लिथियम पॉलिमर बैटरी: Difference between revisions

From Vigyanwiki
Line 23: Line 23:
1970 के दशक में मूल बहुलक डिजाइन में प्लास्टिक जैसी फिल्म जैसी दिखने वाली ठोस सूखी बहुलक इलेक्ट्रोलाइट का उपयोग किया गया था, जो इलेक्ट्रोलाइट से लथपथ पारंपरिक झरझरा विभाजक का स्थान लेता है।
1970 के दशक में मूल बहुलक डिजाइन में प्लास्टिक जैसी फिल्म जैसी दिखने वाली ठोस सूखी बहुलक इलेक्ट्रोलाइट का उपयोग किया गया था, जो इलेक्ट्रोलाइट से लथपथ पारंपरिक झरझरा विभाजक का स्थान लेता है।


ठोस इलेक्ट्रोलाइट को सामान्यतः तीन प्रकारों शुष्क एसपीई, गेल एसपीई और झरझरा एसपीई में से एक के रूप में वर्गीकृत किया जा सकता है। 1978 के आसपास [[मिशेल आर्मंड]] और 1985 फ्रांस के अनवर और एल्फ एक्विटेन और कनाडा के हाइड्रो-क्यूबेक द्वारा शुष्क एसपीई का पहली बार प्रोटोटाइप बैटरियों में उपयोग किया गया था।<ref name="Armand">{{cite book| chapter=Extended Abstracts |author1=M. B. Armand |author2=J. M. Chabagno |author3=M. Duclot |title=Second International Meeting on Solid Electrolytes |place=St. Andrews, Scotland |date=20–22 September 1978}}</ref><ref name="Armand_2">{{cite book| chapter=Poly-ethers as solid electrolytes |author1=M. B. Armand, J. M. Chabagno |author2=M. Duclot |name-list-style=amp|title=सॉलिड्स में फास्ट आयन ट्रांसपोर्ट। इलेक्ट्रोड और इलेक्ट्रोलाइट्स|editor1=P. Vashitshta |editor2=J.N. Mundy |editor3=G.K. Shenoy |publisher=North Holland Publishers, Amsterdam |date=1979}}</ref><ref name="poly_history">{{cite journal |journal=Electrochimica Acta |volume=45 |issue=8–9 |date=3 January 2000 |pages=1501–1508 |title=ठोस बहुलक इलेक्ट्रोलाइट बैटरी के अनुसंधान और विकास का अवलोकन|last1=Murata |first1=Kazuo |last2=Izuchi |first2=Shuichi |last3=Yoshihisa |first3=Youetsu |doi=10.1016/S0013-4686(99)00365-5}}</ref> 1990 से संयुक्त राज्य अमेरिका में मीड और वैलेंस और जापान में [[प्रोफेसर युसा]] जैसे कई संगठनों ने जेलयुक्त एसपीई का उपयोग करके बैटरी विकसित की।<ref name="poly_history" /> 1996 में, संयुक्त राज्य अमेरिका में [[बेलकोर]] ने झरझरा एसपीई का उपयोग करके रिचार्जेबल लिथियम बहुलक सेल की घोषणा की थी।<ref name="poly_history" />
ठोस इलेक्ट्रोलाइट को सामान्यतः तीन प्रकारों शुष्क एसपीई, गेल एसपीई और झरझरा एसपीई में से एक के रूप में वर्गीकृत किया जा सकता है। 1978 के आसपास [[मिशेल आर्मंड]] और 1985 फ्रांस के अनवर और एल्फ एक्विटेन और कनाडा के हाइड्रो-क्यूबेक द्वारा शुष्क एसपीई का पहली बार प्रोटोटाइप बैटरियों में उपयोग किया गया था।<ref name="Armand">{{cite book| chapter=Extended Abstracts |author1=M. B. Armand |author2=J. M. Chabagno |author3=M. Duclot |title=Second International Meeting on Solid Electrolytes |place=St. Andrews, Scotland |date=20–22 September 1978}}</ref><ref name="Armand_2">{{cite book| chapter=Poly-ethers as solid electrolytes |author1=M. B. Armand, J. M. Chabagno |author2=M. Duclot |name-list-style=amp|title=सॉलिड्स में फास्ट आयन ट्रांसपोर्ट। इलेक्ट्रोड और इलेक्ट्रोलाइट्स|editor1=P. Vashitshta |editor2=J.N. Mundy |editor3=G.K. Shenoy |publisher=North Holland Publishers, Amsterdam |date=1979}}</ref><ref name="poly_history">{{cite journal |journal=Electrochimica Acta |volume=45 |issue=8–9 |date=3 January 2000 |pages=1501–1508 |title=ठोस बहुलक इलेक्ट्रोलाइट बैटरी के अनुसंधान और विकास का अवलोकन|last1=Murata |first1=Kazuo |last2=Izuchi |first2=Shuichi |last3=Yoshihisa |first3=Youetsu |doi=10.1016/S0013-4686(99)00365-5}}</ref> 1990 से संयुक्त राज्य अमेरिका में मीड और वैलेंस और जापान में [[प्रोफेसर युसा]] जैसे कई संगठनों ने जेलयुक्त एसपीई का उपयोग करके बैटरी विकसित की थी।<ref name="poly_history" /> 1996 में, संयुक्त राज्य अमेरिका में [[बेलकोर]] ने झरझरा एसपीई का उपयोग करके रिचार्जेबल लिथियम बहुलक सेल की घोषणा की थी।<ref name="poly_history" />


