अनुमान का नियम: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Systematic logical process capable of deriving a conclusion from hypotheses}} | {{Short description|Systematic logical process capable of deriving a conclusion from hypotheses}} | ||
{{Transformation rules}} | {{Transformation rules}} | ||
तर्कशास्त्र के दर्शन में, अनुमान नियम या परिवर्तन नियम [[तार्किक रूप]] है जिसमें फ़ंक्शन होता है जो परिसर लेता है, उनके [[सिंटेक्स (तर्क)|वाक्य-विन्यास(तर्क)]] का विश्लेषण करता है, और निष्कर्ष (या [[बहु-निष्कर्ष तर्क]]) देता है। उदाहरण के लिए, ''[[मूड सेट करना]]'' नाम का अनुमान नियम दो आधारवाक्य लेता है, यदि p तो q और दूसरा p के रूप में होता है, और निष्कर्ष q लौटाता है। नियम [[शास्त्रीय तर्क|मौलिक तर्क]] (साथ ही कई अन्य गैर-मौलिक लॉजिक्स के शब्दार्थ) के शब्दार्थ के संबंध में मान्य है, इस अर्थ में कि यदि परिसर सत्य हैं (एक व्याख्या के अनुसार ), तो निष्कर्ष भी सत्य होगा। | तर्कशास्त्र के दर्शन में, अनुमान नियम या परिवर्तन नियम [[तार्किक रूप]] है जिसमें फ़ंक्शन होता है जो परिसर क्षेत्र लेता है, उनके [[सिंटेक्स (तर्क)|वाक्य-विन्यास(तर्क)]] का विश्लेषण करता है, और निष्कर्ष (या [[बहु-निष्कर्ष तर्क]]) देता है। उदाहरण के लिए, ''[[मूड सेट करना|मूड समुच्चय करना]]'' नाम का अनुमान नियम दो आधारवाक्य लेता है, यदि p तो q और दूसरा p के रूप में होता है, और निष्कर्ष में q लौटाता है। यह नियम [[शास्त्रीय तर्क|मौलिक तर्क]] (साथ ही कई अन्य गैर-मौलिक लॉजिक्स के शब्दार्थ) के शब्दार्थ के संबंध में मान्य है, इस अर्थ में कि यदि परिसर सत्य हैं (एक व्याख्या के अनुसार ), तो निष्कर्ष भी सत्य होगा। | ||
सामान्यतः, अनुमान का नियम सत्यता को बनाए रखता है,जो सिमेंटिक संपत्ति को संरक्षित करता है। [[बहु-मूल्यवान तर्क]] में, यह सामान्य पदनाम को सुरक्षित रखता है। किन्तु अनुमान की कार्रवाई का नियम विशुद्ध रूप से वाक्य-विन्यास है, और किसी भी शब्दार्थ संपत्ति को संरक्षित करने की आवश्यकता नहीं है: सूत्रों के | सामान्यतः, अनुमान का नियम सत्यता को बनाए रखता है,जो सिमेंटिक संपत्ति को संरक्षित करता है। [[बहु-मूल्यवान तर्क]] में, यह सामान्य पदनाम को सुरक्षित रखता है। किन्तु अनुमान की कार्रवाई का नियम विशुद्ध रूप से वाक्य-विन्यास है, और किसी भी शब्दार्थ संपत्ति को संरक्षित करने की आवश्यकता नहीं है: सूत्रों के समुच्चय से सूत्र तक कोई भी कार्य अनुमान के नियम के रूप में गिना जाता है। सामान्यतः एकमात्र [[प्रत्यावर्तन]] वाले नियम ही महत्वपूर्ण होते हैं; अर्थात नियम ऐसे हैं कि यह निर्धारित करने के लिए [[प्रभावी प्रक्रिया]] है कि क्या कोई दिया गया सूत्र नियम के अनुसार सूत्रों के दिए गए समुच्चय का निष्कर्ष है। नियम का उदाहरण जो इस अर्थ में प्रभावी नहीं है, अनंत ω-सुसंगत सिद्धांत या ω-नियम कहलाता है।<ref>{{Cite book | last1 = Boolos | first1 = George | last2 = Burgess | first2 = John | last3 = Jeffrey | first3 = Richard C. | title = Computability and logic | year = 2007 | publisher = Cambridge University Press | location = Cambridge | isbn = 0-521-87752-0 | page = [https://archive.org/details/computabilitylog0000bool/page/364 364] | url = https://archive.org/details/computabilitylog0000bool/page/364 }}</ref> | ||
