ट्रुथ टेबल: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Mathematical table used in logic}}
{{Short description|Mathematical table used in logic}}
ट्रुथ टेबल एक [[गणितीय तालिका]] है जिसका उपयोग [[तर्क]] में किया जाता है - विशेष रूप से [[बूलियन बीजगणित (तर्क)]], [[बूलियन समारोह|बूलियन फलन]] और तर्कवाक्यिक कलन के संबंध में - जो उनके प्रत्येक कार्यात्मक तर्कों पर तार्किक [[अभिव्यक्ति (गणित)]] के कार्यात्मक मानों को निर्धारित करता है, अर्थात उनके द्वारा लिए गए मानों के प्रत्येक संयोजन के लिए   [[मूल्यांकन (तर्क)]] चर।<ref>{{harvnb|Enderton|2001}}</ref> विशेष रूप से, ट्रुथ टेबल का उपयोग यह दिखाने के लिए किया जा सकता है कि क्या सभी वैध निविष्ट मानों के लिए एक तर्कवाक्यात्मक अभिव्यक्ति सत्य है, अर्थात [[वैधता (तर्क)]]।
ट्रुथ टेबल एक [[गणितीय तालिका]] है जिसका उपयोग [[तर्क]] में किया जाता है - विशेष रूप से [[बूलियन बीजगणित (तर्क)|बूलियन बीजगणित(तर्क)]], [[बूलियन समारोह|बूलियन फलन]] और तर्कवाक्यिक कलन के संबंध में - जो उनके प्रत्येक कार्यात्मक तर्कों पर तार्किक [[अभिव्यक्ति (गणित)|अभिव्यक्ति(गणित)]] के कार्यात्मक मानों को निर्धारित करता है, अर्थात उनके द्वारा लिए गए मानों के प्रत्येक संयोजन के लिए [[मूल्यांकन (तर्क)|मूल्यांकन(तर्क)]] चर।<ref>{{harvnb|Enderton|2001}}</ref> विशेष रूप से, ट्रुथ टेबल का उपयोग यह दिखाने के लिए किया जा सकता है कि क्या सभी वैध निविष्ट मानों के लिए एक तर्कवाक्यात्मक अभिव्यक्ति सत्य है, अर्थात [[वैधता (तर्क)|वैधता(तर्क)]]।


एक ट्रुथ टेबल में प्रत्येक निविष्ट चर (उदाहरण के लिए, P और Q) के लिए एक स्तंभ होता है, और एक अंतिम स्तंभ तालिका द्वारा प्रस्तुत तार्किक संक्रिया के सभी संभावित परिणामों को दर्शाता है (उदाहरण के लिए, P [[XOR]] Q)। ट्रूथ टेबल की प्रत्येक पंक्ति में निविष्ट चरों का एक संभावित विन्यास होता है (उदाहरण के लिए, P=सत्य Q=असत्य), और उन मानों के लिए संक्रिया का परिणाम। अधिक स्पष्टीकरण के लिए नीचे दिए गए उदाहरण देखें। [[लुडविग विट्गेन्स्टाइन]] को सामान्यतः उनके [[ट्रैक्टेटस लोगिको-फिलोसोफिकस|ट्रैक्टेटस तर्क-दार्शनिक]] में ट्रुथ टेबल का आविष्कार करने और लोकप्रिय बनाने का श्रेय दिया जाता है, जो 1918 में पूर्ण हुआ और 1921 में प्रकाशित हुआ।<ref>{{cite journal | author-link = Georg Henrik von Wright |first=Georg Henrik |last=von Wright  | title = Ludwig Wittgenstein, A Biographical Sketch | journal = The Philosophical Review | volume = 64 | issue = 4 | year = 1955 | pages = 527–545 (p. 532, note 9) | jstor = 2182631 | doi=10.2307/2182631}}</ref> इस रूप की प्रणाली को 1921 में [[एमिल लियोन पोस्ट]] द्वारा स्वतंत्र रूप से तर्कवाक्यित किया गया था।<ref>{{cite journal | author-link=Emil Post |first=Emil |last=Post |title=Introduction to a general theory of elementary propositions|journal=American Journal of Mathematics|date=July 1921|volume=43|issue=3|pages=163–185|jstor= 2370324|doi=10.2307/2370324|hdl=2027/uiuo.ark:/13960/t9j450f7q|hdl-access=free}}</ref> 1893 से [[चार्ल्स सैंडर्स पियर्स]] द्वारा अप्रकाशित पांडुलिपियों में ट्रुथ टेबल का एक पूर्व के पुनरावृति भी पाया गया है, जो दोनों प्रकाशनों को लगभग 30 वर्षों से प्राचीन कर रहा है।<ref name="Peirce"/>
एक ट्रुथ टेबल में प्रत्येक निविष्ट चर(उदाहरण के लिए, P और Q) के लिए एक स्तंभ होता है, और एक अंतिम स्तंभ तालिका द्वारा प्रस्तुत तार्किक संक्रिया के सभी संभावित परिणामों को दर्शाता है(उदाहरण के लिए, P [[XOR]] Q)। ट्रूथ टेबल की प्रत्येक पंक्ति में निविष्ट चरों का एक संभावित विन्यास होता है(उदाहरण के लिए, P=सत्य Q=असत्य), और उन मानों के लिए संक्रिया का परिणाम। अधिक स्पष्टीकरण के लिए नीचे दिए गए उदाहरण देखें। [[लुडविग विट्गेन्स्टाइन]] को सामान्यतः उनके [[ट्रैक्टेटस लोगिको-फिलोसोफिकस|ट्रैक्टेटस तर्क-दार्शनिक]] में ट्रुथ टेबल का आविष्कार करने और लोकप्रिय बनाने का श्रेय दिया जाता है, जो 1918 में पूर्ण हुआ और 1921 में प्रकाशित हुआ।<ref>{{cite journal | author-link = Georg Henrik von Wright |first=Georg Henrik |last=von Wright  | title = Ludwig Wittgenstein, A Biographical Sketch | journal = The Philosophical Review | volume = 64 | issue = 4 | year = 1955 | pages = 527–545 (p. 532, note 9) | jstor = 2182631 | doi=10.2307/2182631}}</ref> इस रूप की प्रणाली को 1921 में [[एमिल लियोन पोस्ट]] द्वारा स्वतंत्र रूप से तर्कवाक्यित किया गया था।<ref>{{cite journal | author-link=Emil Post |first=Emil |last=Post |title=Introduction to a general theory of elementary propositions|journal=American Journal of Mathematics|date=July 1921|volume=43|issue=3|pages=163–185|jstor= 2370324|doi=10.2307/2370324|hdl=2027/uiuo.ark:/13960/t9j450f7q|hdl-access=free}}</ref> 1893 से [[चार्ल्स सैंडर्स पियर्स]] द्वारा अप्रकाशित हस्तलेखयों में ट्रुथ टेबल का एक पूर्व के पुनरावृति भी पाया गया है, जो दोनों प्रकाशनों को लगभग 30 वर्षों से प्राचीन कर रहा है।<ref name="Peirce"/>




== एकल संक्रियाएँ ==
== एकल संक्रियाएँ ==


4 एकल संक्रिया हैं:
4 एकल संक्रिया हैं:
*अटल सत्य
*अटल सत्य
* कभी सत्य नहीं, एकल [[असत्य]]
* कभी सत्य नहीं, एकल [[असत्य]]
* एकात्मक तत्समक
* एकात्मक तत्समक
* एकात्मक निषेध
* एकात्मक निषेध


=== तार्किक सत्य ===
=== तार्किक सत्य ===
p के निविष्ट मान पर ध्यान दिए बिना निर्गत मान सदैव सत्य होता है
p के निविष्ट मान पर ध्यान दिए बिना निर्गत मान सदैव सत्य होता है
{| class="wikitable" style="margin:1em auto; text-align:center;"
{| class="wikitable" style="margin:1em auto; text-align:center;"
|+ '''तार्किक सत्य'''
|+ '''तार्किक सत्य'''
Line 28: Line 28:


=== तार्किक असत्य ===
=== तार्किक असत्य ===
निर्गत मान कभी भी सत्य नहीं होता है: p के निविष्ट मान के अतिरिक्त , सदैव असत्य होता है
निर्गत मान कभी भी सत्य नहीं होता है: p के निविष्ट मान के अतिरिक्त, सदैव असत्य होता है
{| class="wikitable" style="margin:1em auto; text-align:center;"
{| class="wikitable" style="margin:1em auto; text-align:center;"
|+ '''तार्किक असत्य'''
|+ '''तार्किक असत्य'''
Line 42: Line 42:


=== तार्किक तत्समक ===
=== तार्किक तत्समक ===
[[पहचान समारोह|तत्समक फलन]] एक [[तार्किक मूल्य|तार्किक मान]] p पर एक [[तार्किक संचालन|तार्किक संक्रिया]] है, जिसके लिए निर्गत मान p रहता है।
[[पहचान समारोह|तत्समक फलन]] एक [[तार्किक मूल्य|तार्किक मान]] p पर एक [[तार्किक संचालन|तार्किक संक्रिया]] है, जिसके लिए निर्गत मान p रहता है।


तार्किक तत्समक संक्रियक के लिए ट्रुथ टेबल इस प्रकार है:
तार्किक तत्समक संक्रियक के लिए ट्रुथ टेबल इस प्रकार है:
Line 59: Line 59:


=== [[तार्किक निषेध]] ===
=== [[तार्किक निषेध]] ===
तार्किक निषेध तार्किक मान पर एक तार्किक संक्रिया है, सामान्यतः एक [[प्रस्ताव|तर्कवाक्य]] का मान, जो सत्य का मान उत्पन्न करता है यदि उसका संकार्य असत्य है और असत्य का मान यदि उसका संकार्य सत्य है।
तार्किक निषेध तार्किक मान पर एक तार्किक संक्रिया है, सामान्यतः एक [[प्रस्ताव|तर्कवाक्य]] का मान, जो सत्य का मान उत्पन्न करता है यदि उसका संकार्य असत्य है और असत्य का मान यदि उसका संकार्य सत्य है।


'''NOT p''' ('''¬p''', '''Np''', '''Fpq''', या '''~p''' के रूप में भी लिखा जाता है) के लिए ट्रुथ टेबल इस प्रकार है:
'''NOT p'''('''¬p''', '''Np''', '''Fpq''', या '''~p''' के रूप में भी लिखा जाता है) के लिए ट्रुथ टेबल इस प्रकार है:


{| class="wikitable" style="margin:1em auto; text-align:center;"
{| class="wikitable" style="margin:1em auto; text-align:center;"
Line 75: Line 75:




== द्विआधारी संक्रियाएँ ==
== द्विआधारी संक्रियाएँ ==


दो [[द्विआधारी चर]] के 16 संभावित सत्य कार्य हैं:
दो [[द्विआधारी चर]] के 16 संभावित सत्य कार्य हैं:


=== सभी द्विआधारी तार्किक संक्रियकों के लिए ट्रुथ टेबल ===
=== सभी द्विआधारी तार्किक संक्रियकों के लिए ट्रुथ टेबल ===
यहाँ दो बूलियन चर P और Q के सभी सोलह संभावित सत्य कार्यों की परिभाषाएँ देने वाली एक विस्तारित ट्रुथ टेबल है:<ref group=note>Information about notation may be found in {{harv|Bocheński|1959}}, {{harv|Enderton|2001}}, and {{harv|Quine|1982}}.</ref>
यहाँ दो बूलियन चर P और Q के सभी सोलह संभावित सत्य कार्यों की परिभाषाएँ देने वाली एक विस्तारित ट्रुथ टेबल है:<ref group=note>Information about notation may be found in {{harv|Bocheński|1959}}, {{harv|Enderton|2001}}, and {{harv|Quine|1982}}.</ref>


