प्रतिक्रिया नियंत्रण प्रणाली: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Spacecraft thrusters used to provide attitude control and translation}}[[File:LM RCS.jpg|thumb|right|[[अपोलो चंद्र मॉड्यूल]] पर चार में से दो रिएक्शन कंट्रोल | {{short description|Spacecraft thrusters used to provide attitude control and translation}}[[File:LM RCS.jpg|thumb|right|[[अपोलो चंद्र मॉड्यूल]] पर चार में से दो रिएक्शन कंट्रोल प्रणाली थ्रस्टर क्वाड्स]]प्रतिक्रिया नियंत्रण प्रणाली (आरसीएस) अंतरिक्ष यान प्रणाली है जो [[अंतरिक्ष यान रवैया नियंत्रण]] प्रदान करने के लिए [[थ्रस्टर्स (अंतरिक्ष यान)]] का उपयोग करती है और [[अनुवाद (भौतिकी)]]। वैकल्पिक रूप से, अभिवृत्ति नियंत्रण के लिए [[प्रतिक्रिया पहियों]] का उपयोग किया जाता है। वी/एसटीओएल का स्थिर रवैया नियंत्रण प्रदान करने के लिए डायवर्टेड इंजन थ्रस्ट का उपयोग। शॉर्ट-या-वर्टिकल टेकऑफ़ और पारंपरिक पंखों वाली उड़ान गति के नीचे लैंडिंग विमान, जैसे कि हॉकर सिडली हैरियर # नियंत्रण और हैंडलिंग। हैरियर जंप जेट, भी हो सकता है प्रतिक्रिया नियंत्रण तंत्र कहा जाता है। | ||
प्रतिक्रिया नियंत्रण प्रणालियां किसी भी वांछित दिशा या दिशाओं के संयोजन में थोड़ी मात्रा में [[जोर]] देने में सक्षम हैं। | प्रतिक्रिया नियंत्रण प्रणालियां किसी भी वांछित दिशा या दिशाओं के संयोजन में थोड़ी मात्रा में [[जोर]] देने में सक्षम हैं। आरसीएस [[रोटेशन]] (विमान के प्रमुख अक्षों | रोल, पिच, और यव) के नियंत्रण की अनुमति देने के लिए टोक़ प्रदान करने में भी सक्षम है।<ref>{{cite web |title=REACTION CONTROL SYSTEM |url=https://science.ksc.nasa.gov/shuttle/technology/sts-newsref/sts-rcs.html#sts-rcs |website=science.ksc.nasa.gov}}</ref> | ||
रिएक्शन कंट्रोल | रिएक्शन कंट्रोल प्रणाली अधिकांशतः प्रतिक्रिया के विभिन्न स्तरों की अनुमति देने के लिए बड़े और छोटे ([[वर्नियर थ्रस्टर]]) थ्रस्टर्स के संयोजन का उपयोग करते हैं। | ||
== उपयोग == | == उपयोग == | ||
Line 8: | Line 8: | ||
अंतरिक्ष यान प्रतिक्रिया नियंत्रण प्रणाली के लिए उपयोग किया जाता है: | अंतरिक्ष यान प्रतिक्रिया नियंत्रण प्रणाली के लिए उपयोग किया जाता है: | ||
* मिशन के विभिन्न चरणों के | * मिशन के विभिन्न चरणों के समय अंतरिक्ष यान का रवैया नियंत्रण;<ref>{{Citation |last1=Colas |first1=Armand L. |title=Reaction Control System Performance Characterization using Vacuum Chamber Thrust Stand |date=2020-08-17 |url=https://arc.aiaa.org/doi/10.2514/6.2020-3526 |work=AIAA Propulsion and Energy 2020 Forum |series=AIAA Propulsion and Energy Forum |publisher=American Institute of Aeronautics and Astronautics |doi=10.2514/6.2020-3526 |access-date=2022-09-27 |last2=Valenzuela |first2=Juan G.|isbn=978-1-62410-602-6 |s2cid=225270552 }}</ref> | ||