विशिष्ट सेल में चार मुख्य घटक सकारात्मक [[इलेक्ट्रोड]], नकारात्मक इलेक्ट्रोड, विभाजक और इलेक्ट्रोलाइट होते हैं। विभाजक स्वयं बहुलक हो सकता है, जैसे [[POLYETHYLENE|पॉलीथीन]] (पीई) या [[polypropylene|पॉलीप्रोपाइलीन]] (पीपी) की सूक्ष्म फिल्म; इस प्रकार, जब सेल में तरल इलेक्ट्रोलाइट होता है, तब भी इसमें बहुलक घटक होता है। इसके अतिरिक्‍त, सकारात्मक इलेक्ट्रोड को आगे तीन भागों लिथियम-संक्रमण-धातु-ऑक्साइड (जैसे LiCoO<sub>2</sub> या LiMn<sub>2</sub>O<sub>4</sub>), प्रवाहकीय योजक, और पॉली (विनाइलिडीन फ्लोराइड) (पीवीडीएफ) में विभाजित किया जा सकता है।<ref name="book_1" /><ref name="book_2" /> नकारात्मक इलेक्ट्रोड सामग्री में समान तीन भाग हो सकते हैं, केवल लिथियम-धातु-ऑक्साइड के स्थान पर [[कार्बन]] हो सकता है।<ref name="book_1">{{cite book |last=Yazami |first=Rachid |editor-last=Ozawa |editor-first=Kazunori |title=लिथियम आयन रिचार्जेबल बैटरी|publisher=Wiley-Vch Verlag GmbH & Co. KGaA |date=2009 |chapter=Chapter 5: Thermodynamics of Electrode Materials for Lithium-Ion Batteries |isbn=978-3-527-31983-1}}</रेफरी><nowiki><ref name="book_2"></nowiki>{{cite book |last=Nagai |first=Aisaku |editor-last1=Yoshio |editor-first1=Masaki |editor-last2=Brodd |editor-first2=Ralph J. |editor-last3=Kozawa |editor-first3=Akiya |title=लिथियम आयन बैटरी|publisher=Springer |date=2009 |chapter=Chapter 6: Applications of Polyvinylidene Fluoride-Related Materials for Lithium-Ion Batteries |isbn=978-0-387-34444-7 |doi=10.1007/978-0-387-34445-4|bibcode=2009liba.book.....Y }}</ref> लिथियम आयन बहुलक सेल और लिथियम आयन सेल के बीच मुख्य अंतर इलेक्ट्रोलाइट का भौतिक चरण है, जैसे कि लीपो सेल सूखे ठोस, जेल जैसे इलेक्ट्रोलाइट्स का उपयोग करते हैं जबकि ली-आयन सेल तरल इलेक्ट्रोलाइट का उपयोग करते हैं।
विशिष्ट सेल में चार मुख्य घटक सकारात्मक [[इलेक्ट्रोड]], नकारात्मक इलेक्ट्रोड, विभाजक और इलेक्ट्रोलाइट होते हैं। विभाजक स्वयं बहुलक हो सकता है, जैसे [[POLYETHYLENE|पॉलीथीन]] (पीई) या [[polypropylene|पॉलीप्रोपाइलीन]] (पीपी) की सूक्ष्म फिल्म; इस प्रकार, जब सेल में तरल इलेक्ट्रोलाइट होता है, तब भी इसमें बहुलक घटक होता है। इसके अतिरिक्‍त, सकारात्मक इलेक्ट्रोड को आगे तीन भागों लिथियम-संक्रमण-धातु-ऑक्साइड (जैसे LiCoO<sub>2</sub> या LiMn<sub>2</sub>O<sub>4</sub>), प्रवाहकीय योजक, और पॉली (विनाइलिडीन फ्लोराइड) (पीवीडीएफ) में विभाजित किया जा सकता है।