉसआर्म्स से जुड़े होते हैं। दूसरे का पिरामिड आधार है, जो चार समर्थन बिंदुओं तक फैला हुआ है। इसके ऊपर एक क्षैतिज ट्रस जैसी संरचना रखी गई है।

बिजली से सुरक्षा प्रदान करने के लिए कभी-कभी टावरों के शीर्ष पर एक ग्राउंडेड तार लगाया जाता है। एक ऑप्टिकल ग्राउंड वायर संचार के लिए एम्बेडेड ऑप्टिकल फाइबर के साथ एक अधिक उन्नत संस्करण है। अंतर्राष्ट्रीय नागरिक उड्डयन संगठन की सिफारिशों को पूरा करने के लिए जमीन के तार पर ओवरहेड वायर मार्कर लगाए जा सकते हैं। [8] कुछ मार्करों में रात के समय चेतावनी के लिए चमकती लैंप शामिल हैं।

सर्किट

एकल सर्किट संचार रेखा (ट्रांसमिशन लाइन) में केवल एक सर्किट के लिए कंडक्टर होते हैं। तीन-चरण प्रणाली के लिए, इसका तात्पर्य यह है कि प्रत्येक टॉवर तीन कंडक्टर का समर्थन करता है।

एक डबल-सर्किट ट्रांसमिशन लाइन में दो सर्किट हैं। तीन-चरण प्रणालियों के लिए, प्रत्येक टॉवर छह कंडक्टरों का समर्थन करता है और इन्सुलेट करता है। कर्षण धारा ट्रैक्शन करंट के लिए प्रयुक्त एकल चरण एसी-बिजली लाइनों में दो सर्किटों के लिए चार कंडक्टर होते हैं। आमतौर पर दोनों सर्किट एक ही वोल्टेज पर संचालित होते हैं।

एचवीडीसी प्रणाली (सिस्टम) में आमतौर पर प्रति लाइन दो कंडक्टर प्रति पंक्ति में ले जाते हैं, लेकिन दुर्लभ मामलों में प्रणाली (सिस्टम) का केवल एक पोल टावरों के एक स्वाभाविक स्थिति (सेट) पर ले जाया जाता है।

जर्मनी जैसे कुछ देशों में, 100 केवी से अधिक वोल्टेज वाली अधिकांश बिजली रेखाओ (लाइनों) को दुगुनी, चौगुनी या दुर्लभ मामलों में भी हेक्सटुपल ऊर्जा रेखाओ (पॉवर लाइनों) के रूप में लागू किया जाता है क्योंकि रास्ते के अधिकार दुर्लभ हैं। कभी-कभी सभी कंडक्टरों को तोरणों के निर्माण के साथ स्थापित किया जाता है; अक्सर कुछ सर्किट बाद में स्थापित होते हैं। दुगुनी सर्किट संचार रेखा (ट्रांसमिशन लाइन) का एक नुकसान यह है कि रखरखाव मुश्किल हो सकता है, क्योंकि या तो उच्च वोल्टेज के करीब काम करना या दो सर्किट के स्विच-ऑफ की आवश्यकता होती है। विफलता के मामले में, दोनों प्रणालियों को प्रभावित किया जा सकता है।

सबसे बड़ी दुगुनी सर्किट संचार रेखा (ट्रांसमिशन लाइन) किता-इवाकी पॉवरलाइन है।

रोधक (इंसुलेटर)

कैलिफोर्निया में सिरेमिक इंसुलेटर के साथ मध्यम-वोल्टेज पावर लाइन्स
मॉड्यूलर सस्पेंशन इंसुलेटर का उपयोग उच्च-वोल्टेज लाइनों के लिए किया जाता है।इन्सुलेटर के निचले भाग के पास कंडक्टरों से जुड़ी वस्तुएं हैं स्टॉकब्रिज डैम्पर्स

इंसुलेटर को कंडक्टरों का समर्थन करना चाहिए और स्विचिंग और बिजली के कारण सामान्य परिचालन वोल्टेज और उछाल दोनों का सामना करना चाहिए। इनसुलेटर को मोटे तौर पर या तो पिन-प्रकार के रूप में वर्गीकृत किया गया है, जो संरचना या निलंबन प्रकार के ऊपर कंडक्टर का समर्थन करता है, जहां कंडक्टर संरचना के नीचे लटकता है। स्ट्रेन इन्सुलेटर का आविष्कार उच्च वोल्टेज का उपयोग करने की अनुमति देने में एक महत्वपूर्ण कारक था।

19वीं शताब्दी के अंत में, टेलीग्राफ -शैली पिन इंसुलेटर की सीमित विद्युत शक्ति ने वोल्टेज को 69,000 वोल्ट से अधिक तक सीमित कर दिया। लगभग 33 केवी (उत्तरी अमेरिका में 69 केवी) तक दोनों प्रकार आमतौर पर उपयोग किए जाते हैं। [9] उच्च वोल्टेज पर ओवरहेड कंडक्टर के लिए केवल निलंबन-प्रकार के इंसुलेटर सामान्य होते हैं।

