एर्गोडिक सिद्धांत: Difference between revisions

From Vigyanwiki
Line 104: Line 104:
टिप्पणी- माध्य अभ्यतिप्राय प्रमेय के लिए कुछ अंतर्ज्ञान उस स्थिति पर विचार करके विकसित किया जा सकता है जहां इकाई लंबाई की सम्मिश्र संख्या को सम्मिश्र समतल (बाएं गुणन द्वारा) पर एकात्मक परिवर्तन के रूप में माना जाता है। यदि हम इकाई लंबाई (जिसे हम ''U'' के रूप में विचार करते हैं) की एक सम्मिश्र संख्या चुनते हैं, तो यह सहज है कि इसकी शक्तियां वृत्त को पूरित कर देंगी। चूंकि वृत्त 0 के आस-पास सममित है, इसलिए यह समझ में आता है कि ''U'' की शक्तियों का औसत 0 में परिवर्तित हो जाएगा। इसके अलावा, 0 ''U'' का एकमात्र निश्चित बिंदु है, और इसलिए निश्चित बिंदुओं के स्थान पर प्रक्षेपण शून्य संकारक (जो अभी वर्णित सीमा से सहमत है) होना चाहिए।
टिप्पणी- माध्य अभ्यतिप्राय प्रमेय के लिए कुछ अंतर्ज्ञान उस स्थिति पर विचार करके विकसित किया जा सकता है जहां इकाई लंबाई की सम्मिश्र संख्या को सम्मिश्र समतल (बाएं गुणन द्वारा) पर एकात्मक परिवर्तन के रूप में माना जाता है। यदि हम इकाई लंबाई (जिसे हम ''U'' के रूप में विचार करते हैं) की एक सम्मिश्र संख्या चुनते हैं, तो यह सहज है कि इसकी शक्तियां वृत्त को पूरित कर देंगी। चूंकि वृत्त 0 के आस-पास सममित है, इसलिए यह समझ में आता है कि ''U'' की शक्तियों का औसत 0 में परिवर्तित हो जाएगा। इसके अलावा, 0 ''U'' का एकमात्र निश्चित बिंदु है, और इसलिए निश्चित बिंदुओं के स्थान पर प्रक्षेपण शून्य संकारक (जो अभी वर्णित सीमा से सहमत है) होना चाहिए।


== एल में एर्गोडिक साधनों का अभिसरण<sup>पी </सुप> मानदंड ==
== ''L<sup>p</sup>'' मानदंडों में अभ्यतिप्राय माध्य का अभिसरण ==
चलो (एक्स, Σ, μ) रूपांतरण टी को संरक्षित करने वाले माप के साथ संभावना स्थान से ऊपर हो, और 1 ≤ पी ≤ ∞ दें। उप-σ-बीजगणित Σ के संबंध में सशर्त अपेक्षा<sub>''T''</sub> टी-इनवेरिएंट सेट का एक रैखिक प्रोजेक्टर ई है<sub>T</sub>बनच स्पेस एल के मानक 1 का<sup>p</sup>(X, Σ, μ) अपनी बंद उपसमष्टि L पर<sup>पी</sup>(एक्स, एस<sub>''T''</sub>, μ) उत्तरार्द्ध को सभी टी-इनवेरिएंट एल के स्थान के रूप में भी चित्रित किया जा सकता है<sup>p</sup>- X पर कार्य करता है। ergodic का अर्थ है, L पर रैखिक संचालिका के रूप में<sup>p</sup>(X, Σ, μ) में यूनिट ऑपरेटर मानदंड भी है; और, बिरखॉफ-खिनचिन प्रमेय के एक साधारण परिणाम के रूप में, प्रोजेक्टर ई में अभिसरण करते हैं<sub>T</sub>एल के मजबूत ऑपरेटर टोपोलॉजी में<sup>p</sup> यदि 1 ≤ p ≤ ∞, और [[कमजोर ऑपरेटर टोपोलॉजी]] में यदि p = ∞ है। अधिक सत्य है यदि 1 <p ≤ ∞ तो वीनर-योशिदा-काकुटानी एर्गोडिक वर्चस्व वाले अभिसरण प्रमेय में कहा गया है कि ƒ ∈ L का एर्गोडिक साधन<sup>p</sup> L में हावी हैं<sup>पी</sup>; हालाँकि, यदि ƒ ∈ L<sup>1</sup>, एर्गोडिक साधन एल में समान होने में विफल हो सकते हैं<sup>पी</सुप>. अंत में, यदि ƒ को ज़िग्मुंड वर्ग में माना जाता है, वह है |ƒ| लकड़ी का लट्ठा<sup>+</sup>(|ƒ|) पूर्णांक है, तो एल में एर्गोडिक साधनों का भी प्रभुत्व है<sup>1</उप>
माना (''X'', Σ, ''μ'') परिवर्तन ''T को संरक्षित करने वाले माप के साथ एक संभाव्यता स्थान के ऊपर है, और मान लीजिए 1 ≤ p ≤ ∞ है। T-अचल समुच्चय के उप-σ-बीजगणित Σ<sub>T</sub> के संबंध में सशर्त अपेक्षा बैनच अंतराल L<sup>p</sup>(X, Σ, μ) के मानक 1 का रैखिक प्रक्षेपक E<sub>T</sub> है जो इसके बंद उप-अंतराल L<sup>p</sup>(X, Σ<sub>T</sub>, μ) पर है। बाद वाले को X पर सभी T-अचल L<sup>p</sup>-फलन के स्थान के रूप में भी चित्रित किया जा सकता है। अभ्यतिप्राय का अर्थ है, L<sup>p</sup>(X, Σ, μ) पर रैखिक सकारकों के रूप में इकाई संकारक मानदंड भी है और, बिरखॉफ-खिनचिन प्रमेय के एक साधारण परिणाम के रूप में, यदि 1 ≤ p ≤ ∞, और [[कमजोर ऑपरेटर टोपोलॉजी|मंद संकारक सांस्थितिकी]] में p = ∞ है तो L<sup>p</sup> के दृढ़ संकारक सांस्थितिकी में प्रक्षेपक E<sub>T</sub> में अभिसरित होते हैं। अधिक सत्य है यदि 1 < p ≤ ∞ तो वीनर-योशिदा-काकुटानी अभ्यतिप्राय प्रभुत्व वाली अभिसरण प्रमेय में कहा गया है कि ƒ ∈ L<sup>p</sup>के अभ्यतिप्राय माध्यों का L<sup>p</sup> में प्रभुत्व है हालाँकि, यदि ƒ ∈ L<sup>1</sup>, अभ्यतिप्राय माध्य L<sup>p</sup> में समतुल्य होने में विफल हो सकते हैं। अंत में, यदि ƒ को ज़िग्मुंड वर्ग में माना जाता है, जो कि |ƒ| log<sup>+</sup>(|ƒ|) पूर्णांक है, तो अभ्यतिप्राय माध्यों का L<sup>1</sup>में भी प्रभुत्व है।''