<ref name="book_1" /><ref name="book_2" /> नकारात्मक इलेक्ट्रोड सामग्री में समान तीन भाग हो सकते हैं, केवल लिथियम-धातु-ऑक्साइड के स्थान पर [[कार्बन]] हो सकता है।<ref name="book_1">{{cite book |last=Yazami |first=Rachid |editor-last=Ozawa |editor-first=Kazunori |title=लिथियम आयन रिचार्जेबल बैटरी|publisher=Wiley-Vch Verlag GmbH & Co. KGaA |date=2009 |chapter=Chapter 5: Thermodynamics of Electrode Materials for Lithium-Ion Batteries |isbn=978-3-527-31983-1}}</रेफरी><nowiki><ref name="book_2"></nowiki>{{cite book |last=Nagai |first=Aisaku |editor-last1=Yoshio |editor-first1=Masaki |editor-last2=Brodd |editor-first2=Ralph J. |editor-last3=Kozawa |editor-first3=Akiya |title=लिथियम आयन बैटरी|publisher=Springer |date=2009 |chapter=Chapter 6: Applications of Polyvinylidene Fluoride-Related Materials for Lithium-Ion Batteries |isbn=978-0-387-34444-7 |doi=10.1007/978-0-387-34445-4|bibcode=2009liba.book.....Y }}</ref> लिथियम आयन बहुलक सेल और लिथियम आयन सेल के बीच मुख्य अंतर इलेक्ट्रोलाइट का भौतिक चरण है, जैसे कि लीपो सेल सूखे ठोस, जेल जैसे इलेक्ट्रोलाइट्स का उपयोग करते हैं जबकि ली-आयन सेल तरल इलेक्ट्रोलाइट का उपयोग करते हैं।
Line 39: Line 39:
एकल लीपो सेल का वोल्टेज उसके रसायन पर निर्भर करता है और लगभग 4.2 V (पूरी तरह से चार्ज) से लेकर लगभग 2.7–3.0 V (पूरी तरह से डिस्चार्ज) तक भिन्न होता है, जहां नाममात्र वोल्टेज 3.6 या 3.7 वोल्ट (उच्चतम और निम्नतम मूल्य के मध्य मान के बारे में) लिथियम-धातु-ऑक्साइड पर आधारित सेल (जैसे LiCoO<sub>2</sub>) के लिए होता है। यह लिथियम-आयरन-फॉस्फेट (LiFePO<sub>4</sub>) पर आधारित 3.6–3.8 V (चार्ज) से 1.8–2.0 V (डिस्चार्ज) की तुलना करता है।
एकल लीपो सेल का वोल्टेज उसके रसायन पर निर्भर करता है और लगभग 4.2 V (पूरी तरह से चार्ज) से लेकर लगभग 2.7–3.0 V (पूरी तरह से डिस्चार्ज) तक भिन्न होता है, जहां नाममात्र वोल्टेज 3.6 या 3.7 वोल्ट (उच्चतम और निम्नतम मूल्य के मध्य मान के बारे में) लिथियम-धातु-ऑक्साइड पर आधारित सेल (जैसे LiCoO<sub>2</sub>) के लिए होता है। यह लिथियम-आयरन-फॉस्फेट (LiFePO<sub>4</sub>) पर आधारित 3.6–3.8 V (चार्ज) से 1.8–2.0 V (डिस्चार्ज) की तुलना करता है।