इंसुलेटर आमतौर पर गीले-प्रक्रिया वाले चीनी मिट्टी के बरतन या कड़े ग्लास से बने होते हैं, जिसमें ग्लास-रिइनफॉरस्ड पॉलीमर इंसुलेटर का बढ़ता उपयोग होता है। हालांकि, बढ़ते वोल्टेज स्तर के साथ, पॉलिमर इंसुलेटर ( सिलिकॉन रबर आधारित) का उपयोग बढ़ रहा है। [10] चीन ने पहले से ही 1100 केवी के उच्चतम प्रणाली वोल्टेज वाले बहुलक इंसुलेटर विकसित किए हैं और भारत वर्तमान में 1200 केवी (उच्च प्रणाली वोल्टेज) लाइन विकसित कर रहा है, जिसे शुरू में 400 केवी से चार्ज किया जाएगा। [11]

सस्पेंशन इंसुलेटर कई इकाइयों से बने होते हैं, जिसमें यूनिट इन्सुलेटर की संख्या अधिक वोल्टेज पर बढ़ती है। डिस्क की संख्या लाइन वोल्टेज, बिजली का सामना करने की आवश्यकता, ऊंचाई, और पर्यावरण कारकों जैसे कोहरे, प्रदूषण, या नमक स्प्रे के आधार पर चुनी जाती है। उन मामलों में जहां ये स्थितियां उपापचनीय हैं, लंबे इन्सुलेटर का उपयोग किया जाना चाहिए। इन मामलों में लीकेज करंट के लिए लंबी दूरी के इंसुलेटर की आवश्यकता होती है। स्ट्रेन इनसुलेटर को कंडक्टर की अवधि के पूर्ण वजन का समर्थन करने के लिए पर्याप्त यांत्रिक रूप से मजबूत होना चाहिए, साथ ही बर्फ के संचय और हवा के कारण भार का समर्थन करना चाहिए। [12]

चीनी मिट्टी के बरतन इंसुलेटर में एक अर्ध-प्रवाहकीय शीशा लगाना हो सकता है, जिससे कि एक छोटा करंट (कुछ मिलीमीटर) इंसुलेटर से होकर गुजरे। यह सतह को थोड़ा गर्म करता है और कोहरे और गंदगी के संचय के प्रभाव को कम करता है। अर्धचालक शीशा भी इन्सुलेटर इकाइयों की श्रृंखला की लंबाई के साथ वोल्टेज का अधिक वितरण सुनिश्चित करता है।।

प्राकृतिक रूप से पॉलिमर इंसुलेटर में हाइड्राफोबिक लक्षण होते हैं जो बेहतर गीले प्रदर्शन के लिए प्रदान करते हैं। इसके अलावा, अध्ययनों से पता चला है कि पॉलिमर इंसुलेटर में आवश्यक विशिष्ट क्रीप दूरी पोर्सलेन या ग्लास में आवश्यक की तुलना में बहुत कम है। इसके अतिरिक्त, बहुलक इंसुलेटर (विशेष रूप से उच्च वोल्टेज में) का द्रव्यमान तुलनात्मक पोर्सिलेन या ग्लास स्ट्रिंग की तुलना में लगभग 50% से 30% कम है। बेहतर प्रदूषण और गीले प्रदर्शन के कारण ऐसे इनसुलेटर का इस्तेमाल बढ़ रहा है।

200 केवी से अधिक उच्च वोल्टेज के लिए इनसुलेटर के टर्मिनलों पर ग्रेडिंग रिंग स्थापित हो सकते हैं। यह इन्सुलेटर के आसपास विद्युत क्षेत्र वितरण में सुधार करता है और वोल्टेज बढ़ने के दौरान फ्लैश-ओवर के लिए इसे अधिक प्रतिरोधी बनाता है।

कंडक्टर

ACSR पावर लाइन का नमूना क्रॉस-सेक्शन

आज ट्रांसमिशन के लिए उपयोग में आने वाला सबसे आम कंडक्टर एल्यूमीनियम कंडक्टर स्टील प्रबलित (एसीएसआर) है। इसके अलावा बहुत अधिक उपयोग देखने के लिए ऑल-एल्युमिनियम-अलॉय कंडक्टर (एएएसी) है। एल्यूमीनियम का उपयोग इसलिए किया जाता है क्योंकि इसमें एक तुलनीय प्रतिरोध तांबा केबल का लगभग आधा वजन और कम लागत होती है। हालांकि, कम विशिष्ट चालकता के कारण तांबे की तुलना में अधिक व्यास की आवश्यकता होती है। [1] तांबा अतीत में अधिक लोकप्रिय था और अभी भी उपयोग में है, विशेष रूप से कम वोल्टेज और ग्राउंडिंग के लिए।

जबकि बड़े कंडक्टर अपने कम विद्युत प्रतिरोध के कारण कम ऊर्जा खो देते हैं, वे छोटे कंडक्टरों की तुलना में अधिक खर्च करते हैं। केल्विन के नियम नामक एक अनुकूलन नियम में कहा गया है कि एक रेखा (लाइन) के लिए कंडक्टर का इष्टतम आकार तब पाया जाता है जब एक छोटे कंडक्टर में बर्बाद होने वाली ऊर्जा की लागत एक बड़े कंडक्टर के लिए रेखा (लाइन) निर्माण की उस अतिरिक्त लागत पर दिए गए वार्षिक ब्याज के बराबर होती है। अनुकूलन समस्या को अतिरिक्त कारकों द्वारा और अधिक जटिल बना दिया जाता है जैसे कि अलग-अलग वार्षिक भार, स्थापना की अलग-अलग लागत, और केबल के असतत आकार जो आमतौर पर बनाए जाते हैं। [13]

