सुदूर संवेदन (रिमोट सेंसिंग): Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
{{other uses}} | {{other uses}} | ||
{{pp-pc1}} | {{pp-pc1}} | ||
[[File:Death-valley-sar.jpg|thumb|right|upright|[[ध्रुवनमापन]] का उपयोग करके [[मृत्यु घाटी]] की [[कृत्रिम झिरीदार रडार]] छवि रंगीन]]रिमोट सेंसिंग वस्तु के साथ भौतिक संपर्क किए बिना [[भौतिक वस्तु]] या [[घटना]] के बारे में [[जानकारी]] का अधि[[ग्रह]]ण है, इसके विपरीत सीटू या ऑन-साइट [[अवलोकन]]। यह शब्द विशेष रूप से पृथ्वी और अन्य ग्रहों के बारे में जानकारी प्राप्त करने के लिए प्रयोग किया जाता है। [[भूभौतिकी]], [[भूगोल]], भूमि सर्वेक्षण और अधिकांश पृथ्वी विज्ञान विषयों (जैसे [[अन्वेषण भूभौतिकी]], [[जल विज्ञान]], पारिस्थितिकी, मौसम विज्ञान, समुद्र विज्ञान, हिमनद विज्ञान, भूविज्ञान) सहित कई क्षेत्रों में रिमोट सेंसिंग का उपयोग किया जाता है; इसमें सैन्य, खुफिया, वाणिज्यिक, आर्थिक, योजना और मानवीय अनुप्रयोग भी शामिल हैं। | [[File:Death-valley-sar.jpg|thumb|right|upright|[[ध्रुवनमापन]] का उपयोग करके [[मृत्यु घाटी]] की [[कृत्रिम झिरीदार रडार]] छवि रंगीन]]रिमोट सेंसिंग वस्तु के साथ भौतिक संपर्क किए बिना [[भौतिक वस्तु]] या [[घटना]] के बारे में [[जानकारी]] का अधि[[ग्रह]]ण है, इसके विपरीत सीटू या ऑन-साइट [[अवलोकन]]। यह शब्द विशेष रूप से पृथ्वी और अन्य ग्रहों के बारे में जानकारी प्राप्त करने के लिए प्रयोग किया जाता है। [[भूभौतिकी]], [[भूगोल]], भूमि सर्वेक्षण और अधिकांश पृथ्वी विज्ञान विषयों (जैसे [[अन्वेषण भूभौतिकी]], [[जल विज्ञान]], पारिस्थितिकी, मौसम विज्ञान, समुद्र विज्ञान, हिमनद विज्ञान, भूविज्ञान) सहित कई क्षेत्रों में रिमोट सेंसिंग का उपयोग किया जाता है; इसमें सैन्य, खुफिया, वाणिज्यिक, आर्थिक, योजना और मानवीय अनुप्रयोग भी शामिल हैं। | ||
Line 220: | Line 219: | ||
== अग्रिम पठन == | == अग्रिम पठन == | ||
* {{cite book | last=Campbell | first=J. B. | date=2002 | title=Introduction to remote sensing | edition=3rd | publisher=The Guilford Press | isbn=978-1-57230-640-0}} | * {{cite book | last=Campbell | first=J. B. | date=2002 | title=Introduction to remote sensing | edition=3rd | publisher=The Guilford Press | isbn=978-1-57230-640-0}} | ||
* {{cite book | last=Jensen | first=J. R. | date=2007 | title=Remote sensing of the environment: an Earth resource perspective | edition=2nd | publisher=Prentice Hall | isbn=978-0-13-188950-7}} | * {{cite book | last=Jensen | first=J. R. | date=2007 | title=Remote sensing of the environment: an Earth resource perspective | edition=2nd | publisher=Prentice Hall | isbn=978-0-13-188950-7}} | ||
Line 239: | Line 237: | ||
{{Geodesy navbox|state=uncollapsed}} | {{Geodesy navbox|state=uncollapsed}} | ||
[[Category: रिमोट सेंसिंग| रिमोट सेंसिंग]] [[Category: वीडियो क्लिप वाले लेख]] [[Category: भूमंडल नापने का शास्र]] | [[Category: रिमोट सेंसिंग| रिमोट सेंसिंग]] [[Category: वीडियो क्लिप वाले लेख]] [[Category: भूमंडल नापने का शास्र]] | ||
Revision as of 20:28, 8 February 2023
Lua error in Module:Effective_protection_level at line 16: attempt to index field 'FlaggedRevs' (a nil value).
रिमोट सेंसिंग वस्तु के साथ भौतिक संपर्क किए बिना भौतिक वस्तु या घटना के बारे में जानकारी का अधिग्रहण है, इसके विपरीत सीटू या ऑन-साइट अवलोकन। यह शब्द विशेष रूप से पृथ्वी और अन्य ग्रहों के बारे में जानकारी प्राप्त करने के लिए प्रयोग किया जाता है। भूभौतिकी, भूगोल, भूमि सर्वेक्षण और अधिकांश पृथ्वी विज्ञान विषयों (जैसे अन्वेषण भूभौतिकी, जल विज्ञान, पारिस्थितिकी, मौसम विज्ञान, समुद्र विज्ञान, हिमनद विज्ञान, भूविज्ञान) सहित कई क्षेत्रों में रिमोट सेंसिंग का उपयोग किया जाता है; इसमें सैन्य, खुफिया, वाणिज्यिक, आर्थिक, योजना और मानवीय अनुप्रयोग भी शामिल हैं।
वर्तमान उपयोग में, रिमोट सेंसिंग शब्द आम तौर पर पृथ्वी पर वस्तुओं का पता लगाने और वर्गीकृत करने के लिए उपग्रह- या विमान-आधारित सेंसर प्रौद्योगिकियों के उपयोग को संदर्भित करता है। इसमें लहर प्रसार (जैसे विद्युत चुम्बकीय विकिरण) के आधार पर सतह और वायुमंडल और महासागर शामिल हैं। इसे सक्रिय रिमोट सेंसिंग में विभाजित किया जा सकता है (जब एक उपग्रह या विमान द्वारा वस्तु को एक संकेत उत्सर्जित किया जाता है और इसका प्रतिबिंब सेंसर द्वारा पता लगाया जाता है) और निष्क्रिय रिमोट सेंसिंग (जब सेंसर द्वारा सूर्य के प्रकाश का प्रतिबिंब पता लगाया जाता है)।[1][2][3][4]
उपग्रह- या विमान-आधारित सेंसर प्रौद्योगिकियों के उपयोग को संदर्भित करता है। इसमें लहर प्रसार (जैसे विद्युत चुम्बकीय विकिरण) के आधार पर सतह और वायुमंडल और महासागर शामिल हैं। इसे सक्रिय रिमोट सेंसिंग में विभाजित किया जा सकता है (जब एक उपग्रह या विमान द्वारा वस्तु को एक संकेत उत्सर्जित किया जाता है और इसका प्रतिबिंब सेंसर द्वारा पता लगाया जाता है) और निष्क्रिय रिमोट सेंसिंग (जब सेंसर द्वारा सूर्य के प्रकाश का प्रतिबिंब पता लगाया जाता है)।[1][2][3][4]
सिंहावलोकन