== प्रवास का समय ==
== प्रवास का समय ==

Revision as of 15:38, 17 February 2023

अभ्यतिप्राय सिद्धांत (यूनानी- ἔργον अर्ग "कार्य", ὁδός हॉडोस "वे") गणित की एक शाखा है जो नियतात्मक गतिशील प्रणालियों के सांख्यिकीय गुणों का अध्ययन करती है यह अभ्यतिप्रायता का अध्ययन है। इस संदर्भ में, सांख्यिकीय गुणों का अर्थ उन गुणों से है जो गतिशील प्रणालियों के प्रक्षेप पथों के साथ विभिन्न फलनों के समय औसत के व्यवहार के माध्यम से व्यक्त किए जाते हैं। नियतात्मक गतिशील प्रणालियों की धारणा यह मानती है कि गतिकी का निर्धारण करने वाले समीकरणों में कोई यादृच्छिक गड़बड़ी, ध्वनि आदि नहीं होती है। इस प्रकार, जिन आँकड़ों से हमारा संबंध है, वे गतिकी के गुण हैं।

अभ्यतिप्राय सिद्धांत, संभाव्यता सिद्धांत की तरह, माप सिद्धांत की सामान्य धारणाओं पर आधारित है। इसका आरंभिक विकास सांख्यिकीय भौतिकी की समस्याओं से प्रेरित था।

अभ्यतिप्राय सिद्धांत की एक केंद्रीय चिंता गतिशील प्रणाली का व्यवहार है जब इसे लंबे समय तक चलने की अनुमति दी जाती है। इस दिशा में पहला परिणाम पोंकारे पुनरावृत्ति प्रमेय है, जो दावा करती है कि चरण स्थान के किसी भी उपसमुच्चय में लगभग सभी बिंदु अंततः समुच्चय पर फिर से आते हैं। वे प्रणालियाँ जिनके लिए पोंकारे पुनरावर्तन प्रमेय धारण करता है, संरक्षी प्रणालियाँ हैं इस प्रकार सभी अभ्यतिप्राय प्रणालियाँ संरक्षी हैं।