उत्पाद डेटा शीट में स्पष्ट वोल्टेज रेटिंग निर्दिष्ट की जानी चाहिए, इस समझ के साथ कि सेल को इलेक्ट्रॉनिक परिपथ द्वारा संरक्षित किया जाना चाहिए जो उन्हें अधिक चार्ज करने और उपयोग के अनुसार अधिक-डिस्चार्ज करने की अनुमति नहीं देगा।
उत्पाद डेटा शीट में स्पष्ट वोल्टेज रेटिंग निर्दिष्ट की जानी चाहिए, इस समझ के साथ कि सेल को इलेक्ट्रॉनिक परिपथ द्वारा संरक्षित किया जाना चाहिए जो उन्हें अधिक चार्ज करने और उपयोग के अनुसार अधिक-डिस्चार्ज करने की अनुमति नहीं देता है।


लीपो [[बैटरी का संकुल]], श्रृंखला और समानांतर में जुड़े सेल के साथ, प्रत्येक सेल के लिए अलग-अलग पिन-आउट हैं। विशेष चार्जर प्रति-सेल के आधार पर चार्ज की देखरेख कर सकता है जिससे सभी सेल एक ही चार्ज स्थिति (एसओसी) में लाए जा सकें।
लीपो [[बैटरी का संकुल]], श्रृंखला और समानांतर में जुड़े सेल के साथ, प्रत्येक सेल के लिए अलग-अलग पिन-आउट हैं। विशेष चार्जर प्रति-सेल के आधार पर चार्ज की देखरेख कर सकता है जिससे सभी सेल एक ही चार्ज स्थिति (एसओसी) में लाए जा सकें।

Revision as of 18:00, 20 February 2023

लिथियम पॉलिमर बैटरी
Lipolybattery.jpg
स्मार्टफोन को विद्युत देने के लिए उपयोग की जाने वाली लिथियम बहुलक बैटरी
Specific energy100–265 W·h/kg(0.36–0.95 MJ/kg)[1]
Energy density250–670 W·h/L(0.90–2.63 MJ/L)[1]

लिथियम बहुलक बैटरी, या अधिक ठीक प्रकार से लिथियम-आयन बहुलक बैटरी (संक्षिप्त रूप में लीपो, एलआईपी, ली-पॉली, लिथियम-पॉली और अन्य), तरल इलेक्ट्रोलाइट के अतिरिक्त बहुलक इलेक्ट्रोलाइट का उपयोग करके लिथियम आयन विधि की रिचार्जेबल बैटरी है। उच्च चालकता सेमीसॉलिड (जेल) बहुलक इस इलेक्ट्रोलाइट का निर्माण करते हैं। ये बैटरी अन्य लिथियम बैटरी प्रकारों की तुलना में उच्च विशिष्ट ऊर्जा प्रदान करती हैं और उन अनुप्रयोगों में उपयोग की जाती हैं जहां भार महत्वपूर्ण विशेषता है, जैसे कि मोबाइल उपकरण, रेडियो-नियंत्रित विमान और कुछ विद्युतीय वाहन[2]


इतिहास

लीपो सेल लिथियम आयन और लिथियम-धातु सेल के इतिहास का अनुसरण करती हैं। जो 1980 के दशक के समय व्यापक शोध से गुजरती हैं, 1991 में सोनी के पहले वाणिज्यिक बेलनाकार ली-आयन सेल के साथ महत्वपूर्ण मील का पत्थर तक पहुंच गईं। उसके बाद, अन्य पैकेजिंग रूपों का विकास हुआ, जिनमें फ्लैट पाउच प्रारूप भी सम्मिलित था।[3]


डिजाइन मूल और शब्दावली

लिथियम बहुलक सेल लिथियम-आयन और लिथियम-धातु बैटरी से विकसित हुए हैं। प्राथमिक अंतर यह है कि कि कार्बनिक विलायक (एथिलीन कार्बोनेट/डाइमिथाइल कार्बोनेट/डायथाइल कार्बोनेट) में रखे तरल लिथियम-नमक इलेक्ट्रोलाइट (LiPF6) का उपयोग करने के अतिरिक्त, बैटरी पॉली (एथिलीन ऑक्साइड) (पीईओ), पॉली (एक्रिलोनाइट्राइल) (पीएएन), पॉली (मिथाइल मेथाक्रायलेट) (पीएमएमए) या पॉली (विनाइलिडीन फ्लोराइड) (पीवीडीएफ) जैसे ठोस बहुलक इलेक्ट्रोलाइट (एसपीई) का उपयोग करती है।