प्रस्तावपरक तर्क में अनुमान के लोकप्रिय नियमों में मोडस पोनेन्स, [[मूड ले रहा है]] और [[कोंटरापज़िशन]] सम्मलित हैं। प्रथम-क्रम [[विधेय तर्क]] [[तार्किक परिमाणक|तार्किक परिमाणकों]] से निपटने के लिए अनुमान के नियमों का उपयोग करता है। | प्रस्तावपरक तर्क में अनुमान के लोकप्रिय नियमों में मोडस पोनेन्स, [[मूड ले रहा है]] और [[कोंटरापज़िशन]] सम्मलित हैं। प्रथम-क्रम [[विधेय तर्क]] [[तार्किक परिमाणक|तार्किक परिमाणकों]] से निपटने के लिए अनुमान के नियमों का उपयोग करता है। | ||
Line 12: | Line 12: | ||
परिसर # 1<br>परिसर#2<br> ...<br> <u>परिसर#n </u><br> निष्कर्ष | परिसर # 1<br>परिसर#2<br> ...<br> <u>परिसर#n </u><br> निष्कर्ष | ||
यह अभिव्यक्ति बताती है कि जब भी कुछ तार्किक व्युत्पत्ति के समय दिए गए परिसर को प्राप्त किया जाता है, तो निर्दिष्ट निष्कर्ष भी लिया | यह अभिव्यक्ति बताती है कि जब भी कुछ तार्किक व्युत्पत्ति के समय दिए गए परिसर को प्राप्त किया जाता है, तो निर्दिष्ट निष्कर्ष भी लिया जाता है। परिसर और निष्कर्ष दोनों का वर्णन करने के लिए उपयोग की जाने वाली त्रुटिहीन औपचारिक भाषा व्युत्पत्तियों के वास्तविक संदर्भ पर निर्भर करती है। साधारण स्थितियों में, तार्किक सूत्रों का उपयोग किया जाता है, जैसे कि: | ||
: <math>A \to B</math> | : <math>A \to B</math> | ||
: <math>\underline{A \quad \quad \quad}\,\!</math> | : <math>\underline{A \quad \quad \quad}\,\!</math> | ||
: <math>B\!</math> | : <math>B\!</math> | ||
यह प्रस्तावपरक तर्क का मोडस पोनेन्स नियम है। अनुमान के नियम प्रायः [[मेटावैरिएबल|मेटावेरिएबल्स]] को नियोजित करने वाले [[स्कीमा (तर्क)]] के रूप में तैयार किए जाते हैं।<ref name="Reynolds2009">{{cite book|author=John C. Reynolds|title=Theories of Programming Languages|url=https://books.google.com/books?id=2OwlTC4SOccC&pg=PA12|year=2009|orig-year=1998|publisher=Cambridge University Press|isbn=978-0-521-10697-9|page=12}}</ref> उपरोक्त नियम (स्कीमा) में, अनुमान नियमों का [[अनंत सेट]] बनाने के लिए मेटावेरिएबल्स | यह प्रस्तावपरक तर्क का मोडस पोनेन्स नियम है। अनुमान के नियम प्रायः [[मेटावैरिएबल|मेटावेरिएबल्स]] को नियोजित करने वाले [[स्कीमा (तर्क)]] के रूप में तैयार किए जाते हैं।<ref name="Reynolds2009">{{cite book|author=John C. Reynolds|title=Theories of Programming Languages|url=https://books.google.com/books?id=2OwlTC4SOccC&pg=PA12|year=2009|orig-year=1998|publisher=Cambridge University Press|isbn=978-0-521-10697-9|page=12}}</ref> उपरोक्त नियम (स्कीमा) में, अनुमान नियमों का [[अनंत सेट|अनंत समुच्चय]] बनाने के लिए मेटावेरिएबल्स A और B को ब्रह्मांड के किसी भी तत्व (या कभी-कभी, सम्मेलन के माध्यम से, प्रतिबंधित उपसमुच्चय जैसे [[प्रस्ताव]]) के लिए तत्काल किया जाता है। | ||
सबूत बनाने के लिए साथ बंधे नियमों के | सबूत बनाने के लिए साथ बंधे नियमों के समुच्चय से सबूत प्रणाली बनाई जाती है, जिसे व्युत्पत्ति भी कहा जाता है। किसी भी व्युत्पत्ति का एकमात्र अंतिम निष्कर्ष होता है, जो कि सिद्ध या व्युत्पन्न कथन है। यदि आधारवाक्य व्युत्पत्ति में असंतुष्ट छोड़ दिया जाता है, तो व्युत्पत्ति काल्पनिक कथन का प्रमाण है: यदि परिसर धारण करता है, तो निष्कर्ष धारण करता है। | ||