अधिक सटीक जानकारी विभिन्न अभ्यतिप्राय प्रमेयों द्वारा प्रदान की जाती है जो दावा करती हैं कि, कुछ शर्तों के तहत, प्रक्षेप पथों के साथ एक फलन का समय औसत लगभग हर स्थान पर उपस्थित होता है और अंतराल औसत से संबंधित होता है। दो सबसे महत्वपूर्ण प्रमेय बिरखॉफ (1931) और वॉन न्यूमैन के हैं जो प्रत्येक प्रक्षेप पथ के साथ एक समय औसत के अस्तित्व पर जोर देते हैं। अभ्यतिप्राय प्रणालियों के विशेष वर्ग के लिए, इस बार औसत लगभग सभी प्रारम्भिक बिंदुओं के लिए समान है- सांख्यिकीय रूप से बोलना, जो प्रणाली लंबे समय तक विकसित होती है, वह अपनी प्रारंभिक स्थिति को "भूल" जाती है। मजबूत गुण, जैसे मिश्रण और समवितरण, का भी बड़े पैमाने पर अध्ययन किया गया है।

प्रणालियों के मापीय वर्गीकरण की समस्या सार अभ्यतिप्राय सिद्धांत का एक अन्य महत्वपूर्ण भाग है। अभ्यतिप्राय सिद्धांत और प्रसंभाव्य प्रक्रियाओं के लिए इसके अनुप्रयोगों में उत्कृष्ट भूमिका गतिशील प्रणालियों के लिए एन्ट्रापी की विभिन्न धारणाओं द्वारा निभाई जाती है। अभ्यतिप्रायता और अभ्यतिप्राय परिकल्पना की अवधारणाएं अभ्यतिप्राय सिद्धांत के अनुप्रयोगों के लिए केंद्रीय हैं। अंतर्निहित विचार यह है कि कुछ प्रणालियों के लिए उनके गुणों का समय औसत पूरे स्थान पर औसत के बराबर होता है। गणित के अन्य भागों में अभ्यतिप्राय सिद्धांत के अनुप्रयोग में प्रायः विशेष प्रकार की प्रणालियों के लिए अभ्यतिप्रायता गुण स्थापित करना सम्मिलित होता है। ज्यामिति में, अभ्यतिप्राय सिद्धांत के तरीकों का उपयोग रीमैनियन कई गुना पर अल्पान्तरी प्रवाह का अध्ययन करने के लिए किया गया है, जो ऋणात्मक वक्रता के रीमैन सतहों के लिए एबरहार्ड हॉप के परिणामों से प्रारम्भ होता है। संभाव्यता सिद्धांत में अनुप्रयोगों के लिए मार्कोव श्रृंखला एक सामान्य संदर्भ बनाती है। अभ्यतिप्राय सिद्धांत में प्रसंवादी विश्लेषण, झूठ सिद्धांत (निरूपण सिद्धांत, बीजगणितीय समूहों में जाली), और संख्या सिद्धांत (डायोफैंटाइन सन्निकटन का सिद्धांत, एल (L)-फलन) के साथ उपयोगी संबंध हैं।

अभ्यतिप्राय परिवर्तन

अभ्यतिप्राय सिद्धांत प्रायः अभ्यतिप्राय परिवर्तनों से संबंधित होता है। इस तरह के परिवर्तनों के पीछे अंतर्ज्ञान, जो किसी दिए गए समुच्चय पर कार्य करते हैं, यह है कि वे उस समुच्चय के तत्वों को "उत्तेजक" करने के लिए पूरी तरह से काम करते हैं। उदाहरणार्थ यदि समुच्चय एक कटोरी में गर्म दलिया की मात्रा है और यदि एक चम्मच सिरप कटोरे में गिरा दिया जाता है, तो दलिया के अभ्यतिप्राय परिवर्तन के व्युत्क्रम की पुनरावृत्तियों से सिरप दलिया को एक स्थानीय उप-क्षेत्र में रहने की अनुमति नहीं देगा लेकिन सिरप को समान रूप से चारों ओर वितरित करेगा। साथ ही, ये पुनरावृत्तियां दलिया के किसी भी भाग को संकुचित या विस्तारित नहीं करेंगी- वे घनत्व के माप को संरक्षित करते हैं।

औपचारिक परिभाषा निम्नानुसार है-

माना- T : XX माप स्थान (X, Σ, μ) पर μ(X) = 1 के साथ एक माप-संरक्षण परिवर्तन हो। फिर T अभ्यतिप्राय है यदि μ(T−1(E) Δ E) = 0 के साथ Σ में प्रत्येक E के लिए, या तो μ(E) = 0 या μ(E) = 1

ऑपरेटर Δ यहां समुच्चय सदस्यता के संबंध में विशिष्ट या ऑपरेशन के समतुल्य समुच्चयों का सममित अंतर है। शर्त यह है कि सममित अंतर माप शून्य हो, अनिवार्य रूप से अपरिवर्तनीय कहा जाता है।