Line 128: Line 128:
: T= सत्य।
: T= सत्य।
: F= असत्य।
: F= असत्य।
: मूर्धांक <sup>0</sup> से <sup>15</sup> वह संख्या है जो चार सत्य मानों F = 0 और T = 1 के साथ द्विआधारी संख्या के रूप में पढ़ने से उत्पन्न होती है।
: मूर्धांक <sup>0</sup> से <sup>15</sup> वह संख्या है जो चार सत्य मानों F = 0 और T = 1 के साथ द्विआधारी संख्या के रूप में पढ़ने से उत्पन्न होती है।
: '''Com''' पंक्ति इंगित करती है कि क्या एक संक्रियक, '''op''', क्रमविनिमेय गुण है -'''P op Q = Q op P'''।
: '''Com''' पंक्ति इंगित करती है कि क्या एक संक्रियक, '''op''', क्रमविनिमेय गुण है -'''P op Q = Q op P'''।
:'''Assoc''' पंक्ति इंगित करती है कि क्या एक संक्रियक, '''op''', साहचर्य गुण है - '''(P op Q) op R = P op (Q op R)'''.
:'''Assoc''' पंक्ति इंगित करती है कि क्या एक संक्रियक, '''op''', साहचर्य गुण है -('''P op Q) op R = P op(Q op R)'''.
: '''Adj''' पंक्ति संक्रियक '''op2''' को इस प्रकार दर्शाती है कि '''P op Q = Q op2 P'''
: '''Adj''' पंक्ति संक्रियक '''op2''' को इस प्रकार दर्शाती है कि '''P op Q = Q op2 P'''
: '''Neg''' पंक्ति संक्रियक '''op2''' को ऐसे दिखाती है कि '''P op Q = ¬(P op2 Q)'''
: '''Neg''' पंक्ति संक्रियक '''op2''' को ऐसे दिखाती है कि '''P op Q = ¬(P op2 Q)'''
: '''Dual''' पंक्ति T को F, और AND को OR से बदलने पर प्राप्त किए गए [[द्वैत सिद्धांत (बूलियन बीजगणित)]] को दर्शाती है।
: '''Dual''' पंक्ति T को F, और AND को OR से बदलने पर प्राप्त किए गए [[द्वैत सिद्धांत (बूलियन बीजगणित)|द्वैत सिद्धांत(बूलियन बीजगणित)]] को दर्शाती है।
: '''L id''' पंक्ति संक्रियक की बाईं तत्समक दिखाती है यदि इसमें कोई - मान '''I''' है जैसे कि '''I op Q = Q''' का चयन करता हूं।
: '''L id''' पंक्ति संक्रियक की बाईं तत्समक दिखाती है यदि इसमें कोई - मान '''I''' है जैसे कि '''I op Q = Q''' का चयन करता हूं।
: '''R id''' पंक्ति संक्रियक की [[सही पहचान|सत्य तत्समक]] दिखाती है यदि इसमें कोई - मान '''I''' है जैसे कि '''P op I = P'''।<ref group=note>The operators here with equal left and right identities (XOR, AND, XNOR, and OR) are also [[monoid#Commutative monoid|commutative monoids]] because they are also [[Associative property|associative]]. While this distinction may be irrelevant in a simple discussion of logic, it can be quite important in more advanced mathematics. For example, in [[category theory]] an [[enriched category]] is described as a base [[category (mathematics)|category]] enriched over a monoid, and any of these operators can be used for enrichment.</ref>
: '''R id''' पंक्ति संक्रियक की [[सही पहचान|सत्य तत्समक]] दिखाती है यदि इसमें कोई - मान '''I''' है जैसे कि '''P op I = P'''।<ref group=note>The operators here with equal left and right identities (XOR, AND, XNOR, and OR) are also [[monoid#Commutative monoid|commutative monoids]] because they are also [[Associative property|associative]]. While this distinction may be irrelevant in a simple discussion of logic, it can be quite important in more advanced mathematics. For example, in [[category theory]] an [[enriched category]] is described as a base [[category (mathematics)|category]] enriched over a monoid, and any of these operators can be used for enrichment.</ref>
p, q के लिए निविष्ट मानों के चार संयोजन उपरोक्त तालिका से पंक्ति द्वारा पढ़े जाते हैं। प्रत्येक p, q संयोजन के लिए निर्गत फलन को तालिका से, पंक्ति द्वारा पढ़ा जा सकता है।
p, q के लिए निविष्ट मानों के चार संयोजन उपरोक्त तालिका से पंक्ति द्वारा पढ़े जाते हैं। प्रत्येक p, q संयोजन के लिए निर्गत फलन को तालिका से, पंक्ति द्वारा पढ़ा जा सकता है।


==== कुंजी: ====
==== कुंजी: ====
निम्न तालिका पंक्ति के अतिरिक्त स्तंभ द्वारा उन्मुख है। निविष्ट के रूप में p, q के चार संयोजनों को प्रदर्शित करने के लिए चार पंक्तियों के अतिरिक्त चार स्तंभ हैं।
निम्न तालिका पंक्ति के अतिरिक्त स्तंभ द्वारा उन्मुख है। निविष्ट के रूप में p, q के चार संयोजनों को प्रदर्शित करने के लिए चार पंक्तियों के अतिरिक्त चार स्तंभ हैं।


'''p''': T T F F <br />'''q''': T F T F
'''p''': T T F F <br />'''q''': T F T F


इस कुंजी में 16 पंक्तियाँ हैं, दो द्विआधारी चर, p, q के प्रत्येक द्विआधारी फलन के लिए एक पंक्ति। उदाहरण के लिए, इस कुंजी की पंक्ति 2 में, विलोम गैर-निम्नलिखित का मान ('<math>\nleftarrow</math>') अद्वितीय संयोजन p=F, q=T द्वारा दर्शाए गए स्तंभ के लिए मात्र   T है; जबकि पंक्ति 2 में, उस का मान '<math>\nleftarrow</math>p, q के तीन शेष स्तंभों के लिए संक्रिया F है। <math>\nleftarrow</math> के लिए निर्गत पंक्ति इस प्रकार है
इस कुंजी में 16 पंक्तियाँ हैं, दो द्विआधारी चर, p, q के प्रत्येक द्विआधारी फलन के लिए एक पंक्ति। उदाहरण के लिए, इस कुंजी की पंक्ति 2 में, विलोम गैर-निम्नलिखित का मान('<math>\nleftarrow</math>') अद्वितीय संयोजन p=F, q=T द्वारा दर्शाए गए स्तंभ के लिए मात्र T है; जबकि पंक्ति 2 में, उस का मान '<math>\nleftarrow</math>p, q के तीन शेष स्तंभों के लिए संक्रिया F है। <math>\nleftarrow</math> के लिए निर्गत पंक्ति इस प्रकार है


2: F F T F
2: F F T F


और 16-पंक्ति<ref name=tlp5.101/>कुंजी है
और 16-पंक्ति<ref name=tlp5.101/> कुंजी है
{| class="wikitable" style="margin:1em auto 1em auto; text-align:left;"
{| class="wikitable" style="margin:1em auto 1em auto; text-align:left;"
|-
|-
! ||<ref name=tlp5.101>{{cite book |author-link=Ludwig Wittgenstein |first=Ludwig |last=Wittgenstein |date=1922 |title=Tractatus Logico-Philosophicus |title-link=Tractatus Logico-Philosophicus |chapter-url=http://www.gutenberg.org/files/5740/5740-pdf.pdf |chapter=Proposition 5.101}}</ref>|| || operator || Operation name
! ||<ref name=tlp5.101>{{cite book |author-link=Ludwig Wittgenstein |first=Ludwig |last=Wittgenstein |date=1922 |title=Tractatus Logico-Philosophicus |title-link=Tractatus Logico-Philosophicus |chapter-url=http://www.gutenberg.org/files/5740/5740-pdf.pdf |chapter=Proposition 5.101}}</ref>|| || operator || Operation name
|-
|-
| 0 ||(F F F F)(p, q)|| ⊥ || [[falsum|असत्य]], '''Opq''' || [[Contradiction]]
| 0 ||(F F F F)(p, q)|| ⊥ || [[falsum|असत्य]], '''Opq''' || [[Contradiction|प्रतिवाद]]
|-
|-
| 1 ||(F F F T)(p, q)|| NOR || '''p''' ↓ '''q''', '''Xpq''' || [[Logical NOR|तार्किक NOR]]
| 1 ||(F F F T)(p, q)|| NOR || '''p''' ↓ '''q''', '''Xpq''' || [[Logical NOR|तार्किक NOR]]
|-
|-
| 2 ||(F F T F)(p, q)|| ↚ || '''p''' ↚ '''q''', '''Mpq''' || [[Converse nonimplication|Converse nonनिहितार्थ]]
| 2 ||(F F T F)(p, q)|| ↚ || '''p''' ↚ '''q''', '''Mpq''' || [[Converse nonimplication|विपरीत गैरनिहितार्थ]]
|-
|-
| 3 ||(F F T T)(p, q)|| '''¬p''', '''~p''' || '''¬p''', '''Np''', '''Fpq''' || [[Negation|निषेध]]
| 3 ||(F F T T)(p, q)|| '''¬p''', '''~p''' || '''¬p''', '''Np''', '''Fpq''' || [[Negation|निषेध]]
|-
|-
| 4 ||(F T F F)(p, q)|| ↛ || '''p''' ↛ '''q''', '''Lpq''' || [[Material nonimplication|सामाग्र nonनिहितार्थ]]
| 4 ||(F T F F)(p, q)|| ↛ || '''p''' ↛ '''q''', '''Lpq''' || [[Material nonimplication|सामाग्र गैरनिहितार्थ]]
|-
|-
| 5 ||(F T F T)(p, q)|| '''¬q''', '''~q''' || '''¬q''', '''Nq''', '''Gpq''' || निषेध
| 5 ||(F T F T)(p, q)|| '''¬q''', '''~q''' || '''¬q''', '''Nq''', '''Gpq''' || निषेध
Line 170: Line 170:
| 8 || (T F F F)(p, q)|| AND || '''p''' ∧ '''q''', '''Kpq''' || [[Logical conjunction|तार्किक संयोजन]]
| 8 || (T F F F)(p, q)|| AND || '''p''' ∧ '''q''', '''Kpq''' || [[Logical conjunction|तार्किक संयोजन]]
|-
|-
| 9 || (T F F T)(p, q)|| XNOR || '''p''' [[If and only if]] '''q''', '''Epq'''  || [[Logical biconditional|तार्किक biप्रतिबंधात्मक]]
| 9 || (T F F T)(p, q)|| XNOR || '''p''' [[If and only if|यदि और मात्र यदि]] '''q''', '''Epq'''  || [[Logical biconditional|तार्किक biप्रतिबंधात्मक]]
|-
|-
| 10 || (T F T F)(p, q)|| '''q''' || '''q''', '''Hpq''' || [[Projection function]]
| 10 || (T F T F)(p, q)|| '''q''' || '''q''', '''Hpq''' || [[Projection function|प्रक्षेपण फलन]]  
|-
|-
| 11 || (T F T T)(p, q)|| '''p''' &rarr; '''q'''  || if '''p''' then '''q''', '''Cpq''' || [[Material conditional|सामाग्र निहितार्थ]]
| 11 || (T F T T)(p, q)|| '''p''' &rarr; '''q'''  || यदि '''p''' तो '''q''', '''Cpq''' || [[Material conditional|सामाग्र निहितार्थ]]
|-
|-
| 12 || (T T F F)(p, q)|| '''p''' || '''p''', '''Ipq''' || Projection function
| 12 || (T T F F)(p, q)|| '''p''' || '''p''', '''Ipq''' || प्रक्षेपण फलन
|-
|-
| 13 || (T T F T)(p, q)|| '''p''' &larr; '''q''' || '''p''' if '''q''', '''Bpq''' || [[Converse implication|Converse निहितार्थ]]
| 13 || (T T F T)(p, q)|| '''p''' &larr; '''q''' || '''p''' यदि '''q''', '''Bpq''' || [[Converse implication|विपरीत निहितार्थ]]
|-
|-
| 14 || (T T T F)(p, q)|| OR || '''p''' ∨ '''q''', '''Apq''' || [[Logical disjunction|तार्किक वियोजन]]
| 14 || (T T T F)(p, q)|| OR || '''p''' ∨ '''q''', '''Apq''' || [[Logical disjunction|तार्किक वियोजन]]
|-
|-
| 15 || (T T T T)(p, q)|| ⊤ || [[Tee (symbol)|सत्य]], '''Vpq''' || [[Tautology (logic)|Tautology]]
| 15 || (T T T T)(p, q)|| ⊤ || [[Tee (symbol)|सत्य]], '''Vpq''' || [[Tautology (logic)|पुनरुक्ति]]
|}
|}
तार्किक संचालकों को वेन आरेख अवलोकन का उपयोग करके भी देखा जा सकता है।
तार्किक संचालकों को वेन आरेख अवलोकन का उपयोग करके भी देखा जा सकता है।


