गणितीय अनुकूलन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 44: Line 44:


== संकेतन ==
== संकेतन ==
अनुकूलन समस्याओं को अक्सर विशेष संकेतन के साथ व्यक्त किया जाता है।यहां कुछ उदाहरण दिए गए हैं:
अनुकूलन समस्याओं को अक्सर विशेष संकेतन के साथ व्यक्त किया जाता है। यहां कुछ उदाहरण दिए गए हैं:


=== न्यूनतम और एक फलनका अधिकतम मूल्य ===
=== फलन का न्यूनतम और अधिकतम मूल्य ===
निम्नलिखित संकेतन पर विचार करें:<math>\min_{x\in\mathbb R}\; \left(x^2 + 1\right)</math>
निम्नलिखित संकेतन पर विचार करें:


यह उद्देश्य फलनके न्यूनतम  [[ मान (गणित) |  मान ]] को दर्शाता है {{math|''x''<sup>2</sup> + 1}}, जब चुनना {{mvar|x}}  [[ वास्तविक संख्या ]] एस के सेट से {{math|ℝ}}।इस मामले में न्यूनतम मूल्य 1 है, पर होता है {{math|x {{=}} 0}}।
<math>\min_{x\in\mathbb R}\; \left(x^2 + 1\right)</math>


इसी तरह, संकेतन<math>\max_{x\in\mathbb R}\; 2x</math>
यह उद्देश्य फलन {{math|''x''<sup>2</sup> + 1}} के न्यूनतम[[ मान (गणित) | मान]] को दर्शाता है, जब [[ वास्तविक संख्या |वास्तविक संख्याओं]] {{math|ℝ}} के समुच्चय में से {{mvar|x}} का चयन करते है। इस मामले में न्यूनतम मूल्य 1 है, जो {{math|x {{=}} 0}} पर घटित होता है।


उद्देश्य फलनके अधिकतम मूल्य के लिए पूछता है {{math|2''x''}}, कहाँ पे {{mvar|x}} कोई भी वास्तविक संख्या हो सकती है।इस मामले में, ऐसा कोई अधिकतम नहीं है क्योंकि उद्देश्य फलनअनबाउंड है, इसलिए इसका उत्तर  [[ इन्फिनिटी ]] या अपरिभाषित है।
इसी तरह, संकेतन
 
<math>\max_{x\in\mathbb R}\; 2x</math>
 
उद्देश्य फलन {{math|2''x''}} का अधिकतम मान माँगता है, जहाँ पे {{mvar|x}} कोई भी वास्तविक संख्या हो सकती है। इस मामले में, ऐसा कोई अधिकतम नहीं है क्योंकि उद्देश्य फलन असीमित है, इसलिए इसका उत्तर  [[ इन्फिनिटी |"अनंत"]] या "अपरिभाषित" है।


=== इष्टतम इनपुट तर्क ===
=== इष्टतम इनपुट तर्क ===

Revision as of 11:44, 16 February 2023

a का ग्राफ z = f(x, y) = −(x² + y²) + 4 द्वारा दिया गया है। (x, y, z) = (0, 0, 4) पर वैश्विक अधिकतम एक नीले बिंदु द्वारा इंगित किया गया है।
नेल्डर-मीड की सिमियोनेस्कु फलन पर न्यूनतम खोज। संकेतन शीर्ष को उनके मानों द्वारा क्रमबद्ध किया जाता है, जिसमें 1 सबसे कम (fx सर्वोत्तम) मान होता है।

गणितीय अनुकूलन (वैकल्पिक रूप से वर्तनी अनुकूलन ) या गणितीय कार्यरचना उपलब्ध विकल्पों के कुछ सेट से कुछ मानदंड के संबंध में,[1] सर्वोत्तम तत्व का चयन है। इसे आम तौर पर दो उपक्षेत्रों में विभाजित किया जाता है: असतत अनुकूलन और निरंतर अनुकूलन। कंप्यूटर विज्ञान और इंजीनियरिंग से लेकर संचालन अनुसंधान और अर्थशास्त्र तक सभी मात्रात्मक विषयों में प्रकार की अनुकूलन समस्याएं उत्पन्न होती हैं,[2] और समाधान विधियों का विकास गणित में सदियों से रुचि रखता रहा है।[3]

सामान्य दृष्टिकोण में, अनुकूलन समस्या में एक अनुमत सेट के भीतर से निवेश मानों को व्यवस्थित रूप से चुनकर वास्तविक फलन को अधिकतम या कम से कम करना और फलन के मान की गणना करना शामिल है। अन्य योगों के लिए अनुकूलन सिद्धांत और तकनीकों का सामान्यीकरण अनुप्रयुक्त गणित के एक बड़े क्षेत्र का गठन करता है। आम तौर पर, अनुकूलन में परिभाषित डोमेन (या निवेश) में से दिए गए कुछ उद्देश्य फलन के "सर्वोत्तम उपलब्ध" मानों को खोजना शामिल है, जिसमें विभिन्न प्रकार के उद्देश्य फलन और विभिन्न प्रकार के डोमेन शामिल हैं।

अनुकूलन समस्याएं

अनुकूलन समस्याओं को दो श्रेणियों में विभाजित किया जा सकता है, यह इस बात पर निर्भर करता है कि चर निरंतर हैं या असतत:

  • असतत चर के साथ अनुकूलन समस्या असतत अनुकूलन के रूप में जानी जाती है, जिसमें पूर्णांक, क्रमचय या ग्राफ जैसी वस्तु को एक गणनीय सेट से पाया जाना चाहिए।
  • निरंतर चर के साथ एक समस्या को निरंतर अनुकूलन के रूप में जाना जाता है, जिसमें निरंतर कार्य से इष्टतम मूल्य मिलना चाहिए। वे विवश समस्याओं और बहुविध समस्याओं को भी शामिल कर सकते हैं।

अनुकूलन समस्या को निम्नलिखित तरीके से दर्शाया जा सकता है:

दिया गया: फलन f : A → ℝ सेट A से वास्तविक संख्या तक
मांग: तत्व x0A ऐसा है कि f(x0) ≤ f(x) सभी xA (कम से कम) के लिए या f(x0) ≥ f(x) सभी xA (अधिकतमकरण) के लिए।

इस तरह के सूत्रीकरण को अनुकूलन समस्या या गणितीय कार्यरचना समस्या कहा जाता है (एक शब्द सीधे कंप्यूटर कार्यरचना से संबंधित नहीं है, लेकिन अभी भी रैखिक कार्यरचना में उदाहरण के लिए उपयोग में है - इतिहास नीचे देखें)। कई वास्तविक दुनिया और सैद्धांतिक समस्याओं को इस सामान्य ढांचे में प्रतिरूपित जा सकता है।

चूंकि निम्नलिखित मान्य है

यह केवल न्यूनीकरण की समस्याओं को हल करने के लिए पर्याप्त है। हालाँकि, केवल अधिकतमकरण की समस्याओं पर विचार करने का विपरीत परिप्रेक्ष्य भी मान्य होगा।