* कक्षीय स्टेशन-कक्षा में रखना; | * कक्षीय स्टेशन-कक्षा में रखना; | ||
* [[अंतरिक्ष मिलन स्थल]] प्रक्रियाओं के | * [[अंतरिक्ष मिलन स्थल]] प्रक्रियाओं के समय निकट अंतरिक्ष मिलन स्थल; | ||
* [[अभिविन्यास (ज्यामिति)]] का नियंत्रण, या शिल्प की नाक को इंगित करना; | * [[अभिविन्यास (ज्यामिति)]] का नियंत्रण, या शिल्प की नाक को इंगित करना; | ||
* [[वायुमंडलीय पुनर्प्रवेश]] का | * [[वायुमंडलीय पुनर्प्रवेश]] का बैकअप साधन; | ||
* | * मुख्य इंजन के जलने के लिए ईंधन प्रणाली को प्रमुख बनाने के लिए मोटर्स को हटा दें। | ||
क्योंकि अंतरिक्ष यान में केवल | क्योंकि अंतरिक्ष यान में केवल सीमित मात्रा में ईंधन होता है और उन्हें फिर से भरने की बहुत कम संभावना होती है, वैकल्पिक प्रतिक्रिया नियंत्रण प्रणाली विकसित की गई है जिससे ईंधन को संरक्षित किया जा सके। स्टेशनकीपिंग के लिए, कुछ अंतरिक्ष यान (विशेष रूप से भू-तुल्यकाली कक्षा में) [[arcjet]], [[आयन थ्रस्टर]] या [[हॉल इफेक्ट थ्रस्टर]] जैसे उच्च-[[विशिष्ट आवेग]] इंजन का उपयोग करते हैं। अभिविन्यास को नियंत्रित करने के लिए, अंतर्राष्ट्रीय अंतरिक्ष स्टेशन सहित कुछ अंतरिक्ष यान, संवेग पहियों का उपयोग करते हैं जो वाहन पर घूर्णी दरों को नियंत्रित करने के लिए स्पिन करते हैं। | ||
== अंतरिक्ष यान पर थ्रस्टर्स का स्थान == | == अंतरिक्ष यान पर थ्रस्टर्स का स्थान == | ||
[[File:Rcs-gemini.jpg|thumb|left|जेमिनी [[ऑर्बिट एटिट्यूड एंड मैन्युवरिंग सिस्टम]], और रीएंट्री (गलत लेबल वाली प्रतिक्रिया){{clarification needed |date=September 2022}}{{citation needed |date=September 2022}} नियंत्रण प्रणाली]][[प्रोजेक्ट मरकरी]] [[अंतरिक्ष कैप्सूल]] और [[परियोजना मिथुन]] रीएंट्री मॉड्यूल दोनों ने अंतरिक्ष यान के रवैये पर नियंत्रण प्रदान करने के लिए नोजल के समूह का उपयोग किया। थ्रस्टर्स उनके द्रव्यमान के केंद्र से दूर स्थित थे, इस प्रकार कैप्सूल को घुमाने के लिए | [[File:Rcs-gemini.jpg|thumb|left|जेमिनी [[ऑर्बिट एटिट्यूड एंड मैन्युवरिंग सिस्टम|ऑर्बिट एटिट्यूड एंड मैन्युवरिंग प्रणाली]], और रीएंट्री (गलत लेबल वाली प्रतिक्रिया){{clarification needed |date=September 2022}}{{citation needed |date=September 2022}} नियंत्रण प्रणाली]][[प्रोजेक्ट मरकरी]] [[अंतरिक्ष कैप्सूल]] और [[परियोजना मिथुन]] रीएंट्री मॉड्यूल दोनों ने अंतरिक्ष यान के रवैये पर नियंत्रण प्रदान करने के लिए नोजल के समूह का उपयोग किया। थ्रस्टर्स उनके द्रव्यमान के केंद्र से दूर स्थित थे, इस प्रकार कैप्सूल को घुमाने के लिए टोक़ प्रदान करते थे। जेमिनी कैप्सूल रोलिंग द्वारा अपने रीएंट्री कोर्स को समायोजित करने में भी सक्षम था, जिसने इसके ऑफ-सेंटर लिफ्टिंग बल को निर्देशित किया।