सुदूर संवेदन को दो प्रकार की विधियों में विभाजित किया जा सकता है: निष्क्रिय सुदूर संवेदन और सक्रिय सुदूर संवेदन। निष्क्रिय सेंसर विकिरण को इकट्ठा करते हैं जो वस्तु या आसपास के क्षेत्रों द्वारा उत्सर्जित या परावर्तित होता है। परावर्तित सूर्य का प्रकाश निष्क्रिय संवेदकों द्वारा मापे जाने वाले विकिरण का सबसे आम स्रोत है। निष्क्रिय रिमोट सेंसर के उदाहरणों में फिल्म फोटोग्राफी, अवरक्त, चार्ज-युग्मित डिवाइस और रेडियोमीटर शामिल हैं। दूसरी ओर, सक्रिय संग्रह, वस्तुओं और क्षेत्रों को स्कैन करने के लिए ऊर्जा का उत्सर्जन करता है, जहां एक सेंसर तब विकिरण का पता लगाता है और मापता है जो लक्ष्य से परावर्तित या बैकस्कैटर होता है। [[राडार]] और लिडार सक्रिय रिमोट सेंसिंग के उदाहरण हैं जहां उत्सर्जन और वापसी के बीच समय की देरी को मापा जाता है, जिससे किसी वस्तु का स्थान, गति और दिशा निर्धारित होती है।
रिमोट सेंसिंग से खतरनाक या दुर्गम क्षेत्रों का डेटा एकत्र करना संभव हो जाता है। रिमोट सेंसिंग अनुप्रयोगों में ऐमज़ान बेसिन जैसे क्षेत्रों में वनों की कटाई की निगरानी, आर्कटिक और अंटार्कटिक क्षेत्रों में हिमनद की विशेषताएं और तटीय और समुद्र की गहराई की गहराई से जांच करना शामिल है। शीत युद्ध के दौरान सैन्य संग्रह ने खतरनाक सीमा क्षेत्रों के बारे में डेटा के स्टैंड-ऑफ संग्रह का उपयोग किया। रिमोट सेंसिंग जमीन पर महंगे और धीमे डेटा संग्रह को भी बदल देता है, इस प्रक्रिया में यह सुनिश्चित करता है कि क्षेत्र या वस्तुएं परेशान न हों।
ऑर्बिटल प्लेटफॉर्म विद्युत चुम्बकीय वर्णक्रम के विभिन्न हिस्सों से डेटा एकत्र और प्रसारित करते हैं, जो बड़े पैमाने पर हवाई या जमीन-आधारित संवेदन और विश्लेषण के साथ मिलकर शोधकर्ताओं को एल नीनो और अन्य प्राकृतिक लंबी और छोटी अवधि की घटनाओं जैसे रुझानों की निगरानी के लिए पर्याप्त जानकारी प्रदान करता है। अन्य उपयोगों में पृथ्वी विज्ञान के विभिन्न क्षेत्र शामिल हैं जैसे प्राकृतिक संसाधन प्रबंधन, कृषि क्षेत्र जैसे भूमि उपयोग और संरक्षण,[5][6] ग्रीनहाउस गैस निगरानी,[7] तेल रिसाव का पता लगाना और निगरानी करना,[8] और राष्ट्रीय सुरक्षा और सीमावर्ती क्षेत्रों पर ओवरहेड, ग्राउंड-आधारित और स्टैंड-ऑफ संग्रह।[9]
डेटा अधिग्रहण तकनीकों के प्रकार
मल्टीस्पेक्ट्रल संग्रह और विश्लेषण का आधार जांच किए गए क्षेत्रों या वस्तुओं का है जो विकिरण को प्रतिबिंबित या उत्सर्जित करते हैं जो आसपास के क्षेत्रों से बाहर निकलते हैं। प्रमुख सुदूर संवेदन उपग्रह प्रणालियों के सारांश के लिए सिंहावलोकन तालिका देखें।
सुदूर संवेदन के अनुप्रयोग
- पारंपरिक रडार ज्यादातर हवाई यातायात नियंत्रण, प्रारंभिक चेतावनी और कुछ बड़े पैमाने के मौसम संबंधी डेटा से जुड़ा होता है। डॉपलर रडार का उपयोग स्थानीय कानून प्रवर्तन द्वारा गति सीमा की निगरानी और उन्नत मौसम रडार जैसे वर्षा स्थान और तीव्रता के अलावा मौसम प्रणालियों के भीतर हवा की गति और दिशा में किया जाता है। अन्य प्रकार के सक्रिय संग्रह में आयनमंडल में प्लाज्मा (भौतिकी) शामिल है। इंटरफेरोमेट्रिक सिंथेटिक एपर्चर रडार का उपयोग बड़े पैमाने के भू-भाग के सटीक डिजिटल उन्नयन मॉडल बनाने के लिए किया जाता है (देखें राडारसैट, TerraSAR एक्स, मैगेलन जांच)।
- उपग्रहों पर लेजर और रडार altimeter अल्टीमीटर ने डेटा की एक विस्तृत श्रृंखला प्रदान की है। गुरुत्वाकर्षण के कारण पानी के उभार को मापकर, वे समुद्री तल पर एक मील या उससे अधिक के रिज़ॉल्यूशन में सुविधाओं को मैप करते हैं। समुद्र की लहरों की ऊँचाई और तरंग दैर्ध्य को मापकर, अल्टीमीटर हवा की गति और दिशा और सतह महासागरीय धाराओं और दिशाओं को मापते हैं।
- अल्ट्रासाउंड (ध्वनिक) और रडार ज्वार गेज समुद्र के स्तर, ज्वार और लहर की दिशा को तटीय और अपतटीय ज्वार गेज में मापते हैं।
- लाइट डिटेक्शन एंड रेंजिंग (एलआईडीएआर) वेपन रेंजिंग, प्रोजेक्टाइल के लेज़र इल्युमिनेटेड होमिंग के उदाहरणों में अच्छी तरह से जाना जाता है। LIDAR का उपयोग वातावरण में विभिन्न रसायनों की सांद्रता का पता लगाने और मापने के लिए किया जाता है, जबकि हवाई LIDAR का उपयोग रडार तकनीक की तुलना में अधिक सटीक रूप से जमीन पर वस्तुओं और सुविधाओं की ऊंचाई को मापने के लिए किया जा सकता है। वनस्पति सुदूर संवेदन लिडार का एक प्रमुख अनुप्रयोग है।
- रेडियोमीटर और दीप्तिमापी उपयोग में आने वाले सबसे आम उपकरण हैं, जो आवृत्तियों की एक विस्तृत श्रृंखला में परावर्तित और उत्सर्जित विकिरण एकत्र करते हैं। सबसे आम दृश्य और इन्फ्रारेड सेंसर हैं, इसके बाद माइक्रोवेव, गामा-रे, और शायद ही कभी, पराबैंगनी। उनका उपयोग विभिन्न रसायनों के उत्सर्जन स्पेक्ट्रा का पता लगाने के लिए भी किया जा सकता है, जो वातावरण में रासायनिक सांद्रता पर डेटा प्रदान करते हैं।
* रेडियोमीटर का उपयोग रात में भी किया जाता है, क्योंकि प्रकाश प्रदूषण मानव गतिविधि का एक प्रमुख संकेत है।[11] अनुप्रयोगों में जनसंख्या, जीडीपी, और युद्ध या आपदाओं से बुनियादी ढांचे को नुकसान की रिमोट सेंसिंग शामिल है।
- ज्वालामुखी विस्फोटों की निगरानी के लिए रेडियोमीटर और उपग्रहों के ऑनबोर्ड रडार का उपयोग किया जा सकता है रेफरी>Corradino, Claudia; Ganci, Gaetana; Bilotta, Giuseppe; Cappello, Annalisa; Del Negro, Ciro; Fortuna, Luigi (January 2019). "ज्वालामुखी अनुप्रयोगों के लिए स्मार्ट डिसीजन सपोर्ट सिस्टम". Energies (in English). 12 (7): 1216. doi:10.3390/en12071216.</रेफरी>[12]