उदाहरण

चरण स्थान (शीर्ष) में शास्त्रीय प्रणालियों के एक समूह का विकास। सिस्टम एक आयामी संभावित कुएं (लाल वक्र, निचला आंकड़ा) में बड़े पैमाने पर कण हैं। प्रारंभिक रूप से कॉम्पैक्ट पहनावा समय के साथ घूमता है और चरण स्थान के चारों ओर फैल जाता है। हालांकि यह एर्गोडिक व्यवहार नहीं है क्योंकि सिस्टम बाएं हाथ की क्षमता को अच्छी तरह से नहीं देखते हैं।
  • वृत्त R/Z, T: xx + θ, जहां θ अपरिमेय है, का अपरिमेय घूर्णन अभ्यतिप्राय है। इस परिवर्तन में अद्वितीय अभ्यतिप्रायता, न्यूनता और समान वितरण के और भी मजबूत गुण हैं। इसके विपरीत, यदि θ = p/q परिमेय है (न्यूनतम शब्दों में) तो T आवधिक है, अवधि q के साथ, और इस प्रकार अभ्यतिप्राय नहीं हो सकता है- किसी भी अंतराल I के लिए लंबाई a, 0 < a < 1/q, T के तहत इसकी कक्षा (अर्थात, I, T(I), ..., Tq−1(I) का संयोजन, जिसमें T की किसी भी संख्या में अनुप्रयोगों के तहत I का प्रतिबिम्ब सम्मिलित है) एक T-अपरिवर्तनीय मॉड 0 समुच्चय है जो लंबाई के q अंतराल का एक संयोजन है, इसलिए इसमें qa को 0 और 1 के बीच दृढ़ता से मापता है।
  • माना G एक सघन गणित में विनिमेय समूह है, μ सामान्यीकृत हार माप, और T G का समूह स्वसमाकृतिकता (ऑटोमोर्फिज़्म) है। माना G* पोंट्रीगिन का द्वि समूह है, जिसमें G के सतत वर्ण सम्मिलित हों, और T* G* के संबंधित आसन्न स्वसमाकृतिकता हो। स्वसमाकृतिकता T अभ्यतिप्राय है यदि और केवल अगर समानता (T*)n(χ) = χ केवल तभी संभव है जब n = 0 या χ G का नगण्य स्वरूप है। विशेष रूप से, यदि G n-आयामी टॉरस है और स्वसमाकृतिकता T को एकमापांकी मैट्रिक्स A द्वारा दर्शाया गया है तो T अभ्यतिप्राय है यदि और केवल अगर A का कोई अभिलाक्षणिक मान समानता का रूट नहीं है।
  • बर्नौली शिफ्ट अभ्यतिप्राय है। अधिक सामान्यता, आई.आई.डी. (i.i.d.) यादृच्छिक चर के अनुक्रम से जुड़े शिफ्ट परिवर्तन की अभ्यतिप्रायता और कुछ सामान्य स्थिर प्रक्रियाएं कोलमोगोरोव के शून्य-एक नियम से होती हैं।
  • सतत गतिशील प्रणाली की अभ्यतिप्रायता का अर्थ है कि इसके प्रक्षेपवक्र चरण स्थान के चारों ओर "फैलते हैं"। सघन चरण स्थान वाली एक प्रणाली जिसमें गैर-निरंतर पहला समाकलन है, वह अभ्यतिप्राय नहीं हो सकता है। यह विशेष रूप से, हैमिल्टनियन प्रणालियों पर लागू होता है, जिसमें पहला समाकलन I कार्यात्मक रूप से हैमिल्टन फलन H से स्वतंत्र होता है और सतत ऊर्जा का सघन स्तर समुच्चय X = {(p,q): H(p,q) = E} होता है। लिउविले के प्रमेय का तात्पर्य X पर परिमित अपरिवर्तनीय माप के अस्तित्व से है, लेकिन प्रणाली की गतिशीलता X पर I के स्तर समुच्चयों तक ही सीमित है, इसलिए प्रणाली में सकारात्मक लेकिन पूर्ण माप से कम अपरिवर्तनीय समुच्चय होते हैं। सतत गतिशील प्रणालियों का एक गुण जो अभ्यतिप्रायता के विपरीत है, पूर्ण समाकलनीयता है।

अभ्यतिप्राय प्रमेय

माना T: XX माप स्थान (X, Σ, μ) पर माप-संरक्षण परिवर्तन हो और मान लें कि ƒ एक μ-पूर्णांक फलन है, अर्थात ƒ ∈ L1(μ)। इसके बाद हम निम्नलिखित औसत परिभाषित करते हैं-

समय औसत- इसे कुछ प्रारंभिक बिंदु x से प्रारम्भ होने वाले T के पुनरावृत्तियों पर औसत (यदि यह उपस्थित है) के रूप में परिभाषित किया गया है-

स्थान औसत- यदि μ(X) परिमित और गैर-शून्य है, तो हम ƒ के स्थान या चरण औसत पर विचार कर सकते हैं-