{{clarification needed |date=September 2022}} मर्करी थ्रस्टर्स ने [[हाइड्रोजन पेरोक्साइड]] मोनोप्रोपेलेंट का उपयोग किया जो [[टंगस्टन]] स्क्रीन के माध्यम से मजबूर होने पर भाप में बदल गया, और जेमिनी थ्रस्टर्स ने [[नाइट्रोजन टेट्रोक्साइड]] के साथ ऑक्सीकृत [[hypergolic]] [[मोनो-मिथाइल हाइड्राज़ीन]] ईंधन का उपयोग किया। | ||
जेमिनी अंतरिक्ष यान | जेमिनी अंतरिक्ष यान हाइपरगोलिक ऑर्बिट एटिट्यूड और मैन्यूवरिंग प्रणाली से भी लैस था, जिसने इसे ट्रांसलेशन (भौतिकी) के साथ-साथ रोटेशन क्षमता वाला पहला चालक दल वाला अंतरिक्ष यान बनाया। आठ की जोड़ियों को फायर करके इन-ऑर्बिट रवैया नियंत्रण प्राप्त किया गया {{convert|25|lbf|N|adj=on}} थ्रस्टर्स इसके एडेप्टर मॉड्यूल की परिधि के चारों ओर चरम पिछाड़ी छोर पर स्थित हैं। पार्श्व अनुवाद नियंत्रण चार द्वारा प्रदान किया गया था {{convert|100|lbf|N|adj=on}} एडेप्टर मॉड्यूल के आगे के छोर पर परिधि के चारों ओर थ्रस्टर्स (अंतरिक्ष यान के द्रव्यमान के केंद्र के करीब)। दो आगे की ओर संकेत करते हुए {{convert|85|lbf|N|adj=on}} एक ही स्थान पर थ्रस्टर्स, पिछाड़ी अनुवाद प्रदान किया गया, और दो {{convert|100|lbf|N|adj=on}} एडॉप्टर मॉड्यूल के पिछे सिरे में स्थित थ्रस्टर्स ने आगे थ्रस्ट प्रदान किया, जिसका उपयोग शिल्प की कक्षा को बदलने के लिए किया जा सकता है। जेमिनी रीएंट्री मॉड्यूल में रीएंट्री के समय घूर्णी नियंत्रण प्रदान करने के लिए, नाक के आधार पर स्थित सोलह थ्रस्टर्स का एक अलग रीएंट्री कंट्रोल प्रणाली भी था। | ||
[[अपोलो कमांड और सर्विस मॉड्यूल]] में रवैया नियंत्रण के लिए बारह हाइपरगॉलिक थ्रस्टर्स का | [[अपोलो कमांड और सर्विस मॉड्यूल]] में रवैया नियंत्रण के लिए बारह हाइपरगॉलिक थ्रस्टर्स का सेट था, और जेमिनी के समान दिशात्मक रीएंट्री नियंत्रण था। | ||
अपोलो अपोलो कमांड और सर्विस मॉड्यूल और अपोलो लूनर मॉड्यूल में से प्रत्येक में सोलह [[R-4D]] हाइपरगोलिक थ्रस्टर्स का | अपोलो अपोलो कमांड और सर्विस मॉड्यूल और अपोलो लूनर मॉड्यूल में से प्रत्येक में सोलह [[R-4D]] हाइपरगोलिक थ्रस्टर्स का सेट था, जो अनुवाद और दृष्टिकोण नियंत्रण दोनों प्रदान करने के लिए चार के बाहरी समूहों में समूहीकृत था। समूह द्रव्यमान के शिल्प के औसत केंद्रों के पास स्थित थे, और दृष्टिकोण नियंत्रण के लिए विपरीत दिशाओं में जोड़े में निकाल दिए गए थे। | ||