=== [[तार्किक संयोजन]] (AND) ===
=== [[तार्किक संयोजन]](AND) ===
तार्किक संयुग्मन दो तार्किक मानों पर एक तार्किक संक्रिया है, सामान्यतः दो तर्कवाक्यों के मान, जो कि कम से कम एक   संकार्य सत्य होने पर सत्य का मान उत्पन्न करते हैं।
तार्किक संयुग्मन दो तार्किक मानों पर एक तार्किक संक्रिया है, सामान्यतः दो तर्कवाक्यों के मान, जो कि कम से कम एक संकार्य सत्य होने पर सत्य का मान उत्पन्न करते हैं।


'''p OR q''' (जिसे '''p ∨ q''', '''Apq''', '''p || q''', या '''p + q''') के रूप में भी लिखा जाता है) के लिए सत्य सारणी इस प्रकार है:
'''p OR q'''(जिसे '''p ∨ q''', '''Apq''', '''p || q''', या '''p + q''') के रूप में भी लिखा जाता है) के लिए सत्य सारणी इस प्रकार है:


<nowiki>:</nowiki>
<nowiki>:</nowiki>
Line 208: Line 208:
| style="background:papayawhip" | F || style="background:papayawhip" | F || style="background:papayawhip" | F
| style="background:papayawhip" | F || style="background:papayawhip" | F || style="background:papayawhip" | F
|}
|}
सामान्य भाषा में, यदि p और q दोनों सत्य हैं, तो संयोजन p ∧ q सत्य है। p और q के तार्किक मानों के अन्य सभी समनुदेश के लिए संयोजन p∧ q असत्य है।
सामान्य भाषा में, यदि p और q दोनों सत्य हैं, तो संयोजन p ∧ q सत्य है। p और q के तार्किक मानों के अन्य सभी समनुदेश के लिए संयोजन p∧ q असत्य है।


यह भी कहा जा सकता है कि यदि p, तो p∧q, q है, अन्यथा p∧q, p है।
यह भी कहा जा सकता है कि यदि p, तो p∧q, q है, अन्यथा p∧q, p है।


=== तार्किक वियोजन(OR) ===
=== तार्किक वियोजन(OR) ===
[[तार्किक विच्छेदन]] दो तार्किक मानों पर एक तार्किक संक्रिया है, सामान्यतः दो तर्कवाक्यों के मान, जो कि कम से कम एक संकार्य सत्य होने पर सत्य का मान उत्पन्न करता है।
[[तार्किक विच्छेदन]] दो तार्किक मानों पर एक तार्किक संक्रिया है, सामान्यतः दो तर्कवाक्यों के मान, जो कि कम से कम एक संकार्य सत्य होने पर सत्य का मान उत्पन्न करता है।


'''p OR q''' (जिसे '''p ∨ q''', '''Apq''', '''p || q''', या '''p + q''' के रूप में भी लिखा जाता है) के लिए ट्रुथ टेबल इस प्रकार है:
'''p OR q'''(जिसे '''p ∨ q''', '''Apq''', '''p || q''', या '''p + q''' के रूप में भी लिखा जाता है) के लिए ट्रुथ टेबल इस प्रकार है:


{| class="wikitable" style="margin:1em auto; text-align:center;"
{| class="wikitable" style="margin:1em auto; text-align:center;"
Line 235: Line 235:


=== तार्किक निहितार्थ ===
=== तार्किक निहितार्थ ===
तार्किक निहितार्थ और [[सामग्री सशर्त|सामाग्र प्रतिबंधात्मक]] दोनों दो तार्किक मानों पर एक तार्किक संक्रिया से जुड़े होते हैं, सामान्यतः दो तर्कवाक्यों के मान, जो कि प्रथम संकार्य सत्य है और दूसरा संकार्य असत्य है, और अन्यथा सत्य का मान उत्पन्न करता है। .
तार्किक निहितार्थ और [[सामग्री सशर्त|सामाग्र प्रतिबंधात्मक]] दोनों दो तार्किक मानों पर एक तार्किक संक्रिया से जुड़े होते हैं, सामान्यतः दो तर्कवाक्यों के मान, जो कि प्रथम संकार्य सत्य है और दूसरा संकार्य असत्य है, और अन्यथा सत्य का मान उत्पन्न करता है। .


तार्किक निहितार्थ 'p ,से जुड़ी ट्रुथ टेबल का तात्पर्य है (''''p ⇒ q''' के रूप में चिन्हित, या संभवतः ही कभी ''''Cpq'''<nowiki/>') इस प्रकार है:
तार्किक निहितार्थ 'p,से जुड़ी ट्रुथ टेबल का तात्पर्य है(''''p ⇒ q''' के रूप में चिन्हित, या संभवतः ही कभी ''''Cpq'''<nowiki/>') इस प्रकार है:


{| class="wikitable" style="margin:1em auto; text-align:center;"
{| class="wikitable" style="margin:1em auto; text-align:center;"
Line 254: Line 254:
| style="background:papayawhip" | F || style="background:papayawhip" | F || T
| style="background:papayawhip" | F || style="background:papayawhip" | F || T
|}
|}
सामाग्र प्रतिबंधात्मक से जुड़ी ट्रुथ टेबल '''यदि p तो q (p → q''' के रूप में प्रतीक) इस प्रकार है:
सामाग्र प्रतिबंधात्मक से जुड़ी ट्रुथ टेबल '''यदि p तो q(p → q''' के रूप में प्रतीक) इस प्रकार है:


{| class="wikitable" style="margin:1em auto; text-align:center;"
{| class="wikitable" style="margin:1em auto; text-align:center;"
Line 274: Line 274:


=== [[तार्किक समानता]] ===
=== [[तार्किक समानता]] ===
तार्किक समानता (जिसे [[द्विशर्त|द्विप्रतिबंधात्मक]] या [[अनन्य और न ही|अनन्य और nor]] के रूप में भी जाना जाता है) दो तार्किक मानों पर एक तार्किक संक्रिया है, सामान्यतः दो तर्कवाक्यों के मान, जो कि दोनों संकार्य असत्य है या दोनों संकार्य   सत्य हैं, तो सत्य का मान उत्पन्न करता है।
तार्किक समानता(जिसे [[द्विशर्त|द्विप्रतिबंधात्मक]] या [[अनन्य और न ही|अनन्य और nor]] के रूप में भी जाना जाता है) दो तार्किक मानों पर एक तार्किक संक्रिया है, सामान्यतः दो तर्कवाक्यों के मान, जो कि दोनों संकार्य असत्य है या दोनों संकार्य सत्य हैं, तो सत्य का मान उत्पन्न करता है।


'''p XNOR q''' (जिसे '''p ↔ q''', '''Epq''', '''p = q''', or '''p ≡ q'''<nowiki/>'के रूप में भी लिखा जाता है) के लिए ट्रुथ टेबल इस प्रकार है:
'''p XNOR q'''(जिसे '''p ↔ q''', '''Epq''', '''p = q''', or '''p ≡ q'''<nowiki/>'के रूप में भी लिखा जाता है) के लिए ट्रुथ टेबल इस प्रकार है:


{| class="wikitable" style="margin:1em auto; text-align:center;"
{| class="wikitable" style="margin:1em auto; text-align:center;"
Line 293: Line 293:
| style="background:papayawhip" | F || style="background:papayawhip" | F || T
| style="background:papayawhip" | F || style="background:papayawhip" | F || T
|}
|}
अतः p EQ q सत्य है यदि p और q का सत्य मान समान है (दोनों सत्य या दोनों असत्य), और असत्य यदि उनके भिन्न सत्य मान हैं।
अतः p EQ q सत्य है यदि p और q का सत्य मान समान है(दोनों सत्य या दोनों असत्य), और असत्य यदि उनके भिन्न सत्य मान हैं।


=== [[अनन्य संयोजन|अनन्य '''वियोजन''']] ===
=== [[अनन्य संयोजन|अनन्य '''वियोजन''']] ===
अनन्य वियोजन दो तार्किक मानों पर एक तार्किक संक्रिया है, सामान्यतः दो तर्कवाक्यों के मान, जो सत्य का मान उत्पन्न करता है यदि एक नहीं प्रत्युत इसके दोनों संकार्य   सत्य हैं
अनन्य वियोजन दो तार्किक मानों पर एक तार्किक संक्रिया है, सामान्यतः दो तर्कवाक्यों के मान, जो सत्य का मान उत्पन्न करता है यदि एक नहीं प्रत्युत इसके दोनों संकार्य सत्य हैं


'''p XOR q''' (जिसे '''Jpq''', या '''p ⊕ q''' के रूप में भी लिखा जाता है) के लिए ट्रुथ टेबल इस प्रकार है:
'''p XOR q'''(जिसे '''Jpq''', या '''p ⊕ q''' के रूप में भी लिखा जाता है) के लिए ट्रुथ टेबल इस प्रकार है:


{| class="wikitable" style="margin:1em auto; text-align:center;"
{| class="wikitable" style="margin:1em auto; text-align:center;"
Line 315: Line 315:
| style="background:papayawhip" | F || style="background:papayawhip" | F || style="background:papayawhip" | F
| style="background:papayawhip" | F || style="background:papayawhip" | F || style="background:papayawhip" | F
|}
|}
दो कथनों के लिए, '''XOR''' को (p ∧ ¬q) ∨ (¬p ∧ q) के रूप में भी लिखा जा सकता है।
दो कथनों के लिए, '''XOR''' को(p ∧ ¬q) ∨(¬p ∧ q) के रूप में भी लिखा जा सकता है।


=== [[तार्किक नंद|तार्किक NAND]] ===
=== [[तार्किक नंद|तार्किक NAND]] ===
तार्किक NAND दो तार्किक मानों पर एक तार्किक संक्रिया है, सामान्यतः दो तर्कवाक्यों के मान, जो असत्य का मान उत्पन्न करता है यदि इसके दोनो संकार्या सत्य हैं। दूसरे शब्दों में, यदि इसका कम से कम एक संकार्यं असत्य है तो यह   सत्य का मान उत्पन्न करता है।
तार्किक NAND दो तार्किक मानों पर एक तार्किक संक्रिया है, सामान्यतः दो तर्कवाक्यों के मान, जो असत्य का मान उत्पन्न करता है यदि इसके दोनो संकार्या सत्य हैं। दूसरे शब्दों में, यदि इसका कम से कम एक संकार्यं असत्य है तो यह सत्य का मान उत्पन्न करता है।


'''p NAND q''' ('''p ↑ q''', '''Dpq''', या '''p | q''' के रूप में भी लिखा गया है) के लिए ट्रुथ टेबल इस प्रकार है:
'''p NAND q'''('''p ↑ q''', '''Dpq''', या '''p | q''' के रूप में भी लिखा गया है) के लिए ट्रुथ टेबल इस प्रकार है:


{| class="wikitable" style="margin:1em auto; text-align:center;"
{| class="wikitable" style="margin:1em auto; text-align:center;"
Line 341: Line 341:
तार्किक NAND के स्थिति में, यह NOT और AND के यौगिक के रूप में स्पष्ट रूप से अभिव्यक्त होता है।
तार्किक NAND के स्थिति में, यह NOT और AND के यौगिक के रूप में स्पष्ट रूप से अभिव्यक्त होता है।


संयोजन का निषेध: ¬(p ∧ q), और निषेध का संयोजन: (¬p) ∨ (¬q) को निम्नानुसार सारणीबद्ध किया जा सकता है:
संयोजन का निषेध: ¬(p ∧ q), और निषेध का संयोजन:(¬p) ∨(¬q) को निम्नानुसार सारणीबद्ध किया जा सकता है:


{| class="wikitable" style="margin:1em auto; text-align:center;"
{| class="wikitable" style="margin:1em auto; text-align:center;"
Line 364: Line 364:


=== [[तार्किक नॉर|तार्किक NOR]] ===
=== [[तार्किक नॉर|तार्किक NOR]] ===
तार्किक NOR दो तार्किक मानों पर एक तार्किक संक्रिया है, सामान्यतः दो तर्कवाक्यों के मान, जो सत्य का मान उत्पन्न करता है यदि इसके दोनों संकार्यं असत्य है। दूसरे शब्दों में, यदि इसका कम से कम एक संकार्यक सत्य है, तो यह असत्य का मान उत्पन्न करता है। ↓ को इसके आविष्कारक, चार्ल्स सैंडर्स पियर्स के बाद [[पियर्स तीर]] के रूप में भी जाना जाता है, और यह [[एकमात्र पर्याप्त ऑपरेटर|एकमात्र पर्याप्त]] संक्रियक है।
तार्किक NOR दो तार्किक मानों पर एक तार्किक संक्रिया है, सामान्यतः दो तर्कवाक्यों के मान, जो सत्य का मान उत्पन्न करता है यदि इसके दोनों संकार्यं असत्य है। दूसरे शब्दों में, यदि इसका कम से कम एक संकार्यक सत्य है, तो यह असत्य का मान उत्पन्न करता है। ↓ को इसके आविष्कारक, चार्ल्स सैंडर्स पियर्स के बाद [[पियर्स तीर]] के रूप में भी जाना जाता है, और यह [[एकमात्र पर्याप्त ऑपरेटर|एकमात्र पर्याप्त]] संक्रियक है।


'''p NOR q''' '''('p ↓ q',''' या '''<nowiki/>'Xpq'''' के रूप में भी लिखा जाता है) के लिए ट्रुथ टेबल इस प्रकार है:
'''p NOR q'''('''<nowiki/>'p ↓ q',''' या '''<nowiki/>'Xpq'''' के रूप में भी लिखा जाता है) के लिए ट्रुथ टेबल इस प्रकार है:


{| class="wikitable" style="margin:1em auto; text-align:center;"
{| class="wikitable" style="margin:1em auto; text-align:center;"
Line 383: Line 383:
| style="background:papayawhip" | F || style="background:papayawhip" | F || T
| style="background:papayawhip" | F || style="background:papayawhip" | F || T
|}
|}
वियोजन ¬(p ∨ q), और निषेधों के संयोजन (¬p) ∧ (¬q) का निषेध निम्नानुसार सारणीबद्ध किया जा सकता है:
वियोजन ¬(p ∨ q), और निषेधों के संयोजन(¬p) ∧(¬q) का निषेध निम्नानुसार सारणीबद्ध किया जा सकता है:


{| class="wikitable" style="margin:1em auto; text-align:center;"
{| class="wikitable" style="margin:1em auto; text-align:center;"
Line 403: Line 403:
| style="background:papayawhip" | F || style="background:papayawhip" | F || style="background:papayawhip" | F || T || T || T || T
| style="background:papayawhip" | F || style="background:papayawhip" | F || style="background:papayawhip" | F || T || T || T || T
|}
|}
कार्यात्मक तर्क p और q के लिए तार्किक मानों के प्रत्येक समनुदेश के अंतर्गत NAND और NOR के लिए सारणीबद्ध व्युत्पत्तियों का निरीक्षण, ¬(p ∧ q) के लिए कार्यात्मक मानों के समान प्रतिरूप का उत्पादन करता है जैसा कि (¬p) ∨ (¬q) के लिए होता है। और ¬(p ∨ q) के लिए (¬p) ∧ (¬q) के लिए। इस प्रकार प्रत्येक युग्म में पहली और दूसरी अभिव्यक्तियाँ तार्किक रूप से समतुल्य हैं, और सभी संदर्भों में एक दूसरे के लिए प्रतिस्थापित की जा सकती हैं जो मात्र   उनके तार्किक मानों से संबंधित हैं।
कार्यात्मक तर्क p और q के लिए तार्किक मानों के प्रत्येक समनुदेश के अंतर्गत NAND और NOR के लिए सारणीबद्ध व्युत्पत्तियों का निरीक्षण, ¬(p ∧ q) के लिए कार्यात्मक मानों के समान प्रतिरूप का उत्पादन करता है जैसा कि(¬p) ∨(¬q) के लिए होता है। और ¬(p ∨ q) के लिए(¬p) ∧(¬q) के लिए। इस प्रकार प्रत्येक युग्म में पहली और दूसरी अभिव्यक्तियाँ तार्किक रूप से समतुल्य हैं, और सभी संदर्भों में एक दूसरे के लिए प्रतिस्थापित की जा सकती हैं जो मात्र उनके तार्किक मानों से संबंधित हैं।


यह तुल्यता डी मॉर्गन के नियमों में से एक है।
यह तुल्यता डी मॉर्गन के नियमों में से एक है।


== ट्रुथ टेबल का आकार ==
== ट्रुथ टेबल का आकार ==
यदि n निविष्ट चर हैं तो उनके सत्य मानों के 2<sup>n</sup> संभावित संयोजन हैं। एक दिया गया फलन प्रत्येक संयोजन के लिए सत्य या असत्य उत्पन्न कर सकता है इसलिए n चर के विभिन्न कार्यों की संख्या दोहरा घातांक फलन 2<sup>2<sup>n</sup></sup> है।
यदि n निविष्ट चर हैं तो उनके सत्य मानों के 2<sup>n</sup> संभावित संयोजन हैं। एक दिया गया फलन प्रत्येक संयोजन के लिए सत्य या असत्य उत्पन्न कर सकता है इसलिए n चर के विभिन्न कार्यों की संख्या दोहरा घातांक फलन 2<sup>2<sup>n</sup></sup> है।


{| class="wikitable" style="text-align:right;"
{| class="wikitable" style="text-align:right;"
Line 431: Line 431:
| 8 || 256 || style="border-right:0px solid transparent;" |  {{val|115792089237316195423570985008687907853269984665640564039457584007913129639936|fmt=commas}} || style="border-left:0px solid transparent;text-align:left;" | ≈ 1.2{{e|77}}
| 8 || 256 || style="border-right:0px solid transparent;" |  {{val|115792089237316195423570985008687907853269984665640564039457584007913129639936|fmt=commas}} || style="border-left:0px solid transparent;text-align:left;" | ≈ 1.2{{e|77}}
|}
|}
तीन या अधिक चरों के फलनों के लिए सत्य सारणी कदाचित ही दी जाती है।
तीन या अधिक चरों के फलनों के लिए सत्य सारणी कदाचित ही दी जाती है।


== अनुप्रयोग ==
== अनुप्रयोग ==
Line 453: Line 453:
| style="background:papayawhip" | F || style="background:papayawhip" | F || T || T || T
| style="background:papayawhip" | F || style="background:papayawhip" | F || T || T || T
|}
|}
यह इस तथ्य को प्रदर्शित करता है कि <math>p \Rightarrow q</math> [[तार्किक रूप से समकक्ष|तार्किक]] रूप से   <math>\lnot p \lor q</math> [[तार्किक रूप से समकक्ष|समतुल्य]] है।   
यह इस तथ्य को प्रदर्शित करता है कि <math>p \Rightarrow q</math> [[तार्किक रूप से समकक्ष|तार्किक]] रूप से <math>\lnot p \lor q</math> [[तार्किक रूप से समकक्ष|समतुल्य]] है।   


=== सबसे अधिक उपयोग किए जाने वाले तार्किक संक्रियकों के लिए ट्रुथ टेबल ===
=== सबसे अधिक उपयोग किए जाने वाले तार्किक संक्रियकों के लिए ट्रुथ टेबल ===
यहाँ एक ट्रुथ टेबल है जो ट्रैक्टैटस तर्क-दार्शनिक तर्कवाक्य 4.*-5.* में से सबसे अधिक उपयोग किए जाने वाले 7 की परिभाषा देती है:
यहाँ एक ट्रुथ टेबल है जो ट्रैक्टैटस तर्क-दार्शनिक तर्कवाक्य 4.*-5.* में से सबसे अधिक उपयोग किए जाने वाले 7 की परिभाषा देती है:


{| class="wikitable" style="margin:1em auto 1em auto; text-align:center;"
{| class="wikitable" style="margin:1em auto 1em auto; text-align:center;"
Line 473: Line 473:
|-
|-
| ||
| ||
| [[logical conjunction|AND]]<br /> (संयोजन)
| [[logical conjunction|AND]]<br />(संयोजन)
| [[logical disjunction|OR]] <br /> (वियोजन)
| [[logical disjunction|OR]] <br />(वियोजन)
| [[Exclusive or|XOR]]       <br /> (अनन्य or)<!-- this could be "+" instead according to other articles -->
| [[Exclusive or|XOR]] <br />(अनन्य or)<!-- this could be "+" instead according to other articles -->
| [[Exclusive nor|XNOR]]     <br /> (अनन्य nor)
| [[Exclusive nor|XNOR]] <br />(अनन्य nor)
| [[logical conditional|प्रतिबंधात्मक <br /> "if-then"]]
| [[logical conditional|प्रतिबंधात्मक <br /> "if-then"]]
| प्रतिबंधात्मक <br /> "then-if"
| प्रतिबंधात्मक <br /> "then-if"
Line 486: Line 486:




=== द्विआधारी संक्रियकों के लिए संघनित सत्य सारणी ===
=== द्विआधारी संक्रियकों के लिए संघनित सत्य सारणी ===
द्विआधारी संक्रियकों के लिए, ट्रुथ टेबल का एक संघनित रूप भी उपयोग किया जाता है, जहां पंक्ति शीर्षक और स्तंभ शीर्षक संकार्य निर्दिष्ट करते हैं और तालिका कक्ष परिणाम निर्दिष्ट करते हैं। उदाहरण के लिए, [[बूलियन तर्क]] इस संघनित ट्रुथ टेबल संकेतन का उपयोग करता है:
द्विआधारी संक्रियकों के लिए, ट्रुथ टेबल का एक संघनित रूप भी उपयोग किया जाता है, जहां पंक्ति शीर्षक और स्तंभ शीर्षक संकार्य निर्दिष्ट करते हैं और तालिका कक्ष परिणाम निर्दिष्ट करते हैं। उदाहरण के लिए, [[बूलियन तर्क]] इस संघनित ट्रुथ टेबल संकेतन का उपयोग करता है:


{|
{|
Line 517: Line 517:
|}
|}


यह अंकन विशेष रूप से उपयोगी है यदि संक्रिया क्रमविनिमेय हैं, यद्यपि कोई अतिरिक्त रूप से यह निर्दिष्ट कर सकता है कि पंक्तियाँ प्रथम   संकार्य हैं और स्तंभ दूसरे संकार्य हैं। यह संघनित संकेतन तर्क के बहु-मूल्यवान विस्तारों पर चर्चा करने में विशेष रूप से उपयोगी है, क्योंकि यह अन्यथा आवश्यक पंक्तियों की संख्या के संयोजी विस्फोट पर महत्वपूर्ण रूप से कटौती करता है। यह तालिका में मानों के वितरण के त्वरित तत्समक योग्य विशेषता आकार भी प्रदान करता है जो पाठक को नियमों को और अधिक तीव्र से समझने में सहायता कर सकता है।
यह अंकन विशेष रूप से उपयोगी है यदि संक्रिया क्रमविनिमेय हैं, यद्यपि कोई अतिरिक्त रूप से यह निर्दिष्ट कर सकता है कि पंक्तियाँ प्रथम संकार्य हैं और स्तंभ दूसरे संकार्य हैं। यह संघनित संकेतन तर्क के बहु-मूल्यवान विस्तारों पर चर्चा करने में विशेष रूप से उपयोगी है, क्योंकि यह अन्यथा आवश्यक पंक्तियों की संख्या के संयोजी विस्फोट पर महत्वपूर्ण रूप से कटौती करता है। यह तालिका में मानों के वितरण के त्वरित तत्समक योग्य विशेषता आकार भी प्रदान करता है जो पाठक को नियमों को और अधिक तीव्र से समझने में सहायता कर सकता है।