सामान्यता समय औसत और स्थान औसत भिन्न हो सकते हैं। लेकिन यदि परिवर्तन अभ्यतिप्राय है, और माप अपरिवर्तनीय है, तो समय औसत लगभग हर जगह स्थान औसत के बराबर होता है। जॉर्ज डेविड बिरखॉफ के कारण संक्षेप रूप में यह प्रसिद्ध अभ्यतिप्राय प्रमेय है। (वास्तव में, बिरखॉफ का शोधपत्र संक्षेप सामान्य स्थिति पर विचार नहीं करता है, बल्कि केवल सुचारू कई गुना अंतर समीकरणों से उत्पन्न होने वाली गतिशील प्रणालियों की स्थिति है।) समवितरण प्रमेय अभ्यतिप्राय प्रमेय का एक विशेष स्थिति है, विशेष रूप से इकाई मध्यान्तर पर संभावनाओं के वितरण के साथ व्यवहार करता है।

अधिक सटीक रूप से, बिंदुवार या मजबूत अभ्यतिप्राय प्रमेय बताता है कि ƒ के औसत समय की परिभाषा में सीमा लगभग हर x के लिए उपस्थित है और (लगभग हर स्थान पर परिभाषित) सीमा फलन पूर्णांक है-

इसके अलावा, T-अचल है, अर्थात

लगभग प्रत्येक स्थान पर होता है, और यदि μ(X) परिमित है, तो सामान्यीकरण समान है-

विशेष रूप से, यदि T अभ्यतिप्राय है, तो एक स्थिरांक (लगभग प्रत्येक स्थान पर) होना चाहिए, और इसलिए किसी के पास वह है

लगभग प्रत्येक स्थान पर। पहले से अंतिम दावे में सम्मिलित होना और यह मानते हुए कि μ(X) परिमित और अशून्य है, एक के पास वह है

लगभग सभी x के लिए, अर्थात, माप शून्य के एक समुच्चय को छोड़कर सभी x के लिए।

अभ्यतिप्राय परिवर्तन के लिए, समय औसत लगभग निश्चित रूप से स्थान औसत के बराबर होता है।

उदाहरण के रूप में, मान लीजिए कि माप स्थान (X, Σ, μ) उपरोक्त के रूप में गैस के कणों को मॉडल करता है, और ƒ(x) स्थिति x पर कण के वेग को दर्शाता है। फिर बिंदुवार अभ्यतिप्राय प्रमेय कहता है कि किसी निश्चित समय पर सभी कणों का औसत वेग समय के साथ एक कण के औसत वेग के बराबर होता है।

बिरखॉफ प्रमेय का सामान्यीकरण किंगमैन का उप-योगात्मक अभ्यतिप्राय प्रमेय है।

संभाव्य सूत्रीकरण- बिरखॉफ-खिनचिन प्रमेय

बिरखॉफ-खिनचिन प्रमेय- मान ƒ मापने योग्य है, E(|ƒ|) < ∞, और T एक माप-संरक्षण मानचित्र हो। फिर प्रायिकता 1 के साथ-

जहाँ T के अपरिवर्तनीय समुच्चयों के σ-बीजगणित दिए जाने की सशर्त अपेक्षा है।

कोरोलरी (बिंदुवार अभ्यतिप्राय प्रमेय)- विशेष रूप से, यदि T भी अभ्यतिप्राय है, तो नगण्य σ-बीजगणित है, और इस प्रकार प्रायिकता 1 के साथ-

माध्य अभ्यतिप्राय प्रमेय

वॉन न्यूमैन का माध्य अभ्यतिप्राय प्रमेय, हिल्बर्ट स्थान में मान्य है।[1]

माना U हिल्बर्ट अंतराल H पर एक एकात्मक संकारक है, अधिक व्यापक रूप से, एक सममितीय रैखिक संकारक (अर्थात, H में सभी x के लिए ‖Ux‖ = ‖x‖ को संतुष्ट करने वाला आवश्यक रूप से विशेषण रैखिक संकारक नहीं है, या समकक्ष, U*U = I को संतुष्ट करता है, लेकिन जरूरी नहीं कि UU* = I)।

मान लीजिए P {ψ ∈ H | Uψ = ψ} = ker(I − U) पर लंबकोणीय प्रक्षेपण है।

तब, H में किसी भी x के लिए, हमारे पास है-

जहां सीमा H पर मानक के संबंध में है। दूसरे शब्दों में, औसत का अनुक्रम

दृढ़ संकारक सांस्थितिकी में P को अभिसरण करता है।

वास्तव में, यह देखना मुश्किल नहीं है कि इस स्थिति में कोई भी क्रमशः और से भागों में एक ओर्थोगोनल अपघटन को स्वीकार करता है। पूर्व भाग सभी आंशिक राशियों में अपरिवर्तनीय है क्योंकि बढ़ता है, जबकि बाद के भाग के लिए, अंतर्वेधन (टेलिस्कोपिंग) श्रृंखला से एक होगा-