भौतिकी के क्षेत्रों में इस तकनीक का उपयोग करके तैयार की गई समस्याएं तकनीक को ऊर्जा न्यूनतमकरण के रूप में संदर्भित कर सकती हैं, जो फलन f के मूल्य की बात करते हुए सिस्टम की ऊर्जा का प्रतिनिधित्व करती है। यंत्र अधिगम में, मूल्य फलन का उपयोग करके आँकड़ा निदर्श की गुणवत्ता का लगातार मूल्यांकन करना हमेशा आवश्यक होता है, जहां एक न्यूनतम का अर्थ है कि एक इष्टतम (सबसे कम) त्रुटि के साथ संभवतः इष्टतम मापदंडों का सेट है।

आमतौर पर, A यूक्लिडियन स्पेस n का सबसेट है, जो अक्सर बाधाओं, समानता या असमानताओं के सेट द्वारा निर्दिष्ट होता है जिसे A के सदस्यों को संतुष्ट करना होता है। फलन f के डोमेन A को खोज स्थान या विकल्प सेट कहा जाता है, जबकि A के तत्व उम्मीदवार समाधानया व्यवहार्य समाधान कहा जाता है।

फलन f को, विभिन्न रूप से, उद्देश्य फलन, हानि फलन या लागत फलन (न्यूनीकरण)[4], उपयोगिता फलन या आरोग्य फलन (अधिकतमकरण), या, कुछ क्षेत्रों में, ऊर्जा फलन या ऊर्जा क्रियात्मक कहा जाता है। व्यवहार्य समाधान जो उद्देश्य फलन को कम करता है (या अधिकतम करता है, यदि वह लक्ष्य है) को इष्टतम समाधान कहा जाता है।

गणित में, पारंपरिक अनुकूलन समस्याएं आमतौर पर न्यूनतमकरण के संदर्भ में बताई जाती हैं।

स्थानीय न्यूनतम x* तत्व के रूप में परिभाषित किया गया है जिसके लिए कुछ δ > 0 मौजूद ऐसा है कि

व्यंजक f(x*) ≤ f(x) धारण करता है;

यानी, x* के आस-पास के किसी क्षेत्र पर सभी फलन मान उस तत्व के मान से अधिक या उसके बराबर हैं। स्थानीय मैक्सिमा को समान रूप से परिभाषित किया गया है।

जबकि स्थानीय न्यूनतम कम से कम किसी भी आस -पास के तत्वों जितना अच्छा है, वैश्विक न्यूनतम कम से कम उतना ही अच्छा है जितना हर संभव तत्व। आम तौर पर, जब तक कि एक न्यूनीकरण समस्या में उद्देश्य फलन उत्तल नहीं है, तब तक कई स्थानीय न्यूनतम हो सकते हैं। उत्तल समस्या में, अगर कोई स्थानीय न्यूनतम है जो आंतरिक है (व्यवहार्य तत्वों के सेट के किनारे पर नहीं), तो यह वैश्विक न्यूनतम भी है, लेकिन एक गैर-उत्तल समस्या में एक से अधिक स्थानीय न्यूनतम हो सकते हैं, जिनमें से सभी को वैश्विक न्यूनतम की आवश्यकता नहीं है।

गैर-उत्तल समस्याओं को हल करने के लिए प्रस्तावित कलन विधि की एक बड़ी संख्या - व्यावसायिक रूप से उपलब्ध समाधानकर्ता के बहुमत सहित - स्थानीय रूप से इष्टतम समाधानों और विश्व स्तर पर इष्टतम समाधानों के बीच अंतर करने में सक्षम नहीं हैं, और पूर्व को मूल समस्या के वास्तविक समाधान के रूप में मानेंगे। ग्लोबल अनुकूलन अनुप्रयुक्त गणित और संख्यात्मक विश्लेषणस की शाखा है जो कि नियतात्मक कलन विधि के विकास से संबंधित है जो गैर-उत्तल समस्या के वास्तविक इष्टतम समाधान के लिए परिमित समय में अभिसरण की गारंटी देने में सक्षम हैं।

संकेतन

अनुकूलन समस्याओं को अक्सर विशेष संकेतन के साथ व्यक्त किया जाता है। यहां कुछ उदाहरण दिए गए हैं:

फलन का न्यूनतम और अधिकतम मूल्य

निम्नलिखित संकेतन पर विचार करें:

यह उद्देश्य फलन x2 + 1 के न्यूनतम मान को दर्शाता है, जब वास्तविक संख्याओं के समुच्चय में से x का चयन करते है। इस मामले में न्यूनतम मूल्य 1 है, जो x = 0 पर घटित होता है।

इसी तरह, संकेतन

उद्देश्य फलन 2x का अधिकतम मान माँगता है, जहाँ पे x कोई भी वास्तविक संख्या हो सकती है। इस मामले में, ऐसा कोई अधिकतम नहीं है क्योंकि उद्देश्य फलन असीमित है, इसलिए इसका उत्तर "अनंत" या "अपरिभाषित" है।

इष्टतम इनपुट तर्क

निम्नलिखित संकेतन पर विचार करें: या समकक्ष रूप से

यह एक फलन| तर्क ]] के [[ तर्क के मूल्य (या मान) का प्रतिनिधित्व करता है x अंतराल (−∞,−1] यह उद्देश्य फलनको कम (या कम से कम) करता है x2 + 1 (उस फलनका वास्तविक न्यूनतम मूल्य वह नहीं है जो समस्या के लिए पूछती है)।इस मामले में, जवाब है x = −1, के बाद से x = 0 infeasible है, अर्थात्, यह संभव सेट से संबंधित नहीं है।

इसी तरह, या समकक्ष रूप से

प्रतिनिधित्व करता है {x, y} जोड़ी (या जोड़े) जो उद्देश्य फलनके मान को अधिकतम (या अधिकतम) करती है x cos y, अतिरिक्त बाधा के साथ x अंतराल में झूठ बोलना [−5,5] (फिर से, अभिव्यक्ति का वास्तविक अधिकतम मूल्य कोई फर्क नहीं पड़ता)।इस मामले में, समाधान फॉर्म के जोड़े हैं {{math|{5, 2kπ<परत>} {{math|{−5, (2k + 1)π</</war/tress>}, बकाया k सभी पूर्णांक एस पर रेंज।

ऑपरेटर्स arg min और arg max कभी -कभी भी लिखा जाता है argmin और argmax, और न्यूनतम और अधिकतम का तर्क के लिए खड़े होकर खड़े हों।

इतिहास

  फर्मेट  और    लैग्रेंज  ने ऑप्टिमा की पहचान के लिए कैलकुलस-आधारित सूत्र पाए, जबकि    न्यूटन  और    गॉस  ने एक इटोरेंट इंट्रोरेंट वेट्स को आगे बढ़ाया।

कुछ अनुकूलन मामलों के लिए रैखिक कार्यरचना शब्द जॉर्ज & nbsp; बी के कारण था।Dantzig , हालांकि 1939 में लियोनिद कांटोरोविच द्वारा सिद्धांत का अधिकांश हिस्सा पेश किया गया था।संयुक्त राज्य अमेरिका की सेना प्रस्तावित प्रशिक्षण और लॉजिस्टिक्स शेड्यूल का उल्लेख करने के लिए, जो उस समय डैंटज़िग की समस्याओं की समस्याएं थीं।) डैंटज़िग ने 1947 में सिम्प्लेक्स एल्गोरिथ्म प्रकाशित किया, और जॉन वॉन न्यूमैन ने द्वंद्व [citation needed]