=== डिजिटल तर्क में सत्य सारणी ===
=== डिजिटल तर्क में सत्य सारणी ===
[[डिजिटल सर्किट|डिजिटल परिपथ]] में हार्डवेयर लुक-अप टेबल (LUT) के कार्य को निर्दिष्ट करने के लिए ट्रूथ टेबल का भी उपयोग किया जाता है। एन- निविष्ट एलयूटी के लिए, ट्रुथ टेबल में 2^n मान (या उपरोक्त सारणीबद्ध प्रारूप में पंक्तियां) होंगे, जो पूर्ण रूप से एलयूटी के लिए एक बूलियन फलन निर्दिष्ट करते हैं। द्विआधारी अंक प्रणाली में प्रत्येक बूलियन मान को [[अंश]] के रूप में प्रदर्शित करके, ट्रुथ टेबल मानों को [[इलेक्ट्रॉनिक डिजाइन स्वचालन]] (EDA) [[सॉफ़्टवेयर]] में [[पूर्णांक]] मानों के रूप में कुशलतापूर्वक कोडित किया जा सकता है। उदाहरण के लिए, एक 32-बिट पूर्णांक 5 निविष्ट तक एलयूटी के लिए ट्रुथ टेबल को सांकेतिक शब्दों में बदल सकता है।
[[डिजिटल सर्किट|डिजिटल परिपथ]] में हार्डवेयर लुक-अप टेबल(LUT) के कार्य को निर्दिष्ट करने के लिए ट्रूथ टेबल का भी उपयोग किया जाता है। एन- निविष्ट एलयूटी के लिए, ट्रुथ टेबल में 2^n मान(या उपरोक्त सारणीबद्ध प्रारूप में पंक्तियां) होंगे, जो पूर्ण रूप से एलयूटी के लिए एक बूलियन फलन निर्दिष्ट करते हैं। द्विआधारी अंक प्रणाली में प्रत्येक बूलियन मान को [[अंश]] के रूप में प्रदर्शित करके, ट्रुथ टेबल मानों को [[इलेक्ट्रॉनिक डिजाइन स्वचालन]](EDA) [[सॉफ़्टवेयर]] में [[पूर्णांक]] मानों के रूप में कुशलतापूर्वक कोडित किया जा सकता है। उदाहरण के लिए, एक 32-बिट पूर्णांक 5 निविष्ट तक एलयूटी के लिए ट्रुथ टेबल को सांकेतिक शब्दों में बदल सकता है।


एक ट्रुथ टेबल के पूर्णांक प्रतिनिधित्व का उपयोग करते समय, एलयूटी का निर्गत मान एलयूटी के निविष्ट मानों के आधार पर बिट निर्देशिका k की गणना करके प्राप्त किया जा सकता है, जिस स्थिति में एलयूटी का निर्गत मान पूर्णांक का kवां बिट होता है। उदाहरण के लिए, n बूलियन निविष्ट मानों की [[सरणी डेटा संरचना]] दिए गए एलयूटी के निर्गत मान का मूल्यांकन करने के लिए, ट्रुथ टेबल के निर्गत मान के बिट निर्देशिका की गणना निम्नानुसार की जा सकती है: यदि iवां निविष्ट सत्य है, तो <math>V_i = 1</math> दें, अन्यथा <math>V_i = 0</math> दें। फिर ट्रुथ टेबल के द्विआधारी प्रतिनिधित्व का kवां बिट एलयूटी का निर्गत मान है, जहाँ <math>k = V_0 \times 2^0 + V_1 \times 2^1 + V_2 \times 2^2 + \dots + V_n \times 2^n</math> है।
एक ट्रुथ टेबल के पूर्णांक प्रतिनिधित्व का उपयोग करते समय, एलयूटी का निर्गत मान एलयूटी के निविष्ट मानों के आधार पर बिट निर्देशिका k की गणना करके प्राप्त किया जा सकता है, जिस स्थिति में एलयूटी का निर्गत मान पूर्णांक का kवां बिट होता है। उदाहरण के लिए, n बूलियन निविष्ट मानों की [[सरणी डेटा संरचना]] दिए गए एलयूटी के निर्गत मान का मूल्यांकन करने के लिए, ट्रुथ टेबल के निर्गत मान के बिट निर्देशिका की गणना निम्नानुसार की जा सकती है: यदि iवां निविष्ट सत्य है, तो <math>V_i = 1</math> दें, अन्यथा <math>V_i = 0</math> दें। फिर ट्रुथ टेबल के द्विआधारी प्रतिनिधित्व का kवां बिट एलयूटी का निर्गत मान है, जहाँ <math>k = V_0 \times 2^0 + V_1 \times 2^1 + V_2 \times 2^2 + \dots + V_n \times 2^n</math> है।


ट्रुथ टेबल बूलियन फ़ंक्शंस को एनकोड करने का एक सरल और सीधा तरीका है, यद्यपि   निविष्ट की संख्या में वृद्धि के रूप में आकार में [[घातीय वृद्धि]] को देखते हुए, वे बड़ी संख्या में निविष्ट वाले फ़ंक्शंस के लिए उपयुक्त नहीं हैं। अन्य अभ्यावेदन जो अधिक मेमोरी कुशल हैं, पाठ समीकरण और द्विआधारी निर्णय आरेख हैं।
ट्रुथ टेबल बूलियन फलनों को कोडित करने का एक सरल और सीधी विधि है, यद्यपि निविष्ट की संख्या में वृद्धि के रूप में आकार में [[घातीय वृद्धि]] को देखते हुए, वे बड़ी संख्या में निविष्ट वाले फलनों के लिए उपयुक्त नहीं हैं। अन्य अभ्यावेदन जो अधिक मेमोरी कुशल हैं, पाठ समीकरण और द्विआधारी निर्णय आरेख हैं।


===डिजिटल इलेक्ट्रॉनिक्स में ट्रूथ टेबल के अनुप्रयोग===
===डिजिटल इलेक्ट्रॉनिक्स में ट्रूथ टेबल के अनुप्रयोग===
डिजिटल इलेक्ट्रॉनिक्स और कंप्यूटर विज्ञान (एप्लाइड तर्क इंजीनियरिंग और गणित के क्षेत्र) में, [[तर्क द्वार]]्स या कोड के उपयोग के बिना, निर्गत के निविष्ट के सरल सहसंबंधों के लिए बुनियादी बूलियन संक्रिया को कम करने के लिए ट्रुथ टेबल का उपयोग किया जा सकता है। उदाहरण के लिए, एक द्विआधारी जोड़ को ट्रुथ टेबल के साथ प्रदर्शित किया जा सकता है:
डिजिटल इलेक्ट्रॉनिक्स और कंप्यूटर विज्ञान(प्रयुक्त तर्क अभियांत्रिकी और गणित के क्षेत्र) में, [[तर्क द्वार|तर्क गेट्स]] या कोड के उपयोग के बिना, निर्गत के निविष्ट के सरल सहसंबंधों के लिए मूलभूत बूलियन संक्रिया को कम करने के लिए ट्रुथ टेबल का उपयोग किया जा सकता है। उदाहरण के लिए, एक द्विआधारी योग को ट्रुथ टेबल के साथ प्रदर्शित किया जा सकता है:
 
 
A B | C R


<पूर्व>
ए बी | करोड़
1 1 | 1 0
1 1 | 1 0
1 0 | 0 1
1 0 | 0 1
0 1 | 0 1
0 1 | 0 1
0 0 | 0 0
0 0 | 0 0


जहाँ
जहाँ


= प्रथमऑपरेंडय
A= प्रथम संकार्य
बी = दूसराऑपरेंडय
 
सी = कैरी
B = दूसरा संकार्य
आर = परिणाम
 
</पूर्व>
C= वहन
 
R= परिणाम
 
 


यह ट्रुथ टेबल बाएं से दाएं पढ़ी जाती है:
यह ट्रुथ टेबल बाएं से दाएं पढ़ी जाती है:
* मान पेयर (, बी) मान पेयर (सी, आर) के बराबर है।
* मान युग्म(A, B) मान युग्म(C, R) के बराबर है।
* या इस उदाहरण के लिए, ए प्लस बी समान परिणाम आर, कैरी सी के साथ।
* या इस उदाहरण के लिए, A+B समान परिणाम R, वहन C के साथ।
 
ध्यान दें कि यह तालिका इस संक्रिया को लागू करने के लिए आवश्यक तर्क संक्रियाएँ का वर्णन नहीं करती है, प्रत्युत यह मात्र निर्गत मानों के निविष्ट के कार्य को निर्दिष्ट करती है।


ध्यान दें कि यह तालिका इस संक्रिया को लागू करने के लिए आवश्यक तर्क संक्रियाएँ का वर्णन नहीं करती है, प्रत्युत यह मात्र    निर्गत मानों के  निविष्ट के कार्य को निर्दिष्ट करती है।
परिणाम के संबंध में, इस उदाहरण को अंकगणितीय रूप से सापेक्ष 2 द्विआधारी योग के रूप में देखा जा सकता है, और तार्किक रूप से अनन्य-या(अनन्य संयोजन) द्विआधारी तर्क संक्रिया के बराबर है।


परिणाम के संबंध में, इस उदाहरण को अंकगणितीय रूप से मोडुलो 2 द्विआधारी  जोड़ के रूप में देखा जा सकता है, और तार्किक रूप से अनन्य-या (अनन्य संयोजन) द्विआधारी  तर्क  संक्रिया के बराबर है।
इस स्थिति में इसका उपयोग मात्र बहुत ही सरल निविष्ट और निर्गत के लिए किया जा सकता है, जैसे 1s और 0s। यद्यपि, यदि निविष्ट् पर किसी प्रकार के मानों की संख्या बढ़ सकती है, तो ट्रुथ टेबल का आकार बढ़ जाएगा।


इस स्थिति में इसका उपयोग मात्र  बहुत ही सरल  निविष्ट और निर्गत के लिए किया जा सकता है, जैसे 1s और 0s। हालाँकि, यदि  निविष्ट्स पर किसी प्रकार के मानों की संख्या बढ़ सकती है, तो ट्रुथ टेबल का आकार बढ़ जाएगा।
उदाहरण के लिए, एक अतिरिक्त संक्रिया में, किसी को दो संकार्य, A और B की आवश्यकता होती है। प्रत्येक में दो मानों में से एक हो सकता है, शून्य या एक। इन दो मानों के संयोजनों की संख्या 2×2 या चार है। तो परिणाम C और R के चार संभावित निर्गत हैं। यदि कोई आधार 3 का उपयोग करता है, तो आकार 3×3, या नौ संभावित निर्गत तक बढ़ जाएगा।


उदाहरण के लिए, एक अतिरिक्त  संक्रिया में, किसी को दोऑपरेंडय, ए और बी की आवश्यकता होती है। प्रत्येक में दो मानों में से एक हो सकता है, शून्य या एक। इन दो मानों के संयोजनों की संख्या 2×2 या चार है। तो परिणाम C और R के चार संभावित  निर्गत हैं। यदि कोई आधार 3 का उपयोग करता है, तो आकार 3×3, या नौ संभावित  निर्गत तक बढ़ जाएगा।
उपरोक्त पूर्व योग उदाहरण को आधा योजक कहा जाता है। एक पूर्ण-योजक तब होता है जब पिछले संक्रिया से अगले योजक को निविष्ट के रूप में प्रदान किया जाता है। इस प्रकार, एक [[पूर्ण योजक]] के तर्क का वर्णन करने के लिए आठ पंक्तियों की एक ट्रुथ टेबल की आवश्यकता होगी:


उपरोक्त पूर्व  जोड़ उदाहरण को आधा योजक कहा जाता है। एक पूर्ण-योजक तब होता है जब पिछले  संक्रिया से अगले योजक को  निविष्ट के रूप में प्रदान किया जाता है। इस प्रकार, एक [[पूर्ण योजक]] के तर्क का वर्णन करने के लिए आठ पंक्तियों की एक ट्रुथ टेबल की आवश्यकता होगी:


<पूर्व>
A B C* | C R
ए बी सी* | करोड़
 
0 0 0 | 0 0
0 0 0 | 0 0
0 1 0 | 0 1
0 1 0 | 0 1
1 0 0 | 0 1
1 0 0 | 0 1
1 1 0 | 1 0
1 1 0 | 1 0
0 0 1 | 0 1
0 0 1 | 0 1
0 1 1 | 1 0
0 1 1 | 1 0
1 0 1 | 1 0
1 0 1 | 1 0
1 1 1 | 11


पूर्व जैसा ही, लेकिन..
1 1 1 | 1 1
C* = पिछले ऐडर से कैरी करें
 
</पूर्व>
पूर्व जैसा ही, परन्तु..
 