चूंकि एक कंडक्टर प्रति यूनिट लंबाई समान वजन के साथ एक लचीली वस्तु है, इसलिए दो टावरों के बीच लटकने वाले कंडक्टर का आकार एक कैटेनरी के आकार का होता है। कंडक्टर के एसएजी ( वक्र के उच्चतम और सबसे कम बिंदु के बीच की वर्टिकल दूरी) तापमान और अतिरिक्त भार जैसे बर्फ कवर पर निर्भर करता है। सुरक्षा के लिए न्यूनतम ऊपरी मंजूरी रखी जानी चाहिए। चूंकि कंडक्टर की लंबाई इसके माध्यम से उत्पन्न होने वाली गर्मी में वृद्धि के साथ बढ़ जाती है, इसलिए कभी-कभी कंडक्टरों को थर्मल विस्तार के कम गुणांक या उच्च स्वीकार्य ऑपरेटिंग तापमान वाले प्रकार के लिए बदलकर पावर हैंडलिंग क्षमता (अपरेट) बढ़ाना संभव होता है।

परंपरागत ACSR (बाएं) और आधुनिक कार्बन कोर (दाएं) कंडक्टर

ऐसे दो कंडक्टर जो कम थर्मल एसएजी की पेशकश करते हैं, उन्हें समग्र कोर कंडक्टर (एसीसीआर और एसीसीसी कंडक्टर ) के रूप में जाना जाता है। स्टील कोर स्ट्रैंड के बदले में, जिनका उपयोग अक्सर समग्र कंडक्टर ताकत बढ़ाने के लिए किया जाता है, एसीसीसी कंडक्टर एक कार्बन और ग्लास फाइबर कोर का उपयोग करता है जो स्टील के लगभग 1/10 के लगभग थर्मल विस्तार का गुणांक प्रदान करता है। जबकि मिश्रित कोर गैर-संक्रामक है, यह स्टील की तुलना में काफी हल्का और मजबूत है, जो किसी भी व्यास या वजन दंड के बिना 28% अधिक एल्यूमीनियम (काम्पैक्ट ट्रैपीजॉयड के आकार के स्ट्रैंड का उपयोग) को शामिल करने की अनुमति देता है। अतिरिक्त एल्यूमीनियम सामग्री विद्युत धारा के आधार पर उसी व्यास और वजन के अन्य कंडक्टर की तुलना में लाइन नुकसान को 25 से 40% तक कम करने में मदद करती है। कार्बन कोर कंडक्टर के कम थर्मल एसएजी इसे सभी एल्यूमिनियम कंडक्टर (एएसी) या एसीएसआर की तुलना में वर्तमान (अक्षमता) से दोगुनी तक ले जाने की अनुमति देता है।

बिजली रेखाओ (लाइनों) और उनके आस-पास लाइनमैन द्वारा बनाए रखा जाना चाहिए, कभी-कभी दबाव वाशर या गोलाकार आरी के साथ हेलीकॉप्टरों द्वारा सहायता प्रदान की जाती है जो तीन गुना तेजी से काम कर सकते हैं। [14] [15] [16] हालांकि यह काम अक्सर हेलीकॉप्टर ऊंचाई-वेग आरेख के खतरनाक क्षेत्रों में होता है, [17] और पायलट को इस " मानव बाहरी कार्गो " विधि के लिए योग्य होना चाहिए। [18]

बंडल कंडक्टर

एक बंडल कंडक्टर

लंबी दूरी तक बिजली के संचरण के लिए, उच्च वोल्टेज संचरण का प्रयोग किया जाता है। 132 केवी ( kV) से अधिक ट्रांसमिशन से कोरोना डिस्चार्ज की समस्या पैदा करता है, जिससे बिजली की भारी हानि होती है और संचार सर्किट में हस्तक्षेप होता है। इस कोरोना प्रभाव को कम करने के लिए, प्रति चरण एक से अधिक कंडक्टर या बंडल कंडक्टर का उपयोग करना बेहतर है। [15] कोरोना, श्रवण और रेडियो शोर (और संबंधित विद्युत नुकसान) को कम करने के अलावा, बंडल कंडक्टर भी वर्तमान की राशि बढ़ाते हैं जो त्वचा प्रभाव (एसी लाइनों के लिए) के कारण समान एल्यूमीनियम सामग्री के एकल कंडक्टर की तुलना में ले जाया जा सकता है। [19]

बंडल कंडक्टर में कई समानांतर तारो (केबल) से मिलकर बने होते हैं जो अंतराल पर स्पेसर द्वारा जुड़े होते हैं, अक्सर एक बेलनाकार विन्यास में होते हैं। कंडक्टरों की अधिकतम संख्या वर्तमान माप (रेटिंग) पर निर्भर करती है, लेकिन आमतौर पर उच्च वोल्टेज रेखाओ (लाइनों) में भी उच्च धारा होती है। अमेरिकन इलेक्ट्रिक पावर [20] एक बंडल में प्रति चरण छह कंडक्टरों का उपयोग करके 765 केवी रेखाओ (लाइनों) का निर्माण कर रहा है। स्पैकर्स को हवा के कारण बलों का प्रतिरोध करना चाहिए, और एक शॉर्ट सर्किट के दौरान चुंबकीय बलों को रोकना चाहिए।