== उदाहरण: दो प्रस्तावपरक तर्कों के लिए हिल्बर्ट प्रणाली == | == उदाहरण: दो प्रस्तावपरक तर्कों के लिए हिल्बर्ट प्रणाली == | ||
एक [[हिल्बर्ट प्रणाली]] में, परिसर और निष्कर्ष नियमों का निष्कर्ष एकमात्र कुछ भाषा के सूत्र हैं, सामान्यतः मेटावेरिएबल्स को नियोजित करते हैं। प्रस्तुति की ग्राफिकल कॉम्पैक्टनेस के लिए और स्वयंसिद्धों और अनुमान के नियमों के बीच अंतर पर | एक [[हिल्बर्ट प्रणाली]] में, परिसर और निष्कर्ष नियमों का निष्कर्ष एकमात्र कुछ भाषा के सूत्र हैं, सामान्यतः मेटावेरिएबल्स को नियोजित करते हैं। प्रस्तुति की ग्राफिकल कॉम्पैक्टनेस के लिए और स्वयंसिद्धों और अनुमान के नियमों के बीच अंतर पर बल देने के लिए, यह खंड अनुक्रम संकेतन का उपयोग करता है तथा (<math>\vdash</math>) नियमों की लंबवत प्रस्तुति के अतिरिक्त के रूप में इसे अंकित किया जाता हैं। | ||
<math>\begin{array}{c} | <math>\begin{array}{c} | ||
Line 31: | Line 31: | ||
के रूप में लिखा गया है <math>(\text{Premise} 1), (\text{Premise} 2) \vdash (\text{Conclusion})</math>. | के रूप में लिखा गया है <math>(\text{Premise} 1), (\text{Premise} 2) \vdash (\text{Conclusion})</math>. | ||
मौलिक तर्कवाक्य तर्क के लिए औपचारिक भाषा को एकमात्र निषेध (¬), निहितार्थ (→) और प्रस्तावात्मक प्रतीकों का उपयोग करके व्यक्त किया | मौलिक तर्कवाक्य तर्क के लिए औपचारिक भाषा को एकमात्र निषेध (¬), निहितार्थ (→) और प्रस्तावात्मक प्रतीकों का उपयोग करके व्यक्त किया जाता है। प्रसिद्ध स्वयंसिद्धकरण, जिसमें तीन स्वयंसिद्ध स्कीमाटा और अनुमान नियम (मॉडस पोनेन्स) सम्मलित हैं: | ||
( | (CA1) ⊢ A → (B → A)<br/> | ||
( | (CA2) ⊢ (A → (B → C)) → ((A → B) → (A → C))<br/> | ||
( | (CA3) ⊢ (¬A → ¬B) → (B → A)<br/> | ||
( | (MP) A, A → B ⊢ B | ||
इस स्थितियों में अनुमान की दो धारणाएँ बेमानी लग सकती हैं, ⊢ और →। मौलिक तर्कवाक्य तर्क में, वे वास्तव में मेल खाते हैं; [[कटौती प्रमेय]] बताता है कि | इस स्थितियों में अनुमान की दो धारणाएँ बेमानी लग सकती हैं, ⊢ और →। मौलिक तर्कवाक्य तर्क में, वे वास्तव में मेल खाते हैं; [[कटौती प्रमेय]] बताता है कि A ⊢ B यदि और एकमात्र यदि ⊢ A → B है। चूंकि इस स्थितियों में भी बल देने मुख्य अंतर है: पहला अंकन [[निगमनात्मक तर्क]] का वर्णन करता है, जो वाक्यों से वाक्यों में जाने की गतिविधि है, चूँकि A → B इस स्थितियों में [[तार्किक संयोजक]], निहितार्थ के साथ बनाया गया सूत्र है। अनुमान नियम के बिना (इस स्थितियों में मोडस पोनेन्स की प्रकार), कोई कटौती या अनुमान नहीं है। इस बिंदु को [[लुईस कैरोल]] के संवाद में चित्रित किया गया है, जिसे कछुए ने अकिलिस से कहा था,<ref name="ChiaraDoets1996">{{cite book|editor1=Maria Luisa Dalla Chiara|editor1-link= Maria Luisa Dalla Chiara |editor2=Kees Doets |editor3=Daniele Mundici |editor4=Johan van Benthem |title=Logic and Scientific Methods: Volume One of the Tenth International Congress of Logic, Methodology and Philosophy of Science, Florence, August 1995|url=https://books.google.com/books?id=TCthvF8xLIAC&pg=PA290|year=1996|publisher=Springer|isbn=978-0-7923-4383-7|page=290|chapter=Logical consequence: a turn in style|author=Kosta Dosen}} [http://www.mi.sanu.ac.rs/~kosta/LOGCONS.pdf preprint (with different pagination)]</ref> साथ ही साथ "व्हाट द टॉरटॉइज़ सेड टू अकिलिस" डिस्कशन के माध्यम से संवाद में प्रस्तुत किए गए विरोधाभास को हल करने के पश्चात प्रयास किया गया था। | ||