C* = पिछले योजक से वहन करें


== इतिहास ==
== इतिहास ==
[[इरविंग एनेलिस]] के शोध से पता चलता है कि सी.एस. पियर्स एक ट्रुथ टेबल मैट्रिक्स तैयार करने के लिए (1893 में) सबसे शुरुआती तर्कशास्त्री प्रतीत होते हैं।<ref name="Peirce">{{cite journal|last1=Anellis|first1=Irving H.|authorlink=Irving Anellis|title=Peirce's Truth-functional Analysis and the Origin of the Truth Table|journal=History and Philosophy of Logic|date=2012|volume=33|pages=87–97|doi=10.1080/01445340.2011.621702|s2cid=170654885 }}</ref><ref>Peirce's publication included the work of [[Christine Ladd-Franklin#Mathematics and logic|Christine Ladd (1881)]]: Peirce's Ph.D. student Christine Ladd-Franklin found the truth table in ''Tractatus Logico-Philosophicus'' Proposition 5.101, 40 years earlier than Wittgenstein. {{cite book |page=[https://books.google.com/books?id=A48XAAAAIAAJ&pg=PA62 62] |first=Christine |last=Ladd |date=1881 |title=On the Algebra of Logic |series=Studies in Logic |editor-first=C.S. |editor-last=Peirce}}</ref> उनके पेपर के सारांश से:
[[इरविंग एनेलिस]] के शोध से पता चलता है कि सी.एस. पियर्स एक ट्रुथ टेबल आव्यूह आविष्कार करने के लिए(1893 में) सबसे प्रारंभिक तर्कशास्त्री प्रतीत होते हैं।<ref name="Peirce">{{cite journal|last1=Anellis|first1=Irving H.|authorlink=Irving Anellis|title=Peirce's Truth-functional Analysis and the Origin of the Truth Table|journal=History and Philosophy of Logic|date=2012|volume=33|pages=87–97|doi=10.1080/01445340.2011.621702|s2cid=170654885 }}</ref><ref>Peirce's publication included the work of [[Christine Ladd-Franklin#Mathematics and logic|Christine Ladd (1881)]]: Peirce's Ph.D. student Christine Ladd-Franklin found the truth table in ''Tractatus Logico-Philosophicus'' Proposition 5.101, 40 years earlier than Wittgenstein. {{cite book |page=[https://books.google.com/books?id=A48XAAAAIAAJ&pg=PA62 62] |first=Christine |last=Ladd |date=1881 |title=On the Algebra of Logic |series=Studies in Logic |editor-first=C.S. |editor-last=Peirce}}</ref> उनके पृष्ठ के सारांश से:
<blockquote> 1997 में, जॉन शॉस्की ने [[बर्ट्रेंड रसेल]] के 1912 के लेक्चर ऑफ़ द फिलॉसफी ऑफ़ तर्कल एटमिज़्म ट्रूथ टेबल मैट्रिसेस के टाइप किए गए प्रतिलेख के एक पृष्ठ के शीर्ष पर खोजा। निषेध का मैट्रिक्स रसेल का है, जिसके साथ-साथ लुडविग विट्गेन्स्टाइन के हाथ में भौतिक निहितार्थ के लिए मैट्रिक्स है। यह दिखाया गया है कि 1893 में पियर्स द्वारा रचित एक अप्रकाशित पांडुलिपि में एक ट्रुथ टेबल मैट्रिक्स शामिल है जो जॉन शोस्की द्वारा खोजे गए भौतिक निहितार्थ के मैट्रिक्स के बराबर है। पीयरस द्वारा एक अप्रकाशित पांडुलिपि की तत्समक 1883-84 में पीयरस ऑन ​​द एलजेब्रा ऑफ तर्क: ए कंट्रीब्यूशन टू द फिलॉसफी ऑफ नोटेशन की रचना के संबंध में की गई थी, जो 1885 में [[अमेरिकन जर्नल ऑफ मैथमेटिक्स]] में छपी थी, जिसमें अप्रत्यक्ष का एक उदाहरण शामिल है। प्रतिबंधात्मक के लिए ट्रुथ टेबल। </ब्लॉककोट>
<blockquote> 1997 में, जॉन शॉस्की ने [[बर्ट्रेंड रसेल]] के 1912 के लेक्चर ऑफ़ द फिलॉसफी ऑफ़ तर्कल एटमिज़्म ट्रूथ टेबल आव्यूह के लिखे गए प्रतिलेख के एक पृष्ठ के शीर्ष पर खोजा। निषेध का आव्यूह रसेल का है, जिसके साथ-साथ लुडविग विट्गेन्स्टाइन के हाथ में भौतिक निहितार्थ के लिए आव्यूह है। यह दिखाया गया है कि 1893 में पियर्स द्वारा रचित एक अप्रकाशित हस्तलेख में एक ट्रुथ टेबल आव्यूह सम्मिलित है जो जॉन शोस्की द्वारा खोजे गए भौतिक निहितार्थ के आव्यूह के बराबर है। पीयरस द्वारा एक अप्रकाशित हस्तलेख की तत्समक 1883-84 में पीयरस ऑन ​​द एलजेब्रा ऑफ तर्क: ए कंट्रीब्यूशन टू द फिलॉसफी ऑफ नोटेशन की रचना के संबंध में की गई थी, जो 1885 में [[अमेरिकन जर्नल ऑफ मैथमेटिक्स]] में छपी थी, जिसमें अप्रत्यक्ष का एक उदाहरण सम्मिलित है।  


== यह भी देखें ==
== यह भी देखें ==
{{Portal|Philosophy|Psychology}}
{{Portal|Philosophy|Psychology}}
{{div col|colwidth=20em}}
{{div col|colwidth=20em}}
* [[बूलियन डोमेन]]
* [[बूलियन कार्यक्षेत्र]]
* [[बूलियन-मूल्यवान फ़ंक्शन]]
* [[बूलियन-मूल्यवान फलन]]
* प्रकाशन
* प्रकाशन
* [[उत्तेजना तालिका]]
* [[उत्तेजना तालिका]]
* [[पहले क्रम का तर्क]]
* [[पहले क्रम का तर्क]]
* [[कार्यात्मक पूर्णता]]
* [[कार्यात्मक पूर्णता]]
* [[कर्णघ मानचित्र]]
* [[कर्णघ प्रतिचित्र]]
* लॉजिक गेट
* तर्क गेट
* [[तार्किक संयोजक]]
* [[तार्किक संयोजक]]
* [[तार्किक ग्राफ]]
* [[तार्किक ग्राफ]]
* [[विश्लेषणात्मक झांकी की विधि]]
* [[विश्लेषणात्मक तालिका की विधि]]
* प्रस्तावक कलन
* प्रस्तावक कलन
* सत्य समारोह
* सत्य फलन
{{div col end}}
{{div col end}}



Revision as of 11:05, 21 February 2023

ट्रुथ टेबल एक गणितीय तालिका है जिसका उपयोग तर्क में किया जाता है - विशेष रूप से बूलियन बीजगणित(तर्क), बूलियन फलन और तर्कवाक्यिक कलन के संबंध में - जो उनके प्रत्येक कार्यात्मक तर्कों पर तार्किक अभिव्यक्ति(गणित) के कार्यात्मक मानों को निर्धारित करता है, अर्थात उनके द्वारा लिए गए मानों के प्रत्येक संयोजन के लिए मूल्यांकन(तर्क) चर।[1] विशेष रूप से, ट्रुथ टेबल का उपयोग यह दिखाने के लिए किया जा सकता है कि क्या सभी वैध निविष्ट मानों के लिए एक तर्कवाक्यात्मक अभिव्यक्ति सत्य है, अर्थात वैधता(तर्क)

एक ट्रुथ टेबल में प्रत्येक निविष्ट चर(उदाहरण के लिए, P और Q) के लिए एक स्तंभ होता है, और एक अंतिम स्तंभ तालिका द्वारा प्रस्तुत तार्किक संक्रिया के सभी संभावित परिणामों को दर्शाता है(उदाहरण के लिए, P XOR Q)। ट्रूथ टेबल की प्रत्येक पंक्ति में निविष्ट चरों का एक संभावित विन्यास होता है(उदाहरण के लिए, P=सत्य Q=असत्य), और उन मानों के लिए संक्रिया का परिणाम। अधिक स्पष्टीकरण के लिए नीचे दिए गए उदाहरण देखें। लुडविग विट्गेन्स्टाइन को सामान्यतः उनके ट्रैक्टेटस तर्क-दार्शनिक में ट्रुथ टेबल का आविष्कार करने और लोकप्रिय बनाने का श्रेय दिया जाता है, जो 1918 में पूर्ण हुआ और 1921 में प्रकाशित हुआ।[2] इस रूप की प्रणाली को 1921 में एमिल लियोन पोस्ट द्वारा स्वतंत्र रूप से तर्कवाक्यित किया गया था।[3] 1893 से चार्ल्स सैंडर्स पियर्स द्वारा अप्रकाशित हस्तलेखयों में ट्रुथ टेबल का एक पूर्व के पुनरावृति भी पाया गया है, जो दोनों प्रकाशनों को लगभग 30 वर्षों से प्राचीन कर रहा है।[4]


एकल संक्रियाएँ

4 एकल संक्रिया हैं:

  • अटल सत्य
  • कभी सत्य नहीं, एकल असत्य
  • एकात्मक तत्समक
  • एकात्मक निषेध

तार्किक सत्य

p के निविष्ट मान पर ध्यान दिए बिना निर्गत मान सदैव सत्य होता है

तार्किक सत्य
p T
T T
F T


तार्किक असत्य

निर्गत मान कभी भी सत्य नहीं होता है: p के निविष्ट मान के अतिरिक्त, सदैव असत्य होता है

तार्किक असत्य
p F
T F
F F


तार्किक तत्समक

तत्समक फलन एक तार्किक मान p पर एक तार्किक संक्रिया है, जिसके लिए निर्गत मान p रहता है।

तार्किक तत्समक संक्रियक के लिए ट्रुथ टेबल इस प्रकार है:

तार्किक तत्समक
p p
T T
F F


तार्किक निषेध

तार्किक निषेध तार्किक मान पर एक तार्किक संक्रिया है, सामान्यतः एक तर्कवाक्य का मान, जो सत्य का मान उत्पन्न करता है यदि उसका संकार्य असत्य है और असत्य का मान यदि उसका संकार्य सत्य है।

NOT p(¬p, Np, Fpq, या ~p के रूप में भी लिखा जाता है) के लिए ट्रुथ टेबल इस प्रकार है:

तार्किक निषेध
p ¬p
T F
F T


द्विआधारी संक्रियाएँ

दो द्विआधारी चर के 16 संभावित सत्य कार्य हैं:

सभी द्विआधारी तार्किक संक्रियकों के लिए ट्रुथ टेबल

यहाँ दो बूलियन चर P और Q के सभी सोलह संभावित सत्य कार्यों की परिभाषाएँ देने वाली एक विस्तारित ट्रुथ टेबल है:[note 1]

p q  F0   NOR1   2   ¬p3   4   ¬q5   XOR6   NAND7   AND8   XNOR9  q10 11 p12 13 OR14 T15
T T F F F F F F F F T T T T T T T T
T F F F F F T T T T F F F F T T T T
F T F F T T F F T T F F T T F F T T
F F F T F T F T F T F T F T F T F T
Com
Assoc
Adj F0 NOR1 4 ¬q5 2 ¬p3 XOR6 NAND7 AND8 XNOR9 p12 13 q10 11 OR14 T15
Neg T15 OR14 13 p12 11 q10 XNOR9 AND8 NAND7 XOR6 ¬q5 4 ¬p3 2 NOR1 F0
Dual T15 NAND7 11 ¬p3 13 ¬q5 XNOR9 NOR1 OR14 XOR6 q10 2 p12 4 AND8 F0
L id F F T T T,F T F
R id F F T T T,F T F

