ट्रुथ टेबल: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Mathematical table used in logic}}
{{Short description|Mathematical table used in logic}}
ट्रुथ टेबल एक [[गणितीय तालिका]] है जिसका उपयोग [[तर्क]] में किया जाता है - विशेष रूप से [[बूलियन बीजगणित (तर्क)]], [[बूलियन समारोह|बूलियन फलन]] और प्रस्ताविक कलन के संबंध में - जो उनके प्रत्येक कार्यात्मक तर्कों पर तार्किक [[अभिव्यक्ति (गणित)]] के कार्यात्मक मानों को निर्धारित करता है, अर्थात उनके द्वारा लिए गए मानों के प्रत्येक संयोजन के लिए  [[मूल्यांकन (तर्क)]] चर।<ref>{{harvnb|Enderton|2001}}</ref> विशेष रूप से, ट्रुथ टेबल का उपयोग यह दिखाने के लिए किया जा सकता है कि क्या सभी वैध  निविष्ट मानों के लिए एक प्रस्तावात्मक अभिव्यक्ति सत्य है, अर्थात [[वैधता (तर्क)]]।
ट्रुथ टेबल एक [[गणितीय तालिका]] है जिसका उपयोग [[तर्क]] में किया जाता है - विशेष रूप से [[बूलियन बीजगणित (तर्क)]], [[बूलियन समारोह|बूलियन फलन]] और तर्कवाक्यिक कलन के संबंध में - जो उनके प्रत्येक कार्यात्मक तर्कों पर तार्किक [[अभिव्यक्ति (गणित)]] के कार्यात्मक मानों को निर्धारित करता है, अर्थात उनके द्वारा लिए गए मानों के प्रत्येक संयोजन के लिए  [[मूल्यांकन (तर्क)]] चर।<ref>{{harvnb|Enderton|2001}}</ref> विशेष रूप से, ट्रुथ टेबल का उपयोग यह दिखाने के लिए किया जा सकता है कि क्या सभी वैध  निविष्ट मानों के लिए एक तर्कवाक्यात्मक अभिव्यक्ति सत्य है, अर्थात [[वैधता (तर्क)]]।


एक ट्रुथ टेबल में प्रत्येक  निविष्ट चर (उदाहरण के लिए, P और Q) के लिए एक स्तंभ होता है, और एक अंतिम स्तंभ तालिका द्वारा प्रस्तुत तार्किक संक्रिया के सभी संभावित परिणामों को दर्शाता है (उदाहरण के लिए, P [[XOR]] Q)। ट्रूथ टेबल की प्रत्येक पंक्ति में  निविष्ट चरों का एक संभावित विन्यास होता है (उदाहरण के लिए, P=सत्य Q=असत्य), और उन मानों के लिए  संक्रिया का  परिणाम। अधिक स्पष्टीकरण के लिए नीचे दिए गए उदाहरण देखें। [[लुडविग विट्गेन्स्टाइन]] को सामान्यतः  उनके [[ट्रैक्टेटस लोगिको-फिलोसोफिकस|ट्रैक्टेटस  तर्क-दार्शनिक]] में ट्रुथ टेबल का आविष्कार करने और लोकप्रिय बनाने का श्रेय दिया जाता है, जो 1918 में पूर्ण हुआ और 1921 में प्रकाशित हुआ।<ref>{{cite journal | author-link = Georg Henrik von Wright |first=Georg Henrik |last=von Wright  | title = Ludwig Wittgenstein, A Biographical Sketch | journal = The Philosophical Review | volume = 64 | issue = 4 | year = 1955 | pages = 527–545 (p. 532, note 9) | jstor = 2182631 | doi=10.2307/2182631}}</ref> इस रूप की प्रणाली को 1921 में [[एमिल लियोन पोस्ट]] द्वारा स्वतंत्र रूप से प्रस्तावित किया गया था।<ref>{{cite journal | author-link=Emil Post |first=Emil |last=Post |title=Introduction to a general theory of elementary propositions|journal=American Journal of Mathematics|date=July 1921|volume=43|issue=3|pages=163–185|jstor= 2370324|doi=10.2307/2370324|hdl=2027/uiuo.ark:/13960/t9j450f7q|hdl-access=free}}</ref> 1893 से [[चार्ल्स सैंडर्स पियर्स]] द्वारा अप्रकाशित पांडुलिपियों में ट्रुथ टेबल का एक पूर्व  के पुनरावृति भी पाया गया है, जो दोनों प्रकाशनों को लगभग 30 वर्षों से प्राचीन कर रहा है।<ref name="Peirce"/>
एक ट्रुथ टेबल में प्रत्येक  निविष्ट चर (उदाहरण के लिए, P और Q) के लिए एक स्तंभ होता है, और एक अंतिम स्तंभ तालिका द्वारा प्रस्तुत तार्किक संक्रिया के सभी संभावित परिणामों को दर्शाता है (उदाहरण के लिए, P [[XOR]] Q)। ट्रूथ टेबल की प्रत्येक पंक्ति में  निविष्ट चरों का एक संभावित विन्यास होता है (उदाहरण के लिए, P=सत्य Q=असत्य), और उन मानों के लिए  संक्रिया का  परिणाम। अधिक स्पष्टीकरण के लिए नीचे दिए गए उदाहरण देखें। [[लुडविग विट्गेन्स्टाइन]] को सामान्यतः  उनके [[ट्रैक्टेटस लोगिको-फिलोसोफिकस|ट्रैक्टेटस  तर्क-दार्शनिक]] में ट्रुथ टेबल का आविष्कार करने और लोकप्रिय बनाने का श्रेय दिया जाता है, जो 1918 में पूर्ण हुआ और 1921 में प्रकाशित हुआ।<ref>{{cite journal | author-link = Georg Henrik von Wright |first=Georg Henrik |last=von Wright  | title = Ludwig Wittgenstein, A Biographical Sketch | journal = The Philosophical Review | volume = 64 | issue = 4 | year = 1955 | pages = 527–545 (p. 532, note 9) | jstor = 2182631 | doi=10.2307/2182631}}</ref> इस रूप की प्रणाली को 1921 में [[एमिल लियोन पोस्ट]] द्वारा स्वतंत्र रूप से तर्कवाक्यित किया गया था।<ref>{{cite journal | author-link=Emil Post |first=Emil |last=Post |title=Introduction to a general theory of elementary propositions|journal=American Journal of Mathematics|date=July 1921|volume=43|issue=3|pages=163–185|jstor= 2370324|doi=10.2307/2370324|hdl=2027/uiuo.ark:/13960/t9j450f7q|hdl-access=free}}</ref> 1893 से [[चार्ल्स सैंडर्स पियर्स]] द्वारा अप्रकाशित पांडुलिपियों में ट्रुथ टेबल का एक पूर्व  के पुनरावृति भी पाया गया है, जो दोनों प्रकाशनों को लगभग 30 वर्षों से प्राचीन कर रहा है।<ref name="Peirce"/>