1970 के दशक में मूल बहुलक डिजाइन में प्लास्टिक जैसी फिल्म जैसी दिखने वाली ठोस सूखी बहुलक इलेक्ट्रोलाइट का उपयोग किया गया था, जो इलेक्ट्रोलाइट से लथपथ पारंपरिक झरझरा विभाजक का स्थान लेता है।

ठोस इलेक्ट्रोलाइट को सामान्यतः तीन प्रकारों शुष्क एसपीई, गेल एसपीई और झरझरा एसपीई में से एक के रूप में वर्गीकृत किया जा सकता है। 1978 के आसपास मिशेल आर्मंड और 1985 फ्रांस के अनवर और एल्फ एक्विटेन और कनाडा के हाइड्रो-क्यूबेक द्वारा शुष्क एसपीई का पहली बार प्रोटोटाइप बैटरियों में उपयोग किया गया था।[4][5][6] 1990 से संयुक्त राज्य अमेरिका में मीड और वैलेंस और जापान में प्रोफेसर युसा जैसे कई संगठनों ने जेलयुक्त एसपीई का उपयोग करके बैटरी विकसित की थी।[6] 1996 में, संयुक्त राज्य अमेरिका में बेलकोर ने झरझरा एसपीई का उपयोग करके रिचार्जेबल लिथियम बहुलक सेल की घोषणा की थी।[6]

विशिष्ट सेल में चार मुख्य घटक सकारात्मक इलेक्ट्रोड, नकारात्मक इलेक्ट्रोड, विभाजक और इलेक्ट्रोलाइट होते हैं। विभाजक स्वयं बहुलक हो सकता है, जैसे पॉलीथीन (पीई) या पॉलीप्रोपाइलीन (पीपी) की सूक्ष्म फिल्म; इस प्रकार, जब सेल में तरल इलेक्ट्रोलाइट होता है, तब भी इसमें बहुलक घटक होता है। इसके अतिरिक्‍त, सकारात्मक इलेक्ट्रोड को आगे तीन भागों लिथियम-संक्रमण-धातु-ऑक्साइड (जैसे LiCoO2 या LiMn2O4), प्रवाहकीय योजक, और पॉली (विनाइलिडीन फ्लोराइड) (पीवीडीएफ) में विभाजित किया जा सकता है।[7][8] नकारात्मक इलेक्ट्रोड सामग्री में समान तीन भाग हो सकते हैं, केवल लिथियम-धातु-ऑक्साइड के स्थान पर कार्बन हो सकता है।[7] लिथियम आयन बहुलक सेल और लिथियम आयन सेल के बीच मुख्य अंतर इलेक्ट्रोलाइट का भौतिक चरण है, जैसे कि लीपो सेल सूखे ठोस, जेल जैसे इलेक्ट्रोलाइट्स का उपयोग करते हैं जबकि ली-आयन सेल तरल इलेक्ट्रोलाइट का उपयोग करते हैं।

कार्य सिद्धांत

अन्य लिथियम-आयन सेल की तरह, लीपो सकारात्मक इलेक्ट्रोड सामग्री और नकारात्मक इलेक्ट्रोड सामग्री से लिथियम आयनों के अंतःक्षेपण और डी-अंतराल के सिद्धांत पर काम करता है, जिसमें तरल इलेक्ट्रोलाइट प्रवाहकीय माध्यम प्रदान करता है। इलेक्ट्रोड को एक दूसरे को सीधे स्पर्श करने से रोकने के लिए, सूक्ष्म छिद्र विभाजक बीच में होता है जो केवल आयनों को एक ओर से दूसरी ओर जाने के लिए अनुमति देता है न कि इलेक्ट्रोड कणों को एक ओर से दूसरी ओर जाने के लिए अनुमति देता है।