ओवन कम्युनिटी बाउंडल्स के लिए स्पेसर डम्पर

बंडल कंडक्टर लाइन के आसपास के क्षेत्र में वोल्टेज प्रवणता को कम करते हैं। इससे कोरोना से मुक्ति की संभावना कम हो जाती है। अतिरिक्त उच्च वोल्टेज पर, एकल कंडक्टर की सतह पर विद्युत क्षेत्र ढाल हवा को आयनित करने के लिए पर्याप्त है, जो बिजली बर्बाद करती है, अवांछित श्रव्य शोर उत्पन्न करती है और संचार प्रणालियों में हस्तक्षेप करती है। कंडक्टरों के एक बंडल के आसपास का क्षेत्र उस क्षेत्र के समान है जो एक एकल, बहुत बड़े कंडक्टर को घेरता है - यह कम अनुपात पैदा करता है जो उच्च क्षेत्र शक्ति से जुड़े मुद्दों को कम करता है। कोरोना प्रभाव के कारण हुए नुकसान के कारण संचार (ट्रांसमिशन) दक्षता में सुधार हुआ है।

बंडल किए गए कंडक्टर कंडक्टरों के बढ़े हुए सतह क्षेत्र के कारण खुद को अधिक कुशलता से ठंडा करते हैं, जिससे रेखा नुकसान (लाइन लॉस) कम होता है। प्रत्यावर्ती धारा को संचारित करते समय, बंडल कंडक्टर त्वचा के प्रभाव के कारण एकल बड़े कंडक्टर की एम्पसिटी में कमी से भी बचते हैं। एक एकल कंडक्टर की तुलना में एक बंडल कंडक्टर में भी कम प्रतिक्रिया होती है।

जबकि पवन प्रतिरोध अधिक है, पवन-प्रेरित दोलन को बंडल स्पैकर्स पर अवमन्दित (डम्प) किया जा सकता है। बंडल कंडक्टरों की बर्फ और हवा की लोडिंग उसी कुल विशेष अंश (क्रॉस सेक्शन) के एकल कंडक्टर से अधिक होगी, और बंडल कंडक्टर एकल कंडक्टर की तुलना में अधिक कठिन हैं। एओलियन कंपन आमतौर पर बंडल कंडक्टरों पर कम स्पष्ट किया जाता है क्योंकि रेखा (लाइन) के साथ अपेक्षाकृत निकट अंतराल पर स्थापित स्पाइसर और स्पाइसर डम्पर के प्रभाव के कारण। [21]

जमीन के तार

एल्यूमीनियम कंडक्टर क्रॉसलिंक्ड पॉलीइथाइलीन इन्सुलेशन तार।इसका उपयोग 6600V बिजली लाइनों के लिए किया जाता है।

ओवरहेड पावर लाइनें अक्सर एक भूमि (ग्राउंड) कंडक्टर (शील्ड वायर, स्टेटिक वायर, या ओवरहेड अर्थ वायर) से सुसज्जित होती हैं। भूमि (ग्राउंड) कंडक्टर को आमतौर पर सहायक संरचना के शीर्ष पर ग्राउंडेड (पृथ्वी) किया जाता है, भूमि (ग्राउंड) कंडक्टर आमतौर पर सहायक संरचना के शीर्ष पर स्थित होता है, ताकि चरण कंडक्टरों के लिए प्रत्यक्ष बिजली हमलों की संभावना को कम किया जा सके।[22] पृथ्वी तटस्थ के साथ सर्किट में, यह गलती धाराओं के लिए पृथ्वी के साथ एक समानांतर पथ के रूप में भी कार्य करता है। बहुत उच्च वोल्टेज संचार रेखा (ट्रांसमिशन लाइन) में दो भूमि (ग्राउंड) कंडक्टर हो सकते हैं। ये या तो उच्चतम क्रॉस बीम के सबसे बाहरी छोर पर, दो वी-आकार के मस्तक बिंदुओं पर, या एक अलग क्रॉस आर्म पर हैं। पुरानी रेखाओ (लाइनों) सर्ज एरस्टर का उपयोग कर सकती हैं, जो एक ढाल तार के स्थान पर हर कुछ स्पैन है; यह विन्यास आमतौर पर संयुक्त राज्य अमेरिका के अधिक ग्रामीण क्षेत्रों में पाया जाता है। बिजली से रेखाओ (लाइनों) की रक्षा करके, इन्सुलेशन पर कम तनाव के कारण सबस्टेशन में उपकरण के रुपरेखा (डिजाइन) को सरल बनाया गया है। ट्रांसमिशन लाइनों पर शील्ड तारों में (ऑप्टिकल ग्राउंड वायर] एस/ओपीजीडब्ल्यू) शामिल हो सकते हैं, जिसका उपयोग विद्युत प्रणाली के संचार और नियंत्रण के लिए किया जाता है।

HVDC FENNO-SKAN ग्राउंड वायर के साथ इलेक्ट्रोड लाइन के रूप में उपयोग किया जाता है

कुछ एचवीडीसी कनवर्टर स्टेशनों पर, भूमि तारो (ग्राउंड वायर) का उपयोग दूरस्थ ग्राउंडिंग इलेक्ट्रोड से जुड़ने के लिए इलेक्ट्रोड लाइन के रूप में भी किया जाता है। यह एचवीडीसी प्रणाली को एक कंडक्टर के रूप में पृथ्वी का उपयोग करने की अनुमति देता है। भूमि (ग्राउंड) कंडक्टर को छोटे इन्सुलेटर पर लगाया जाता है, जिसे फेज कंडक्टर के ऊपर बिजली की गिरतारी से पाट दिया जाता है। इन्सुलेशन पाइलॉन के इलेक्ट्रोकेमिकल संक्षारण को रोकता है।