गणितीय अनुकूलन में अन्य उल्लेखनीय शोधकर्ताओं में निम्नलिखित शामिल हैं:

<!-वास्तव में, कुछ गणितीय कार्यरचना काम पहले किया गया था ... (किसी को भी?-गॉस ने यहां कुछ सामान किया), गॉस ने कम से कम वर्गों की विधि विकसित की, जो एक अनुकूलन विधि है।->

मेजर सबफील्ड्स

  • उत्तल कार्यरचना मामले का अध्ययन करें जब उद्देश्य फलन उत्तल (न्यूनतमकरण) या अवतल (अधिकतमकरण) और बाधा सेट कॉनवेक्स है। इसे nonlinear कार्यरचना के एक विशेष मामले के रूप में या रैखिक या उत्तल द्विघात कार्यरचना के सामान्यीकरण के रूप में देखा जा सकता है।
    • रैखिक कार्यरचना (एलपी), एक प्रकार का उत्तल कार्यरचना, उस मामले का अध्ययन करता है जिसमें उद्देश्य फलन एफ रैखिक है और बाधाएं केवल रैखिक समानताओं और असमानताओं का उपयोग करके निर्दिष्ट की जाती हैं। इस तरह के एक बाधा सेट को पॉलीहेड्रॉन या पॉलीटोप कहा जाता है यदि यह बाउंड है।
    • सेकंड-ऑर्डर कोन कार्यरचना (SOCP) एक उत्तल कार्यक्रम है, और इसमें कुछ प्रकार के द्विघात कार्यक्रम शामिल हैं।
    • सेमाइडफिनाइट कार्यरचना (एसडीपी) उत्तल अनुकूलनका एक सबफील्ड है जहां अंतर्निहित चर सेमाइडफाइनेट मैट्रिस हैं। यह रैखिक और उत्तल द्विघात कार्यरचना का एक सामान्यीकरण है।
    • CONIC कार्यरचना उत्तल कार्यरचना का एक सामान्य रूप है। एलपी, एसओसीपी और एसडीपी सभी को उचित प्रकार के शंकु के साथ शंकु कार्यक्रमों के रूप में देखा जा सकता है।
    • ज्यामितीय कार्यरचना एक ऐसी तकनीक है जिसके द्वारा पॉसिओमिअल के रूप में व्यक्त किए गए उद्देश्य और असमानता की कमी और मोनोमिअल के रूप में समानता की कमी को एक उत्तल कार्यक्रम में बदल दिया जा सकता है।
  • पूर्णांक कार्यरचना अध्ययन रैखिक कार्यक्रम जिसमें कुछ या सभी चर पूर्णांक मान लेने के लिए विवश हैं। यह उत्तल नहीं है, और सामान्य रूप से नियमित रैखिक कार्यरचना की तुलना में बहुत अधिक कठिन है।
  • द्विघात कार्यरचना उद्देश्य फलनको द्विघात शब्द देने की अनुमति देता है, जबकि व्यवहार्य सेट को रैखिक समानताओं और असमानताओं के साथ निर्दिष्ट किया जाना चाहिए। द्विघात शब्द के विशिष्ट रूपों के लिए, यह एक प्रकार का उत्तल कार्यरचना है।
  • आंशिक कार्यरचना अध्ययन दो नॉनलाइनियर कार्यों के अनुपात का अनुकूलन। अवतल आंशिक कार्यक्रमों के विशेष वर्ग को एक उत्तल अनुकूलन समस्या में बदल दिया जा सकता है।
  • नॉनलाइनर कार्यरचना सामान्य मामले का अध्ययन करता है जिसमें उद्देश्य फलनया बाधाओं या दोनों में नॉनलाइनर भाग होते हैं। यह एक उत्तल कार्यक्रम हो सकता है या नहीं भी हो सकता है। सामान्य तौर पर, क्या कार्यक्रम उत्तल है, इसे हल करने की कठिनाई को प्रभावित करता है।
  • स्टोकेस्टिक कार्यरचना उस मामले का अध्ययन करता है जिसमें कुछ बाधाएं या पैरामीटर यादृच्छिक चर एस पर निर्भर करते हैं।
  • मजबूत अनुकूलन , स्टोकेस्टिक कार्यरचना की तरह, अनुकूलन समस्या को अंतर्निहित डेटा में अनिश्चितता को पकड़ने का प्रयास। मजबूत अनुकूलन का उद्देश्य उन समाधानों को खोजना है जो अनिश्चितता सेट द्वारा परिभाषित अनिश्चितताओं के सभी संभावित अहसासों के तहत मान्य हैं।
  • कॉम्बिनेटरियल अनुकूलन उन समस्याओं से संबंधित है जहां व्यवहार्य समाधानों का सेट असतत है या असतत एक तक कम किया जा सकता है।
  • स्टोकेस्टिक अनुकूलन का उपयोग यादृच्छिक (शोर) फलनमाप या खोज प्रक्रिया में यादृच्छिक इनपुट के साथ किया जाता है।
  • अनंत-आयामी अनुकूलन मामले का अध्ययन करता है जब संभव समाधानों का सेट एक अनंत- आयाम अल अंतरिक्ष का एक सबसेट है, जैसे कि कार्यों का एक स्थान।
  • HEURISTICS और METAHEURISTIC S समस्या को अनुकूलित करने के बारे में कुछ या कोई धारणा नहीं बनाते हैं। आमतौर पर, heuristics गारंटी नहीं देते हैं कि किसी भी इष्टतम समाधान की आवश्यकता है। दूसरी ओर, कई जटिल अनुकूलन समस्याओं के लिए अनुमानित समाधान खोजने के लिए heuristics का उपयोग किया जाता है।
  • बाधा संतुष्टि उस मामले का अध्ययन करती है जिसमें उद्देश्य कार्य एफ स्थिर है (इसका उपयोग आर्टिफिशियल इंटेलिजेंस में किया जाता है, विशेष रूप से स्वचालित तर्क में)।
    • बाधा कार्यरचना एक कार्यरचना प्रतिमान है जिसमें चर के बीच संबंध बाधाओं के रूप में बताए गए हैं।
  • असंतुष्ट कार्यरचना का उपयोग किया जाता है जहां कम से कम एक बाधा को संतुष्ट किया जाना चाहिए लेकिन सभी नहीं। यह बराबर हैशेड्यूलिंग में ticular उपयोग।
  • स्पेस मैपिंग एक इंजीनियरिंग सिस्टम के मॉडलिंग और अनुकूलन के लिए एक अवधारणा है जो उच्च-निष्ठा (ठीक) मॉडल सटीकता के लिए एक उपयुक्त शारीरिक रूप से सार्थक मोटे या सरोगेट मॉडल का शोषण करता है।