- पोलरिमेट्री#इमेजिंग को यूनाइटेड स्टेट्स आर्मी रिसर्च लेबोरेटरी|यू.एस. के शोधकर्ताओं द्वारा लक्षित ट्रैकिंग उद्देश्यों के लिए उपयोगी बताया गया है। सेना अनुसंधान प्रयोगशाला। उन्होंने निर्धारित किया कि मानव निर्मित वस्तुओं में पोलरिमेट्रिक हस्ताक्षर होते हैं जो प्राकृतिक वस्तुओं में नहीं पाए जाते हैं। ये निष्कर्ष हम्वी जैसे सैन्य ट्रकों और उनके ध्वनिक-ऑप्टिक मॉड्यूलेटर के साथ ट्रेलरों की इमेजिंग से तैयार किए गए थे।[13][14]
- स्थलीय आवास सुविधाओं के मॉडलिंग के अलावा, संभावित मार्गों के लिए ट्रैफ़िकबिलिटी और राजमार्ग विभागों में इमेजरी और इलाके के विश्लेषकों द्वारा स्थलाकृतिक मानचित्र बनाने के लिए अक्सर हवाई तस्वीरों की स्टीरियोस्कोपी का उपयोग किया जाता है।[15][16][17]
- 1970 के दशक के बाद से लैंडसैट जैसे मल्टी-स्पेक्ट्रल प्लेटफॉर्म का उपयोग किया जा रहा है। ये विषयगत मैपर इलेक्ट्रोमैग्नेटिक रेडिएशन (मल्टी-स्पेक्ट्रल) के कई तरंग दैर्ध्य में छवियां लेते हैं और आमतौर पर पृथ्वी अवलोकन उपग्रहों पर पाए जाते हैं, जिनमें (उदाहरण के लिए) लैंडसैट कार्यक्रम या IKONOS उपग्रह शामिल हैं। विषयगत मानचित्रण से भूमि कवर और भूमि उपयोग के मानचित्रों का उपयोग खनिजों की संभावना, भूमि उपयोग का पता लगाने या निगरानी करने, आक्रामक वनस्पतियों, वनों की कटाई का पता लगाने और स्वदेशी पौधों और फसलों (उपग्रह फसल निगरानी) के स्वास्थ्य की जांच करने के लिए किया जा सकता है, जिसमें पूरे कृषि क्षेत्र शामिल हैं या जंगल।[18] इस उद्देश्य के लिए रिमोट सेंसिंग का उपयोग करने वाले प्रमुख वैज्ञानिकों में जेनेट फ्रैंकलिन और रूथ डेफ़्रीज़ शामिल हैं। सेकची गहराई, क्लोरोफिल घनत्व और कुल फास्फोरस सामग्री सहित पानी की गुणवत्ता के मापदंडों को इंगित करने के लिए KYDOW जैसी नियामक एजेंसियों द्वारा लैंडसैट छवियों का उपयोग किया जाता है। मौसम उपग्रहों का उपयोग मौसम विज्ञान और जलवायु विज्ञान में किया जाता है।
- हाइपरस्पेक्ट्रल इमेजिंग एक ऐसी छवि बनाती है जहां प्रत्येक पिक्सेल में एक निकटवर्ती स्पेक्ट्रल रेंज पर इमेजिंग संकीर्ण स्पेक्ट्रल बैंड के साथ पूर्ण स्पेक्ट्रल जानकारी होती है। हाइपरस्पेक्ट्रल इमेजर्स का उपयोग खनिज विज्ञान, जीव विज्ञान, रक्षा और पर्यावरण मापन सहित विभिन्न अनुप्रयोगों में किया जाता है।
- मरुस्थलीकरण के खिलाफ लड़ाई के दायरे में, रिमोट सेंसिंग शोधकर्ताओं को लंबी अवधि में जोखिम क्षेत्रों का पालन करने और निगरानी करने, मरुस्थलीकरण कारकों को निर्धारित करने, पर्यावरण प्रबंधन के प्रासंगिक उपायों को परिभाषित करने में निर्णय लेने वालों का समर्थन करने और उनके प्रभावों का आकलन करने की अनुमति देता है।[19]
- संरक्षण प्रयासों में सहायता के लिए दुर्लभ पौधों का पता लगाने के लिए रिमोट सेंसिंग का उपयोग किया गया है। भविष्यवाणी, पता लगाने और बायोफिजिकल स्थितियों को रिकॉर्ड करने की क्षमता मध्यम से बहुत उच्च संकल्पों तक संभव थी।[20]
जियोडेटिक
- भूमंडल नापने का शास्र रिमोट सेंसिंग गुरुत्वमिति या जियोमेट्रिक हो सकती है। ओवरहेड ग्रेविटी डेटा संग्रह का उपयोग पहली बार हवाई पनडुब्बी का पता लगाने में किया गया था। इस डेटा ने पृथ्वी के गुरुत्वाकर्षण क्षेत्र में सूक्ष्म गड़बड़ी का खुलासा किया जिसका उपयोग पृथ्वी के बड़े पैमाने पर वितरण में परिवर्तन को निर्धारित करने के लिए किया जा सकता है, जो बदले में जीआरएसीई (उपग्रह) के रूप में भूभौतिकीय अध्ययनों के लिए उपयोग किया जा सकता है। ज्यामितीय सुदूर संवेदन में InSAR, LIDAR, आदि का उपयोग करके स्थिति और विरूपण रडार इमेजिंग शामिल है।[21]
ध्वनिक और निकट-ध्वनिक
- सोनार: निष्क्रिय सोनार, किसी अन्य वस्तु (एक बर्तन, एक व्हेल आदि) द्वारा की गई ध्वनि को सुनना; सक्रिय सोनार, ध्वनि की स्पंदन उत्सर्जित करना और प्रतिध्वनि सुनना, पानी के नीचे की वस्तुओं और इलाके का पता लगाने, रेंज करने और मापने के लिए उपयोग किया जाता है।
- विभिन्न स्थानों पर लिया गया भूकंप-सूचक यंत्र सापेक्ष तीव्रता और सटीक समय की तुलना करके भूकंप (उनके आने के बाद) का पता लगा सकता है और माप सकता है।
- अल्ट्रासाउंड: अल्ट्रासाउंड सेंसर, जो उच्च-आवृत्ति वाली दालों का उत्सर्जन करते हैं और प्रतिध्वनियों को सुनते हैं, जिनका उपयोग जल तरंगों और जल स्तर का पता लगाने के लिए किया जाता है, जैसे कि ज्वार गेज या टोइंग टैंक के लिए।
बड़े पैमाने पर अवलोकनों की एक श्रृंखला को समन्वयित करने के लिए, अधिकांश संवेदन प्रणालियां निम्नलिखित पर निर्भर करती हैं: मंच स्थान और संवेदक का अभिविन्यास। हाई-एंड उपकरण अब अक्सर उपग्रह नेविगेशन सिस्टम से स्थितीय जानकारी का उपयोग करते हैं। रोटेशन और ओरिएंटेशन अक्सर इलेक्ट्रॉनिक कंपास के साथ एक या दो डिग्री के भीतर प्रदान किया जाता है। कम्पास न केवल दिगंश (अर्थात चुंबकीय उत्तर की डिग्री) को माप सकते हैं, बल्कि ऊंचाई (क्षितिज के ऊपर डिग्री) को भी माप सकते हैं, क्योंकि चुंबकीय क्षेत्र अलग-अलग अक्षांशों पर अलग-अलग कोणों पर पृथ्वी में घटता है। अधिक सटीक ओरिएंटेशन के लिए जड़त्वीय नेविगेशन प्रणाली की आवश्यकता होती है| जाइरोस्कोपिक-एडेड ओरिएंटेशन, सितारों या ज्ञात बेंचमार्क से नेविगेशन सहित विभिन्न तरीकों से समय-समय पर पुन: व्यवस्थित।
डेटा विशेषताएँ
सुदूर संवेदन डेटा की गुणवत्ता में इसके स्थानिक, वर्णक्रमीय, रेडियोमेट्रिक और लौकिक विभेदन शामिल हैं।
- स्थानिक संकल्प
- एक पिक्सेल का आकार जो एक रेखापुंज ग्राफिक्स में दर्ज किया गया है - आमतौर पर पिक्सेल वर्ग क्षेत्रों के अनुरूप हो सकते हैं जो पार्श्व लंबाई में होते हैं 1 to 1,000 metres (3.3 to 3,280.8 ft).