यह प्रमेय उस स्थिति के लिए विशिष्ट है जिसमें हिल्बर्ट अंतराल H में माप स्थान पर L2 फलन होते हैं और U प्रपत्र का संकारक होता है

जहां T, X का एक माप-संरक्षण अंतःरूपांतरण है, जिसे अनुप्रयोगों में असतत गतिशील प्रणाली के समय-चरण का प्रतिनिधित्व करने के रूप में माना जाता है।[2] अभ्यतिप्राय प्रमेय तब दावा करता है कि एक फलन ƒ का औसत व्यवहार पर्याप्त रूप से बड़े समय-मानों पर ƒ के ऑर्थोगोनल घटक द्वारा अनुमानित किया जाता है जो समय-अपरिवर्तनीय है।

माध्य अभ्यतिप्राय प्रमेय के एक अन्य रूप में, माना Ut को H पर एकात्मक संकारकों का दृढ़ता से सतत एक-मापदंड समूह है।

दृढ़ संकारक सांस्थितिकी में T → ∞ के रूप में परिवर्तित हो जाता है। वास्तव में, यह परिणाम एक प्रतिवर्त स्थान पर संविदात्मक संकारकों के दृढ़ता से सतत एक-मापदंड अर्धसमूह की स्थिति तक भी विस्तृत है।

टिप्पणी- माध्य अभ्यतिप्राय प्रमेय के लिए कुछ अंतर्ज्ञान उस स्थिति पर विचार करके विकसित किया जा सकता है जहां इकाई लंबाई की सम्मिश्र संख्या को सम्मिश्र समतल (बाएं गुणन द्वारा) पर एकात्मक परिवर्तन के रूप में माना जाता है। यदि हम इकाई लंबाई (जिसे हम U के रूप में विचार करते हैं) की एक सम्मिश्र संख्या चुनते हैं, तो यह सहज है कि इसकी शक्तियां वृत्त को पूरित कर देंगी। चूंकि वृत्त 0 के आस-पास सममित है, इसलिए यह समझ में आता है कि U की शक्तियों का औसत 0 में परिवर्तित हो जाएगा। इसके अलावा, 0 U का एकमात्र निश्चित बिंदु है, और इसलिए निश्चित बिंदुओं के स्थान पर प्रक्षेपण शून्य संकारक (जो अभी वर्णित सीमा से सहमत है) होना चाहिए।

Lp मानदंडों में अभ्यतिप्राय माध्य का अभिसरण

माना (X, Σ, μ) परिवर्तन T को संरक्षित करने वाले माप के साथ एक संभाव्यता स्थान के ऊपर है, और मान लीजिए 1 ≤ p ≤ ∞ है। T-अचल समुच्चय के उप-σ-बीजगणित ΣT के संबंध में सशर्त अपेक्षा बैनच अंतराल Lp(X, Σ, μ) के मानक 1 का रैखिक प्रक्षेपक ET है जो इसके बंद उप-अंतराल Lp(X, ΣT, μ) पर है। बाद वाले को X पर सभी T-अचल Lp-फलन के स्थान के रूप में भी चित्रित किया जा सकता है। अभ्यतिप्राय का अर्थ है, Lp(X, Σ, μ) पर रैखिक सकारकों के रूप में इकाई संकारक मानदंड भी है और, बिरखॉफ-खिनचिन प्रमेय के एक साधारण परिणाम के रूप में, यदि 1 ≤ p ≤ ∞, और मंद संकारक सांस्थितिकी में p = ∞ है तो Lp के दृढ़ संकारक सांस्थितिकी में प्रक्षेपक ET में अभिसरित होते हैं। अधिक सत्य है यदि 1 < p ≤ ∞ तो वीनर-योशिदा-काकुटानी अभ्यतिप्राय प्रभुत्व वाली अभिसरण प्रमेय में कहा गया है कि ƒ ∈ Lpके अभ्यतिप्राय माध्यों का Lp में प्रभुत्व है हालाँकि, यदि ƒ ∈ L1, अभ्यतिप्राय माध्य Lp में समतुल्य होने में विफल हो सकते हैं। अंत में, यदि ƒ को ज़िग्मुंड वर्ग में माना जाता है, जो कि |ƒ| log+(|ƒ|) पूर्णांक है, तो अभ्यतिप्राय माध्यों का L1में भी प्रभुत्व है।