मध्यम-वोल्टेज वितरण लाइनों में एक या दो शील्ड तारों का भी उपयोग किया जा सकता है, या चरण कंडक्टर के नीचे खड़े कंडक्टर हो सकते हैं, जो लंबे वाहनों या ऊर्जायुक्त रेखा को छूने वाले उपकरणों के खिलाफ कुछ हद तक सुरक्षा प्रदान करने के लिए, साथ ही वायर्ड सिस्टम में एक तटस्थ रेखा प्रदान करने के लिए।

पूर्व सोवियत संघ में बहुत उच्च वोल्टेज के लिए कुछ बिजली रेखाओ (लाइनों) पर, ग्राउंड तार का उपयोग पीएलसी-रेडियो प्रणाली (सिस्टम) के लिए किया जाता है और पाइलों पर इंसुलेटर पर लगाया जाता है।

अछूता कंडक्टर और केबल

ओवरहेड इनसुलेटेड तारो (केबल) का उपयोग शायद ही कभी किया जाता है, आमतौर पर छोटी दूरी (एक किलोमीटर से कम) के लिए। इनुलेटेड तारो (केबल) को बिना इन्सुलेटिंग सपोर्ट के सीधे संरचनाओं में लगाया जा सकता है। हवा द्वारा इंसुलेटेड नंगे कंडक्टरों के साथ एक ओवरहेड लाइन आम तौर पर इंसुलेटेड कंडक्टर के साथ एक तारो (केबल) से कम महंगी होती है।

एक अधिक सामान्य दृष्टिकोण कवर लाइन तार है। इसे नंगी तारो (केबल) के रूप में माना जाता है, लेकिन अक्सर वन्यजीव के लिए सुरक्षित है, क्योंकि तारो (केबल) पर इन्सुलेशन से रेखाओ (लाइनों) के साथ ब्रश से बचने के लिए एक बड़े विंग-स्पैन रैप्टर की संभावना बढ़ जाती है, और रेखाओ (लाइनों) के समग्र खतरे को थोड़ा कम कर देता है। इन प्रकार की रेखाओ (लाइनों) को अक्सर पूर्वी संयुक्त राज्य अमेरिका और भारी लकड़ी वाले क्षेत्रों में देखा जाता है, जहां ट्री- रेखा (लाइन) संपर्क होने की संभावना है। केवल एक गड्ढा लागत है, क्योंकि इनसुलेटेड तार अक्सर अपने नंगे समकक्ष की तुलना में महंगा होता है। कई उपयोगिता कंपनियां कवर रेखाओ (लाइनों) तार को जम्पर सामग्री के रूप में लागू करती हैं जहां तार अक्सर पोल पर एक-दूसरे के करीब होते हैं, जैसे कि एक भूमिगत रिसर / पोथेड, और रिक्लोजर, कटआउट और अन्य।

डैम्पर्स

एक स्टॉकब्रिज डम्पर

क्योंकि बिजली की लाइनें हवा से चलने वाले एरोलेस्टिक फ्लटर और गॉलोपिंग दोलन से पीड़ित हो सकती हैं, ट्यून किए गए द्रव्यमान डैम्पर्स अक्सर रेखा (लाइन) से जुड़े होते हैं, रेखा (लाइन) के भौतिक दोलन की विशेषताओं को बदलने के लिए। एक आम प्रकार स्टॉकब्रिज डम्पर है।

कॉम्पैक्ट ट्रांसमिशन लाइनें

ถ.กิ่งแก้ว - panoramio.jpg

एक कॉम्पैक्ट ओवरहेड संचार रेखा (ट्रांसमिशन लाइन) के लिए एक मानक ओवरहेड पावर लाइन की तुलना में छोटे अधिकार की आवश्यकता होती है। कंडक्टर एक दूसरे के बहुत करीब नहीं होना चाहिए। इसे या तो कम अवधि की लंबाई और क्रॉसबारों को इंसुलेट करके या इंसुलेटर के साथ स्पैन में कंडक्टर को अलग करके हासिल किया जा सकता है। पहले प्रकार का निर्माण करना आसान है क्योंकि इसके लिए अवधि में इन्सुलेटर की आवश्यकता नहीं होती है, जिसे स्थापित करना और बनाए रखना मुश्किल हो सकता है।

कॉम्पैक्ट लाइनों के उदाहरण हैं:

* लुत्स्क कॉम्पैक्ट ओवरहेड पावर रेखा (लाइन) (50.774673°n 25.3852–15°e)

* हिलपरटसाऊ-वीजनबैक कॉम्पैक्ट ओवरहेड रेखा (लाइन) (48.737898°n 8.355660°e)

कॉम्पैक्ट संचार रेखा (ट्रांसमिशन लाइन) को मौजूदा लाइनों के वोल्टेज उन्नयन के लिए रुपरेखा (डिजाइन) किया जा सकता है ताकि बिजली को बढ़ाया जा सके जो मौजूदा अधिकार पर संचारित किया जा सकता है। [ 20]