Line 44: Line 44:
[[पहचान समारोह|तत्समक फलन]] एक [[तार्किक मूल्य|तार्किक मान]] p पर एक [[तार्किक संचालन|तार्किक संक्रिया]] है, जिसके लिए  निर्गत मान p रहता है।
[[पहचान समारोह|तत्समक फलन]] एक [[तार्किक मूल्य|तार्किक मान]] p पर एक [[तार्किक संचालन|तार्किक संक्रिया]] है, जिसके लिए  निर्गत मान p रहता है।


तार्किक तत्समक ऑपरेटर के लिए ट्रुथ टेबल इस प्रकार है:
तार्किक तत्समक संक्रियक के लिए ट्रुथ टेबल इस प्रकार है:


{| class="wikitable" style="margin:1em auto; text-align:center;"
{| class="wikitable" style="margin:1em auto; text-align:center;"
|+ '''तार्किक Identity'''
|+ '''तार्किक तत्समक'''
|-
|-
! style="width:80px" | ''p''
! style="width:80px" | ''p''
Line 59: Line 59:


=== [[तार्किक निषेध]] ===
=== [[तार्किक निषेध]] ===
तार्किक निषेध एक तार्किक मान पर एक तार्किक संक्रिया है, आमतौर पर एक [[प्रस्ताव]] का मान, जो सत्य का मान उत्पन्न करता है यदि उसका संकार्य असत्य है और असत्य का मान यदि उसका संकार्य सत्य है।
तार्किक निषेध तार्किक मान पर एक तार्किक संक्रिया है, सामान्यतः  एक [[प्रस्ताव|तर्कवाक्य]] का मान, जो सत्य का मान उत्पन्न करता है यदि उसका संकार्य असत्य है और असत्य का मान यदि उसका संकार्य सत्य है।


'NOT p' ('¬p', 'Np', 'Fpq', या '~p' के रूप में भी लिखा जाता है) के लिए ट्रुथ टेबल इस प्रकार है:
'NOT p' ('¬p', 'Np', 'Fpq', या '~p' के रूप में भी लिखा जाता है) के लिए ट्रुथ टेबल इस प्रकार है:
Line 131: Line 131:
: कॉम पंक्ति इंगित करती है कि क्या एक ऑपरेटर, ऑप, क्रमविनिमेय गुण है - P op Q = Q op P।
: कॉम पंक्ति इंगित करती है कि क्या एक ऑपरेटर, ऑप, क्रमविनिमेय गुण है - P op Q = Q op P।
:Assoc पंक्ति इंगित करती है कि क्या एक ऑपरेटर, op, साहचर्य संपत्ति है - (P op Q) op R = P op (Q op R)।
:Assoc पंक्ति इंगित करती है कि क्या एक ऑपरेटर, op, साहचर्य संपत्ति है - (P op Q) op R = P op (Q op R)।
: Adj पंक्ति ऑपरेटर op2 को इस प्रकार दर्शाती है कि P op Q = Q op2 P
: Adj पंक्ति संक्रियक op2 को इस प्रकार दर्शाती है कि P op Q = Q op2 P
: नकारात्मक पंक्ति ऑपरेटर op2 को ऐसे दिखाती है कि P op Q = ¬(P op2 Q)
: नकारात्मक पंक्ति संक्रियक op2 को ऐसे दिखाती है कि P op Q = ¬(P op2 Q)
: दोहरी पंक्ति T को F, और AND को OR से इंटरचेंज करके प्राप्त किए गए [[द्वैत सिद्धांत (बूलियन बीजगणित)]] को दर्शाती है।
: दोहरी पंक्ति T को F, और AND को OR से इंटरचेंज करके प्राप्त किए गए [[द्वैत सिद्धांत (बूलियन बीजगणित)]] को दर्शाती है।
: एल आईडी पंक्ति ऑपरेटर की बाईं तत्समक दिखाती है यदि इसमें कोई - मान I है जैसे कि मैं Q = Q का चयन करता हूं।
: एल आईडी पंक्ति संक्रियक की बाईं तत्समक दिखाती है यदि इसमें कोई - मान I है जैसे कि मैं Q = Q का चयन करता हूं।
: R आईडी पंक्ति ऑपरेटर की [[सही पहचान|सही तत्समक]] दिखाती है यदि इसमें कोई - मान I है जैसे कि P op I = P।<ref group=note>The operators here with equal left and right identities (XOR, AND, XNOR, and OR) are also [[monoid#Commutative monoid|commutative monoids]] because they are also [[Associative property|associative]]. While this distinction may be irrelevant in a simple discussion of logic, it can be quite important in more advanced mathematics. For example, in [[category theory]] an [[enriched category]] is described as a base [[category (mathematics)|category]] enriched over a monoid, and any of these operators can be used for enrichment.</ref>
: R आईडी पंक्ति संक्रियक की [[सही पहचान|सही तत्समक]] दिखाती है यदि इसमें कोई - मान I है जैसे कि P op I = P।<ref group=note>The operators here with equal left and right identities (XOR, AND, XNOR, and OR) are also [[monoid#Commutative monoid|commutative monoids]] because they are also [[Associative property|associative]]. While this distinction may be irrelevant in a simple discussion of logic, it can be quite important in more advanced mathematics. For example, in [[category theory]] an [[enriched category]] is described as a base [[category (mathematics)|category]] enriched over a monoid, and any of these operators can be used for enrichment.</ref>
पी, क्यू के लिए  निविष्ट मानों के चार संयोजन उपरोक्त तालिका से पंक्ति द्वारा पढ़े जाते हैं।
पी, क्यू के लिए  निविष्ट मानों के चार संयोजन उपरोक्त तालिका से पंक्ति द्वारा पढ़े जाते हैं।
प्रत्येक पी, क्यू संयोजन के लिए  निर्गत फ़ंक्शन को तालिका से, पंक्ति द्वारा पढ़ा जा सकता है।
प्रत्येक पी, क्यू संयोजन के लिए  निर्गत फ़ंक्शन को तालिका से, पंक्ति द्वारा पढ़ा जा सकता है।
Line 191: Line 191:


=== [[तार्किक संयोजन]] (और) ===
=== [[तार्किक संयोजन]] (और) ===
तार्किक संयुग्मन दो तार्किक मानों पर एक तार्किक संक्रिया है, आमतौर पर दो प्रस्तावों के मान, जो कि इसके दोनों ऑपरेंड सत्य होने पर सत्य का मान उत्पन्न करते हैं।
तार्किक संयुग्मन दो तार्किक मानों पर एक तार्किक संक्रिया है, सामान्यतः  दो तर्कवाक्यों के मान, जो कि इसके दोनों ऑपरेंड सत्य होने पर सत्य का मान उत्पन्न करते हैं।