अनुवाद थ्रस्टर्स की एक जोड़ी सोयुज अंतरिक्ष यान के पीछे स्थित है; काउंटर-एक्टिंग थ्रस्टर्स समान रूप से अंतरिक्ष यान के मध्य में (द्रव्यमान के केंद्र के पास) बाहर और आगे की ओर | अनुवाद थ्रस्टर्स की एक जोड़ी सोयुज अंतरिक्ष यान के पीछे स्थित है; काउंटर-एक्टिंग थ्रस्टर्स समान रूप से अंतरिक्ष यान के मध्य में (द्रव्यमान के केंद्र के पास) बाहर और आगे की ओर संकेत करते हुए जोड़े जाते हैं। अंतरिक्ष यान को घूमने से रोकने के लिए ये जोड़े में कार्य करते हैं। पार्श्व दिशाओं के लिए प्रणोदक जोड़े में भी अंतरिक्ष यान के द्रव्यमान के केंद्र के करीब लगाए जाते हैं।{{citation needed|date=March 2013}} | ||
=== स्पेसप्लेन पर थ्रस्टर्स का स्थान === | === स्पेसप्लेन पर थ्रस्टर्स का स्थान === | ||
[[File:Shuttle front RCS.jpg|thumb|250px|स्पेस शटल डिस्कवरी, | [[File:Shuttle front RCS.jpg|thumb|250px|स्पेस शटल डिस्कवरी, [[स्पेस शटल ऑर्बिटर]] की नाक पर आरसीएस थ्रस्टर।]]सबऑर्बिटल [[उत्तर अमेरिकी X-15]]|X-15 और एक साथी प्रशिक्षण एयरो-अंतरिक्ष यान, [[लॉकहीड NF-104A]]|NF-104 AST, दोनों का उद्देश्य उस ऊंचाई की यात्रा करना था जिसने उनकी वायुगतिकीय नियंत्रण सतहों को अनुपयोगी बना दिया, स्थानों के लिए सम्मेलन स्थापित किया पंखों वाले वाहनों पर थ्रस्टर्स के लिए अंतरिक्ष में डॉक करने का इरादा नहीं है; अर्थात, जिनके पास केवल रवैया नियंत्रण थ्रस्टर्स हैं। पिच और यॉ के लिए वे नाक में स्थित हैं, कॉकपिट के आगे हैं, और मानक रडार प्रणाली की जगह लेते हैं। वे रोल के लिए विंगटिप्स पर स्थित हैं। बोइंग X-20 Dyna-Soar|X-20, जो कक्षा में चला गया होता, ने इस पैटर्न को जारी रखा। | ||
इनके विपरीत, स्पेस शटल ऑर्बिटर में कई और थ्रस्टर थे, जिन्हें कक्षीय उड़ान और वायुमंडलीय प्रवेश के | इनके विपरीत, स्पेस शटल ऑर्बिटर में कई और थ्रस्टर थे, जिन्हें कक्षीय उड़ान और वायुमंडलीय प्रवेश के प्रारंभिक भाग के समय वाहन के रवैये को नियंत्रित करने के साथ-साथ कक्षा में मिलन स्थल और डॉकिंग युद्धाभ्यास करने की आवश्यकता थी। शटल थ्रस्टर्स को वाहन के नोज में और दो आफ्टर [[स्पेस शटल ऑर्बिटल मैन्यूवरिंग सिस्टम|स्पेस शटल ऑर्बिटल मैन्यूवरिंग प्रणाली]] पॉड्स में से प्रत्येक पर समूहबद्ध किया गया था। किसी भी नोजल ने यान के नीचे हीट शील्ड को बाधित नहीं किया; इसके अतिरिक्त, सकारात्मक पिच को नियंत्रित करने वाले नोज ss | ||
== अंतर्राष्ट्रीय अंतरिक्ष स्टेशन | == अंतर्राष्ट्रीय अंतरिक्ष स्टेशन प्रणाली == | ||