कई उपक्षेत्रों में, तकनीकों को मुख्य रूप से गतिशील संदर्भों में अनुकूलन के लिए डिज़ाइन किया गया है (यानी, समय के साथ निर्णय लेना):

बहु-उद्देश्य अनुकूलन

एक अनुकूलन समस्या में एक से अधिक उद्देश्य जोड़ना जटिलता जोड़ता है। उदाहरण के लिए, एक संरचनात्मक डिजाइन का अनुकूलन करने के लिए, एक डिजाइन की इच्छा होगी जो प्रकाश और कठोर दोनों है। जब दो उद्देश्य संघर्ष करते हैं, तो एक व्यापार-बंद बनाया जाना चाहिए। एक सबसे हल्का डिज़ाइन, एक कठोर डिजाइन, और एक अनंत संख्या में डिज़ाइन हो सकते हैं जो वजन और कठोरता के कुछ समझौते हैं। ट्रेड-ऑफ डिजाइनों का सेट जो एक मानदंड में सुधार करता है, दूसरे की कीमत पर पेरेटो सेट के रूप में जाना जाता है। सबसे अच्छे डिजाइनों की कठोरता के खिलाफ वजन वाले वक्र ने पेरेटो फ्रंटियर के रूप में जाना जाता है।

एक डिज़ाइन को पेरेटो इष्टतम (समकक्ष, पेरेटो कुशल या पेरेटो सेट में) होने के लिए आंका जाता है यदि यह किसी अन्य डिज़ाइन पर हावी नहीं है: यदि यह कुछ मामलों में किसी अन्य डिजाइन से भी बदतर है और किसी भी मामले में बेहतर नहीं है, तो यह हावी है। और पेरेटो इष्टतम नहीं है।

पसंदीदा समाधान निर्धारित करने के लिए पेरेटो इष्टतम समाधानों के बीच की पसंद निर्णय निर्माता को सौंप दी गई है। दूसरे शब्दों में, समस्या को बहु-उद्देश्य अनुकूलन संकेतों के रूप में परिभाषित करना कि कुछ जानकारी गायब है: वांछनीय उद्देश्य दिए गए हैं, लेकिन उनमें से संयोजनों को एक दूसरे के सापेक्ष रेट नहीं किया गया है। कुछ मामलों में, लापता जानकारी निर्णय निर्माता के साथ इंटरैक्टिव सत्रों द्वारा प्राप्त की जा सकती है।

बहु-उद्देश्य अनुकूलन समस्याओं को वेक्टर अनुकूलन समस्याओं में आगे सामान्यीकृत किया गया है जहां (आंशिक) ऑर्डरिंग अब पेरेटो ऑर्डरिंग द्वारा नहीं दिया गया है।

बहु-मोडल या वैश्विक अनुकूलन

अनुकूलन की समस्याएं अक्सर बहु-मोडल होती हैं;यही है, उनके पास कई अच्छे समाधान हैं।वे सभी विश्व स्तर पर अच्छे (एक ही लागत फलनमूल्य) हो सकते हैं या विश्व स्तर पर अच्छे और स्थानीय रूप से अच्छे समाधानों का मिश्रण हो सकता है।सभी (या कम से कम कुछ) को प्राप्त करना एक बहु-मोडल ऑप्टिमाइज़र का लक्ष्य है।

शास्त्रीय अनुकूलन तकनीक उनके पुनरावृत्त दृष्टिकोण के कारण संतोषजनक ढंग से प्रदर्शन नहीं करती है जब वे कई समाधान प्राप्त करने के लिए उपयोग किए जाते हैं, क्योंकि यह गारंटी नहीं है कि एल्गोरिथ्म के कई रनों में विभिन्न शुरुआती बिंदुओं के साथ भी अलग -अलग समाधान प्राप्त किए जाएंगे।

 ग्लोबल अनुकूलन समस्याओं के लिए सामान्य दृष्टिकोण, जहां कई स्थानीय एक्सट्रैमा मौजूद हो सकते हैं, उनमें  विकासवादी एल्गोरिथ्म  एस,   बायेसियन अनुकूलन और  सिम्युलेटेड एनीलिंग  शामिल हैं।

महत्वपूर्ण बिंदुओं और extrama का वर्गीकरण

व्यवहार्यता समस्या

संतोषजनक समस्या , जिसे व्यवहार्यता समस्या 'भी कहा जाता है, केवल उद्देश्य मूल्य के संबंध में बिना किसी संभव समाधान को खोजने की समस्या है।इसे गणितीय अनुकूलन के विशेष मामले के रूप में माना जा सकता है जहां उद्देश्य मूल्य प्रत्येक समाधान के लिए समान है, और इस प्रकार कोई भी समाधान इष्टतम है।

कई अनुकूलन कलन विधि को एक संभव बिंदु से शुरू करने की आवश्यकता है।इस तरह के एक बिंदु को प्राप्त करने का एक तरीका को को आराम करें स्लैक चर का उपयोग करके व्यवहार्यता की स्थिति;पर्याप्त सुस्त के साथ, कोई भी प्रारंभिक बिंदु संभव है।फिर, उस स्लैक चर को कम से कम करें जब तक कि स्लैक शून्य या नकारात्मक न हो।

अस्तित्व

कार्ल वेयरस्ट्रास  के  एक्सट्रीम वैल्यू प्रमेय  में कहा गया है कि कॉम्पैक्ट सेट पर एक निरंतर वास्तविक-मूल्यवान फलनइसके अधिकतम और न्यूनतम मूल्य को प्राप्त करता है।अधिक आम तौर पर, एक कॉम्पैक्ट सेट पर एक कम अर्ध-निरंतर कार्य इसके न्यूनतम को प्राप्त करता है;एक कॉम्पैक्ट सेट पर एक ऊपरी अर्ध-निरंतर फलनअपने अधिकतम बिंदु या दृश्य को प्राप्त करता है।

इष्टतमता के लिए आवश्यक शर्तें

  फर्मेट के प्रमेयों में से एक  में कहा गया है कि अप्रतिबंधित समस्याओं का ऑप्टिमा  स्टेशनरी प्वाइंट  एस पर पाया जाता है, जहां पहला व्युत्पन्न या उद्देश्य फलनका ढाल शून्य है ( पहले व्युत्पन्न परीक्षण  देखें)।आम तौर पर, वे    क्रिटिकल पॉइंट  पर पाए जा सकते हैं, जहां ऑब्जेक्टिव फलनका पहला व्युत्पन्न या ढाल शून्य है या अपरिभाषित है, या पसंद सेट की सीमा पर है।एक समीकरण (या समीकरणों का सेट) यह बताते हुए कि एक आंतरिक इष्टतम में पहले व्युत्पन्न (एस) के बराबर (एस) शून्य को 'प्रथम-क्रम की स्थिति' या प्रथम-क्रम स्थितियों का एक सेट कहा जाता है।

समानता-विवश समस्याओं के ऑप्टिमा को Lagrange गुणक विधि द्वारा पाया जा सकता है।समानता और/या असमानता की बाधाओं के साथ समस्याओं का ऑप्टिमा ' करुश -कुहन -टकर शर्तों ' का उपयोग करके पाया जा सकता है।