'p AND q' के लिए सत्य सारणी ('p ∧ q', 'Kpq', 'p & q', या 'p' के रूप में भी लिखा जाता है) <math>\cdot</math> क्यू) इस प्रकार है:
'p AND q' के लिए सत्य सारणी ('p ∧ q', 'Kpq', 'p & q', या 'p' के रूप में भी लिखा जाता है) <math>\cdot</math> क्यू) इस प्रकार है:
Line 215: Line 215:


=== तार्किक संयोजन (या) ===
=== तार्किक संयोजन (या) ===
[[तार्किक विच्छेदन]] दो तार्किक मानों पर एक तार्किक  संक्रिया है, आमतौर पर दो प्रस्तावों के मान, जो कि कम से कम एक ऑपरेंड सत्य होने पर सत्य का मान उत्पन्न करता है।
[[तार्किक विच्छेदन]] दो तार्किक मानों पर एक तार्किक  संक्रिया है, सामान्यतः  दो तर्कवाक्यों के मान, जो कि कम से कम एक ऑपरेंड सत्य होने पर सत्य का मान उत्पन्न करता है।


'p OR q' ('p ∨ q', 'Apq', 'p || q', या 'p + q' के रूप में भी लिखा जाता है) के लिए ट्रुथ टेबल इस प्रकार है:
'p OR q' ('p ∨ q', 'Apq', 'p || q', या 'p + q' के रूप में भी लिखा जाता है) के लिए ट्रुथ टेबल इस प्रकार है:
Line 237: Line 237:


=== तार्किक निहितार्थ ===
=== तार्किक निहितार्थ ===
तार्किक निहितार्थ और [[सामग्री सशर्त]] दोनों दो तार्किक मानों पर एक तार्किक संक्रिया से जुड़े होते हैं, आमतौर पर दो प्रस्तावों के मान, जो कि पहला ऑपरेंड सत्य है और दूसरा ऑपरेंड असत्य है, और अन्यथा सत्य का मान उत्पन्न करता है। .
तार्किक निहितार्थ और [[सामग्री सशर्त]] दोनों दो तार्किक मानों पर एक तार्किक संक्रिया से जुड़े होते हैं, सामान्यतः  दो तर्कवाक्यों के मान, जो कि पहला ऑपरेंड सत्य है और दूसरा ऑपरेंड असत्य है, और अन्यथा सत्य का मान उत्पन्न करता है। .


तार्किक निहितार्थ 'p का तात्पर्य q' ('p ⇒ q' के रूप में चिन्हित, या शायद ही कभी 'Cpq') से जुड़ी ट्रुथ टेबल इस प्रकार है:
तार्किक निहितार्थ 'p का तात्पर्य q' ('p ⇒ q' के रूप में चिन्हित, या शायद ही कभी 'Cpq') से जुड़ी ट्रुथ टेबल इस प्रकार है:
Line 276: Line 276:


=== [[तार्किक समानता]] ===
=== [[तार्किक समानता]] ===
तार्किक समानता (जिसे [[द्विशर्त]] या [[अनन्य और न ही]] के रूप में भी जाना जाता है) दो तार्किक मानों पर एक तार्किक  संक्रिया है, आमतौर पर दो प्रस्तावों के मान, जो कि दोनों ऑपरेंड असत्य हैं या दोनों ऑपरेंड सत्य हैं, तो सत्य का मान पैदा करता है।
तार्किक समानता (जिसे [[द्विशर्त]] या [[अनन्य और न ही]] के रूप में भी जाना जाता है) दो तार्किक मानों पर एक तार्किक  संक्रिया है, सामान्यतः  दो तर्कवाक्यों के मान, जो कि दोनों ऑपरेंड असत्य हैं या दोनों ऑपरेंड सत्य हैं, तो सत्य का मान पैदा करता है।


'p XNOR q' ('p ↔ q', 'Epq', 'p = q', या 'p ≡ q' के रूप में भी लिखा जाता है) के लिए ट्रुथ टेबल इस प्रकार है:
'p XNOR q' ('p ↔ q', 'Epq', 'p = q', या 'p ≡ q' के रूप में भी लिखा जाता है) के लिए ट्रुथ टेबल इस प्रकार है:
Line 298: Line 298:


=== [[अनन्य संयोजन]] ===
=== [[अनन्य संयोजन]] ===
एक्सक्लूसिव डिसजंक्शन दो तार्किक मानों पर एक तार्किक  संक्रिया है, सामान्यतः  दो प्रस्तावों के मान, जो सत्य का मान पैदा करता है यदि एक नहीं बल्कि इसके दोनों ऑपरेंड सत्य हैं।
एक्सक्लूसिव डिसजंक्शन दो तार्किक मानों पर एक तार्किक  संक्रिया है, सामान्यतः  दो तर्कवाक्यों के मान, जो सत्य का मान पैदा करता है यदि एक नहीं बल्कि इसके दोनों ऑपरेंड सत्य हैं।


'p XOR q' ('Jpq', या 'p ⊕ q' के रूप में भी लिखा जाता है) के लिए ट्रुथ टेबल इस प्रकार है:
'p XOR q' ('Jpq', या 'p ⊕ q' के रूप में भी लिखा जाता है) के लिए ट्रुथ टेबल इस प्रकार है:
Line 320: Line 320:


=== [[तार्किक नंद]] ===
=== [[तार्किक नंद]] ===
तार्किक NAND दो तार्किक मानों पर एक तार्किक संक्रिया है, सामान्यतः  दो प्रस्तावों के मान, जो असत्य का मान उत्पन्न करता है यदि इसके दोनों ऑपरेंड सत्य हैं। दूसरे शब्दों में, यदि इसका कम से कम एक ऑपरेंड असत्य है तो यह सही का मान उत्पन्न करता है।
तार्किक NAND दो तार्किक मानों पर एक तार्किक संक्रिया है, सामान्यतः  दो तर्कवाक्यों के मान, जो असत्य का मान उत्पन्न करता है यदि इसके दोनों ऑपरेंड सत्य हैं। दूसरे शब्दों में, यदि इसका कम से कम एक ऑपरेंड असत्य है तो यह सही का मान उत्पन्न करता है।


'पी नंद क्यू' ('पी ↑ क्यू', 'डीपीक्यू', या 'पी | क्यू' के रूप में भी लिखा गया है) के लिए ट्रुथ टेबल इस प्रकार है:
'पी नंद क्यू' ('पी ↑ क्यू', 'डीपीक्यू', या 'पी | क्यू' के रूप में भी लिखा गया है) के लिए ट्रुथ टेबल इस प्रकार है:
Line 366: Line 366:


=== [[तार्किक नॉर]] ===
=== [[तार्किक नॉर]] ===
तार्किक NOR दो तार्किक मानों पर एक तार्किक संक्रिया है, सामान्यतः  दो प्रस्तावों के मान, जो सत्य का मान उत्पन्न करता है यदि इसके दोनों ऑपरेंड झूठे हैं। दूसरे शब्दों में, यदि इसका कम से कम एक ऑपरेंड सत्य है, तो यह असत्य का मान उत्पन्न करता है। ↓ को इसके आविष्कारक, चार्ल्स सैंडर्स पियर्स के बाद [[पियर्स तीर]] के रूप में भी जाना जाता है, और यह [[एकमात्र पर्याप्त ऑपरेटर]] है।
तार्किक NOR दो तार्किक मानों पर एक तार्किक संक्रिया है, सामान्यतः  दो तर्कवाक्यों के मान, जो सत्य का मान उत्पन्न करता है यदि इसके दोनों ऑपरेंड झूठे हैं। दूसरे शब्दों में, यदि इसका कम से कम एक ऑपरेंड सत्य है, तो यह असत्य का मान उत्पन्न करता है। ↓ को इसके आविष्कारक, चार्ल्स सैंडर्स पियर्स के बाद [[पियर्स तीर]] के रूप में भी जाना जाता है, और यह [[एकमात्र पर्याप्त ऑपरेटर|एकमात्र पर्याप्त]] संक्रियक है।


'p NOR q' ('p ↓ q', या 'Xpq' के रूप में भी लिखा जाता है) के लिए ट्रुथ टेबल इस प्रकार है:
'p NOR q' ('p ↓ q', या 'Xpq' के रूप में भी लिखा जाता है) के लिए ट्रुथ टेबल इस प्रकार है:
Line 458: Line 458:


=== सबसे अधिक उपयोग किए जाने वाले तार्किक ऑपरेटरों के लिए ट्रुथ टेबल ===
=== सबसे अधिक उपयोग किए जाने वाले तार्किक ऑपरेटरों के लिए ट्रुथ टेबल ===
यहाँ एक ट्रुथ टेबल है जो ट्रैक्टैटस  तर्क-दार्शनिक # प्रस्ताव 4.*-5.* में से सबसे अधिक उपयोग किए जाने वाले 7 की परिभाषा देती है:
यहाँ एक ट्रुथ टेबल है जो ट्रैक्टैटस  तर्क-दार्शनिक # तर्कवाक्य 4.*-5.* में से सबसे अधिक उपयोग किए जाने वाले 7 की परिभाषा देती है:


{| class="wikitable" style="margin:1em auto 1em auto; text-align:center;"
{| class="wikitable" style="margin:1em auto 1em auto; text-align:center;"

Revision as of 17:06, 20 February 2023

ट्रुथ टेबल एक गणितीय तालिका है जिसका उपयोग तर्क में किया जाता है - विशेष रूप से बूलियन बीजगणित (तर्क), बूलियन फलन और तर्कवाक्यिक कलन के संबंध में - जो उनके प्रत्येक कार्यात्मक तर्कों पर तार्किक अभिव्यक्ति (गणित) के कार्यात्मक मानों को निर्धारित करता है, अर्थात उनके द्वारा लिए गए मानों के प्रत्येक संयोजन के लिए मूल्यांकन (तर्क) चर।[1] विशेष रूप से, ट्रुथ टेबल का उपयोग यह दिखाने के लिए किया जा सकता है कि क्या सभी वैध निविष्ट मानों के लिए एक तर्कवाक्यात्मक अभिव्यक्ति सत्य है, अर्थात वैधता (तर्क)

एक ट्रुथ टेबल में प्रत्येक निविष्ट चर (उदाहरण के लिए, P और Q) के लिए एक स्तंभ होता है, और एक अंतिम स्तंभ तालिका द्वारा प्रस्तुत तार्किक संक्रिया के सभी संभावित परिणामों को दर्शाता है (उदाहरण के लिए, P XOR Q)। ट्रूथ टेबल की प्रत्येक पंक्ति में निविष्ट चरों का एक संभावित विन्यास होता है (उदाहरण के लिए, P=सत्य Q=असत्य), और उन मानों के लिए संक्रिया का परिणाम। अधिक स्पष्टीकरण के लिए नीचे दिए गए उदाहरण देखें। लुडविग विट्गेन्स्टाइन को सामान्यतः उनके ट्रैक्टेटस तर्क-दार्शनिक में ट्रुथ टेबल का आविष्कार करने और लोकप्रिय बनाने का श्रेय दिया जाता है, जो 1918 में पूर्ण हुआ और 1921 में प्रकाशित हुआ।[2] इस रूप की प्रणाली को 1921 में एमिल लियोन पोस्ट द्वारा स्वतंत्र रूप से तर्कवाक्यित किया गया था।[3] 1893 से चार्ल्स सैंडर्स पियर्स द्वारा अप्रकाशित पांडुलिपियों में ट्रुथ टेबल का एक पूर्व के पुनरावृति भी पाया गया है, जो दोनों प्रकाशनों को लगभग 30 वर्षों से प्राचीन कर रहा है।[4]


एकल संक्रियाएँ

4 एकल संक्रिया हैं:

  • अटल सत्य
  • कभी सच नहीं, एकल असत्य
  • एकात्मक तत्समक
  • एकात्मक निषेध

तार्किक सत्य

p के निविष्ट मान पर ध्यान दिए बिना निर्गत मान सदैव सत्य होता है

तार्किक सत्य
p T
T T
F T


तार्किक असत्य

निर्गत मान कभी भी सत्य नहीं होता है: p के निविष्ट मान के अतिरिक्त , सदैव असत्य होता है

तार्किक असत्य
p F
T F
F F


तार्किक तत्समक

तत्समक फलन एक तार्किक मान p पर एक तार्किक संक्रिया है, जिसके लिए निर्गत मान p रहता है।

तार्किक तत्समक संक्रियक के लिए ट्रुथ टेबल इस प्रकार है:

तार्किक तत्समक
p p
T T
F F


तार्किक निषेध

तार्किक निषेध तार्किक मान पर एक तार्किक संक्रिया है, सामान्यतः एक तर्कवाक्य का मान, जो सत्य का मान उत्पन्न करता है यदि उसका संकार्य असत्य है और असत्य का मान यदि उसका संकार्य सत्य है।

'NOT p' ('¬p', 'Np', 'Fpq', या '~p' के रूप में भी लिखा जाता है) के लिए ट्रुथ टेबल इस प्रकार है:

तार्किक Negation
p ¬p
T F
F T


बाइनरी संक्रियाएँ

दो द्विआधारी चर के 16 संभावित सत्य कार्य हैं:

सभी बाइनरी तार्किक ऑपरेटरों के लिए ट्रुथ टेबल

यहाँ दो बूलियन चर P और Q के सभी सोलह संभावित सत्य कार्यों की परिभाषाएँ देने वाली एक विस्तारित ट्रुथ टेबल है:[note 1]

p q  F0   NOR1   2   ¬p3   4   ¬q5   XOR6   NAND7   AND8   XNOR9  q10 11 p12 13 OR14 T15
T T F F F F F F F F T T T T T T T T
T F F F F F T T T T F F F F T T T T
F T F F T T F F T T F F T T F F T T
F F F T F T F T F T F T F T F T F T
Com
Assoc
Adj F0 NOR1 4 ¬q5 2 ¬p3 XOR6 NAND7 AND8 XNOR9 p12 13 q10 11 OR14 T15
Neg T15 OR14 13 p12 11 q10 XNOR9 AND8 NAND7 XOR6 ¬q5 4 ¬p3 2 NOR1 F0
Dual T15 NAND7 11 ¬p3 13 ¬q5 XNOR9 NOR1 OR14 XOR6 q10 2 p12 4 AND8 F0
L id F F T T T,F T F
R id F F T T T,F T F

कहाँ

टी = सच।
एफ = झूठा।
सुपरस्क्रिप्ट 0 से 15 वह संख्या है जो एफ = 0 और टी = 1 के साथ द्विआधारी संख्या के रूप में चार सत्य मानों को पढ़ने से उत्पन्न होती है।
कॉम पंक्ति इंगित करती है कि क्या एक ऑपरेटर, ऑप, क्रमविनिमेय गुण है - P op Q = Q op P।
Assoc पंक्ति इंगित करती है कि क्या एक ऑपरेटर, op, साहचर्य संपत्ति है - (P op Q) op R = P op (Q op R)।
Adj पंक्ति संक्रियक op2 को इस प्रकार दर्शाती है कि P op Q = Q op2 P
नकारात्मक पंक्ति संक्रियक op2 को ऐसे दिखाती है कि P op Q = ¬(P op2 Q)
दोहरी पंक्ति T को F, और AND को OR से इंटरचेंज करके प्राप्त किए गए द्वैत सिद्धांत (बूलियन बीजगणित) को दर्शाती है।
एल आईडी पंक्ति संक्रियक की बाईं तत्समक दिखाती है यदि इसमें कोई - मान I है जैसे कि मैं Q = Q का चयन करता हूं।
R आईडी पंक्ति संक्रियक की सही तत्समक दिखाती है यदि इसमें कोई - मान I है जैसे कि P op I = P।[note 2]

पी, क्यू के लिए निविष्ट मानों के चार संयोजन उपरोक्त तालिका से पंक्ति द्वारा पढ़े जाते हैं। प्रत्येक पी, क्यू संयोजन के लिए निर्गत फ़ंक्शन को तालिका से, पंक्ति द्वारा पढ़ा जा सकता है।

चाबी:

निम्न तालिका पंक्ति के बजाय स्तंभ द्वारा उन्मुख है। निविष्ट के रूप में पी, क्यू के चार संयोजनों को प्रदर्शित करने के लिए चार पंक्तियों के बजाय चार कॉलम हैं।

पी: टी टी एफ एफ
क्यू: टी एफ टी एफ

इस कुंजी में 16 पंक्तियाँ हैं, दो बाइनरी चर, p, q के प्रत्येक बाइनरी फ़ंक्शन के लिए एक पंक्ति। उदाहरण के लिए, इस कुंजी की पंक्ति 2 में, विलोम गैर-निम्नलिखित का मान ('') अद्वितीय संयोजन p=F, q=T द्वारा दर्शाए गए कॉलम के लिए केवल T है; जबकि पंक्ति 2 में, उस का मान 'p, q के तीन शेष स्तंभों के लिए संक्रिया F है। के लिए निर्गत पंक्ति इस प्रकार है

2: एफ एफ टी एफ

और 16-पंक्ति[5]कुंजी है

[5] operator Operation name
0 (F F F F)(p, q) असत्य, Opq Contradiction
1 (F F F T)(p, q) NOR pq, Xpq तार्किक NOR
2 (F F T F)(p, q) pq, Mpq Converse nonimplication
3 (F F T T)(p, q) ¬p, ~p ¬p, Np, Fpq Negation
4 (F T F F)(p, q) pq, Lpq Material nonimplication
5 (F T F T)(p, q) ¬q, ~q ¬q, Nq, Gpq Negation
6 (F T T F)(p, q) XOR pq, Jpq Exclusive disjunction
7 (F T T T)(p, q) NAND pq, Dpq तार्किक NAND
8 (T F F F)(p, q) AND pq, Kpq तार्किक conjunction
9 (T F F T)(p, q) XNOR p If and only if q, Epq तार्किक biconditional
10 (T F T F)(p, q) q q, Hpq Projection function
11 (T F T T)(p, q) pq if p then q, Cpq Material implication
12 (T T F F)(p, q) p p, Ipq Projection function
13 (T T F T)(p, q) pq p if q, Bpq Converse implication
14 (T T T F)(p, q) OR pq, Apq तार्किक disjunction
15 (T T T T)(p, q) सत्य, Vpq Tautology

तार्किक संचालकों को वेन आरेख#अवलोकन का उपयोग करके भी देखा जा सकता है।

तार्किक संयोजन (और)

तार्किक संयुग्मन दो तार्किक मानों पर एक तार्किक संक्रिया है, सामान्यतः दो तर्कवाक्यों के मान, जो कि इसके दोनों ऑपरेंड सत्य होने पर सत्य का मान उत्पन्न करते हैं।

'p AND q' के लिए सत्य सारणी ('p ∧ q', 'Kpq', 'p & q', या 'p' के रूप में भी लिखा जाता है) क्यू) इस प्रकार है:

तार्किक conjunction
p q pq
T T T
T F F
F T F
F F F

सामान्य भाषा में, यदि p और q दोनों सत्य हैं, तो संयोजन p ∧ q सत्य है। p और q के तार्किक मानों के अन्य सभी असाइनमेंट के लिए संयोजन p∧ q असत्य है।

यह भी कहा जा सकता है कि यदि p, तो p∧q, q है, अन्यथा p∧q, p है।

तार्किक संयोजन (या)

तार्किक विच्छेदन दो तार्किक मानों पर एक तार्किक संक्रिया है, सामान्यतः दो तर्कवाक्यों के मान, जो कि कम से कम एक ऑपरेंड सत्य होने पर सत्य का मान उत्पन्न करता है।

'p OR q' ('p ∨ q', 'Apq', 'p || q', या 'p + q' के रूप में भी लिखा जाता है) के लिए ट्रुथ टेबल इस प्रकार है:

तार्किक disjunction
p q pq
T T T
T F T
F T T
F F F

अंग्रेजी में कहा गया है, यदि p, तो p ∨ q, p है, अन्यथा p ∨ q, q है।

तार्किक निहितार्थ

तार्किक निहितार्थ और सामग्री सशर्त दोनों दो तार्किक मानों पर एक तार्किक संक्रिया से जुड़े होते हैं, सामान्यतः दो तर्कवाक्यों के मान, जो कि पहला ऑपरेंड सत्य है और दूसरा ऑपरेंड असत्य है, और अन्यथा सत्य का मान उत्पन्न करता है। .