प्रवास का समय

चलो (एक्स, Σ, μ) एक माप स्थान हो जैसे μ(एक्स) परिमित और गैर-शून्य है। मापने योग्य सेट ए में बिताए गए समय को 'विराम समय' कहा जाता है। एर्गोडिक प्रमेय का एक तात्कालिक परिणाम यह है कि, एक एर्गोडिक प्रणाली में, ए का सापेक्ष माप माध्य प्रवास समय के बराबर होता है:

Lebesgue माप शून्य के एक सेट को छोड़कर सभी x के लिए, जहां χA A का सूचक कार्य है।

मापने योग्य सेट A के 'घटना समय' को सेट k के रूप में परिभाषित किया गया है1, क2, क3, ..., कई बार k ऐसा होता है कि Tk(x) A में है, बढ़ते क्रम में क्रमबद्ध है। क्रमिक घटना समय के बीच अंतर आरi= केi- केi−1 का पुनरावर्ती काल कहा जाता है। एर्गोडिक प्रमेय का एक अन्य परिणाम यह है कि 'ए' का औसत पुनरावृत्ति समय 'ए' के ​​माप के व्युत्क्रमानुपाती होता है, यह मानते हुए[clarification needed] प्रारंभिक बिंदु x A में है, ताकि k0 = 0.

(लगभग निश्चित रूप से देखें।) यानी, ए जितना छोटा होता है, उसमें लौटने में उतना ही अधिक समय लगता है।

कई गुना पर एर्गोडिक प्रवाह

1939 में एबरहार्ड हॉफ द्वारा कॉम्पैक्ट जगह रीमैन सतहों पर परिवर्ती नकारात्मक गॉसियन वक्रता और किसी भी आयाम के कॉम्पैक्ट अतिशयोक्तिपूर्ण कई गुना पर जियोडेसिक प्रवाह की एर्गोडिसिटी साबित हुई थी, हालांकि विशेष मामलों का अध्ययन पहले किया गया था: उदाहरण के लिए देखें, हैडमार्ड बिलियर्ड्स (1898) और बिलियर्ड्स की कला (1924)। 1952 में एस.वी. फोमिन और आई.एम. गेलफैंड द्वारा रीमैन सतहों पर जियोडेसिक प्रवाह और एसएल2(आर)|एसएल(2, आर) पर एक-पैरामीटर उपसमूहों के बीच संबंध का वर्णन किया गया था। एनोसोव प्रवाह पर लेख एसएल (2, आर) और नकारात्मक वक्रता के रीमैन सतहों पर एर्गोडिक प्रवाह का एक उदाहरण प्रदान करता है। वहाँ वर्णित अधिकांश विकास हाइपरबोलिक मैनिफोल्ड्स के लिए सामान्यीकृत होते हैं, क्योंकि उन्हें [[अर्ध-सरल झूठ समूह]] SO(n,1) में एक जाली (असतत उपसमूह) के समूह क्रिया (गणित) द्वारा अतिशयोक्तिपूर्ण स्थान के भागफल के रूप में देखा जा सकता है। रिमेंनियन सममित स्थान पर जियोडेसिक प्रवाह की एर्गोडिसिटी का प्रदर्शन फ्रेडरिक इग्नाज़ मौटनर|एफ द्वारा किया गया था। I. 1957 में मौटनर। 1967 में D. V. Anosov और Ya. जी। सिनाई ने चर नकारात्मक अनुभागीय वक्रता के कॉम्पैक्ट मैनिफोल्ड पर जियोडेसिक प्रवाह की ergodicity साबित की। 1966 में केल्विन सी. मूर द्वारा एक अर्ध-सरल लाइ समूह के एक सजातीय स्थान पर एक सजातीय प्रवाह की क्षरणता के लिए एक सरल मानदंड दिया गया था। अध्ययन के इस क्षेत्र से कई प्रमेय और परिणाम कठोरता (गणित) के विशिष्ट हैं।

1930 के दशक में G. A. Hedlund ने साबित किया कि कॉम्पैक्ट हाइपरबोलिक सतह पर कुंडली प्रवाह न्यूनतम और ergodic है। 1972 में हिलेल फुरस्टेनबर्ग द्वारा प्रवाह की अद्वितीय ergodicity स्थापित की गई थी। रैटनर के प्रमेय Γ \ G के सजातीय स्थानों पर असमान प्रवाह के लिए ergodicity का एक प्रमुख सामान्यीकरण प्रदान करते हैं, जहां G एक झूठ समूह है और Γ जी में एक जाली है।

पिछले 20 वर्षों में, मरीना रैटनर के प्रमेय के समान एक माप-वर्गीकरण प्रमेय खोजने की कोशिश करने वाले कई काम हुए हैं, लेकिन फुरस्टेनबर्ग और ग्रिगोरी मार्गुलिस के अनुमानों से प्रेरित विकर्ण क्रियाओं के लिए। एक महत्वपूर्ण आंशिक परिणाम (सकारात्मक एन्ट्रापी की एक अतिरिक्त धारणा के साथ उन अनुमानों को हल करना) एलोन लिंडेनस्ट्रॉस द्वारा सिद्ध किया गया था, और उन्हें इस परिणाम के लिए 2010 में फील्ड मेडल से सम्मानित किया गया था।