इष्टतमता के लिए पर्याप्त शर्तें

जबकि पहला व्युत्पन्न परीक्षण उन बिंदुओं की पहचान करता है जो एक्सट्रैमा हो सकते हैं, यह परीक्षण एक ऐसे बिंदु को अलग नहीं करता है जो एक से न्यूनतम है जो अधिकतम या एक है जो न तो है।जब उद्देश्य फलनदो बार अलग -अलग होता है, तो इन मामलों को अप्रतिबंधित समस्याओं में दूसरे व्युत्पन्न या दूसरे डेरिवेटिव ( हेसियन मैट्रिक्स कहा जाता है) के मैट्रिक्स की जांच करके प्रतिष्ठित किया जा सकता है, या ऑब्जेक्टिव फलनके दूसरे डेरिवेटिव और कहा जाता है। की सीमा को विवश समस्याओं में हेसियन की सीमा की।अन्य स्थिर बिंदुओं से मैक्सिमा, या मिनिमा को अलग करने वाली स्थितियों को 'दूसरे क्रम की स्थिति' कहा जाता है (देखें ' दूसरा व्युत्पन्न परीक्षण ')।यदि कोई उम्मीदवार समाधान पहले-क्रम की स्थितियों को संतुष्ट करता है, तो दूसरे क्रम की स्थितियों की संतुष्टि के साथ-साथ कम से कम स्थानीय इष्टतमता को स्थापित करने के लिए पर्याप्त है।

संवेदनशीलता और ऑप्टिमा की निरंतरता

लिफाफा प्रमेय  बताता है कि एक अंतर्निहित  पैरामीटर  में परिवर्तन होने पर एक इष्टतम समाधान का मूल्य कैसे बदलता है।इस परिवर्तन की गणना करने की प्रक्रिया को  तुलनात्मक स्टेटिक्स  कहा जाता है।
क्लाउड बर्ज  (1963) का  अधिकतम प्रमेय  अंतर्निहित मापदंडों के एक समारोह के रूप में एक इष्टतम समाधान की निरंतरता का वर्णन करता है।

अनुकूलन की पथरी

दो बार-अलग-अलग कार्यों के साथ अप्रतिबंधित समस्याओं के लिए, कुछ क्रिटिकल पॉइंट्स उन बिंदुओं को खोजकर पाया जा सकता है जहां ऑब्जेक्टिव फलनके ग्रेडिएंट शून्य है (यानी, स्थिर अंक)। अधिक आम तौर पर, एक शून्य सबग्रिडिएंट यह प्रमाणित करता है कि के लिए एक स्थानीय न्यूनतम पाया गया है जो उत्तल फलन और अन्य स्थानीय रूप से LIPSCHITZ फलन2 ]]]]]]222 ]] [[111 LIPSCHITZ फलनके साथ।

इसके अलावा, हेसियन मैट्रिक्स की डेफिटनेस का उपयोग करके महत्वपूर्ण बिंदुओं को वर्गीकृत किया जा सकता है: यदि हेसियन एक महत्वपूर्ण बिंदु पर 'पॉजिटिव' 'निश्चित है, तो बिंदु एक स्थानीय न्यूनतम है; यदि हेसियन मैट्रिक्स नकारात्मक निश्चित है, तो बिंदु एक स्थानीय अधिकतम है; अंत में, यदि अनिश्चितकालीन है, तो बिंदु कुछ प्रकार के सैडल पॉइंट है।

विवश समस्याओं को अक्सर Lagrange गुणक s की मदद से अप्रतिबंधित समस्याओं में बदल दिया जा सकता है। Lagrangian विश्राम भी कठिन विवश समस्याओं के अनुमानित समाधान प्रदान कर सकता है।

जब उद्देश्य फलन उत्तल फलन है, तो कोई भी स्थानीय न्यूनतम भी एक वैश्विक न्यूनतम होगा। उत्तल कार्यों को कम करने के लिए कुशल संख्यात्मक तकनीकें मौजूद हैं, जैसे कि इंटीरियर-पॉइंट विधि एस।

वैश्विक अभिसरण =

आम तौर पर, यदि उद्देश्य फलनएक द्विघात कार्य नहीं है, तो कई अनुकूलन विधियां यह सुनिश्चित करने के लिए अन्य तरीकों का उपयोग करती हैं कि पुनरावृत्तियों के कुछ बाद एक इष्टतम समाधान में परिवर्तित हो जाते हैं।अभिसरण सुनिश्चित करने के लिए पहली और अभी भी लोकप्रिय विधि लाइन खोज ईएस पर निर्भर करती है, जो एक आयाम के साथ एक फलनको अनुकूलित करती है।अभिसरण सुनिश्चित करने के लिए एक दूसरा और तेजी से लोकप्रिय तरीका ट्रस्ट क्षेत्र एस का उपयोग करता है।दोनों लाइन खोजों और ट्रस्ट क्षेत्रों का उपयोग गैर-विभेद्य अनुकूलन के आधुनिक तरीकों में किया जाता है।आमतौर पर, एक वैश्विक ऑप्टिमाइज़र उन्नत स्थानीय ऑप्टिमाइज़र (जैसे BFGS ) की तुलना में बहुत धीमा होता है, इसलिए अक्सर विभिन्न शुरुआती बिंदुओं से स्थानीय ऑप्टिमाइज़र शुरू करके एक कुशल वैश्विक ऑप्टिमाइज़र का निर्माण किया जा सकता है।एक अनुमानित समाधान की गणना करने वाले हेयुरिस्टिक आधारित अनुकूलन कलन विधि का भी उपयोग किया जा सकता है[5]

कम्प्यूटेशनल अनुकूलनतकनीक

समस्याओं को हल करने के लिए, शोधकर्ता एल्गोरिथम एस का उपयोग कर सकते हैं जो चरणों की एक परिमित संख्या में समाप्त हो जाते हैं, या पुनरावृत्त विधि एस जो एक समाधान में परिवर्तित होते हैं (समस्याओं के कुछ निर्दिष्ट वर्ग पर), या HEURISTICS जो प्रदान कर सकते हैंकुछ समस्याओं के अनुमानित समाधान (हालांकि उनके पुनरावृत्तियों को अभिसरण की आवश्यकता नहीं है)।

अनुकूलन कलन विधि

पुनरावृत्त तरीके =

iterative विधियाँ    nonlinear कार्यरचना की समस्याओं को हल करने के लिए उपयोग की जाती हैं कि क्या वे    का मूल्यांकन     हेसियन , ग्रेडिएंट्स, या केवल फलनमानों का मूल्यांकन करते हैं। हेसियन (एच) और ग्रेडिएंट्स (जी) का मूल्यांकन करते समय अभिसरण की दर में सुधार होता है, उन कार्यों के लिए जिनके लिए ये मात्राएँ मौजूद हैं और पर्याप्त रूप से सुचारू रूप से भिन्न होती हैं, इस तरह के मूल्यांकन प्रत्येक पुनरावृत्ति के    कम्प्यूटेशनल जटिलता  (या कम्प्यूटेशनल लागत) को बढ़ाते हैं। कुछ मामलों में, कम्प्यूटेशनल जटिलता अत्यधिक उच्च हो सकती है।