- स्पेक्ट्रल रेज़ोल्यूशन
- विभिन्न आवृत्ति बैंडों की तरंगदैर्ध्य रिकॉर्ड की जाती है - आमतौर पर, यह प्लेटफ़ॉर्म द्वारा रिकॉर्ड की गई आवृत्ति बैंड की संख्या से संबंधित होती है। वर्तमान लैंडसैट संग्रह सात बैंडों का है, जिनमें इन्फ्रारेड स्पेक्ट्रम में कई शामिल हैं, 0.7 से 2.1 माइक्रोन के वर्णक्रमीय संकल्प से लेकर। अर्थ ऑब्जर्विंग-1 पर हाइपरियन सेंसर 0.10 से 0.11 माइक्रोमीटर प्रति बैंड के वर्णक्रमीय रिज़ॉल्यूशन के साथ 220 बैंड को 0.4 से 2.5 माइक्रोन तक हल करता है।
- रेडियोमितीय विभेदन
- विकिरण की विभिन्न तीव्रताओं की संख्या जिसे संवेदक भेद करने में सक्षम है। आमतौर पर, यह 8 से 14 बिट्स तक होता है, जो प्रत्येक बैंड में ग्रे स्केल के 256 स्तरों और 16,384 तीव्रता या रंग के रंगों के अनुरूप होता है। यह यंत्र के शोर पर भी निर्भर करता है।
- अस्थायी समाधान
- उपग्रह या विमान द्वारा फ्लाईओवर की आवृत्ति, और केवल समय-श्रृंखला अध्ययनों में या वनों की कटाई की निगरानी के रूप में औसत या मोज़ेक छवि की आवश्यकता वाले लोगों के लिए प्रासंगिक है। यह पहली बार खुफिया समुदाय द्वारा उपयोग किया गया था जहां बार-बार कवरेज से बुनियादी ढांचे में परिवर्तन, इकाइयों की तैनाती या उपकरणों के संशोधन/परिचय का पता चला। किसी दिए गए क्षेत्र या वस्तु पर बादल का आवरण उक्त स्थान के संग्रह को दोहराना आवश्यक बनाता है।
डेटा प्रोसेसिंग
सेंसर-आधारित मानचित्र बनाने के लिए, अधिकांश रिमोट सेंसिंग सिस्टम संदर्भ बिंदु के संबंध में सेंसर डेटा को एक्सट्रपलेशन करने की अपेक्षा करते हैं, जिसमें जमीन पर ज्ञात बिंदुओं के बीच की दूरी भी शामिल है। यह इस्तेमाल किए गए सेंसर के प्रकार पर निर्भर करता है। उदाहरण के लिए, पारंपरिक तस्वीरों में, छवि के केंद्र में दूरी सटीक होती है, माप की विकृति के साथ आप केंद्र से आगे बढ़ते हैं। एक अन्य कारक प्लैटन का है जिसके विरुद्ध फिल्म को दबाया जाता है, जमीन की दूरी को मापने के लिए तस्वीरों का उपयोग करते समय गंभीर त्रुटियां हो सकती हैं। जिस चरण में इस समस्या का समाधान किया जाता है उसे भू-संदर्भ कहा जाता है और इसमें छवि में बिंदुओं के कंप्यूटर-समर्थित मिलान (आमतौर पर प्रति छवि 30 या अधिक अंक) शामिल होते हैं, जो एक स्थापित बेंचमार्क के उपयोग के साथ एक्सट्रपलेशन किया जाता है, सटीक स्थानिक डेटा का उत्पादन करने के लिए छवि को विकृत करता है। . 1990 के दशक की शुरुआत तक, अधिकांश उपग्रह छवियों को पूरी तरह से भू-संदर्भित बेचा जाता था।
इसके अलावा, छवियों को रेडियोमेट्रिक और वायुमंडलीय रूप से सही करने की आवश्यकता हो सकती है।
- रेडियोमेट्रिक सुधार
- रेडियोमेट्रिक त्रुटियों और विकृतियों से बचने की अनुमति देता है। राहत के विभिन्न गुणों के कारण पृथ्वी की सतह पर वस्तुओं की रोशनी असमान है। इस कारक को रेडियोमेट्रिक विरूपण सुधार की विधि में ध्यान में रखा जाता है।[22] रेडियोमेट्रिक सुधार पिक्सेल मानों को एक पैमाना देता है, उदा। जी। 0 से 255 के मोनोक्रोमैटिक पैमाने को वास्तविक चमक मूल्यों में परिवर्तित कर दिया जाएगा।
- स्थलाकृतिक सुधार (जिसे भू-भाग सुधार भी कहा जाता है)
- ऊबड़-खाबड़ पहाड़ों में, भू-भाग के परिणामस्वरूप, पिक्सेल की प्रभावी रोशनी काफी भिन्न होती है। रिमोट सेंसिंग छवि में, छायादार ढलान पर पिक्सेल कमजोर रोशनी प्राप्त करता है और कम चमक मूल्य होता है, इसके विपरीत, सनी ढलान पर पिक्सेल मजबूत रोशनी प्राप्त करता है और इसका उच्च चमक मूल्य होता है। एक ही वस्तु के लिए, छायादार ढलान पर पिक्सेल की चमक का मान सनी ढलान पर पिक्सेल की चमक से अलग होगा। इसके अतिरिक्त, विभिन्न वस्तुओं में समान चमक मान हो सकते हैं। इन अस्पष्टताओं ने पर्वतीय क्षेत्रों में सुदूर संवेदन छवि सूचना निष्कर्षण सटीकता को गंभीर रूप से प्रभावित किया। यह सुदूर संवेदन छवियों के आगे के अनुप्रयोग के लिए मुख्य बाधा बन गया। स्थलाकृतिक सुधार का उद्देश्य इस प्रभाव को समाप्त करना है, क्षैतिज स्थितियों में वस्तुओं की वास्तविक परावर्तकता या चमक को पुनर्प्राप्त करना। यह मात्रात्मक सुदूर संवेदन अनुप्रयोग का आधार है।
- वायुमंडलीय सुधार
- प्रत्येक आवृत्ति बैंड को पुनर्विक्रय करके वायुमंडलीय धुंध का उन्मूलन ताकि इसका न्यूनतम मूल्य (आमतौर पर जल निकायों में महसूस किया जाता है) 0 के पिक्सेल मान से मेल खाता हो। डेटा का डिजिटाइज़ेशन ग्रे-स्केल मानों को बदलकर डेटा में हेरफेर करना भी संभव बनाता है। .