कुछ गैर-मौलिक लॉजिक्स के लिए, कटौती प्रमेय लागू नहीं होता है। उदाहरण के लिए, लुकासिविक्ज़ के [[तीन-मूल्यवान तर्क]] को स्वयंसिद्ध किया | कुछ गैर-मौलिक लॉजिक्स के लिए, कटौती प्रमेय लागू नहीं होता है। उदाहरण के लिए, लुकासिविक्ज़ के [[तीन-मूल्यवान तर्क]] को स्वयंसिद्ध किया जाता है:<ref>{{Cite book|first=Merrie |last=Bergmann|title=An introduction to many-valued and fuzzy logic: semantics, algebras, and derivation systems|url=https://archive.org/details/introductiontoma00mber |url-access=limited |year=2008|publisher=Cambridge University Press|isbn=978-0-521-88128-9|page=[https://archive.org/details/introductiontoma00mber/page/n113 100]}}</ref> | ||
(CA1) ⊢ A → (B → A)<br /> | |||
(LA2) ⊢ (A → B) → ((B → C) → (A → C))<br/> | |||
(CA3) ⊢ (¬A → ¬B) → (B → A)<br/> | |||
(LA4) ⊢ ((A → ¬A) → A) → A<br/> | |||
(MP) A, A → B ⊢ B | |||
यह अनुक्रम मौलिक तर्क से स्वयंसिद्ध 2 में परिवर्तन और अभिगृहीत 4 के जोड़ से भिन्न है। मौलिक कटौती प्रमेय इस तर्क के लिए मान्य नहीं है, चूंकि संशोधित रूप धारण करता है, अर्थात् ए ⊢ बी यदि और एकमात्र यदि ⊢ A → (A → B) हैं।<ref>{{Cite book|first=Merrie |last=Bergmann|title=An introduction to many-valued and fuzzy logic: semantics, algebras, and derivation systems|url=https://archive.org/details/introductiontoma00mber |url-access=limited |year=2008|publisher=Cambridge University Press|isbn=978-0-521-88128-9|page=[https://archive.org/details/introductiontoma00mber/page/n127 114]}}</ref> | |||
== स्वीकार्यता और व्युत्पन्नता == | == स्वीकार्यता और व्युत्पन्नता == | ||
{{main|स्वीकार्य नियम}} | {{main|स्वीकार्य नियम}} | ||
नियमों के | नियमों के समुच्चय में, अनुमान नियम इस अर्थ में गलत होता है कि यह स्वीकार्य या व्युत्पन्न है। व्युत्पन्न नियम वह है जिसका निष्कर्ष अन्य नियमों का उपयोग करके इसके परिसर से प्राप्त किया जाता है। स्वीकार्य नियम वह है जिसका निष्कर्ष जब भी परिसर धारण करता है। सभी व्युत्पन्न नियम स्वीकार्य किया जाता हैं। अंतर की सराहना करने के लिए, [[प्राकृतिक संख्या]]ओं ([[प्राकृतिक कटौती]]) को परिभाषित करने के लिए नियमों के निम्नलिखित समुच्चय <math>n\,\,\mathsf{nat}</math> पर विचार करें तथा इस तथ्य को पुष्ट करता है <math>n</math> प्राकृतिक संख्या है): | ||
: <math>\begin{matrix} | : <math>\begin{matrix} | ||
Line 59: | Line 57: | ||
\begin{array}{c}{n \,\,\mathsf{nat}} \\ \hline {\mathbf{s(}n\mathbf{)} \,\,\mathsf{nat}} \end{array} | \begin{array}{c}{n \,\,\mathsf{nat}} \\ \hline {\mathbf{s(}n\mathbf{)} \,\,\mathsf{nat}} \end{array} | ||
\end{matrix}</math> | \end{matrix}</math> | ||
पहला नियम बताता है कि 0 प्राकृतिक संख्या है, और दूसरा बताता है कि s(''n'') प्राकृतिक संख्या है यदि ''n'' है। इस प्रमाण प्रणाली में, निम्नलिखित नियम, यह प्रदर्शित करता है कि प्राकृतिक संख्या का दूसरा उत्तराधिकारी भी प्राकृतिक संख्या है, व्युत्पन्न है: | यहाँ पर पहला नियम बताता है कि 0 प्राकृतिक संख्या है, और दूसरा बताता है कि s(''n'') प्राकृतिक संख्या है यदि ''n'' है। इस प्रमाण प्रणाली में, निम्नलिखित नियम, यह प्रदर्शित करता है कि प्राकृतिक संख्या का दूसरा उत्तराधिकारी भी प्राकृतिक संख्या है, व्युत्पन्न है: | ||