तार्किक निहितार्थ 'p का तात्पर्य q' ('p ⇒ q' के रूप में चिन्हित, या शायद ही कभी 'Cpq') से जुड़ी ट्रुथ टेबल इस प्रकार है:

तार्किक implication
p q pq
T T T
T F F
F T T
F F T

सामग्री सशर्त से जुड़ी ट्रुथ टेबल यदि p तो q (p → q के रूप में प्रतीक) इस प्रकार है:

Material conditional
p q pq
T T T
T F F
F T T
F F T

यह नोट करना भी उपयोगी हो सकता है कि p ⇒ q और p → q ¬p ∨ q के समतुल्य हैं।

तार्किक समानता

तार्किक समानता (जिसे द्विशर्त या अनन्य और न ही के रूप में भी जाना जाता है) दो तार्किक मानों पर एक तार्किक संक्रिया है, सामान्यतः दो तर्कवाक्यों के मान, जो कि दोनों ऑपरेंड असत्य हैं या दोनों ऑपरेंड सत्य हैं, तो सत्य का मान पैदा करता है।

'p XNOR q' ('p ↔ q', 'Epq', 'p = q', या 'p ≡ q' के रूप में भी लिखा जाता है) के लिए ट्रुथ टेबल इस प्रकार है:

तार्किक equality
p q pq
T T T
T F F
F T F
F F T

अतः p EQ q सत्य है यदि p और q का सत्य मान समान है (दोनों सत्य या दोनों असत्य), और असत्य यदि उनके भिन्न सत्य मान हैं।

अनन्य संयोजन

एक्सक्लूसिव डिसजंक्शन दो तार्किक मानों पर एक तार्किक संक्रिया है, सामान्यतः दो तर्कवाक्यों के मान, जो सत्य का मान पैदा करता है यदि एक नहीं बल्कि इसके दोनों ऑपरेंड सत्य हैं।

'p XOR q' ('Jpq', या 'p ⊕ q' के रूप में भी लिखा जाता है) के लिए ट्रुथ टेबल इस प्रकार है:

Exclusive disjunction
p q pq
T T F
T F T
F T T
F F F

दो कथनों के लिए, XOR को (p ∧ ¬q) ∨ (¬p ∧ q) के रूप में भी लिखा जा सकता है।

तार्किक नंद

तार्किक NAND दो तार्किक मानों पर एक तार्किक संक्रिया है, सामान्यतः दो तर्कवाक्यों के मान, जो असत्य का मान उत्पन्न करता है यदि इसके दोनों ऑपरेंड सत्य हैं। दूसरे शब्दों में, यदि इसका कम से कम एक ऑपरेंड असत्य है तो यह सही का मान उत्पन्न करता है।

'पी नंद क्यू' ('पी ↑ क्यू', 'डीपीक्यू', या 'पी | क्यू' के रूप में भी लिखा गया है) के लिए ट्रुथ टेबल इस प्रकार है:

तार्किक NAND
p q pq
T T F
T F T
F T T
F F T

किसी तार्किक संक्रिया को यौगिक संक्रिया के रूप में अभिव्यक्त करना अक्सर उपयोगी होता है, अर्थात, एक ऐसी संक्रिया के रूप में जो अन्य संक्रियाओं से निर्मित या संघटित होती है। ऐसी कई रचनाएँ संभव हैं, जो उन संक्रियाओं पर निर्भर करती हैं जिन्हें मूल या आदिम के रूप में लिया जाता है और उन संक्रियाओं को जिन्हें समग्र या व्युत्पन्न के रूप में लिया जाता है।

तार्किक NAND के मामले में, यह NOT और AND के यौगिक के रूप में स्पष्ट रूप से अभिव्यक्त होता है।

संयोजन का निषेध: ¬(p ∧ q), और निषेध का संयोजन: (¬p) ∨ (¬q) को निम्नानुसार सारणीबद्ध किया जा सकता है:

p q p ∧ q ¬(p ∧ q) ¬p ¬q p) ∨ (¬q)
T T T F F F F
T F F T F T T
F T F T T F T
F F F T T T T


तार्किक नॉर

तार्किक NOR दो तार्किक मानों पर एक तार्किक संक्रिया है, सामान्यतः दो तर्कवाक्यों के मान, जो सत्य का मान उत्पन्न करता है यदि इसके दोनों ऑपरेंड झूठे हैं। दूसरे शब्दों में, यदि इसका कम से कम एक ऑपरेंड सत्य है, तो यह असत्य का मान उत्पन्न करता है। ↓ को इसके आविष्कारक, चार्ल्स सैंडर्स पियर्स के बाद पियर्स तीर के रूप में भी जाना जाता है, और यह एकमात्र पर्याप्त संक्रियक है।

'p NOR q' ('p ↓ q', या 'Xpq' के रूप में भी लिखा जाता है) के लिए ट्रुथ टेबल इस प्रकार है:

तार्किक NOR
p q pq
T T F
T F F
F T F
F F T

वियोजन ¬(p ∨ q), और निषेधों के संयोजन (¬p) ∧ (¬q) का निषेध निम्नानुसार सारणीबद्ध किया जा सकता है:

p q p ∨ q ¬(p ∨ q) ¬p ¬q p) ∧ (¬q)
T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

कार्यात्मक तर्क p और q के लिए तार्किक मानों के प्रत्येक असाइनमेंट के तहत NAND और NOR के लिए सारणीबद्ध व्युत्पत्तियों का निरीक्षण, ¬(p ∧ q) के लिए कार्यात्मक मानों के समान पैटर्न का उत्पादन करता है जैसा कि (¬p) ∨ (¬q) के लिए होता है। और ¬(p ∨ q) के लिए (¬p) ∧ (¬q) के लिए। इस प्रकार प्रत्येक जोड़ी में पहली और दूसरी अभिव्यक्तियाँ तार्किक रूप से समतुल्य हैं, और सभी संदर्भों में एक दूसरे के लिए प्रतिस्थापित की जा सकती हैं जो केवल उनके तार्किक मानों से संबंधित हैं।