ऑप्टिमाइज़र के लिए एक प्रमुख मानदंड केवल आवश्यक फलनमूल्यांकन की संख्या है क्योंकि यह अक्सर पहले से ही एक बड़ा कम्प्यूटेशनल प्रयास होता है, आमतौर पर ऑप्टिमाइज़र के भीतर ही बहुत अधिक प्रयास होता है, जिसे मुख्य रूप से एन चर पर संचालित करना पड़ता है। डेरिवेटिव ऐसे ऑप्टिमाइज़र के लिए विस्तृत जानकारी प्रदान करते हैं, लेकिन गणना करने के लिए और भी कठिन हैं, उदा। ग्रेडिएंट का अनुमान लगाने से कम से कम N+1 फलनमूल्यांकन होता है। द्वितीय डेरिवेटिव (हेसियन मैट्रिक्स में एकत्र) के अनुमानों के लिए, फलनमूल्यांकन की संख्या n of के क्रम में है। न्यूटन की विधि के लिए 2-ऑर्डर डेरिवेटिव्स की आवश्यकता होती है, इसलिए प्रत्येक पुनरावृत्ति के लिए, फलनकॉल की संख्या N, के क्रम में है, लेकिन एक सरल शुद्ध ढाल ऑप्टिमाइज़र के लिए यह केवल N है। हालांकि, ग्रेडिएंट ऑप्टिमाइज़र को आमतौर पर न्यूटन के एल्गोरिथ्म की तुलना में अधिक पुनरावृत्तियों की आवश्यकता होती है। फलनकॉल की संख्या के संबंध में कौन सा सबसे अच्छा है, यह समस्या पर निर्भर करता है।

heuristics

इसके अलावा (बारीक रूप से समाप्ति) एल्गोरिथ्म एस और (अभिसरण) पुनरावृत्त विधि एस, हेयुरिस्टिक्स हैं[5] एक हेयुरिस्टिक कोई भी एल्गोरिथ्म है जो समाधान खोजने के लिए (गणितीय रूप से) गारंटी नहीं है, लेकिन जो कुछ व्यावहारिक स्थितियों में फिर भी उपयोगी है।कुछ प्रसिद्ध heuristics की सूची:

अनुप्रयोग

यांत्रिकी =

कठोर शरीर की गतिशीलता  में समस्याएं (विशेष रूप से स्पष्ट रूप से कठोर शरीर की गतिशीलता) में अक्सर गणितीय कार्यरचना तकनीकों की आवश्यकता होती है, क्योंकि आप कठोर शरीर की गतिशीलता को देख सकते हैं।[6] बाधाएं विभिन्न nonlinear ज्यामितीय बाधाएं हैं जैसे कि इन दो बिंदुओं को हमेशा संयोग होना चाहिए, इस सतह को किसी अन्य में प्रवेश नहीं करना चाहिए, या इस बिंदु को हमेशा इस वक्र पर कहीं झूठ बोलना चाहिए।इसके अलावा, कंप्यूटिंग संपर्क बलों की समस्या  रैखिक पूरक समस्या  को हल करके की जा सकती है, जिसे क्यूपी (द्विघात कार्यरचना) समस्या के रूप में भी देखा जा सकता है।

कई डिजाइन समस्याओं को अनुकूलन कार्यक्रमों के रूप में भी व्यक्त किया जा सकता है।इस एप्लिकेशन को डिज़ाइन अनुकूलनकहा जाता है।एक सबसेट इंजीनियरिंग अनुकूलन है, और इस क्षेत्र का एक और हाल ही में और बढ़ता सबसेट मल्टीडिसिप्लिनरी डिज़ाइन अनुकूलन है, जो कई समस्याओं में उपयोगी है, विशेष रूप से एयरोस्पेस इंजीनियरिंग समस्याओं पर लागू किया गया है।

यह दृष्टिकोण ब्रह्मांड विज्ञान और खगोल भौतिकी में लागू किया जा सकता है[7]

अर्थशास्त्र और वित्त

इकोनॉमिक्स     एजेंट्स  के अनुकूलन से निकटता से जुड़ा हुआ है कि एक प्रभावशाली परिभाषा से संबंधित अर्थशास्त्र का वर्णन किया गया है  क्वा  विज्ञान के रूप में मानव व्यवहार के अध्ययन के रूप में अंत और  दुर्लभ  का मतलब वैकल्पिक उपयोग के साथ वैकल्पिक उपयोग के साथ है।[8]  आधुनिक अनुकूलन सिद्धांत में पारंपरिक अनुकूलन सिद्धांत शामिल है, लेकिन यह भी  गेम थ्योरी  और आर्थिक    संतुलन  के अध्ययन के साथ ओवरलैप है।   जर्नल ऑफ़ इकोनॉमिक लिटरेचर      कोड   [[ JEL वर्गीकरण कोड#गणितीय और मात्रात्मक तरीके JEL के तहत गणितीय कार्यरचना, अनुकूलनतकनीकों और संबंधित विषयों को वर्गीकृत करें।

माइक्रोइकॉनॉमिक्स में, उपयोगिता अधिकतमकरण समस्या और इसकी दोहरी समस्या , व्यय न्यूनतमकरण समस्या , आर्थिक अनुकूलन समस्याएं हैं। Insofar के रूप में वे लगातार व्यवहार करते हैं, उपभोक्ता s को उनकी उपयोगिता को अधिकतम करने के लिए माना जाता है, जबकि फर्म s को आमतौर पर अपने लाभ को अधिकतम करने के लिए माना जाता है। इसके अलावा, एजेंटों को अक्सर जोखिम-प्रति- ]] होता है, जिससे जोखिम से बचने के लिए प्राथमिकता होती है। एसेट प्राइस भी अनुकूलनथ्योरी का उपयोग करके मॉडलिंग की जाती है, हालांकि अंतर्निहित गणित स्थैतिक अनुकूलन के बजाय स्टोकेस्टिक प्रक्रिया ईएस के अनुकूलन पर निर्भर करता है। अंतर्राष्ट्रीय व्यापार सिद्धांत राष्ट्रों के बीच व्यापार पैटर्न को समझाने के लिए अनुकूलन का भी उपयोग करता है। पोर्टफोलियो का अनुकूलन अर्थशास्त्र में बहु-उद्देश्य अनुकूलन का एक उदाहरण है।

1970 के दशक के बाद से, अर्थशास्त्रियों ने नियंत्रण सिद्धांत का उपयोग करके समय के साथ गतिशील निर्णय लिए हैं[9] उदाहरण के लिए, डायनेमिक खोज मॉडल का उपयोग श्रम-बाजार व्यवहार का अध्ययन करने के लिए किया जाता है[10] एक महत्वपूर्ण अंतर नियतात्मक और स्टोकेस्टिक मॉडल के बीच है[11] मैक्रोइकॉनॉमिस्ट बिल्ड डायनेमिक स्टोकेस्टिक जनरल इक्विलिब्रियम (डीएसजीई) मॉडल जो पूरी अर्थव्यवस्था की गतिशीलता का वर्णन करते हैं।[12][13]