: <math>\begin{array}{c} | : <math>\begin{array}{c} | ||
Line 65: | Line 63: | ||
{\mathbf{s(s(}n\mathbf{))} \,\,\mathsf{nat}} | {\mathbf{s(s(}n\mathbf{))} \,\,\mathsf{nat}} | ||
\end{array}</math> | \end{array}</math> | ||
इसकी व्युत्पत्ति उपरोक्त उत्तराधिकारी नियम के दो उपयोगों की रचना है। किसी भी अशून्य संख्या के लिए पूर्ववर्ती के अस्तित्व पर | इसकी व्युत्पत्ति उपरोक्त उत्तराधिकारी नियम के दो उपयोगों की रचना है। किसी भी अशून्य संख्या के लिए पूर्ववर्ती के अस्तित्व पर बल देने के लिए निम्नलिखित नियम एकमात्र स्वीकार्य है: | ||
: <math>\begin{array}{c} | : <math>\begin{array}{c} | ||
Line 71: | Line 69: | ||
{n \,\,\mathsf{nat}} | {n \,\,\mathsf{nat}} | ||
\end{array}</math> | \end{array}</math> | ||
यह प्राकृतिक संख्याओं का सत्य तथ्य है, जैसा कि गणितीय आगमन के माध्यम से सिद्ध किया | यह प्राकृतिक संख्याओं का सत्य तथ्य है, जैसा कि गणितीय आगमन के माध्यम से सिद्ध किया जाता है। (यह सिद्ध करने के लिए कि यह नियम स्वीकार्य है, आधारवाक्य की व्युत्पत्ति मान लें और इसकी व्युत्पत्ति उत्पन्न करने के लिए इसे <math>n \,\,\mathsf{nat}</math> में सम्मलित करते हैं।) चूंकि, यह व्युत्पन्न नहीं है, क्योंकि यह आधार की व्युत्पत्ति की संरचना पर निर्भर करता है। इस वजह से, प्रूफ प्रणाली में अतिरिक्त के अनुसार व्युत्पत्ति स्थिर है, चूँकि स्वीकार्यता नहीं है। अंतर देखने के लिए, मान लीजिए कि निम्नलिखित नियम को प्रमाणित करके प्रणाली में जोड़ा गया हैं: | ||
: <math>\begin{array}{c}\\\hline {\mathbf{s(-3)} \,\,\mathsf{nat}} \end{array}</math> | : <math>\begin{array}{c}\\\hline {\mathbf{s(-3)} \,\,\mathsf{nat}} \end{array}</math> | ||
इस नई प्रणाली में, दोहरा-उत्तराधिकारी नियम अभी भी व्युत्पन्न है। चूँकि, पूर्ववर्ती को खोजने का नियम अब स्वीकार्य नहीं है, क्योंकि व्युत्पन्न करने का कोई विधि नहीं है <math>\mathbf{-3} \,\,\mathsf{nat}</math>. स्वीकार्यता की भंगुरता इसे सिद्ध करने के | इस नई प्रणाली में, दोहरा-उत्तराधिकारी नियम अभी भी व्युत्पन्न है। चूँकि, पूर्ववर्ती को खोजने का नियम अब स्वीकार्य नहीं है, क्योंकि व्युत्पन्न करने का कोई विधि नहीं है <math>\mathbf{-3} \,\,\mathsf{nat}</math>. स्वीकार्यता की भंगुरता इसे सिद्ध करने के विधियों से आती है: चूंकि सबूत परिसर की व्युत्पत्तियों की संरचना पर सम्मलित होता है, प्रणाली में विस्तार इस सबूत में नए स्थितियों जोड़ते हैं, जो अब पकड़ में नहीं आ सकते हैं। | ||
स्वीकार्य नियमों को प्रमाण प्रणाली के [[प्रमेय|प्रमेयों]] के रूप में माना | स्वीकार्य नियमों को प्रमाण प्रणाली के [[प्रमेय|प्रमेयों]] के रूप में माना जाता है। उदाहरण के लिए, अनुक्रम कलन में जहां कट विलोपन होता है, कट नियम स्वीकार्य है। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 02:05, 17 February 2023