यह तुल्यता डी मॉर्गन के नियमों में से एक है।

ट्रुथ टेबल का आकार

यदि n निविष्ट चर हैं तो 2 हैंn उनके सत्य मानों के संभावित संयोजन। एक दिया गया फ़ंक्शन प्रत्येक संयोजन के लिए सही या असत्य उत्पन्न कर सकता है इसलिए n चर के विभिन्न कार्यों की संख्या दोहरा घातांक फ़ंक्शन 2 है2एन.

n 2n 22n
0 1 2
1 2 4
2 4 16
3 8 256
4 16 65,536
5 32 4,294,967,296 ≈ 4.3×109
6 64 18,446,744,073,709,551,616 ≈ 1.8×1019
7 128 340,282,366,920,938,463,463,374,607,431,768,211,456 ≈ 3.4×1038
8 256 115,792,089,237,316,195,423,570,985,008,687,907,853,269,984,665,640,564,039,457,584,007,913,129,639,936 ≈ 1.2×1077

तीन या अधिक चरों के फलनों के लिए सत्य सारणी विरले ही दी जाती है।

अनुप्रयोग

कई अन्य तार्किक तुल्यताओं को सिद्ध करने के लिए ट्रुथ टेबल का उपयोग किया जा सकता है। उदाहरण के लिए, निम्नलिखित ट्रुथ टेबल पर विचार करें:

तार्किक equivalence :
T T F T T
T F F F F
F T T T T
F F T T T

यह इस तथ्य को प्रदर्शित करता है कि तार्किक रूप से समकक्ष है .

सबसे अधिक उपयोग किए जाने वाले तार्किक ऑपरेटरों के लिए ट्रुथ टेबल

यहाँ एक ट्रुथ टेबल है जो ट्रैक्टैटस तर्क-दार्शनिक # तर्कवाक्य 4.*-5.* में से सबसे अधिक उपयोग किए जाने वाले 7 की परिभाषा देती है:

P Q
T T T T F T T T T
T F F T T F F T F
F T F T T F T F F
F F F F F T T T T
P Q
AND
(conjunction)
OR
(disjunction)
XOR
(exclusive or)
XNOR
(exclusive nor)
conditional
"if-then"
conditional
"then-if"
biconditional
"if-and-only-if"

where    T    means सत्य and    F    means असत्य


बाइनरी ऑपरेटरों के लिए संघनित सत्य सारणी

बाइनरी ऑपरेटरों के लिए, ट्रुथ टेबल का एक संघनित रूप भी उपयोग किया जाता है, जहां पंक्ति शीर्षक और स्तंभ शीर्षक ऑपरेंड निर्दिष्ट करते हैं और तालिका कक्ष परिणाम निर्दिष्ट करते हैं। उदाहरण के लिए, बूलियन तर्क इस संघनित ट्रुथ टेबल संकेतन का उपयोग करता है:

F T
F F F
T F T
F T
F F T
T T T

यह अंकन विशेष रूप से उपयोगी है यदि संक्रिया क्रमविनिमेय हैं, हालांकि कोई अतिरिक्त रूप से यह निर्दिष्ट कर सकता है कि पंक्तियाँ पहला ऑपरेंड हैं और कॉलम दूसरे ऑपरेंड हैं। यह संघनित संकेतन तर्क के बहु-मूल्यवान विस्तारों पर चर्चा करने में विशेष रूप से उपयोगी है, क्योंकि यह अन्यथा आवश्यक पंक्तियों की संख्या के संयोजी विस्फोट पर महत्वपूर्ण रूप से कटौती करता है। यह तालिका में मानों के वितरण के त्वरित तत्समकने योग्य विशेषता आकार भी प्रदान करता है जो पाठक को नियमों को और अधिक तेज़ी से समझने में सहायता कर सकता है।

डिजिटल लॉजिक में सत्य सारणी

डिजिटल सर्किट में लुकअप टेबल # हार्डवेयर LUTs | हार्डवेयर लुक-अप टेबल (LUTs) के कार्य को निर्दिष्ट करने के लिए ट्रूथ टेबल का भी उपयोग किया जाता है। एन- निविष्ट एलयूटी के लिए, ट्रुथ टेबल में 2^एन मान (या उपरोक्त सारणीबद्ध प्रारूप में पंक्तियां) होंगे, जो पूरी रूप से एलयूटी के लिए एक बूलियन फ़ंक्शन निर्दिष्ट करते हैं। बाइनरी अंक प्रणाली में प्रत्येक बूलियन मान को अंश के रूप में प्रदर्शित करके, ट्रुथ टेबल मानों को इलेक्ट्रॉनिक डिजाइन स्वचालन | इलेक्ट्रॉनिक डिज़ाइन ऑटोमेशन (EDA) सॉफ़्टवेयर में पूर्णांक मानों के रूप में कुशलतापूर्वक एन्कोड किया जा सकता है। उदाहरण के लिए, एक 32-बिट पूर्णांक 5 निविष्ट तक LUT के लिए ट्रुथ टेबल को सांकेतिक शब्दों में बदल सकता है।

एक ट्रुथ टेबल के पूर्णांक प्रतिनिधित्व का उपयोग करते समय, LUT का निर्गत मान LUT के निविष्ट मानों के आधार पर बिट इंडेक्स k की गणना करके प्राप्त किया जा सकता है, जिस स्थिति में LUT का निर्गत मान पूर्णांक का kth बिट होता है। उदाहरण के लिए, n बूलियन निविष्ट मानों की सरणी डेटा संरचना दिए गए LUT के निर्गत मान का मूल्यांकन करने के लिए, ट्रुथ टेबल के निर्गत मान के बिट इंडेक्स की गणना निम्नानुसार की जा सकती है: यदि ith निविष्ट सत्य है, तो मान लें , और जाने दो . फिर ट्रुथ टेबल के द्विआधारी प्रतिनिधित्व का kth बिट LUT का निर्गत मान है, जहाँ .