व्याख्या डेटा की समझ बनाने की महत्वपूर्ण प्रक्रिया है। पहला आवेदन एरियल फोटोग्राफिक संग्रह का था जिसमें निम्नलिखित प्रक्रिया का उपयोग किया गया था; पारंपरिक एकल या स्टीरियोग्राफिक कवरेज दोनों में एक प्रकाश तालिका के उपयोग के माध्यम से स्थानिक माप, अतिरिक्त कौशल जैसे कि फोटोग्राममेट्री का उपयोग, फोटोमोज़ाइक का उपयोग, दोहराए जाने वाले कवरेज, संशोधनों का पता लगाने के लिए वस्तुओं के ज्ञात आयामों का उपयोग करना। इमेज एनालिसिस हाल ही में विकसित स्वचालित कंप्यूटर-एडेड एप्लिकेशन है जो बढ़ते उपयोग में है।
ऑब्जेक्ट-बेस्ड इमेज एनालिसिस (OBIA) GISscience का एक उप-अनुशासन है जो रिमोट सेंसिंग (RS) इमेजरी को अर्थपूर्ण इमेज-ऑब्जेक्ट्स में विभाजित करने और स्थानिक, वर्णक्रमीय और लौकिक पैमाने के माध्यम से उनकी विशेषताओं का आकलन करने के लिए समर्पित है।
रिमोट सेंसिंग से पुराना डेटा अक्सर मूल्यवान होता है क्योंकि यह भूगोल की एक बड़ी सीमा के लिए एकमात्र दीर्घकालिक डेटा प्रदान कर सकता है। उसी समय, डेटा अक्सर व्याख्या करने के लिए जटिल होता है, और स्टोर करने के लिए भारी होता है। आधुनिक प्रणालियां डेटा को डिजिटल रूप से संग्रहीत करती हैं, अक्सर दोषरहित संपीड़न के साथ। इस दृष्टिकोण के साथ कठिनाई यह है कि डेटा नाजुक है, स्वरूप पुरातन हो सकता है, और डेटा को गलत साबित करना आसान हो सकता है। डेटा श्रृंखला संग्रह करने के लिए सबसे अच्छी प्रणालियों में से एक कंप्यूटर-जनित मशीन-पठनीय बेहद पतली है, आमतौर पर ओसीआर-बी जैसे टाइपफॉन्ट में, या डिजीटल आधा-टोन छवियों के रूप में। Ultrafiches मानक पुस्तकालयों में अच्छी तरह से जीवित रहते हैं, कई शताब्दियों के जीवनकाल के साथ। उन्हें स्वचालित सिस्टम द्वारा बनाया, कॉपी, फाइल और पुनर्प्राप्त किया जा सकता है। वे अभिलेखीय चुंबकीय मीडिया के रूप में कॉम्पैक्ट हैं, और फिर भी मनुष्यों द्वारा न्यूनतम, मानकीकृत उपकरण के साथ पढ़ा जा सकता है।
आम तौर पर, रिमोट सेंसिंग उलटा समस्या के सिद्धांत पर काम करता है: जबकि ब्याज की वस्तु या घटना ('राज्य') को सीधे मापा नहीं जा सकता है, वहाँ कुछ अन्य चर मौजूद हैं जिन्हें पता लगाया जा सकता है और मापा जा सकता है ('अवलोकन') जो गणना के माध्यम से ब्याज की वस्तु से संबंधित हो सकता है। इसका वर्णन करने के लिए दी गई सामान्य समानता जानवर के प्रकार को उसके पैरों के निशान से निर्धारित करने की कोशिश कर रही है। उदाहरण के लिए, जबकि ऊपरी वायुमंडल में तापमान को सीधे मापना असंभव है, उस क्षेत्र में ज्ञात रासायनिक प्रजातियों (जैसे कार्बन डाइऑक्साइड) से वर्णक्रमीय उत्सर्जन को मापना संभव है। उत्सर्जन की आवृत्ति तब उस क्षेत्र में तापमान के साथ ऊष्मप्रवैगिकी के माध्यम से संबंधित हो सकती है।
डाटा प्रोसेसिंग स्तर
व्यवहार में डाटा प्रोसेसिंग की चर्चा को सुविधाजनक बनाने के लिए, कई प्रसंस्करण स्तरों को पहली बार 1986 में नासा द्वारा पृथ्वी अवलोकन प्रणाली के हिस्से के रूप में परिभाषित किया गया था।[23] और तब से लगातार अपनाया गया, दोनों नासा में आंतरिक रूप से (जैसे,[24]) और अन्यत्र (उदा.,[25]); ये परिभाषाएँ हैं:
Level | Description |
---|---|
0 | Reconstructed, unprocessed instrument and payload data at full resolution, with any and all communications artifacts (e. g., synchronization frames, communications headers, duplicate data) removed. |
1a | Reconstructed, unprocessed instrument data at full resolution, time-referenced, and annotated with ancillary information, including radiometric and geometric calibration coefficients and georeferencing parameters (e. g., platform ephemeris) computed and appended but not applied to the Level 0 data (or if applied, in a manner that level 0 is fully recoverable from level 1a data). |
1b | Level 1a data that have been processed to sensor units (e. g., radar backscatter cross section, brightness temperature, etc.); not all instruments have Level 1b data; level 0 data is not recoverable from level 1b data. |
2 | Derived geophysical variables (e. g., ocean wave height, soil moisture, ice concentration) at the same resolution and location as Level 1 source data. |
3 | Variables mapped on uniform spacetime grid scales, usually with some completeness and consistency (e. g., missing points interpolated, complete regions mosaicked together from multiple orbits, etc.). |
4 | Model output or results from analyses of lower level data (i. e., variables that were not measured by the instruments but instead are derived from these measurements). |
एक स्तर 1 डेटा रिकॉर्ड सबसे मौलिक (यानी, उच्चतम प्रतिवर्ती स्तर) डेटा रिकॉर्ड है जिसकी महत्वपूर्ण वैज्ञानिक उपयोगिता है, और वह आधार है जिस पर बाद के सभी डेटा सेट तैयार किए जाते हैं। स्तर 2 पहला स्तर है जिसके लिए सीधे प्रयोग किया जा सकता है अधिकांश वैज्ञानिक अनुप्रयोग; इसका मूल्य निचले स्तरों की तुलना में बहुत अधिक है। स्तर 2 डेटा सेट स्तर 1 डेटा की तुलना में कम विशाल होते हैं क्योंकि उन्हें अस्थायी रूप से, स्थानिक रूप से, या वर्णक्रमीय रूप से कम किया गया है। स्तर 3 डेटा सेट आम तौर पर निचले स्तर के डेटा सेट से छोटे होते हैं और इस प्रकार ओवरहेड को संभालने वाले डेटा का एक बड़ा सौदा किए बिना निपटाया जा सकता है। ये डेटा आम तौर पर कई अनुप्रयोगों के लिए अधिक उपयोगी होते हैं। स्तर 3 डेटासेट का नियमित स्थानिक और अस्थायी संगठन विभिन्न स्रोतों से डेटा को आसानी से संयोजित करना संभव बनाता है।
जबकि ये प्रसंस्करण स्तर विशिष्ट उपग्रह डेटा प्रसंस्करण पाइपलाइनों के लिए विशेष रूप से उपयुक्त हैं, अन्य डेटा स्तर शब्दसंग्रह परिभाषित किए गए हैं और अधिक विषम कार्यप्रवाहों के लिए उपयुक्त हो सकते हैं।
इतिहास
रिमोट सेंसिंग का आधुनिक अनुशासन उड़ान के विकास के साथ उभरा। बैलूनिस्ट जी. टूरनाचॉन (उर्फ नादर (फ़ोटोग्राफ़र)) ने 1858 में अपने गुब्बारे से पेरिस की तस्वीरें बनाईं।[26] संदेशवाहक कबूतर, पतंग, रॉकेट और मानवरहित गुब्बारों का भी प्रारंभिक चित्रों के लिए उपयोग किया गया था। गुब्बारों के अपवाद के साथ, ये पहली, व्यक्तिगत छवियां मानचित्र बनाने या वैज्ञानिक उद्देश्यों के लिए विशेष रूप से उपयोगी नहीं थीं।