तर्कशास्त्र के दर्शन में, अनुमान नियम या परिवर्तन नियम तार्किक रूप है जिसमें फ़ंक्शन होता है जो परिसर क्षेत्र लेता है, उनके वाक्य-विन्यास(तर्क) का विश्लेषण करता है, और निष्कर्ष (या बहु-निष्कर्ष तर्क) देता है। उदाहरण के लिए, मूड समुच्चय करना नाम का अनुमान नियम दो आधारवाक्य लेता है, यदि p तो q और दूसरा p के रूप में होता है, और निष्कर्ष में q लौटाता है। यह नियम मौलिक तर्क (साथ ही कई अन्य गैर-मौलिक लॉजिक्स के शब्दार्थ) के शब्दार्थ के संबंध में मान्य है, इस अर्थ में कि यदि परिसर सत्य हैं (एक व्याख्या के अनुसार ), तो निष्कर्ष भी सत्य होगा।
सामान्यतः, अनुमान का नियम सत्यता को बनाए रखता है,जो सिमेंटिक संपत्ति को संरक्षित करता है। बहु-मूल्यवान तर्क में, यह सामान्य पदनाम को सुरक्षित रखता है। किन्तु अनुमान की कार्रवाई का नियम विशुद्ध रूप से वाक्य-विन्यास है, और किसी भी शब्दार्थ संपत्ति को संरक्षित करने की आवश्यकता नहीं है: सूत्रों के समुच्चय से सूत्र तक कोई भी कार्य अनुमान के नियम के रूप में गिना जाता है। सामान्यतः एकमात्र प्रत्यावर्तन वाले नियम ही महत्वपूर्ण होते हैं; अर्थात नियम ऐसे हैं कि यह निर्धारित करने के लिए प्रभावी प्रक्रिया है कि क्या कोई दिया गया सूत्र नियम के अनुसार सूत्रों के दिए गए समुच्चय का निष्कर्ष है। नियम का उदाहरण जो इस अर्थ में प्रभावी नहीं है, अनंत ω-सुसंगत सिद्धांत या ω-नियम कहलाता है।[1]
प्रस्तावपरक तर्क में अनुमान के लोकप्रिय नियमों में मोडस पोनेन्स, मूड ले रहा है और कोंटरापज़िशन सम्मलित हैं। प्रथम-क्रम विधेय तर्क तार्किक परिमाणकों से निपटने के लिए अनुमान के नियमों का उपयोग करता है।
मानक रूप
औपचारिक तर्क (और कई संबंधित क्षेत्रों) में, अनुमान के नियम सामान्यतः निम्नलिखित मानक रूप में दिए जाते हैं:
परिसर # 1
परिसर#2
...
परिसर#n
निष्कर्ष
यह अभिव्यक्ति बताती है कि जब भी कुछ तार्किक व्युत्पत्ति के समय दिए गए परिसर को प्राप्त किया जाता है, तो निर्दिष्ट निष्कर्ष भी लिया जाता है। परिसर और निष्कर्ष दोनों का वर्णन करने के लिए उपयोग की जाने वाली त्रुटिहीन औपचारिक भाषा व्युत्पत्तियों के वास्तविक संदर्भ पर निर्भर करती है। साधारण स्थितियों में, तार्किक सूत्रों का उपयोग किया जाता है, जैसे कि:
यह प्रस्तावपरक तर्क का मोडस पोनेन्स नियम है। अनुमान के नियम प्रायः मेटावेरिएबल्स को नियोजित करने वाले स्कीमा (तर्क) के रूप में तैयार किए जाते हैं।[2] उपरोक्त नियम (स्कीमा) में, अनुमान नियमों का अनंत समुच्चय बनाने के लिए मेटावेरिएबल्स A और B को ब्रह्मांड के किसी भी तत्व (या कभी-कभी, सम्मेलन के माध्यम से, प्रतिबंधित उपसमुच्चय जैसे प्रस्ताव) के लिए तत्काल किया जाता है।
सबूत बनाने के लिए साथ बंधे नियमों के समुच्चय से सबूत प्रणाली बनाई जाती है, जिसे व्युत्पत्ति भी कहा जाता है। किसी भी व्युत्पत्ति का एकमात्र अंतिम निष्कर्ष होता है, जो कि सिद्ध या व्युत्पन्न कथन है। यदि आधारवाक्य व्युत्पत्ति में असंतुष्ट छोड़ दिया जाता है, तो व्युत्पत्ति काल्पनिक कथन का प्रमाण है: यदि परिसर धारण करता है, तो निष्कर्ष धारण करता है।
उदाहरण: दो प्रस्तावपरक तर्कों के लिए हिल्बर्ट प्रणाली
एक हिल्बर्ट प्रणाली में, परिसर और निष्कर्ष नियमों का निष्कर्ष एकमात्र कुछ भाषा के सूत्र हैं, सामान्यतः मेटावेरिएबल्स को नियोजित करते हैं। प्रस्तुति की ग्राफिकल कॉम्पैक्टनेस के लिए और स्वयंसिद्धों और अनुमान के नियमों के बीच अंतर पर बल देने के लिए, यह खंड अनुक्रम संकेतन का उपयोग करता है तथा () नियमों की लंबवत प्रस्तुति के अतिरिक्त के रूप में इसे अंकित किया जाता हैं।
के रूप में लिखा गया है .