ट्रुथ टेबल बूलियन फ़ंक्शंस को एनकोड करने का एक सरल और सीधा तरीका है, हालांकि निविष्ट की संख्या में वृद्धि के रूप में आकार में घातीय वृद्धि को देखते हुए, वे बड़ी संख्या में निविष्ट वाले फ़ंक्शंस के लिए उपयुक्त नहीं हैं। अन्य अभ्यावेदन जो अधिक मेमोरी कुशल हैं, पाठ समीकरण और बाइनरी निर्णय आरेख हैं।

डिजिटल इलेक्ट्रॉनिक्स में ट्रूथ टेबल के अनुप्रयोग

डिजिटल इलेक्ट्रॉनिक्स और कंप्यूटर विज्ञान (एप्लाइड लॉजिक इंजीनियरिंग और गणित के क्षेत्र) में, तर्क द्वार्स या कोड के उपयोग के बिना, निर्गत के निविष्ट के सरल सहसंबंधों के लिए बुनियादी बूलियन संक्रिया को कम करने के लिए ट्रुथ टेबल का उपयोग किया जा सकता है। उदाहरण के लिए, एक बाइनरी जोड़ को ट्रुथ टेबल के साथ प्रदर्शित किया जा सकता है:

<पूर्व> ए बी | करोड़ 1 1 | 1 0 1 0 | 0 1 0 1 | 0 1 0 0 | 0 0

कहाँ

ए = पहला ऑपरेंड बी = दूसरा ऑपरेंड सी = कैरी आर = परिणाम </पूर्व>

यह ट्रुथ टेबल बाएं से दाएं पढ़ी जाती है:

  • मान पेयर (ए, बी) मान पेयर (सी, आर) के बराबर है।
  • या इस उदाहरण के लिए, ए प्लस बी समान परिणाम आर, कैरी सी के साथ।

ध्यान दें कि यह तालिका इस संक्रिया को लागू करने के लिए आवश्यक लॉजिक संक्रियाएँ का वर्णन नहीं करती है, बल्कि यह केवल निर्गत मानों के निविष्ट के कार्य को निर्दिष्ट करती है।

परिणाम के संबंध में, इस उदाहरण को अंकगणितीय रूप से मोडुलो 2 बाइनरी जोड़ के रूप में देखा जा सकता है, और तार्किक रूप से अनन्य-या (अनन्य संयोजन) बाइनरी लॉजिक संक्रिया के बराबर है।

इस मामले में इसका उपयोग केवल बहुत ही सरल निविष्ट और निर्गत के लिए किया जा सकता है, जैसे 1s और 0s। हालाँकि, यदि निविष्ट्स पर किसी प्रकार के मानों की संख्या बढ़ सकती है, तो ट्रुथ टेबल का आकार बढ़ जाएगा।

उदाहरण के लिए, एक अतिरिक्त संक्रिया में, किसी को दो ऑपरेंड, ए और बी की आवश्यकता होती है। प्रत्येक में दो मानों में से एक हो सकता है, शून्य या एक। इन दो मानों के संयोजनों की संख्या 2×2 या चार है। तो परिणाम C और R के चार संभावित निर्गत हैं। यदि कोई आधार 3 का उपयोग करता है, तो आकार 3×3, या नौ संभावित निर्गत तक बढ़ जाएगा।

उपरोक्त पूर्व जोड़ उदाहरण को आधा योजक कहा जाता है। एक पूर्ण-योजक तब होता है जब पिछले संक्रिया से अगले योजक को निविष्ट के रूप में प्रदान किया जाता है। इस प्रकार, एक पूर्ण योजक के तर्क का वर्णन करने के लिए आठ पंक्तियों की एक ट्रुथ टेबल की आवश्यकता होगी:

<पूर्व> ए बी सी* | करोड़ 0 0 0 | 0 0 0 1 0 | 0 1 1 0 0 | 0 1 1 1 0 | 1 0 0 0 1 | 0 1 0 1 1 | 1 0 1 0 1 | 1 0 1 1 1 | 11

पूर्व जैसा ही, लेकिन.. C* = पिछले ऐडर से कैरी करें </पूर्व>

इतिहास

इरविंग एनेलिस के शोध से पता चलता है कि सी.एस. पियर्स एक ट्रुथ टेबल मैट्रिक्स तैयार करने के लिए (1893 में) सबसे शुरुआती तर्कशास्त्री प्रतीत होते हैं।[4][6] उनके पेपर के सारांश से:

1997 में, जॉन शॉस्की ने बर्ट्रेंड रसेल के 1912 के लेक्चर ऑफ़ द फिलॉसफी ऑफ़ लॉजिकल एटमिज़्म ट्रूथ टेबल मैट्रिसेस के टाइप किए गए प्रतिलेख के एक पृष्ठ के शीर्ष पर खोजा। निषेध का मैट्रिक्स रसेल का है, जिसके साथ-साथ लुडविग विट्गेन्स्टाइन के हाथ में भौतिक निहितार्थ के लिए मैट्रिक्स है। यह दिखाया गया है कि 1893 में पियर्स द्वारा रचित एक अप्रकाशित पांडुलिपि में एक ट्रुथ टेबल मैट्रिक्स शामिल है जो जॉन शोस्की द्वारा खोजे गए भौतिक निहितार्थ के मैट्रिक्स के बराबर है। पीयरस द्वारा एक अप्रकाशित पांडुलिपि की तत्समक 1883-84 में पीयरस ऑन ​​द एलजेब्रा ऑफ लॉजिक: ए कंट्रीब्यूशन टू द फिलॉसफी ऑफ नोटेशन की रचना के संबंध में की गई थी, जो 1885 में अमेरिकन जर्नल ऑफ मैथमेटिक्स में छपी थी, जिसमें अप्रत्यक्ष का एक उदाहरण शामिल है। सशर्त के लिए ट्रुथ टेबल। </ब्लॉककोट>

यह भी देखें


टिप्पणियाँ

  1. Information about notation may be found in (Bocheński 1959), (Enderton 2001), and (Quine 1982).
  2. The operators here with equal left and right identities (XOR, AND, XNOR, and OR) are also commutative monoids because they are also associative. While this distinction may be irrelevant in a simple discussion of logic, it can be quite important in more advanced mathematics. For example, in category theory an enriched category is described as a base category enriched over a monoid, and any of these operators can be used for enrichment.


संदर्भ

  1. Enderton 2001
  2. von Wright, Georg Henrik (1955). "Ludwig Wittgenstein, A Biographical Sketch". The Philosophical Review. 64 (4): 527–545 (p. 532, note 9). doi:10.2307/2182631. JSTOR 2182631.
  3. Post, Emil (July 1921). "Introduction to a general theory of elementary propositions". American Journal of Mathematics. 43 (3): 163–185. doi:10.2307/2370324. hdl:2027/uiuo.ark:/13960/t9j450f7q. JSTOR 2370324.
  4. 4.0 4.1 Anellis, Irving H. (2012). "Peirce's Truth-functional Analysis and the Origin of the Truth Table". History and Philosophy of Logic. 33: 87–97. doi:10.1080/01445340.2011.621702. S2CID 170654885.
  5. 5.0 5.1 Wittgenstein, Ludwig (1922). "Proposition 5.101" (PDF). Tractatus Logico-Philosophicus.
  6. Peirce's publication included the work of Christine Ladd (1881): Peirce's Ph.D. student Christine Ladd-Franklin found the truth table in Tractatus Logico-Philosophicus Proposition 5.101, 40 years earlier than Wittgenstein. Ladd, Christine (1881). Peirce, C.S. (ed.). On the Algebra of Logic. Studies in Logic. p. 62.



उद्धृत कार्य


बाहरी संबंध