इंटरनेशनल स्पेस स्टेशन बैकअप और ऑग्मेंटेशन | इंटरनेशनल स्पेस स्टेशन बैकअप और ऑग्मेंटेशन प्रणाली के रूप में आरसीएस थ्रस्टर प्रणाली के साथ प्राथमिक दृष्टिकोण नियंत्रण के लिए विद्युत संचालित [[नियंत्रण क्षण जाइरोस्कोप]] | कंट्रोल मोमेंट जाइरोस्कोप (सीएमजी) का उपयोग करता है।<ref>http://forum.nasaspaceflight.com/index.php?action=dlattach;topic=34777.0;attach=586775 {{User-generated source|date=August 2022}}</ref>{{Unreliable source?|date=September 2021}} | ||
Revision as of 20:31, 3 February 2023
प्रतिक्रिया नियंत्रण प्रणाली (आरसीएस) अंतरिक्ष यान प्रणाली है जो अंतरिक्ष यान रवैया नियंत्रण प्रदान करने के लिए थ्रस्टर्स (अंतरिक्ष यान) का उपयोग करती है और अनुवाद (भौतिकी)। वैकल्पिक रूप से, अभिवृत्ति नियंत्रण के लिए प्रतिक्रिया पहियों का उपयोग किया जाता है। वी/एसटीओएल का स्थिर रवैया नियंत्रण प्रदान करने के लिए डायवर्टेड इंजन थ्रस्ट का उपयोग। शॉर्ट-या-वर्टिकल टेकऑफ़ और पारंपरिक पंखों वाली उड़ान गति के नीचे लैंडिंग विमान, जैसे कि हॉकर सिडली हैरियर # नियंत्रण और हैंडलिंग। हैरियर जंप जेट, भी हो सकता है प्रतिक्रिया नियंत्रण तंत्र कहा जाता है।
प्रतिक्रिया नियंत्रण प्रणालियां किसी भी वांछित दिशा या दिशाओं के संयोजन में थोड़ी मात्रा में जोर देने में सक्षम हैं। आरसीएस रोटेशन (विमान के प्रमुख अक्षों | रोल, पिच, और यव) के नियंत्रण की अनुमति देने के लिए टोक़ प्रदान करने में भी सक्षम है।[1] रिएक्शन कंट्रोल प्रणाली अधिकांशतः प्रतिक्रिया के विभिन्न स्तरों की अनुमति देने के लिए बड़े और छोटे (वर्नियर थ्रस्टर) थ्रस्टर्स के संयोजन का उपयोग करते हैं।
उपयोग
अंतरिक्ष यान प्रतिक्रिया नियंत्रण प्रणाली के लिए उपयोग किया जाता है:
- मिशन के विभिन्न चरणों के समय अंतरिक्ष यान का रवैया नियंत्रण;[2]
- कक्षीय स्टेशन-कक्षा में रखना;
- अंतरिक्ष मिलन स्थल प्रक्रियाओं के समय निकट अंतरिक्ष मिलन स्थल;
- अभिविन्यास (ज्यामिति) का नियंत्रण, या शिल्प की नाक को इंगित करना;
- वायुमंडलीय पुनर्प्रवेश का बैकअप साधन;
- मुख्य इंजन के जलने के लिए ईंधन प्रणाली को प्रमुख बनाने के लिए मोटर्स को हटा दें।
क्योंकि अंतरिक्ष यान में केवल सीमित मात्रा में ईंधन होता है और उन्हें फिर से भरने की बहुत कम संभावना होती है, वैकल्पिक प्रतिक्रिया नियंत्रण प्रणाली विकसित की गई है जिससे ईंधन को संरक्षित किया जा सके। स्टेशनकीपिंग के लिए, कुछ अंतरिक्ष यान (विशेष रूप से भू-तुल्यकाली कक्षा में) arcjet, आयन थ्रस्टर या हॉल इफेक्ट थ्रस्टर जैसे उच्च-विशिष्ट आवेग इंजन का उपयोग करते हैं। अभिविन्यास को नियंत्रित करने के लिए, अंतर्राष्ट्रीय अंतरिक्ष स्टेशन सहित कुछ अंतरिक्ष यान, संवेग पहियों का उपयोग करते हैं जो वाहन पर घूर्णी दरों को नियंत्रित करने के लिए स्पिन करते हैं।