मौलिक तर्कवाक्य तर्क के लिए औपचारिक भाषा को एकमात्र निषेध (¬), निहितार्थ (→) और प्रस्तावात्मक प्रतीकों का उपयोग करके व्यक्त किया जाता है। प्रसिद्ध स्वयंसिद्धकरण, जिसमें तीन स्वयंसिद्ध स्कीमाटा और अनुमान नियम (मॉडस पोनेन्स) सम्मलित हैं:
(CA1) ⊢ A → (B → A)
(CA2) ⊢ (A → (B → C)) → ((A → B) → (A → C))
(CA3) ⊢ (¬A → ¬B) → (B → A)
(MP) A, A → B ⊢ B
इस स्थितियों में अनुमान की दो धारणाएँ बेमानी लग सकती हैं, ⊢ और →। मौलिक तर्कवाक्य तर्क में, वे वास्तव में मेल खाते हैं; कटौती प्रमेय बताता है कि A ⊢ B यदि और एकमात्र यदि ⊢ A → B है। चूंकि इस स्थितियों में भी बल देने मुख्य अंतर है: पहला अंकन निगमनात्मक तर्क का वर्णन करता है, जो वाक्यों से वाक्यों में जाने की गतिविधि है, चूँकि A → B इस स्थितियों में तार्किक संयोजक, निहितार्थ के साथ बनाया गया सूत्र है। अनुमान नियम के बिना (इस स्थितियों में मोडस पोनेन्स की प्रकार), कोई कटौती या अनुमान नहीं है। इस बिंदु को लुईस कैरोल के संवाद में चित्रित किया गया है, जिसे कछुए ने अकिलिस से कहा था,[3] साथ ही साथ "व्हाट द टॉरटॉइज़ सेड टू अकिलिस" डिस्कशन के माध्यम से संवाद में प्रस्तुत किए गए विरोधाभास को हल करने के पश्चात प्रयास किया गया था।
कुछ गैर-मौलिक लॉजिक्स के लिए, कटौती प्रमेय लागू नहीं होता है। उदाहरण के लिए, लुकासिविक्ज़ के तीन-मूल्यवान तर्क को स्वयंसिद्ध किया जाता है:[4]
(CA1) ⊢ A → (B → A)
(LA2) ⊢ (A → B) → ((B → C) → (A → C))
(CA3) ⊢ (¬A → ¬B) → (B → A)
(LA4) ⊢ ((A → ¬A) → A) → A
(MP) A, A → B ⊢ B
यह अनुक्रम मौलिक तर्क से स्वयंसिद्ध 2 में परिवर्तन और अभिगृहीत 4 के जोड़ से भिन्न है। मौलिक कटौती प्रमेय इस तर्क के लिए मान्य नहीं है, चूंकि संशोधित रूप धारण करता है, अर्थात् ए ⊢ बी यदि और एकमात्र यदि ⊢ A → (A → B) हैं।[5]
स्वीकार्यता और व्युत्पन्नता
नियमों के समुच्चय में, अनुमान नियम इस अर्थ में गलत होता है कि यह स्वीकार्य या व्युत्पन्न है। व्युत्पन्न नियम वह है जिसका निष्कर्ष अन्य नियमों का उपयोग करके इसके परिसर से प्राप्त किया जाता है। स्वीकार्य नियम वह है जिसका निष्कर्ष जब भी परिसर धारण करता है। सभी व्युत्पन्न नियम स्वीकार्य किया जाता हैं। अंतर की सराहना करने के लिए, प्राकृतिक संख्याओं (प्राकृतिक कटौती) को परिभाषित करने के लिए नियमों के निम्नलिखित समुच्चय पर विचार करें तथा इस तथ्य को पुष्ट करता है प्राकृतिक संख्या है):
यहाँ पर पहला नियम बताता है कि 0 प्राकृतिक संख्या है, और दूसरा बताता है कि s(n) प्राकृतिक संख्या है यदि n है। इस प्रमाण प्रणाली में, निम्नलिखित नियम, यह प्रदर्शित करता है कि प्राकृतिक संख्या का दूसरा उत्तराधिकारी भी प्राकृतिक संख्या है, व्युत्पन्न है:
इसकी व्युत्पत्ति उपरोक्त उत्तराधिकारी नियम के दो उपयोगों की रचना है। किसी भी अशून्य संख्या के लिए पूर्ववर्ती के अस्तित्व पर बल देने के लिए निम्नलिखित नियम एकमात्र स्वीकार्य है:
यह प्राकृतिक संख्याओं का सत्य तथ्य है, जैसा कि गणितीय आगमन के माध्यम से सिद्ध किया जाता है। (यह सिद्ध करने के लिए कि यह नियम स्वीकार्य है, आधारवाक्य की व्युत्पत्ति मान लें और इसकी व्युत्पत्ति उत्पन्न करने के लिए इसे में सम्मलित करते हैं।) चूंकि, यह व्युत्पन्न नहीं है, क्योंकि यह आधार की व्युत्पत्ति की संरचना पर निर्भर करता है। इस वजह से, प्रूफ प्रणाली में अतिरिक्त के अनुसार व्युत्पत्ति स्थिर है, चूँकि स्वीकार्यता नहीं है। अंतर देखने के लिए, मान लीजिए कि निम्नलिखित नियम को प्रमाणित करके प्रणाली में जोड़ा गया हैं:
इस नई प्रणाली में, दोहरा-उत्तराधिकारी नियम अभी भी व्युत्पन्न है। चूँकि, पूर्ववर्ती को खोजने का नियम अब स्वीकार्य नहीं है, क्योंकि व्युत्पन्न करने का कोई विधि नहीं है . स्वीकार्यता की भंगुरता इसे सिद्ध करने के विधियों से आती है: चूंकि सबूत परिसर की व्युत्पत्तियों की संरचना पर सम्मलित होता है, प्रणाली में विस्तार इस सबूत में नए स्थितियों जोड़ते हैं, जो अब पकड़ में नहीं आ सकते हैं।
स्वीकार्य नियमों को प्रमाण प्रणाली के प्रमेयों के रूप में माना जाता है। उदाहरण के लिए, अनुक्रम कलन में जहां कट विलोपन होता है, कट नियम स्वीकार्य है।
यह भी देखें
- तर्क योजना
- तत्काल अनुमान
- अनुमान आपत्ति
- विचार का नियम
- अनुमान के नियमों की सूची
- तार्किक सत्य
- संरचनात्मक नियम
संदर्भ
- ↑ Boolos, George; Burgess, John; Jeffrey, Richard C. (2007). Computability and logic. Cambridge: Cambridge University Press. p. 364. ISBN 0-521-87752-0.
- ↑ John C. Reynolds (2009) [1998]. Theories of Programming Languages. Cambridge University Press. p. 12. ISBN 978-0-521-10697-9.
- ↑ Kosta Dosen (1996). "Logical consequence: a turn in style". In Maria Luisa Dalla Chiara; Kees Doets; Daniele Mundici; Johan van Benthem (eds.). Logic and Scientific Methods: Volume One of the Tenth International Congress of Logic, Methodology and Philosophy of Science, Florence, August 1995. Springer. p. 290. ISBN 978-0-7923-4383-7. preprint (with different pagination)
- ↑ Bergmann, Merrie (2008). An introduction to many-valued and fuzzy logic: semantics, algebras, and derivation systems. Cambridge University Press. p. 100. ISBN 978-0-521-88128-9.
- ↑ Bergmann, Merrie (2008). An introduction to many-valued and fuzzy logic: semantics, algebras, and derivation systems. Cambridge University Press. p. 114. ISBN 978-0-521-88128-9.