प्रथम विश्व युद्ध की शुरुआत में सैन्य निगरानी और टोही उद्देश्यों के लिए व्यवस्थित हवाई फोटोग्राफी विकसित की गई थी[27] और P-51, P-38, RB-66 और F-4C जैसे संशोधित लड़ाकू विमानों के उपयोग के साथ शीत युद्ध के दौरान एक चरमोत्कर्ष पर पहुँचना, या लॉकहीड U-2|U2/ जैसे विशेष रूप से डिज़ाइन किए गए संग्रह प्लेटफ़ॉर्म TR-1, SR-71, A-5 Vigilante|A-5 और OV-1 श्रृंखला ओवरहेड और स्टैंड-ऑफ संग्रह दोनों में।[28] एक और हालिया विकास तेजी से छोटे सेंसर पॉड्स का है, जैसे कि कानून प्रवर्तन और सेना द्वारा मानवयुक्त और मानव रहित दोनों प्लेटफार्मों में उपयोग किया जाता है। इस दृष्टिकोण का लाभ यह है कि इसके लिए किसी दिए गए एयरफ्रेम में न्यूनतम संशोधन की आवश्यकता होती है। बाद में इमेजिंग तकनीकों में इन्फ्रारेड, पारंपरिक, डॉपलर और सिंथेटिक एपर्चर रडार शामिल होंगे।[29] 20वीं शताब्दी के उत्तरार्ध में कृत्रिम उपग्रहों के विकास ने शीत युद्ध की समाप्ति तक सुदूर संवेदन को वैश्विक स्तर पर प्रगति करने की अनुमति दी।[30] लैंडसैट कार्यक्रम, निंबस कार्यक्रम और हाल के मिशन जैसे राडारसैट और ऊपरी वायुमंडल अनुसंधान उपग्रह जैसे विभिन्न पृथ्वी अवलोकन और मौसम उपग्रहों पर इंस्ट्रूमेंटेशन ने नागरिक, अनुसंधान और सैन्य उद्देश्यों के लिए विभिन्न डेटा के वैश्विक माप प्रदान किए। अन्य ग्रहों के लिए अंतरिक्ष जांच ने भी अलौकिक वातावरण में सुदूर संवेदन अध्ययन करने का अवसर प्रदान किया है, मैगेलन जांच अंतरिक्ष यान पर सिंथेटिक एपर्चर रडार ने शुक्र के विस्तृत स्थलाकृतिक मानचित्र प्रदान किए, जबकि सौर और हेलिओस्फेरिक वेधशाला में उपकरणों ने सूर्य और सूर्य पर अध्ययन करने की अनुमति दी। सौर पवन, केवल कुछ उदाहरणों के नाम के लिए।[31][32] 1960 और 1970 के दशक की शुरुआत में उपग्रह इमेजरी के मूर्ति प्रोद्योगिकी के विकास के साथ हाल के घटनाक्रमों में शामिल हैं। नासा एम्स रिसर्च सेंटर, जीटीई, और ईएसएल इंक सहित सिलिकॉन वैली में कई शोध समूहों ने फूरियर रूपांतरण तकनीक विकसित की जिससे इमेजरी डेटा की पहली उल्लेखनीय वृद्धि हुई। 1999 में पहला व्यावसायिक उपग्रह (IKONOS) बहुत उच्च रिज़ॉल्यूशन इमेजरी एकत्र करने के लिए लॉन्च किया गया था।[33]
प्रशिक्षण और शिक्षा
आधुनिक सूचना समाज में सुदूर संवेदन की प्रासंगिकता बढ़ती जा रही है। यह एयरोस्पेस उद्योग के हिस्से के रूप में एक महत्वपूर्ण तकनीक का प्रतिनिधित्व करता है और बढ़ती आर्थिक प्रासंगिकता को वहन करता है - नए सेंसर उदा। टेराएसएआर-एक्स और रैपिडआई लगातार विकसित हो रहे हैं और कुशल श्रम की मांग लगातार बढ़ रही है। इसके अलावा, रिमोट सेंसिंग मौसम के पूर्वानुमान से लेकर जलवायु परिवर्तन या प्राकृतिक आपदाओं की रिपोर्ट तक, रोजमर्रा की जिंदगी को अत्यधिक प्रभावित करता है। उदाहरण के तौर पर, 80% जर्मन छात्र Google धरती की सेवाओं का उपयोग करते हैं; केवल 2006 में सॉफ्टवेयर को 100 मिलियन बार डाउनलोड किया गया था। लेकिन अध्ययनों से पता चला है कि उनमें से कुछ ही उस डेटा के बारे में अधिक जानते हैं जिसके साथ वे काम कर रहे हैं।[34] आवेदन और उपग्रह छवियों की समझ के बीच एक विशाल ज्ञान अंतर परिकल्पना मौजूद है। विषय पर शिक्षण के लिए समर्थन को मजबूत करने के राजनीतिक दावों की परवाह किए बिना रिमोट सेंसिंग केवल स्कूलों में एक स्पर्शरेखा भूमिका निभाता है।[35] स्कूल के पाठों के लिए स्पष्ट रूप से विकसित किए गए बहुत सारे कंप्यूटर सॉफ्टवेयर अभी तक इसकी जटिलता के कारण लागू नहीं किए गए हैं। इस प्रकार, विषय या तो पाठ्यक्रम में बिल्कुल भी एकीकृत नहीं है या एनालॉग छवियों की व्याख्या के चरण को पारित नहीं करता है। वास्तव में, रिमोट सेंसिंग के विषय में उपग्रह चित्रों की मात्र दृश्य व्याख्या के अलावा मीडिया और विधियों के क्षेत्र में भौतिकी और गणित के साथ-साथ क्षमता (मानव संसाधन) के समेकन की आवश्यकता होती है।
कई शिक्षकों की सुदूर संवेदन विषय में बहुत रुचि है, इस विषय को शिक्षण में एकीकृत करने के लिए प्रेरित किया जा रहा है, बशर्ते कि पाठ्यक्रम पर विचार किया जाए। कई मामलों में भ्रामक जानकारी के कारण यह प्रोत्साहन विफल हो जाता है।[36] यूरोपीय भूविज्ञान संघ या डिजिटल पृथ्वी जैसे संगठनों द्वारा रिमोट सेंसिंग को स्थायी तरीके से एकीकृत करने के लिए[37] ई सीखना और शिक्षा प्रबंधन प्रणाली के विकास को प्रोत्साहित करना। उदाहरणों में शामिल हैं: एफआईएस - स्कूल के पाठों में रिमोट सेंसिंग,[38] जियोस्कोप[39] परिवर्तन,[40] या स्थानिक खोज,[41] मीडिया और विधि योग्यता के साथ-साथ स्वतंत्र शिक्षा को बढ़ावा देने के लिए।
सॉफ्टवेयर
रिमोट सेंसिंग डेटा को कंप्यूटर सॉफ्टवेयर के साथ संसाधित और विश्लेषित किया जाता है, जिसे सुदूर संवेदन अनुप्रयोग के रूप में जाना जाता है। रिमोट सेंसिंग डेटा को प्रोसेस करने के लिए बड़ी संख्या में मालिकाना और ओपन सोर्स एप्लिकेशन मौजूद हैं। रिमोट सेंसिंग सॉफ्टवेयर पैकेज में शामिल हैं:
- षट्भुज भू-स्थानिक से ERDAS इमेजिन (Intergraph SG&I से अलग),
- हैरिस जियोस्पेशियल सॉल्यूशंस से ईएनवीआई (सॉफ्टवेयर),
- पीसीआई जियोमैटिक्स
- MicroImages से TNTmips,
- क्लार्क लैब्स से IDRISI,
- ट्रिम्बल नेविगेशन से पहचान,
- और ओवरवॉच टेक्सट्रॉन सिस्टम्स द्वारा बनाया गया रिमोट व्यू।
- ड्रैगन (रिमोट सेंसिंग)|ड्रैगन/आईपीएस अभी भी उपलब्ध सबसे पुराने रिमोट सेंसिंग पैकेजों में से एक है, और कुछ मामलों में मुफ्त है।
ओपन सोर्स रिमोट सेंसिंग सॉफ्टवेयर में शामिल हैं:
- प्रकाशिकी (सॉफ्टवेयर),
- ओर्फियो टूलबॉक्स
- यूरोपीय अंतरिक्ष एजेंसी (ESA) से सेंटिनल एप्लिकेशन प्लेटफॉर्म (SNAP)
- रिमोट सेंसिंग और जीआईएस क्षमताओं को मिलाने वाले अन्य हैं: घास जीआईएस, आईएलडब्ल्यूआईएस, क्यूजीआईएस और टेरालुक।
ग्लोबल मार्केटिंग इनसाइट्स, इंक द्वारा एनओएए प्रायोजित शोध के अनुसार रिमोट सेंसिंग में शामिल एशियाई शैक्षणिक समूहों के बीच सबसे अधिक उपयोग किए जाने वाले अनुप्रयोग इस प्रकार हैं: ईआरडीएएस 36% (ईआरडीएएस इमेजिन 25% और ईआरमैपर 11%); पर्यावरण प्रणाली अनुसंधान संस्थान 30%; आईटीटी विज़ुअल इंफॉर्मेशन सॉल्यूशंस ईएनवीआई 17%; मैपइन्फो प्रोफेशनल 17%।
पश्चिमी शैक्षणिक उत्तरदाताओं में निम्नानुसार हैं: ESRI 39%, ERDAS IMAGINE 27%, MapInfo 9%, और AutoDesk 7%।
शिक्षा के क्षेत्र में, जो लोग केवल उपग्रह चित्रों के प्रिंट-आउट को देखने से परे जाना चाहते हैं, वे या तो सामान्य रिमोट सेंसिंग सॉफ़्टवेयर (जैसे क्यूजीआईएस), Google धरती, StoryMaps या एक सॉफ़्टवेयर/वेब का उपयोग करते हैं। ऐप विशेष रूप से शिक्षा के लिए विकसित किया गया है (जैसे डेस्कटॉप: LeoWorks, ऑनलाइन: BLIF)।
गामा किरणों के साथ रिमोट सेंसिंग