जहाँ

T= सत्य।
F= असत्य।
मूर्धांक 0 से 15 वह संख्या है जो चार सत्य मानों F = 0 और T = 1 के साथ द्विआधारी संख्या के रूप में पढ़ने से उत्पन्न होती है।
Com पंक्ति इंगित करती है कि क्या एक संक्रियक, op, क्रमविनिमेय गुण है -P op Q = Q op P
Assoc पंक्ति इंगित करती है कि क्या एक संक्रियक, op, साहचर्य गुण है -(P op Q) op R = P op(Q op R).
Adj पंक्ति संक्रियक op2 को इस प्रकार दर्शाती है कि P op Q = Q op2 P
Neg पंक्ति संक्रियक op2 को ऐसे दिखाती है कि P op Q = ¬(P op2 Q)
Dual पंक्ति T को F, और AND को OR से बदलने पर प्राप्त किए गए द्वैत सिद्धांत(बूलियन बीजगणित) को दर्शाती है।
L id पंक्ति संक्रियक की बाईं तत्समक दिखाती है यदि इसमें कोई - मान I है जैसे कि I op Q = Q का चयन करता हूं।
R id पंक्ति संक्रियक की सत्य तत्समक दिखाती है यदि इसमें कोई - मान I है जैसे कि P op I = P[note 2]

p, q के लिए निविष्ट मानों के चार संयोजन उपरोक्त तालिका से पंक्ति द्वारा पढ़े जाते हैं। प्रत्येक p, q संयोजन के लिए निर्गत फलन को तालिका से, पंक्ति द्वारा पढ़ा जा सकता है।

कुंजी:

निम्न तालिका पंक्ति के अतिरिक्त स्तंभ द्वारा उन्मुख है। निविष्ट के रूप में p, q के चार संयोजनों को प्रदर्शित करने के लिए चार पंक्तियों के अतिरिक्त चार स्तंभ हैं।

p: T T F F
q: T F T F

इस कुंजी में 16 पंक्तियाँ हैं, दो द्विआधारी चर, p, q के प्रत्येक द्विआधारी फलन के लिए एक पंक्ति। उदाहरण के लिए, इस कुंजी की पंक्ति 2 में, विलोम गैर-निम्नलिखित का मान('') अद्वितीय संयोजन p=F, q=T द्वारा दर्शाए गए स्तंभ के लिए मात्र T है; जबकि पंक्ति 2 में, उस का मान 'p, q के तीन शेष स्तंभों के लिए संक्रिया F है। के लिए निर्गत पंक्ति इस प्रकार है

2: F F T F

और 16-पंक्ति[5] कुंजी है

[5] operator Operation name
0 (F F F F)(p, q) असत्य, Opq प्रतिवाद
1 (F F F T)(p, q) NOR pq, Xpq तार्किक NOR
2 (F F T F)(p, q) pq, Mpq विपरीत गैरनिहितार्थ
3 (F F T T)(p, q) ¬p, ~p ¬p, Np, Fpq निषेध
4 (F T F F)(p, q) pq, Lpq सामाग्र गैरनिहितार्थ
5 (F T F T)(p, q) ¬q, ~q ¬q, Nq, Gpq निषेध
6 (F T T F)(p, q) XOR pq, Jpq अनन्य वियोजन
7 (F T T T)(p, q) NAND pq, Dpq तार्किक NAND
8 (T F F F)(p, q) AND pq, Kpq तार्किक संयोजन
9 (T F F T)(p, q) XNOR p यदि और मात्र यदि q, Epq तार्किक biप्रतिबंधात्मक
10 (T F T F)(p, q) q q, Hpq प्रक्षेपण फलन
11 (T F T T)(p, q) pq यदि p तो q, Cpq सामाग्र निहितार्थ
12 (T T F F)(p, q) p p, Ipq प्रक्षेपण फलन
13 (T T F T)(p, q) pq p यदि q, Bpq विपरीत निहितार्थ
14 (T T T F)(p, q) OR pq, Apq तार्किक वियोजन
15 (T T T T)(p, q) सत्य, Vpq पुनरुक्ति

तार्किक संचालकों को वेन आरेख अवलोकन का उपयोग करके भी देखा जा सकता है।

तार्किक संयोजन(AND)

तार्किक संयुग्मन दो तार्किक मानों पर एक तार्किक संक्रिया है, सामान्यतः दो तर्कवाक्यों के मान, जो कि कम से कम एक संकार्य सत्य होने पर सत्य का मान उत्पन्न करते हैं।

p OR q(जिसे p ∨ q, Apq, p || q, या p + q) के रूप में भी लिखा जाता है) के लिए सत्य सारणी इस प्रकार है:

:

तार्किक संयोजन
p q pq
T T T
T F F
F T F
F F F

सामान्य भाषा में, यदि p और q दोनों सत्य हैं, तो संयोजन p ∧ q सत्य है। p और q के तार्किक मानों के अन्य सभी समनुदेश के लिए संयोजन p∧ q असत्य है।

यह भी कहा जा सकता है कि यदि p, तो p∧q, q है, अन्यथा p∧q, p है।

तार्किक वियोजन(OR)

तार्किक विच्छेदन दो तार्किक मानों पर एक तार्किक संक्रिया है, सामान्यतः दो तर्कवाक्यों के मान, जो कि कम से कम एक संकार्य सत्य होने पर सत्य का मान उत्पन्न करता है।

p OR q(जिसे p ∨ q, Apq, p || q, या p + q के रूप में भी लिखा जाता है) के लिए ट्रुथ टेबल इस प्रकार है:

तार्किक वियोजन
p q pq
T T T
T F T
F T T
F F F

अंग्रेजी में कहा गया है, यदि p, तो p ∨ q, p है, अन्यथा p ∨ q, q है।

तार्किक निहितार्थ

तार्किक निहितार्थ और सामाग्र प्रतिबंधात्मक दोनों दो तार्किक मानों पर एक तार्किक संक्रिया से जुड़े होते हैं, सामान्यतः दो तर्कवाक्यों के मान, जो कि प्रथम संकार्य सत्य है और दूसरा संकार्य असत्य है, और अन्यथा सत्य का मान उत्पन्न करता है। .

तार्किक निहितार्थ 'p,से जुड़ी ट्रुथ टेबल का तात्पर्य है('p ⇒ q के रूप में चिन्हित, या संभवतः ही कभी 'Cpq') इस प्रकार है:

तार्किक निहितार्थ
p q pq
T T T
T F F
F T T
F F T

सामाग्र प्रतिबंधात्मक से जुड़ी ट्रुथ टेबल यदि p तो q(p → q के रूप में प्रतीक) इस प्रकार है:

सामाग्र प्रतिबंधात्मक
p q pq
T T T
T F F
F T T
F F T

यह टिप्पणी करना भी उपयोगी हो सकता है कि p ⇒ q और p → q ¬p ∨ q के समतुल्य हैं।

तार्किक समानता

तार्किक समानता(जिसे द्विप्रतिबंधात्मक या अनन्य और nor के रूप में भी जाना जाता है) दो तार्किक मानों पर एक तार्किक संक्रिया है, सामान्यतः दो तर्कवाक्यों के मान, जो कि दोनों संकार्य असत्य है या दोनों संकार्य सत्य हैं, तो सत्य का मान उत्पन्न करता है।

p XNOR q(जिसे p ↔ q, Epq, p = q, or p ≡ q'के रूप में भी लिखा जाता है) के लिए ट्रुथ टेबल इस प्रकार है:

तार्किक समानता
p q pq
T T T
T F F
F T F
F F T

अतः p EQ q सत्य है यदि p और q का सत्य मान समान है(दोनों सत्य या दोनों असत्य), और असत्य यदि उनके भिन्न सत्य मान हैं।

अनन्य वियोजन

अनन्य वियोजन दो तार्किक मानों पर एक तार्किक संक्रिया है, सामान्यतः दो तर्कवाक्यों के मान, जो सत्य का मान उत्पन्न करता है यदि एक नहीं प्रत्युत इसके दोनों संकार्य सत्य हैं

p XOR q(जिसे Jpq, या p ⊕ q के रूप में भी लिखा जाता है) के लिए ट्रुथ टेबल इस प्रकार है:

अनन्य वियोजन
p q pq
T T F
T F T
F T T
F F F

दो कथनों के लिए, XOR को(p ∧ ¬q) ∨(¬p ∧ q) के रूप में भी लिखा जा सकता है।

तार्किक NAND

तार्किक NAND दो तार्किक मानों पर एक तार्किक संक्रिया है, सामान्यतः दो तर्कवाक्यों के मान, जो असत्य का मान उत्पन्न करता है यदि इसके दोनो संकार्या सत्य हैं। दूसरे शब्दों में, यदि इसका कम से कम एक संकार्यं असत्य है तो यह सत्य का मान उत्पन्न करता है।

p NAND q(p ↑ q, Dpq, या p | q के रूप में भी लिखा गया है) के लिए ट्रुथ टेबल इस प्रकार है:

तार्किक NAND
p q pq
T T F
T F T
F T T
F F T

किसी तार्किक संक्रिया को यौगिक संक्रिया के रूप में अभिव्यक्त करना प्रायः उपयोगी होता है, अर्थात, एक ऐसी संक्रिया के रूप में जो अन्य संक्रियाओं से निर्मित या संघटित होती है। ऐसी कई रचनाएँ संभव हैं, जो उन संक्रियाओं पर निर्भर करती हैं जिन्हें मूल या प्राथमिक के रूप में लिया जाता है और उन संक्रियाओं को जिन्हें समग्र या व्युत्पन्न के रूप में लिया जाता है।

तार्किक NAND के स्थिति में, यह NOT और AND के यौगिक के रूप में स्पष्ट रूप से अभिव्यक्त होता है।

संयोजन का निषेध: ¬(p ∧ q), और निषेध का संयोजन:(¬p) ∨(¬q) को निम्नानुसार सारणीबद्ध किया जा सकता है:

p q p ∧ q ¬(p ∧ q) ¬p ¬q p) ∨ (¬q)
T T T F F F F
T F F T F T T
F T F T T F T
F F F T T T T


तार्किक NOR

तार्किक NOR दो तार्किक मानों पर एक तार्किक संक्रिया है, सामान्यतः दो तर्कवाक्यों के मान, जो सत्य का मान उत्पन्न करता है यदि इसके दोनों संकार्यं असत्य है। दूसरे शब्दों में, यदि इसका कम से कम एक संकार्यक सत्य है, तो यह असत्य का मान उत्पन्न करता है। ↓ को इसके आविष्कारक, चार्ल्स सैंडर्स पियर्स के बाद पियर्स तीर के रूप में भी जाना जाता है, और यह एकमात्र पर्याप्त संक्रियक है।

p NOR q('p ↓ q', या 'Xpq' के रूप में भी लिखा जाता है) के लिए ट्रुथ टेबल इस प्रकार है:

तार्किक NOR
p q pq
T T F
T F F
F T F
F F T

वियोजन ¬(p ∨ q), और निषेधों के संयोजन(¬p) ∧(¬q) का निषेध निम्नानुसार सारणीबद्ध किया जा सकता है:

p q p ∨ q ¬(p ∨ q) ¬p ¬q p) ∧ (¬q)
T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

कार्यात्मक तर्क p और q के लिए तार्किक मानों के प्रत्येक समनुदेश के अंतर्गत NAND और NOR के लिए सारणीबद्ध व्युत्पत्तियों का निरीक्षण, ¬(p ∧ q) के लिए कार्यात्मक मानों के समान प्रतिरूप का उत्पादन करता है जैसा कि(¬p) ∨(¬q) के लिए होता है। और ¬(p ∨ q) के लिए(¬p) ∧(¬q) के लिए। इस प्रकार प्रत्येक युग्म में पहली और दूसरी अभिव्यक्तियाँ तार्किक रूप से समतुल्य हैं, और सभी संदर्भों में एक दूसरे के लिए प्रतिस्थापित की जा सकती हैं जो मात्र उनके तार्किक मानों से संबंधित हैं।

यह तुल्यता डी मॉर्गन के नियमों में से एक है।

ट्रुथ टेबल का आकार

यदि n निविष्ट चर हैं तो उनके सत्य मानों के 2n संभावित संयोजन हैं। एक दिया गया फलन प्रत्येक संयोजन के लिए सत्य या असत्य उत्पन्न कर सकता है इसलिए n चर के विभिन्न कार्यों की संख्या दोहरा घातांक फलन 22n है।

n 2n 22n
0 1 2
1 2 4
2 4 16
3 8 256
4 16 65,536
5 32 4,294,967,296 ≈ 4.3×109
6 64 18,446,744,073,709,551,616 ≈ 1.8×1019
7 128 340,282,366,920,938,463,463,374,607,431,768,211,456 ≈ 3.4×1038
8 256 115,792,089,237,316,195,423,570,985,008,687,907,853,269,984,665,640,564,039,457,584,007,913,129,639,936 ≈ 1.2×1077