कम वोल्टेज

एरियल बंडल्ड केबल ओल्ड कूल्सडन में, सरे कम वोल्टेज ओवरहेड लाइनें या तो नंगे कंडक्टरों का उपयोग कांच या सिरेमिक इंसुलेटर या एक एरियल बंडल केबल प्रणाली पर कर सकती हैं।कंडक्टरों की संख्या दो (सबसे अधिक संभावना एक चरण और तटस्थ) के बीच कहीं भी हो सकती है, जो कि छह (तीन चरण कंडक्टर, अलग तटस्थ और पृथ्वी प्लस स्ट्रीट लाइटिंग एक सामान्य स्विच द्वारा आपूर्ति की जाती है) तक हो सकती है;एक सामान्य मामला चार (तीन चरण और तटस्थ, जहां तटस्थ भी एक सुरक्षात्मक अर्थिंग कंडक्टर के रूप में काम कर सकता है) है।

ट्रेन पावर

Main article: Overhead line

ओवरहेड लाइनों या ओवरहेड तारों का उपयोग विद्युत ऊर्जा को ट्राम, ट्रॉलीब्यूस और ट्रेनों तक पहुंचाने के लिए किया जाता है।ओवरहेड लाइनें रेल पटरियों पर स्थित एक या एक से अधिक ओवरहेड तारों के सिद्धांत पर डिज़ाइन की गई हैं।उच्च-वोल्टेज ग्रिड से ओवरहेड लाइन आपूर्ति शक्ति के साथ नियमित अंतराल पर फीडर स्टेशन।कुछ मामलों में, कम-आवृत्ति एसी का उपयोग किया जाता है, और एक विशेष ट्रैक्शन करंट नेटवर्क द्वारा वितरित किया जाता है।

आगे के आवेदन

ओवरहेड लाइनों का उपयोग कभी -कभी एंटेना की आपूर्ति करने के लिए भी किया जाता है, विशेष रूप से लंबी, मध्यम और छोटी तरंगों के कुशल संचरण के लिए।इस उद्देश्य के लिए एक कंपित सरणी लाइन का उपयोग अक्सर किया जाता है।एक कंपित सरणी लाइन के साथ-साथ प्रसवोत्तर एंटीना की पृथ्वी जाल की आपूर्ति के लिए कंडक्टर केबल एक अंगूठी के बाहरी हिस्से पर जुड़े होते हैं, जबकि रिंग के अंदर कंडक्टर को इंसुलेटरों के लिए उपवास किया जाता है, जो एंटीना के उच्च-वोल्टेज स्टैंडिंग फीडर के लिए अग्रणी होता है।।

ओवरहेड पावर लाइनों के तहत क्षेत्र का उपयोग

एक ओवरहेड लाइन के नीचे के क्षेत्र का उपयोग सीमित है क्योंकि वस्तुओं को ऊर्जावान कंडक्टरों के बहुत करीब नहीं आना चाहिए। ओवरहेड लाइनें और संरचनाएं बर्फ बहा सकती हैं, जिससे एक खतरा पैदा हो सकता है। रेडियो रिसेप्शन को एक पावर लाइन के तहत बिगड़ा जा सकता है, दोनों ओवरहेड कंडक्टरों द्वारा एक रिसीवर एंटीना की परिरक्षण के कारण, और इंसुलेटर और कंडक्टरों के तेज बिंदुओं पर आंशिक निर्वहन द्वारा जो रेडियो शोर बनाता है।

ओवरहेड लाइनों के आसपास के क्षेत्र में, यह जोखिम के हस्तक्षेप के लिए खतरनाक है, उदा। फ्लाइंग पतंग या गुब्बारे, सीढ़ी, या ऑपरेटिंग मशीनरी का उपयोग करना।

एयरफील्ड के पास ओवरहेड वितरण और ट्रांसमिशन लाइनों को अक्सर नक्शे पर चिह्नित किया जाता है, और कंडक्टरों की उपस्थिति के पायलटों को चेतावनी देने के लिए, खुद को विशिष्ट प्लास्टिक रिफ्लेक्टर के साथ चिह्नित लाइनें।

ओवरहेड पावर लाइनों का निर्माण, विशेष रूप से जंगल क्षेत्र एस में, महत्वपूर्ण हो सकता है पर्यावरणीय प्रभाव]। ऐसी परियोजनाओं के लिए पर्यावरणीय अध्ययन बुश क्लीयरिंग के प्रभाव पर विचार कर सकते हैं, प्रवासी जानवरों के लिए माइग्रेशन मार्गों को बदलकर, प्रसारण गलियारों के साथ शिकारियों और मनुष्यों द्वारा संभावित पहुंच, स्ट्रीम क्रॉसिंग पर मछली के आवास की गड़बड़ी, और अन्य प्रभाव ।

रैखिक पार्क आमतौर पर ओवरहेड पावर लाइनों के तहत क्षेत्र पर कब्जा कर लेगा, आसान पहुंच प्रदान करने के लिए, और बाधाओं को रोकने के लिए।

उच्च वोल्टेज बिजली लाइनों के पास रहने के बारे में स्वास्थ्य चिंताओं को निर्णायक रूप से प्रदर्शित नहीं किया गया है