सुदूर संवेदन के माध्यम से खनिज अन्वेषण के लिए गामा किरणों के अनुप्रयोग हैं। 1972 में गामा किरणों के साथ खनिज अन्वेषण के लिए रिमोट सेंसिंग अनुप्रयोगों पर दो मिलियन डॉलर से अधिक खर्च किए गए थे। यूरेनियम के निक्षेपों की खोज के लिए गामा किरणों का उपयोग किया जाता है। पोटेशियम से रेडियोधर्मिता का अवलोकन करके, पोर्फिरी तांबे के भंडार का पता लगाया जा सकता है। हाइड्रोथर्मल कॉपर जमा की उपस्थिति से संबंधित यूरेनियम से थोरियम का एक उच्च अनुपात पाया गया है। विकिरण के पैटर्न को तेल और गैस क्षेत्रों के ऊपर होने के लिए भी जाना जाता है, लेकिन इनमें से कुछ पैटर्न को तेल और गैस के बजाय सतही मिट्टी के कारण माना जाता था।[42]
उपग्रह
यह भी देखें
- एयरबोर्न रियल-टाइम क्यूइंग हाइपरस्पेक्ट्रल एन्हांस्ड टोही
- फोटोग्रामेट्री और रिमोट सेंसिंग के लिए अमेरिकन सोसायटी
- पुरातात्विक चित्र
- क्लिडार
- तटीय प्रबंधन
- क्रेटोलॉजी
- अंतरिक्ष से पृथ्वी की पहली तस्वीरें
- पूर्ण वर्णक्रमीय इमेजिंग
- भौगोलिक सूचना प्रणाली (जीआईएस)
- जीआईएस और जल विज्ञान
- भू सूचना विज्ञान
- भूभौतिकीय सर्वेक्षण
- ग्लोबल पोजिशनिंग सिस्टम (जीपीएस)
- Ground truth § Remote sensing
- आईईईई भूविज्ञान और रिमोट सेंसिंग सोसायटी
- इमेजरी विश्लेषण
- इमेजिंग विज्ञान
- फोटोग्रामेट्री और रिमोट सेंसिंग के लिए इंटरनेशनल सोसायटी
- भूमि परिवर्तन विज्ञान
- लिक्विड क्रिस्टल ट्यून करने योग्य फिल्टर
- पृथ्वी अवलोकन उपग्रहों की सूची
- मोबाइल मैपिंग
- मल्टीस्पेक्ट्रल पैटर्न पहचान
- नेशनल सेंटर फॉर रिमोट सेंसिंग, एयर एंड स्पेस लॉ
- नेशनल लिडार डेटासेट
- सामान्यीकृत अंतर जल सूचकांक
- ऑर्थोफोटो
- पिक्टोमेट्री
- रेडियोमेट्री
- दूरस्थ निगरानी और नियंत्रण
- तकनीकी भूगोल
- टोपोफ्लाइट
- वेक्टर नक्शा
संदर्भ
- ↑ 1.0 1.1 Schowengerdt, Robert A. (2007). Remote sensing: models and methods for image processing (3rd ed.). Academic Press. p. 2. ISBN 978-0-12-369407-2. Archived from the original on 1 May 2016. Retrieved 15 November 2015.
- ↑ 2.0 2.1 Schott, John Robert (2007). Remote sensing: the image chain approach (2nd ed.). Oxford University Press. p. 1. ISBN 978-0-19-517817-3. Archived from the original on 24 April 2016. Retrieved 15 November 2015.
- ↑ 3.0 3.1 Guo, Huadong; Huang, Qingni; Li, Xinwu; Sun, Zhongchang; Zhang, Ying (2013). "Spatiotemporal analysis of urban environment based on the vegetation–impervious surface–soil model" (PDF). Journal of Applied Remote Sensing. 8: 084597. Bibcode:2014JARS....8.4597G. doi:10.1117/1.JRS.8.084597. S2CID 28430037. Archived (PDF) from the original on 19 July 2018. Retrieved 27 October 2021.
- ↑ 4.0 4.1 Liu, Jian Guo & Mason, Philippa J. (2009). Essential Image Processing for GIS and Remote Sensing. Wiley-Blackwell. p. 4. ISBN 978-0-470-51032-2.
- ↑ "Saving the monkeys". SPIE Professional. Archived from the original on 4 February 2016. Retrieved 1 January 2016.
- ↑ Howard, A.; et al. (19 August 2015). "Remote sensing and habitat mapping for bearded capuchin monkeys (Sapajus libidinosus): landscapes for the use of stone tools". Journal of Applied Remote Sensing. 9 (1): 096020. doi:10.1117/1.JRS.9.096020. S2CID 120031016.
- ↑ Innocenti, Fabrizio; Robinson, Rod; Gardiner, Tom; Finlayson, Andrew; Connor, Andy (2017). "Differential Absorption Lidar (DIAL) Measurements of Landfill Methane Emissions". Remote Sensing (in English). 9 (9): 953. Bibcode:2017RemS....9..953.. doi:10.3390/rs9090953.
- ↑ C. Bayindir; J. D. Frost; C. F. Barnes (January 2018). "Assessment and enhancement of SAR noncoherent change detection of sea-surface oil spills". IEEE J. Ocean. Eng. 43 (1): 211–220. Bibcode:2018IJOE...43..211B. doi:10.1109/JOE.2017.2714818. S2CID 44706251.
- ↑ "Science@nasa - Technology: Remote Sensing". Archived from the original on 29 September 2006. Retrieved 2009-02-18.
- ↑ Just Sit Right Back and You’ll Hear a Tale, a Tale of a Plankton Trip Archived 10 August 2021 at the Wayback Machine NASA Earth Expeditions, 15 August 2018.
- ↑ Levin, Noam; Kyba, Christopher C.M.; Zhang, Qingling; Sánchez de Miguel, Alejandro; Román, Miguel O.; Li, Xi; Portnov, Boris A.; Molthan, Andrew L.; Jechow, Andreas; Miller, Steven D.; Wang, Zhuosen; Shrestha, Ranjay M.; Elvidge, Christopher D. (February 2020). "रात की रोशनी का रिमोट सेंसिंग: एक समीक्षा और भविष्य के लिए एक दृष्टिकोण". Remote Sensing of Environment. 237: 111443. Bibcode:2020RSEnv.237k1443L. doi:10.1016/j.rse.2019.111443. hdl:10871/40052. S2CID 214254543.
- ↑ Corradino, Claudia; Ganci, Gaetana; Cappello, Annalisa; Bilotta, Giuseppe; Hérault, Alexis; Del Negro, Ciro (January 2019). "Mapping Recent Lava Flows at Mount Etna Using Multispectral Sentinel-2 Images and Machine Learning Techniques". Remote Sensing (in English). 11 (16): 1916. Bibcode:2019RemS...11.1916C. doi:10.3390/rs11161916.
- ↑ Goldberg, A.; Stann, B.; Gupta, N. (July 2003). "Multispectral, Hyperspectral, and Three-Dimensional Imaging Research at the U.S. Army Research Laboratory" (PDF). Proceedings of the International Conference on International Fusion [6th]. 1: 499–506.
- ↑ Makki, Ihab; Younes, Rafic; Francis, Clovis; Bianchi, Tiziano; Zucchetti, Massimo (2017-02-01). "A survey of landmine detection using hyperspectral imaging". ISPRS Journal of Photogrammetry and Remote Sensing (in English). 124: 40–53. Bibcode:2017JPRS..124...40M. doi:10.1016/j.isprsjprs.2016.12.009. ISSN 0924-2716.
- ↑ Mills, J.P.; et al. (1997). "Photogrammetry from Archived Digital Imagery for Seal Monitoring". The Photogrammetric Record. 15 (89): 715–724. doi:10.1111/0031-868X.00080. S2CID 140189982.
- ↑ Twiss, S.D.; et al. (2001). "Topographic spatial characterisation of grey seal Halichoerus grypus breeding habitat at a sub-seal size spatial grain". Ecography. 24 (3): 257–266. doi:10.1111/j.1600-0587.2001.tb00198.x.
- ↑ Stewart, J.E.; et al. (2014). "Finescale ecological niche modeling provides evidence that lactating gray seals (Halichoerus grypus) prefer access to fresh water in order to drink" (PDF). Marine Mammal Science. 30 (4): 1456–1472. doi:10.1111/mms.12126. Archived (PDF) from the original on 13 July 2021. Retrieved 27 October 2021.