तीन या अधिक चरों के फलनों के लिए सत्य सारणी कदाचित ही दी जाती है।

अनुप्रयोग

कई अन्य तार्किक तुल्यताओं को सिद्ध करने के लिए ट्रुथ टेबल का उपयोग किया जा सकता है। उदाहरण के लिए, निम्नलिखित ट्रुथ टेबल पर विचार करें:

तार्किक समतुल्यता :
T T F T T
T F F F F
F T T T T
F F T T T

यह इस तथ्य को प्रदर्शित करता है कि तार्किक रूप से समतुल्य है।

सबसे अधिक उपयोग किए जाने वाले तार्किक संक्रियकों के लिए ट्रुथ टेबल

यहाँ एक ट्रुथ टेबल है जो ट्रैक्टैटस तर्क-दार्शनिक तर्कवाक्य 4.*-5.* में से सबसे अधिक उपयोग किए जाने वाले 7 की परिभाषा देती है:

P Q
T T T T F T T T T
T F F T T F F T F
F T F T T F T F F
F F F F F T T T T
P Q
AND
(संयोजन)
OR
(वियोजन)
XOR
(अनन्य or)
XNOR
(अनन्य nor)
प्रतिबंधात्मक
"if-then"
प्रतिबंधात्मक
"then-if"
biप्रतिबंधात्मक
"if-and-only-if"

where    T    means सत्य and    F    means असत्य


द्विआधारी संक्रियकों के लिए संघनित सत्य सारणी

द्विआधारी संक्रियकों के लिए, ट्रुथ टेबल का एक संघनित रूप भी उपयोग किया जाता है, जहां पंक्ति शीर्षक और स्तंभ शीर्षक संकार्य निर्दिष्ट करते हैं और तालिका कक्ष परिणाम निर्दिष्ट करते हैं। उदाहरण के लिए, बूलियन तर्क इस संघनित ट्रुथ टेबल संकेतन का उपयोग करता है:

F T
F F F
T F T
F T
F F T
T T T

यह अंकन विशेष रूप से उपयोगी है यदि संक्रिया क्रमविनिमेय हैं, यद्यपि कोई अतिरिक्त रूप से यह निर्दिष्ट कर सकता है कि पंक्तियाँ प्रथम संकार्य हैं और स्तंभ दूसरे संकार्य हैं। यह संघनित संकेतन तर्क के बहु-मूल्यवान विस्तारों पर चर्चा करने में विशेष रूप से उपयोगी है, क्योंकि यह अन्यथा आवश्यक पंक्तियों की संख्या के संयोजी विस्फोट पर महत्वपूर्ण रूप से कटौती करता है। यह तालिका में मानों के वितरण के त्वरित तत्समक योग्य विशेषता आकार भी प्रदान करता है जो पाठक को नियमों को और अधिक तीव्र से समझने में सहायता कर सकता है।

डिजिटल तर्क में सत्य सारणी

डिजिटल परिपथ में हार्डवेयर लुक-अप टेबल(LUT) के कार्य को निर्दिष्ट करने के लिए ट्रूथ टेबल का भी उपयोग किया जाता है। एन- निविष्ट एलयूटी के लिए, ट्रुथ टेबल में 2^n मान(या उपरोक्त सारणीबद्ध प्रारूप में पंक्तियां) होंगे, जो पूर्ण रूप से एलयूटी के लिए एक बूलियन फलन निर्दिष्ट करते हैं। द्विआधारी अंक प्रणाली में प्रत्येक बूलियन मान को अंश के रूप में प्रदर्शित करके, ट्रुथ टेबल मानों को इलेक्ट्रॉनिक डिजाइन स्वचालन(EDA) सॉफ़्टवेयर में पूर्णांक मानों के रूप में कुशलतापूर्वक कोडित किया जा सकता है। उदाहरण के लिए, एक 32-बिट पूर्णांक 5 निविष्ट तक एलयूटी के लिए ट्रुथ टेबल को सांकेतिक शब्दों में बदल सकता है।

एक ट्रुथ टेबल के पूर्णांक प्रतिनिधित्व का उपयोग करते समय, एलयूटी का निर्गत मान एलयूटी के निविष्ट मानों के आधार पर बिट निर्देशिका k की गणना करके प्राप्त किया जा सकता है, जिस स्थिति में एलयूटी का निर्गत मान पूर्णांक का kवां बिट होता है। उदाहरण के लिए, n बूलियन निविष्ट मानों की सरणी डेटा संरचना दिए गए एलयूटी के निर्गत मान का मूल्यांकन करने के लिए, ट्रुथ टेबल के निर्गत मान के बिट निर्देशिका की गणना निम्नानुसार की जा सकती है: यदि iवां निविष्ट सत्य है, तो दें, अन्यथा दें। फिर ट्रुथ टेबल के द्विआधारी प्रतिनिधित्व का kवां बिट एलयूटी का निर्गत मान है, जहाँ है।

ट्रुथ टेबल बूलियन फलनों को कोडित करने का एक सरल और सीधी विधि है, यद्यपि निविष्ट की संख्या में वृद्धि के रूप में आकार में घातीय वृद्धि को देखते हुए, वे बड़ी संख्या में निविष्ट वाले फलनों के लिए उपयुक्त नहीं हैं। अन्य अभ्यावेदन जो अधिक मेमोरी कुशल हैं, पाठ समीकरण और द्विआधारी निर्णय आरेख हैं।

डिजिटल इलेक्ट्रॉनिक्स में ट्रूथ टेबल के अनुप्रयोग

डिजिटल इलेक्ट्रॉनिक्स और कंप्यूटर विज्ञान(प्रयुक्त तर्क अभियांत्रिकी और गणित के क्षेत्र) में, तर्क गेट्स या कोड के उपयोग के बिना, निर्गत के निविष्ट के सरल सहसंबंधों के लिए मूलभूत बूलियन संक्रिया को कम करने के लिए ट्रुथ टेबल का उपयोग किया जा सकता है। उदाहरण के लिए, एक द्विआधारी योग को ट्रुथ टेबल के साथ प्रदर्शित किया जा सकता है:


A B | C R

1 1 | 1 0

1 0 | 0 1

0 1 | 0 1

0 0 | 0 0

जहाँ

A= प्रथम संकार्य

B = दूसरा संकार्य

C= वहन

R= परिणाम


यह ट्रुथ टेबल बाएं से दाएं पढ़ी जाती है:

  • मान युग्म(A, B) मान युग्म(C, R) के बराबर है।
  • या इस उदाहरण के लिए, A+B समान परिणाम R, वहन C के साथ।

ध्यान दें कि यह तालिका इस संक्रिया को लागू करने के लिए आवश्यक तर्क संक्रियाएँ का वर्णन नहीं करती है, प्रत्युत यह मात्र निर्गत मानों के निविष्ट के कार्य को निर्दिष्ट करती है।

परिणाम के संबंध में, इस उदाहरण को अंकगणितीय रूप से सापेक्ष 2 द्विआधारी योग के रूप में देखा जा सकता है, और तार्किक रूप से अनन्य-या(अनन्य संयोजन) द्विआधारी तर्क संक्रिया के बराबर है।

इस स्थिति में इसका उपयोग मात्र बहुत ही सरल निविष्ट और निर्गत के लिए किया जा सकता है, जैसे 1s और 0s। यद्यपि, यदि निविष्ट् पर किसी प्रकार के मानों की संख्या बढ़ सकती है, तो ट्रुथ टेबल का आकार बढ़ जाएगा।

उदाहरण के लिए, एक अतिरिक्त संक्रिया में, किसी को दो संकार्य, A और B की आवश्यकता होती है। प्रत्येक में दो मानों में से एक हो सकता है, शून्य या एक। इन दो मानों के संयोजनों की संख्या 2×2 या चार है। तो परिणाम C और R के चार संभावित निर्गत हैं। यदि कोई आधार 3 का उपयोग करता है, तो आकार 3×3, या नौ संभावित निर्गत तक बढ़ जाएगा।

उपरोक्त पूर्व योग उदाहरण को आधा योजक कहा जाता है। एक पूर्ण-योजक तब होता है जब पिछले संक्रिया से अगले योजक को निविष्ट के रूप में प्रदान किया जाता है। इस प्रकार, एक पूर्ण योजक के तर्क का वर्णन करने के लिए आठ पंक्तियों की एक ट्रुथ टेबल की आवश्यकता होगी:


A B C* | C R

0 0 0 | 0 0

0 1 0 | 0 1

1 0 0 | 0 1

1 1 0 | 1 0

0 0 1 | 0 1

0 1 1 | 1 0

1 0 1 | 1 0

1 1 1 | 1 1

पूर्व जैसा ही, परन्तु..

C* = पिछले योजक से वहन करें

इतिहास

इरविंग एनेलिस के शोध से पता चलता है कि सी.एस. पियर्स एक ट्रुथ टेबल आव्यूह आविष्कार करने के लिए(1893 में) सबसे प्रारंभिक तर्कशास्त्री प्रतीत होते हैं।[4][6] उनके पृष्ठ के सारांश से:

1997 में, जॉन शॉस्की ने बर्ट्रेंड रसेल के 1912 के लेक्चर ऑफ़ द फिलॉसफी ऑफ़ तर्कल एटमिज़्म ट्रूथ टेबल आव्यूह के लिखे गए प्रतिलेख के एक पृष्ठ के शीर्ष पर खोजा। निषेध का आव्यूह रसेल का है, जिसके साथ-साथ लुडविग विट्गेन्स्टाइन के हाथ में भौतिक निहितार्थ के लिए आव्यूह है। यह दिखाया गया है कि 1893 में पियर्स द्वारा रचित एक अप्रकाशित हस्तलेख में एक ट्रुथ टेबल आव्यूह सम्मिलित है जो जॉन शोस्की द्वारा खोजे गए भौतिक निहितार्थ के आव्यूह के बराबर है। पीयरस द्वारा एक अप्रकाशित हस्तलेख की तत्समक 1883-84 में पीयरस ऑन ​​द एलजेब्रा ऑफ तर्क: ए कंट्रीब्यूशन टू द फिलॉसफी ऑफ नोटेशन की रचना के संबंध में की गई थी, जो 1885 में अमेरिकन जर्नल ऑफ मैथमेटिक्स में छपी थी, जिसमें अप्रत्यक्ष का एक उदाहरण सम्मिलित है।

यह भी देखें


टिप्पणियाँ

  1. Information about notation may be found in (Bocheński 1959), (Enderton 2001), and (Quine 1982).
  2. The operators here with equal left and right identities (XOR, AND, XNOR, and OR) are also commutative monoids because they are also associative. While this distinction may be irrelevant in a simple discussion of logic, it can be quite important in more advanced mathematics. For example, in category theory an enriched category is described as a base category enriched over a monoid, and any of these operators can be used for enrichment.


संदर्भ

  1. Enderton 2001
  2. von Wright, Georg Henrik (1955). "Ludwig Wittgenstein, A Biographical Sketch". The Philosophical Review. 64 (4): 527–545 (p. 532, note 9). doi:10.2307/2182631. JSTOR 2182631.
  3. Post, Emil (July 1921). "Introduction to a general theory of elementary propositions". American Journal of Mathematics. 43 (3): 163–185. doi:10.2307/2370324. hdl:2027/uiuo.ark:/13960/t9j450f7q. JSTOR 2370324.
  4. 4.0 4.1 Anellis, Irving H. (2012). "Peirce's Truth-functional Analysis and the Origin of the Truth Table". History and Philosophy of Logic. 33: 87–97. doi:10.1080/01445340.2011.621702. S2CID 170654885.
  5. 5.0 5.1 Wittgenstein, Ludwig (1922). "Proposition 5.101" (PDF). Tractatus Logico-Philosophicus.
  6. Peirce's publication included the work of Christine Ladd (1881): Peirce's Ph.D. student Christine Ladd-Franklin found the truth table in Tractatus Logico-Philosophicus Proposition 5.101, 40 years earlier than Wittgenstein. Ladd, Christine (1881). Peirce, C.S. (ed.). On the Algebra of Logic. Studies in Logic. p. 62.



उद्धृत कार्य


बाहरी संबंध