अंतरिक्ष यान पर थ्रस्टर्स का स्थान
प्रोजेक्ट मरकरी अंतरिक्ष कैप्सूल और परियोजना मिथुन रीएंट्री मॉड्यूल दोनों ने अंतरिक्ष यान के रवैये पर नियंत्रण प्रदान करने के लिए नोजल के समूह का उपयोग किया। थ्रस्टर्स उनके द्रव्यमान के केंद्र से दूर स्थित थे, इस प्रकार कैप्सूल को घुमाने के लिए टोक़ प्रदान करते थे। जेमिनी कैप्सूल रोलिंग द्वारा अपने रीएंट्री कोर्स को समायोजित करने में भी सक्षम था, जिसने इसके ऑफ-सेंटर लिफ्टिंग बल को निर्देशित किया।[clarification needed] मर्करी थ्रस्टर्स ने हाइड्रोजन पेरोक्साइड मोनोप्रोपेलेंट का उपयोग किया जो टंगस्टन स्क्रीन के माध्यम से मजबूर होने पर भाप में बदल गया, और जेमिनी थ्रस्टर्स ने नाइट्रोजन टेट्रोक्साइड के साथ ऑक्सीकृत hypergolic मोनो-मिथाइल हाइड्राज़ीन ईंधन का उपयोग किया।
जेमिनी अंतरिक्ष यान हाइपरगोलिक ऑर्बिट एटिट्यूड और मैन्यूवरिंग प्रणाली से भी लैस था, जिसने इसे ट्रांसलेशन (भौतिकी) के साथ-साथ रोटेशन क्षमता वाला पहला चालक दल वाला अंतरिक्ष यान बनाया। आठ की जोड़ियों को फायर करके इन-ऑर्बिट रवैया नियंत्रण प्राप्त किया गया 25-pound-force (110 N) थ्रस्टर्स इसके एडेप्टर मॉड्यूल की परिधि के चारों ओर चरम पिछाड़ी छोर पर स्थित हैं। पार्श्व अनुवाद नियंत्रण चार द्वारा प्रदान किया गया था 100-pound-force (440 N) एडेप्टर मॉड्यूल के आगे के छोर पर परिधि के चारों ओर थ्रस्टर्स (अंतरिक्ष यान के द्रव्यमान के केंद्र के करीब)। दो आगे की ओर संकेत करते हुए 85-pound-force (380 N) एक ही स्थान पर थ्रस्टर्स, पिछाड़ी अनुवाद प्रदान किया गया, और दो 100-pound-force (440 N) एडॉप्टर मॉड्यूल के पिछे सिरे में स्थित थ्रस्टर्स ने आगे थ्रस्ट प्रदान किया, जिसका उपयोग शिल्प की कक्षा को बदलने के लिए किया जा सकता है। जेमिनी रीएंट्री मॉड्यूल में रीएंट्री के समय घूर्णी नियंत्रण प्रदान करने के लिए, नाक के आधार पर स्थित सोलह थ्रस्टर्स का एक अलग रीएंट्री कंट्रोल प्रणाली भी था।
अपोलो कमांड और सर्विस मॉड्यूल में रवैया नियंत्रण के लिए बारह हाइपरगॉलिक थ्रस्टर्स का सेट था, और जेमिनी के समान दिशात्मक रीएंट्री नियंत्रण था।
अपोलो अपोलो कमांड और सर्विस मॉड्यूल और अपोलो लूनर मॉड्यूल में से प्रत्येक में सोलह R-4D हाइपरगोलिक थ्रस्टर्स का सेट था, जो अनुवाद और दृष्टिकोण नियंत्रण दोनों प्रदान करने के लिए चार के बाहरी समूहों में समूहीकृत था। समूह द्रव्यमान के शिल्प के औसत केंद्रों के पास स्थित थे, और दृष्टिकोण नियंत्रण के लिए विपरीत दिशाओं में जोड़े में निकाल दिए गए थे।