वोल्टेज और आवेश की स्थिति

एकल लीपो सेल का वोल्टेज उसके रसायन पर निर्भर करता है और लगभग 4.2 V (पूरी तरह से चार्ज) से लेकर लगभग 2.7–3.0 V (पूरी तरह से डिस्चार्ज) तक भिन्न होता है, जहां नाममात्र वोल्टेज 3.6 या 3.7 वोल्ट (उच्चतम और निम्नतम मूल्य के मध्य मान के बारे में) लिथियम-धातु-ऑक्साइड पर आधारित सेल (जैसे LiCoO2) के लिए होता है। यह लिथियम-आयरन-फॉस्फेट (LiFePO4) पर आधारित 3.6–3.8 V (चार्ज) से 1.8–2.0 V (डिस्चार्ज) की तुलना करता है।

उत्पाद डेटा शीट में स्पष्ट वोल्टेज रेटिंग निर्दिष्ट की जानी चाहिए, इस समझ के साथ कि सेल को इलेक्ट्रॉनिक परिपथ द्वारा संरक्षित किया जाना चाहिए जो उन्हें अधिक चार्ज करने और उपयोग के अनुसार अधिक-डिस्चार्ज करने की अनुमति नहीं देता है।

लीपो बैटरी का संकुल, श्रृंखला और समानांतर में जुड़े सेल के साथ, प्रत्येक सेल के लिए अलग-अलग पिन-आउट हैं। विशेष चार्जर प्रति-सेल के आधार पर चार्ज की देखरेख कर सकता है जिससे सभी सेल एक ही चार्ज स्थिति (एसओसी) में लाए जा सकें।

लीपो सेल पर दबाव डालना

नासा के लिए लॉकहीड-मार्टिन द्वारा बनाई गई प्रायोगिक लिथियम-आयन बहुलक बैटरी

लिथियम-आयन बेलनाकार और प्रिज्मीय सेल के विपरीत, जिनमें कठोर धातु की स्थिति होती है, लीपो सेल में लचीला, पन्नी-प्रकार (बहुलक टुकड़े टुकड़े) की स्थिति होती है, इसलिए वे अपेक्षाकृत अप्रतिबंधित होते हैं। परतों के ढेर पर मध्यम दबाव जो सेल की रचना करता है, क्षमता प्रतिधारण में वृद्धि करता है, क्योंकि घटकों के बीच संपर्क अधिकतम होता है और प्रदूषण और विरूपण को रोका जाता है, जो सेल प्रतिबाधा और गिरावट की वृद्धि के साथ जुड़ा होता है।[9][10]

अनुप्रयोग

पानी के नीचे के वाहनों के लिए हेक्सागोनल लिथियम बहुलक बैटरी

लीपो सेल निर्माताओं को सम्मोहक लाभ प्रदान करते हैं। वे लगभग किसी भी वांछित आकार की बैटरी सरलता से बना सकते हैं। उदाहरण के लिए, मोबाइल उपकरणों और नोटबुक कंप्यूटर के स्थान और भार की आवश्यकताओं को पूरा किया जा सकता है। उनके पास कम स्व-निर्वहन दर भी है, जो प्रति माह लगभग 5% है।[11]


ड्रोन, रेडियो नियंत्रित उपकरण और विमान

रेडियो नियंत्रित मॉडल के लिए 3-सेल लीपो बैटरी

लीपो बैटरियां अब लगभग सर्वव्यापी हैं जब वाणिज्यिक और हॉबी ड्रोन (मानव रहित हवाई वाहन), रेडियो-नियंत्रित विमान, रेडियो-नियंत्रित कारों और बड़े पैमाने पर मॉडल ट्रेनों का उपयोग किया जाता है, जहां कम भार और बढ़ी हुई क्षमता और विद्युत वितरण के लाभ व्यय को उचित ठहराते हैं। परीक्षण सूची आग के संकट की चेतावनी देती है जब बैटरियों का उपयोग निर्देशों के अनुसार नहीं किया जाता है।[12]

R/C मॉडल में उपयोग की जाने वाली लीपो बैटरी के लंबे समय तक भंडारण के लिए वोल्टेज 3.6 ~ 3.9V सीमा प्रति सेल होना चाहिए, अन्यथा इससे बैटरी को हानि हो सकता है।[13]