विमानन दुर्घटनाएँ

एक उच्च-वोल्टेज ओवरहेड ट्रांसमिशन लाइन पर एक विमानन अवरोध मार्कर एक ओवरहेड लाइन की उपस्थिति के पायलटों को याद दिलाता है।कुछ मार्करों को रात में जलाया जाता है या स्ट्रोब लाइट्स होते हैं।

Ekibastuz-kokshetau उच्च-वोल्टेज लाइन कजाखस्तान में।यह पहली व्यावसायिक रूप से इस्तेमाल की जाने वाली पावर लाइन थी जो 1150 kV पर संचालित होती थी, जो दुनिया में सबसे अधिक ट्रांसमिशन लाइन वोल्टेज थी।

सामान्य विमानन, हैंग ग्लाइडिंग, पैराग्लाइडिंग, स्काइडाइविंग, बैलून, और पतंग उड़ान को बिजली लाइनों के साथ आकस्मिक संपर्क से बचना चाहिए।लगभग हर पतंग उत्पाद उपयोगकर्ताओं को बिजली लाइनों से दूर रहने के लिए चेतावनी देता है।मौतें तब होती हैं जब विमान बिजली लाइनों में दुर्घटनाग्रस्त हो जाता है।कुछ बिजली लाइनों को अवरोध निर्माताओं के साथ चिह्नित किया जाता है, विशेष रूप से वायु स्ट्रिप्स के पास या जलमार्ग पर जो फ्लोटप्लेन संचालन का समर्थन कर सकते हैं।पावर लाइनों का प्लेसमेंट कभी -कभी उन साइटों का उपयोग करता है जो अन्यथा हैंग ग्लाइडर्स द्वारा उपयोग किए जाते हैं

इतिहास

एक विस्तारित दूरी पर विद्युत आवेगों का पहला संचरण 14 जुलाई, 1729 को भौतिक विज्ञानी द्वारा प्रदर्शित किया गया था स्टीफन ग्रे[citation needed] प्रदर्शन ने रेशम के धागे द्वारा निलंबित नम गांजा डोरियों का उपयोग किया (उस समय धातु कंडक्टरों के कम प्रतिरोध की सराहना नहीं की जा रही है)।

हालांकि ओवरहेड लाइनों का पहला व्यावहारिक उपयोग टेलीग्राफी के संदर्भ में था। 1837 तक प्रायोगिक वाणिज्यिक टेलीग्राफ सिस्टम 20 & nbsp; किमी (13 मील) तक चला। इलेक्ट्रिक पावर ट्रांसमिशन 1882 में म्यूनिख और Miesbach के बीच पहले उच्च-वोल्टेज ट्रांसमिशन के साथ पूरा किया गया था (60 & nbsp; km)। 1891 में पहले तीन-चरण बारी-बारी से वर्तमान के निर्माण को फ्रैंकफर्ट और फ्रैंकफर्ट के बीच फ्रैंकफर्ट में अंतर्राष्ट्रीय बिजली प्रदर्शनी के अवसर पर ओवरहेड लाइन देखा गया।

1912 में पहली 110 केवी-ओवरहेड पावर लाइन ने 1923 में पहली 220 केवी-ओवरहेड पावर लाइन के बाद सेवा में प्रवेश किया। ]] एक कॉम्पैक्ट ओवरहेड संचार रेखा (ट्रांसमिशन लाइन) के लिए एक मानक ओवरहेड पावर लाइन की तुलना में छोटे अधिकार की आवश्यकता होती है। कंडक्टर एक दूसरे के बहुत करीब नहीं होना चाहिए। इसे या तो कम अवधि की लंबाई और क्रॉसबारों को इंसुलेट करके या इंसुलेटर के साथ स्पैन में कंडक्टर को अलग करके हासिल किया जा सकता है। पहले प्रकार का निर्माण करना आसान है क्योंकि इसके लिए अवधि में इन्सुलेटर की आवश्यकता नहीं होती है, जिसे स्थापित करना और बनाए रखना मुश्किल हो सकता है।

कॉम्पैक्ट लाइनों के उदाहरण हैं:

  • लुत्स्क कॉम्पैक्ट ओवरहेड पावर रेखा (लाइन) (50.774673°n 25.3852–15°e)
  • हिलपरटसाऊ-वीजनबैक कॉम्पैक्ट ओवरहेड रेखा (लाइन) (48.737898°n 8.355660°e)

कॉम्पैक्ट संचार रेखा (ट्रांसमिशन लाइन) को मौजूदा लाइनों के वोल्टेज उन्नयन के लिए रुपरेखा (डिजाइन) किया जा सकता है ताकि बिजली को बढ़ाया जा सके जो मौजूदा अधिकार पर संचारित किया जा सकता है। [ 20]

गणितीय विश्लेषण

एक ओवरहेड पावर लाइन एक ट्रांसमिशन लाइन का एक उदाहरण है। पावर सिस्टम आवृत्तियों पर, कई उपयोगी सरलीकरण विशिष्ट लंबाई की लाइनों के लिए किए जा सकते हैं। विद्युत प्रणालियों के विश्लेषण के लिए, वितरित प्रतिरोध, श्रृंखला इंडक्टेंस, शंट लीकेज प्रतिरोध और शंट कैपेसिटी को उपयुक्त एकमुश्त मूल्यों या सरलीकृत नेटवर्क के साथ प्रतिस्थापित किया जा सकता है।