इलेक्ट्रिकल इंजीनियरिंग =

इलेक्ट्रिकल इंजीनियरिंग  में अनुकूलन तकनीकों के कुछ सामान्य अनुप्रयोगों में  सक्रिय फ़िल्टर  डिजाइन शामिल हैं[14] सुपरकंडक्टिंग मैग्नेटिक एनर्जी स्टोरेज सिस्टम में स्ट्रे फ़ील्ड में कमी,  स्पेस मैपिंग  डिजाइन  माइक्रोवेव  स्ट्रक्चर्स[15] हैंडसेट एंटेना[16][17][18] इलेक्ट्रोमैग्नेटिक्स-आधारित डिजाइन।माइक्रोवेव घटकों और एंटेना के इलेक्ट्रोमैग्नेटिक रूप से मान्य डिजाइन अनुकूलन ने एक उपयुक्त भौतिकी-आधारित या अनुभवजन्य  सरोगेट मॉडल  और  स्पेस मैपिंग  कार्यप्रणाली का व्यापक उपयोग किया है।[19][20]

सिविल इंजीनियरिंग =

सिविल इंजीनियरिंग में अनुकूलन का व्यापक रूप से उपयोग किया गया है। कंस्ट्रक्शन मैनेजमेंट और ट्रांसपोर्टेशन इंजीनियरिंग सिविल इंजीनियरिंग की मुख्य शाखाओं में से हैं जो अनुकूलन पर बहुत अधिक भरोसा करते हैं।सबसे आम सिविल इंजीनियरिंग समस्याएं जो अनुकूलन द्वारा हल की जाती हैं[21] संसाधन समतल [22]Cite error: Closing </ref> missing for <ref> tag और अनुसूची अनुकूलन।

संचालन अनुसंधान =

एक अन्य क्षेत्र जो अनुकूलन तकनीकों का बड़े पैमाने पर उपयोग करता है, वह है संचालन अनुसंधान [23] संचालन अनुसंधान भी बेहतर निर्णय लेने का समर्थन करने के लिए स्टोकेस्टिक मॉडलिंग और सिमुलेशन का उपयोग करता है।तेजी से, संचालन अनुसंधान स्टोकेस्टिक कार्यरचना का उपयोग करता है, जो कि घटनाओं के अनुकूल होने वाले गतिशील निर्णयों को मॉडल करने के लिए है;इस तरह की समस्याओं को बड़े पैमाने पर अनुकूलन और स्टोकेस्टिक अनुकूलन विधियों के साथ हल किया जा सकता है।

नियंत्रण इंजीनियरिंग

गणितीय अनुकूलन का उपयोग बहुत आधुनिक नियंत्रक डिजाइन में किया जाता है।उच्च-स्तरीय नियंत्रक जैसे कि मॉडल प्रेडिक्टिव कंट्रोल (एमपीसी) या रियल-टाइम अनुकूलन(आरटीओ) गणितीय अनुकूलन को नियोजित करते हैं।ये कलन विधि ऑनलाइन चलते हैं और बार -बार निर्णय चर के लिए मूल्यों को निर्धारित करते हैं, जैसे कि एक प्रक्रिया संयंत्र में चोक ओपनिंग, पुनरावृत्ति द्वारा एक गणितीय अनुकूलन समस्या को हल करके बाधाओं और सिस्टम के एक मॉडल को नियंत्रित करने के लिए।

भूभौतिकी =

अनुकूलन तकनीकों का उपयोग नियमित रूप से भूभौतिकीय पैरामीटर अनुमान समस्याओं में किया जाता है।भूभौतिकीय माप का एक सेट दिया गया, उदा। भूकंपीय रिकॉर्डिंग , यह भौतिक गुण और पृथ्वी की ज्यामितीय आकार अंतर्निहित चट्टानों और तरल पदार्थों के लिए हल करना आम है।भूभौतिकी में अधिकांश समस्याएं नियतात्मक और स्टोकेस्टिक दोनों तरीकों के साथ व्यापक रूप से उपयोग किए जा रहे हैं।

आणविक मॉडलिंग

नॉनलाइनियर अनुकूलनविधियों का व्यापक रूप से कंफॉर्मल एनालिसिस में उपयोग किया जाता है।

कम्प्यूटेशनल सिस्टम बायोलॉजी

अनुकूलन तकनीकों का उपयोग कम्प्यूटेशनल सिस्टम जीव विज्ञान के कई पहलुओं में किया जाता है जैसे कि मॉडल बिल्डिंग, इष्टतम प्रयोगात्मक डिजाइन, चयापचय इंजीनियरिंग और सिंथेटिक जीव विज्ञान[24] रैखिक कार्यरचना किण्वन उत्पादों की अधिकतम संभावित पैदावार की गणना करने के लिए लागू किया गया है[24] और कई माइक्रोएरे डेटासेट से जीन नियामक नेटवर्क का अनुमान लगाने के लिए[25] साथ ही उच्च-थ्रूपुट डेटा से ट्रांसक्रिप्शनल नियामक नेटवर्क[26] nonlinear कार्यरचना का उपयोग ऊर्जा चयापचय का विश्लेषण करने के लिए किया गया है[27] और जैव रासायनिक मार्गों में चयापचय इंजीनियरिंग और पैरामीटर अनुमान के लिए लागू किया गया है[28]