अनुवाद थ्रस्टर्स की एक जोड़ी सोयुज अंतरिक्ष यान के पीछे स्थित है; काउंटर-एक्टिंग थ्रस्टर्स समान रूप से अंतरिक्ष यान के मध्य में (द्रव्यमान के केंद्र के पास) बाहर और आगे की ओर संकेत करते हुए जोड़े जाते हैं। अंतरिक्ष यान को घूमने से रोकने के लिए ये जोड़े में कार्य करते हैं। पार्श्व दिशाओं के लिए प्रणोदक जोड़े में भी अंतरिक्ष यान के द्रव्यमान के केंद्र के करीब लगाए जाते हैं।[citation needed]
स्पेसप्लेन पर थ्रस्टर्स का स्थान
सबऑर्बिटल उत्तर अमेरिकी X-15|X-15 और एक साथी प्रशिक्षण एयरो-अंतरिक्ष यान, लॉकहीड NF-104A|NF-104 AST, दोनों का उद्देश्य उस ऊंचाई की यात्रा करना था जिसने उनकी वायुगतिकीय नियंत्रण सतहों को अनुपयोगी बना दिया, स्थानों के लिए सम्मेलन स्थापित किया पंखों वाले वाहनों पर थ्रस्टर्स के लिए अंतरिक्ष में डॉक करने का इरादा नहीं है; अर्थात, जिनके पास केवल रवैया नियंत्रण थ्रस्टर्स हैं। पिच और यॉ के लिए वे नाक में स्थित हैं, कॉकपिट के आगे हैं, और मानक रडार प्रणाली की जगह लेते हैं। वे रोल के लिए विंगटिप्स पर स्थित हैं। बोइंग X-20 Dyna-Soar|X-20, जो कक्षा में चला गया होता, ने इस पैटर्न को जारी रखा।
इनके विपरीत, स्पेस शटल ऑर्बिटर में कई और थ्रस्टर थे, जिन्हें कक्षीय उड़ान और वायुमंडलीय प्रवेश के प्रारंभिक भाग के समय वाहन के रवैये को नियंत्रित करने के साथ-साथ कक्षा में मिलन स्थल और डॉकिंग युद्धाभ्यास करने की आवश्यकता थी। शटल थ्रस्टर्स को वाहन के नोज में और दो आफ्टर स्पेस शटल ऑर्बिटल मैन्यूवरिंग प्रणाली पॉड्स में से प्रत्येक पर समूहबद्ध किया गया था। किसी भी नोजल ने यान के नीचे हीट शील्ड को बाधित नहीं किया; इसके अतिरिक्त, सकारात्मक पिच को नियंत्रित करने वाले नोज ss
अंतर्राष्ट्रीय अंतरिक्ष स्टेशन प्रणाली
इंटरनेशनल स्पेस स्टेशन बैकअप और ऑग्मेंटेशन प्रणाली के रूप में आरसीएस थ्रस्टर प्रणाली के साथ प्राथमिक दृष्टिकोण नियंत्रण के लिए विद्युत संचालित नियंत्रण क्षण जाइरोस्कोप | कंट्रोल मोमेंट जाइरोस्कोप (सीएमजी) का उपयोग करता है।[3][unreliable source?]
संदर्भ
- ↑ "REACTION CONTROL SYSTEM". science.ksc.nasa.gov.
- ↑ Colas, Armand L.; Valenzuela, Juan G. (2020-08-17), "Reaction Control System Performance Characterization using Vacuum Chamber Thrust Stand", AIAA Propulsion and Energy 2020 Forum, AIAA Propulsion and Energy Forum, American Institute of Aeronautics and Astronautics, doi:10.2514/6.2020-3526, ISBN 978-1-62410-602-6, S2CID 225270552, retrieved 2022-09-27
- ↑ http://forum.nasaspaceflight.com/index.php?action=dlattach;topic=34777.0;attach=586775[user-generated source]
बाहरी कड़ियाँ
- NASA.gov
- Space Shuttle RCS Archived 2009-05-24 at the Wayback Machine