छोटी और मध्यम रेखा मॉडल

एक पावर लाइन (80 किमी से कम) की एक छोटी लंबाई को एक इंडक्टेंस के साथ श्रृंखला में प्रतिरोध के साथ और शंट एडमिटेंस की उपेक्षा के साथ अनुमानित किया जा सकता है। यह मान लाइन की कुल प्रतिबाधा नहीं है, बल्कि लाइन की प्रति यूनिट लंबाई पर श्रृंखला प्रतिबाधा है। लंबी लाइन (80 से 250 किलोमीटर) के लिए, मॉडल में एक शंट कैपेसिटी जोड़ा जाता है। इस मामले में लाइन के प्रत्येक हिस्से में कुल संधारिता का आधा हिस्सा वितरित करना आम है। नतीजतन, पावर लाइन को दो-पोर्ट नेटवर्क के रूप में दर्शाया जा सकता है, जैसे कि एबीसीडी मापदंडों के साथ।[23]

सर्किट की विशेषता हो सकती है

कहाँ पे

मध्यम रेखा में एक अतिरिक्त शंट है प्रवेश

कहाँ पे

  • Y कुल शंट लाइन एडमिटेंस है
  • y प्रति यूनिट लंबाई शंट प्रवेश है

See also

References

{{Reflist|30em }

Further reading

  • William D. Stevenson, Jr. Elements of Power System Analysis Third Edition, McGraw-Hill, New York (1975) ISBN 0-07-061285-4

External links


  1. Gönen, T. (2014). Electrical Power Transmission System Engineering: Analysis and Design (3rd ed.). CRC Press. ISBN 9781482232233.
  2. Wadhwa, CL (2017). "2: Performance of Lines". Electrical Power Systems (Seventh Multicolour ed.). New Delhi: New Age International (P) Limited. ISBN 978-93-86070-19-7.
  3. "Powering Up - Vertical Magazine - The Pulse of the Helicopter Industry". verticalmag.com. Archived from the original on 4 October 2015. Retrieved 4 October 2015.
  4. Sunrise Powerlink Helicopter Operations on YouTube
  5. Fink, Donald G.; Beaty, H. Wayne (1978). "14: Overhead Power Transmission". Standard Handbook for Electrical Engineers (11 ed.). New York: McGraw-Hill. ISBN 0-07-020974-X.
  6. 6.0 6.1 Fink, Donald G.; Beaty, H. Wayne (1978). "14: Overhead Power Transmission". Standard Handbook for Electrical Engineers (11 ed.). New York: McGraw-Hill. ISBN 0-07-020974-X.
  7. Fink, Donald G.; Beaty, H. Wayne (1978). "14: Overhead Power Transmission". Standard Handbook for Electrical Engineers (11 ed.). New York: McGraw-Hill. ISBN 0-07-020974-X.
  8. "Chapter 6. Visual aids for denoting obstacles" (PDF). Annex 14 Volume I Aerodrome design and operations. International Civil Aviation Organization. 2004-11-25. Archived from the original (PDF) on 5 October 2018. Retrieved 1 June 2011. 6.2.8. spherical. diameter of not less than 60 cm. 6.2.10. should be of one colour.
  9. Fink, Donald G.; Beaty, H. Wayne (1978). "14: Overhead Power Transmission". Standard Handbook for Electrical Engineers (11 ed.). New York: McGraw-Hill. ISBN 0-07-020974-X.
  10. NGK-Locke Polymer insulator manufacturer
  11. "ABB Energizes Transformer At Record 1.2 Mln Volts". World Energy News. 7 October 2016. Retrieved 7 October 2016.
  12. Advanced Rubber Products - Suspension Insulators
  13. Fink, Donald G.; Beaty, H. Wayne (1978). "14: Overhead Power Transmission". Standard Handbook for Electrical Engineers (11 ed.). New York: McGraw-Hill. ISBN 0-07-020974-X.
  14. Maher, Guy R. (April 2015). "A cut above". Vertical Magazine. pp. 92–98. Archived from the original on 12 May 2015. Retrieved 11 April 2015.
  15. Stack, Alan (27 November 2020). "A day in the life of an aerial saw pilot". Vertical Mag. Archived from the original on 27 November 2020.
  16. Harnesk, Tommy (9 January 2015). "Helikoptermonterad motorsåg snabbkapar träden". Ny Teknik. Retrieved 12 January 2015.
  17. Head, Elan (April 2015). "High-value cargo". Vertical Magazine. pp. 80–90. Archived from the original on 19 April 2015. Retrieved 11 April 2015.
  18. Weger, Travis (2017-11-14). "WAPA Helicopters: Saving Time and Money". TDWorld. Retrieved 2017-12-07.
  19. "Bundled Conductors in Transmission Lines". StudyElectrical.Com (in English). 2019-01-13. Retrieved 2019-02-07.
  20. Freimark, Bruce (October 1, 2006). "Six Wire Solution". Transmission & Distribution World. Retrieved March 6, 2007.
  21. "Bundled Conductors in Transmission Lines". StudyElectrical.Com (in English). 2019-01-13. Retrieved 2019-07-13.
  22. Uman, Martin A. (2008). The Art and Science of Lightning Protection. ISBN 9780521878111.
  23. Glover, J.; Sarma, M.; Overbye, T. (2012). "5: Transmission Lines: Steady-State Operation". Power System Analysis and Design (5 ed.). Connecticut: Cengage Learning. ISBN 978-1-111-42577-7.