मशीन लर्निंग

सॉल्वर

See also

Notes

  1. ] Archived 2014-03-05 at the Wayback Machine, गणितीय प्रोग्रामिंग ग्लोसरी , कंप्यूटिंग सोसाइटी को सूचित करता है
  2. Martins, Joaquim R. R. A.; Ning, Andrew (2021-10-01). Engineering Design Optimization (in English). Cambridge University Press. ISBN 978-1108833417.
  3. Du, D. Z.; Pardalos, P. M.; Wu, W. (2008). "History of Optimization". In Floudas, C.; Pardalos, P. (eds.). Encyclopedia of Optimization. Boston: Springer. pp. 1538–1542.
  4. डब्ल्यू। इरविन डिवर्ट (2008)।कॉस्ट फ़ंक्शंस, द न्यू पालग्रेव डिक्शनरी ऑफ़ इकोनॉमिक्स , दूसरा संस्करण qual contents
  5. 5.0 5.1 Cite error: Invalid <ref> tag; no text was provided for refs named : 1
  6. Vereshchagin, A.F. (1989). "Modelling and control of motion of manipulation robots". Soviet Journal of Computer and Systems Sciences. 27 (5): 29–38.
  7. Haggag, S.; Desokey, F.; Ramadan, M. (2017). "A cosmological inflationary model using optimal control". Gravitation and Cosmology. 23 (3): 236–239. Bibcode:2017GrCo...23..236H. doi:10.1134/S0202289317030069. ISSN 1995-0721. S2CID 125980981.
  8. लियोनेल रॉबिन्स (1935, 2 एड।) आर्थिक विज्ञान की प्रकृति और महत्व पर एक निबंध ', मैकमिलन, पी।16
  9. Dorfman, Robert (1969). "An Economic Interpretation of Optimal Control Theory". American Economic Review. 59 (5): 817–831. JSTOR 1810679.
  10. Sargent, Thomas J. (1987). "Search". Dynamic Macroeconomic Theory. Harvard University Press. pp. 57–91. ISBN 9780674043084.
  11. ए.जी. मॉलियारिस (2008)।स्टोचस्टिक इष्टतम नियंत्रण, द न्यू पालग्रेव डिक्शनरी ऑफ इकोनॉमिक्स , दूसरा संस्करण।] Archived 2017-10-18 at the Wayback Machine
  12. Rotemberg, Julio; Woodford, Michael (1997). "An Optimization-based Econometric Framework for the Evaluation of Monetary Policy" (PDF). NBER Macroeconomics Annual. 12: 297–346. doi:10.2307/3585236. JSTOR 3585236.
  13. द न्यू पालग्रेव डिक्शनरी ऑफ इकोनॉमिक्स (2008) से, अमूर्त लिंक के साथ दूसरा संस्करण:
      & nbsp;• [http://www.dictionaryofeconomics.com/article?• [http://www.dictionaryofeconomics.com/article?• [http://www.dictionaryofeconomics.com/article?
  14. De, Bishnu Prasad; Kar, R.; Mandal, D.; Ghoshal, S.P. (2014-09-27). "Optimal selection of components value for analog active filter design using simplex particle swarm optimization". International Journal of Machine Learning and Cybernetics. 6 (4): 621–636. doi:10.1007/s13042-014-0299-0. ISSN 1868-8071. S2CID 13071135.
  15. Koziel, Slawomir; Bandler, John W. (January 2008). "Space Mapping With Multiple Coarse Models for Optimization of Microwave Components". IEEE Microwave and Wireless Components Letters. 18 (1): 1–3. CiteSeerX 10.1.1.147.5407. doi:10.1109/LMWC.2007.911969. S2CID 11086218.
  16. Tu, Sheng; Cheng, Qingsha S.; Zhang, Yifan; Bandler, John W.; Nikolova, Natalia K. (July 2013). "Space Mapping Optimization of Handset Antennas Exploiting Thin-Wire Models". IEEE Transactions on Antennas and Propagation. 61 (7): 3797–3807. Bibcode:2013ITAP...61.3797T. doi:10.1109/TAP.2013.2254695.
  17. एन। फ्रेडरिक, "हैंडसेट-एंटेना डिजाइन में स्पेस मैपिंग आउटपेस ईएम ऑप्टिमाइज़ेशन," माइक्रोवेव और आरएफ, 30 अगस्त, 30, 30,2013
  18. Cervantes-González, Juan C.; Rayas-Sánchez, José E.; López, Carlos A.; Camacho-Pérez, José R.; Brito-Brito, Zabdiel; Chávez-Hurtado, José L. (February 2016). "Space mapping optimization of handset antennas considering EM effects of mobile phone components and human body". International Journal of RF and Microwave Computer-Aided Engineering. 26 (2): 121–128. doi:10.1002/mmce.20945.
  19. Bandler, J.W.; Biernacki, R.M.; Chen, Shao Hua; Grobelny, P.A.; Hemmers, R.H. (1994). "Space mapping technique for electromagnetic optimization". IEEE Transactions on Microwave Theory and Techniques. 42 (12): 2536–2544. Bibcode:1994ITMTT..42.2536B. doi:10.1109/22.339794.
  20. Bandler, J.W.; Biernacki, R.M.; Shao Hua Chen; Hemmers, R.H.; Madsen, K. (1995). "Electromagnetic optimization exploiting aggressive space mapping". IEEE Transactions on Microwave Theory and Techniques. 43 (12): 2874–2882. Bibcode:1995ITMTT..43.2874B. doi:10.1109/22.475649.
  21. Piryonesi, Sayed Madeh; Tavakolan, Mehdi (9 January 2017). "A mathematical programming model for solving cost-safety optimization (CSO) problems in the maintenance of structures". KSCE Journal of Civil Engineering. 21 (6): 2226–2234. doi:10.1007/s12205-017-0531-z. S2CID 113616284.
  22. Hegazy, Tarek (June 1999). "Optimization of Resource Allocation and Leveling Using Genetic Algorithms". Journal of Construction Engineering and Management. 125 (3): 167–175. doi:10.1061/(ASCE)0733-9364(1999)125:3(167).
  23. "New force on the political scene: the Seophonisten". Archived from the original on 18 December 2014. Retrieved 14 September 2013.
  24. 24.0 24.1 Papoutsakis, Eleftherios Terry (February 1984). "Equations and calculations for fermentations of butyric acid bacteria". Biotechnology and Bioengineering. 26 (2): 174–187. doi:10.1002/bit.260260210. ISSN 0006-3592. PMID 18551704. S2CID 25023799.
  25. Wang, Yong; Joshi, Trupti; Zhang, Xiang-Sun; Xu, Dong; Chen, Luonan (2006-07-24). "Inferring gene regulatory networks from multiple microarray datasets". Bioinformatics (in English). 22 (19): 2413–2420. doi:10.1093/bioinformatics/btl396. ISSN 1460-2059. PMID 16864593.
  26. Wang, Rui-Sheng; Wang, Yong; Zhang, Xiang-Sun; Chen, Luonan (2007-09-22). "Inferring transcriptional regulatory networks from high-throughput data". Bioinformatics. 23 (22): 3056–3064. doi:10.1093/bioinformatics/btm465. ISSN 1460-2059. PMID 17890736.
  27. Vo, Thuy D.; Paul Lee, W.N.; Palsson, Bernhard O. (May 2007). "Systems analysis of energy metabolism elucidates the affected respiratory chain complex in Leigh's syndrome". Molecular Genetics and Metabolism. 91 (1): 15–22. doi:10.1016/j.ymgme.2007.01.012. ISSN 1096-7192. PMID 17336115.
  28. Mendes, P.; Kell, D. (1998). "Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation". Bioinformatics. 14 (10): 869–883. doi:10.1093/bioinformatics/14.10.869. ISSN 1367-4803. PMID 9927716.

Further reading

External links

| group5 = Metaheuristics | abbr5 = heuristic | list5 =

| below =

}} | group5 =Metaheuuristic |abbr5 = heuristic | list5 =*विकासवादी एल्गोरिथ्म

| below =* सॉफ्टवेयर

}} {{Navbox

| name =गणित के क्षेत्र

|state = autocollapse


| title =अंक शास्त्र | bodyclass = hlist

|above =


| group1 = नींव | list1 =* श्रेणी सिद्धांत

| group2 =बीजगणित | list2 =* सार

| group3 = विश्लेषण | list3 =* पथरी

| group4 = असतत | list4 =* कॉम्बीनेटरिक्स

| group5 =ज्यामिति | list5 =* बीजगणितीय

| group6 =संख्या सिद्धांत | list6 =* अंकगणित

| group7 =टोपोलॉजी | list7 =* सामान्य

| group8 = लागू | list8 =* इंजीनियरिंग गणित

| group9 = कम्प्यूटेशनल | list9 =* कंप्यूटर विज्ञान

| group10 = संबंधित विषय | list10 =* अनौपचारिक गणित

| below =* '

}}