यह भी देखें

संदर्भ

  1. Reed, Michael; Simon, Barry (1980), Functional Analysis, Methods of Modern Mathematical Physics, vol. 1 (Rev. ed.), Academic Press, ISBN 0-12-585050-6
  2. (Walters 1982)


ऐतिहासिक संदर्भ

आधुनिक संदर्भ

  • D.V. Anosov (2001) [1994], "Ergodic theory", Encyclopedia of Mathematics, EMS Press
  • This article incorporates material from ergodic theorem on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.
  • व्लादिमीर इगोरविच अर्नोल्ड और आंद्रे एवेज़, शास्त्रीय यांत्रिकी की एर्गोडिक समस्याएं। न्यूयॉर्क: डब्ल्यू ए बेंजामिन। 1968.
  • लियो ब्रिमन, संभावना। एडिसन-वेस्ले द्वारा प्रकाशित मूल संस्करण, 1968; सोसाइटी फॉर इंडस्ट्रियल एंड एप्लाइड मैथमेटिक्स, 1992 द्वारा पुनर्मुद्रित। ISBN 0-89871-296-3. (अध्याय 6 देखें।)
  • Walters, Peter (1982), An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, ISBN 0-387-95152-0, Zbl 0475.28009 * Bedford, Tim; Keane, Michael; Series, Caroline, eds. (1991), Ergodic theory, symbolic dynamics and hyperbolic spaces, Oxford University Press, ISBN 0-19-853390-X (व्यायाम के साथ एर्गोडिक सिद्धांत में विषयों का सर्वेक्षण।)
  • कार्ल पीटरसन। एर्गोडिक थ्योरी (उन्नत गणित में कैम्ब्रिज अध्ययन)। कैम्ब्रिज: कैम्ब्रिज यूनिवर्सिटी प्रेस। 1990.
  • जोसेफ एम. रोसेनब्लैट और मेट वेर्डल, पॉइंटवाइज एर्गोडिक थ्योरम्स वाया हार्मोनिक एनालिसिस, (1993) एर्गोडिक थ्योरी एंड इट्स कनेक्शन्स विद हार्मोनिक एनालिसिस, प्रोसीडिंग्स ऑफ द 1993 अलेक्जेंड्रिया कॉन्फ्रेंस, (1995) कार्ल ई. पीटरसन और इब्राहिम ए. सलामा, एड।, कैम्ब्रिज यूनिवर्सिटी प्रेस, कैम्ब्रिज, ISBN 0-521-45999-0. (इकाई अंतराल पर शिफ्ट नक्शा्स के इक्विडिस्ट्रीब्यूशन प्रमेय के सामान्यीकरण के एर्गोडिक गुणों का एक व्यापक सर्वेक्षण। बोर्गेन द्वारा विकसित विधियों पर ध्यान केंद्रित करता है।)
  • अल्बर्ट शिरैव|ए। एन. शिरयाएव, प्रायिकता, दूसरा संस्करण, स्प्रिंगर 1996, सेक। वि.3. ISBN 0-387-94549-0.
  • Zund, Joseph D. (2002), "George David Birkhoff and John von Neumann: A Question of Priority and the Ergodic Theorems, 1931–1932", Historia Mathematica, 29 (2): 138–156, doi:10.1006/hmat.2001.2338 (बिरखॉफ और वॉन न्यूमैन द्वारा एर्गोडिक प्रमेयों की खोज और प्रकाशन की प्राथमिकता के बारे में एक विस्तृत चर्चा, उनके मित्र हॉवर्ड पर्सी रॉबर्टसन को लिखे पत्र के आधार पर।)
  • आंद्रेज लसोटा, माइकल सी. मैके, कैओस, फ्रैक्टल्स, एंड नॉइज़: स्टोचैस्टिक एस्पेक्ट्स ऑफ़ डायनामिक्स। दूसरा संस्करण, स्प्रिंगर, 1994।
  • मैनफ्रेड आइंसिडलर और थॉमस वार्ड (गणितज्ञ), संख्या सिद्धांत की ओर एक दृष्टिकोण के साथ एर्गोडिक सिद्धांत। स्प्रिंगर, 2011।
  • जेन एम. हॉकिन्स, एर्गोडिक डायनामिक्स: फ्रॉम बेसिक थ्योरी टू एप्लीकेशन, स्प्रिंगर, 2021। ISBN 978-3-030-59242-4


बाहरी संबंध

Template:Dynamical systems