- ↑ Zhang, Chuanrong; Li, Xinba (September 2022). "Land Use and Land Cover Mapping in the Era of Big Data". Land. 11 (10): 1692. doi:10.3390/land11101692.
- ↑ "Begni G. Escadafal R. Fontannaz D. and Hong-Nga Nguyen A.-T. (2005). Remote sensing: a tool to monitor and assess desertification. Les dossiers thématiques du CSFD. Issue 2. 44 pp". Archived from the original on 26 May 2019. Retrieved 27 October 2021.
- ↑ Cerrejón, Carlos; Valeria, Osvaldo; Marchand, Philippe; Caners, Richard T.; Fenton, Nicole J. (2021-02-18). "No place to hide: Rare plant detection through remote sensing". Diversity and Distributions. 27 (6): 948–961. doi:10.1111/ddi.13244. ISSN 1366-9516. S2CID 233886263.
- ↑ "Geodetic Imaging". Archived from the original on 2 October 2016. Retrieved 29 September 2016.
- ↑ Grigoriev А.N. (2015). "Мethod of radiometric distortion correction of multispectral data for the earth remote sensing". Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 15 (4): 595–602. doi:10.17586/2226-1494-2015-15-4-595-602.
- ↑ NASA (1986), Report of the EOS data panel, Earth Observing System, Data and Information System, Data Panel Report, Vol. IIa., NASA Technical Memorandum 87777, June 1986, 62 pp. Available at http://hdl.handle.net/2060/19860021622 Archived 27 October 2021 at the Wayback Machine
- ↑ C. L. Parkinson, A. Ward, M. D. King (Eds.) Earth Science Reference Handbook – A Guide to NASA's Earth Science Program and Earth Observing Satellite Missions, National Aeronautics and Space Administration Washington, D. C. Available at http://eospso.gsfc.nasa.gov/ftp_docs/2006ReferenceHandbook.pdf Archived 15 April 2010 at the Wayback Machine
- ↑ GRAS-SAF (2009), Product User Manual, GRAS Satellite Application Facility, Version 1.2.1, 31 March 2009. Available at http://www.grassaf.org/general-documents/products/grassaf_pum_v121.pdf Archived 26 July 2011 at the Wayback Machine
- ↑ Maksel, Rebecca. "Flight of the Giant". Air & Space Magazine (in English). Archived from the original on 18 August 2021. Retrieved 2019-02-19.
- ↑ IWM, Alan Wakefield
Head of photographs at (2014-04-04). "A bird's-eye view of the battlefield: aerial photography". The Daily Telegraph (in British English). ISSN 0307-1235. Archived from the original on 18 April 2014. Retrieved 2019-02-19. - ↑ "Air Force Magazine". www.airforcemag.com. Archived from the original on 19 February 2019. Retrieved 2019-02-19.
- ↑ "Military Imaging and Surveillance Technology (MIST)". www.darpa.mil. Archived from the original on 18 August 2021. Retrieved 2019-02-19.
- ↑ The Indian Society of International Law - Newsletter: VOL. 15, No. 4, October - December 2016 (Report). doi:10.1163/2210-7975_hrd-9920-2016004.
- ↑ "In Depth | Magellan". Solar System Exploration: NASA Science. Archived from the original on 19 October 2021. Retrieved 2019-02-19.
- ↑ Garner, Rob (2015-04-15). "SOHO - Solar and Heliospheric Observatory". NASA. Archived from the original on 18 September 2021. Retrieved 2019-02-19.
- ↑ Colen, Jerry (2015-04-08). "Ames Research Center Overview". NASA. Archived from the original on 28 September 2021. Retrieved 2019-02-19.
- ↑ Ditter, R., Haspel, M., Jahn, M., Kollar, I., Siegmund, A., Viehrig, K., Volz, D., Siegmund, A. (2012) Geospatial technologies in school – theoretical concept and practical implementation in K-12 schools. In: International Journal of Data Mining, Modelling and Management (IJDMMM): FutureGIS: Riding the Wave of a Growing Geospatial Technology Literate Society; Vol. X
- ↑ Stork, E.J., Sakamoto, S.O., and Cowan, R.M. (1999) "The integration of science explorations through the use of earth images in middle school curriculum", Proc. IEEE Trans. Geosci. Remote Sensing 37, 1801–1817
- ↑ Bednarz, S.W. and Whisenant, S.E. (2000) "Mission geography: linking national geography standards, innovative technologies and NASA", Proc. IGARSS, Honolulu, USA, 2780–2782 8
- ↑ Digital Earth
- ↑ "FIS – Remote Sensing in School Lessons". Archived from the original on 26 October 2012. Retrieved 25 October 2012.
- ↑ "geospektiv". Archived from the original on 2 May 2018. Retrieved 1 June 2018.
- ↑ "YCHANGE". Archived from the original on 17 August 2018. Retrieved 1 June 2018.
- ↑ "Landmap – Spatial Discovery". Archived from the original on 29 November 2014. Retrieved 27 October 2021.
- ↑ Grasty, R (1976). Applications of Gamma Radiation in Remote Sensing (1st ed.). Berlin: Springer-Verlag. p. 267. ISBN 978-3-642-66238-6.
अग्रिम पठन
- Campbell, J. B. (2002). Introduction to remote sensing (3rd ed.). The Guilford Press. ISBN 978-1-57230-640-0.
- Jensen, J. R. (2007). Remote sensing of the environment: an Earth resource perspective (2nd ed.). Prentice Hall. ISBN 978-0-13-188950-7.
- Jensen, J. R. (2005). Digital Image Processing: a Remote Sensing Perspective (3rd ed.). Prentice Hall.
- Lentile, Leigh B.; Holden, Zachary A.; Smith, Alistair M. S.; Falkowski, Michael J.; Hudak, Andrew T.; Morgan, Penelope; Lewis, Sarah A.; Gessler, Paul E.; Benson, Nate C. (2006). "Remote sensing techniques to assess active fire characteristics and post-fire effects". International Journal of Wildland Fire. 3 (15): 319–345. doi:10.1071/WF05097. S2CID 724358.
- Lillesand, T. M.; R. W. Kiefer; J. W. Chipman (2003). Remote sensing and image interpretation (5th ed.). Wiley. ISBN 978-0-471-15227-9.
- Richards, J. A.; X. Jia (2006). Remote sensing digital image analysis: an introduction (4th ed.). Springer. ISBN 978-3-540-25128-6.
- Datla, R.U.; Rice, J.P.; Lykke, K.R.; Johnson, B.C.; Butler, J.J.; Xiong, X. (March–April 2011). "Best practice guidelines for pre-launch characterization and calibration of instruments for passive optical remote sensing". Journal of Research of the National Institute of Standards and Technology. 116 (2): 612–646. doi:10.6028/jres.116.009. PMC 4550341. PMID 26989588.
- KUENZER, C. ZHANG, J., TETZLAFF, A., and S. DECH, 2013: Thermal Infrared Remote Sensing of Surface and underground Coal Fires. In (eds.) Kuenzer, C. and S. Dech 2013: Thermal Infrared Remote Sensing – Sensors, Methods, Applications. Remote Sensing and Digital Image Processing Series, Volume 17, 572 pp., ISBN 978-94-007-6638-9, pp. 429–451
- Kuenzer, C. and S. Dech 2013: Thermal Infrared Remote Sensing – Sensors, Methods, Applications. Remote Sensing and Digital Image Processing Series, Volume 17, 572 pp., ISBN 978-94-007-6638-9
- Lasaponara, R. and Masini N. 2012: Satellite Remote Sensing - A new tool for Archaeology. Remote Sensing and Digital Image Processing Series, Volume 16, 364 pp., ISBN 978-90-481-8801-7.
- Dupuis, C.; Lejeune, P.; Michez, A.; Fayolle, A. How Can Remote Sensing Help Monitor Tropical Moist Forest Degradation?—A Systematic Review. Remote Sens. 2020, 12, 1087. https://www.mdpi.com/2072-4292/12/7/1087
बाहरी संबंध
- Media related to सुदूर संवेदन (रिमोट सेंसिंग) at Wikimedia Commons
- Remote Sensing at Curlie