लीपो पैक भी एयरसॉफ्ट में व्यापक उपयोग देखते हैं, जहां उनके उच्च निर्वहन धाराओं और अधिक पारंपरिक एनआईएमएच बैटरी की तुलना में उत्तम ऊर्जा घनत्व में बहुत ही ध्यान देने योग्य प्रदर्शन लाभ (आग की उच्च दर) है।

व्यक्तिगत इलेक्ट्रॉनिक्स

लीपो बैटरी मोबाइल उपकरणों, विद्युत बैंक, बहुत पतले लैपटॉप कंप्यूटर, पोर्टेबल मीडिया प्लेयर, वीडियो गेम कंसोल के लिए वायरलेस नियंत्रक, वायरलेस पीसी परिधीय, इलेक्ट्रॉनिक सिगरेट, और अन्य अनुप्रयोगों में व्यापक हैं जहां छोटे रूप कारकों की मांग की जाती है और उच्च ऊर्जा घनत्व व्यय के विचारों से अधिक है।

इलेक्ट्रिक वाहन

हुंडई मोटर कंपनी अपने कुछ बैटरी इलेक्ट्रिक वाहन और हाइब्रिड इलेक्ट्रिक वाहन में इस प्रकार की बैटरी का उपयोग करती है,[14] साथ ही किआ मोटर्स अपने किआ सोल ईवी में करती है।[15] कई शहरों में कार शेयरिंग योजनाओं में उपयोग की जाने वाली बोलोर ब्लूकार भी इस प्रकार की बैटरी का उपयोग करती है।

निर्बाध विद्युत आपूर्ति प्रणाली

अबाधित विद्युत आपूर्ति (यूपीएस) प्रणाली में लिथियम-आयन बैटरी तीव्रता से सामान्य होती जा रही हैं। वे पारंपरिक वीआरएलए बैटरी पर कई लाभ प्रदान करते हैं और स्थिरता और सुरक्षा संशोधनों के साथ प्रौद्योगिकी में विश्वास बढ़ रहा है। आकार और भार के अनुपात में उनकी शक्ति को कई उद्योगों में प्रमुख लाभ के रूप में देखा जाता है, जिसमें महत्वपूर्ण पावर बैक अप की आवश्यकता होती है, जिसमें डेटा केंद्र भी सम्मिलित हैं, जहां स्थान अधिकतर अधिमूल्य पर होता है।[16] वीआरएलए बैटरियों पर ली-पो बैटरियों का उपयोग करने के लिए लंबे चक्र जीवन, प्रयोग करने योग्य ऊर्जा (डिस्चार्ज की गहराई), और थर्मल पलायन को भी लाभ के रूप में देखा जाता है।

जंप स्टार्टर

वाहन के इंजन को प्रारंभ करने के लिए उपयोग की जाने वाली बैटरी सामान्यतः 12V या 24V होती है, इसलिए पोर्टेबल जम्प स्टार्टर या बैटरी बूस्टर तीन या छह लीपो बैटरी इन श्रृंखला (3S1P/6S1P) का उपयोग करता है, जिससे आपातकालीन स्थिति में अन्य जम्प-स्टार्ट विधियों के अतिरिक्त वाहन को प्रारंभ किया जा सके। लीड-एसिड जम्प स्टार्टर की व्यय कम होती है, लेकिन वे तुलनीय लिथियम बैटरी की तुलना में बड़े और भारी होते हैं, और इसलिए ऐसे उत्पाद अधिकतर लीपो बैटरी या कभी-कभी लिथियम आयरन फॉस्फेट बैटरी में बदल जाते हैं।

सुरक्षा

एप्पल आईफोन 3जीएस की लिथियम-आयन बैटरी, जो शॉर्ट सर्किट विफलता के कारण फैल गई है।

इलेक्ट्रोलाइट के सामान्य वाष्पीकरण के कारण सभी ली-आयन सेल उच्च स्तर के चार्ज (एसओसी) या अधिक-चार्ज पर फैलती हैं। इसके परिणामस्वरूप प्रदूषण हो सकता है, और इस प्रकार सेल की आंतरिक परतों का गुणहीन संपर्क हो सकता है, जो बदले में कम विश्वसनीयता और सेल के समग्र चक्र जीवन को लाता है।[9] यह लीपोस के लिए बहुत ध्यान देने योग्य है, जो अपने विस्तार को रोकने के लिए कठिन स्थिति की कमी के कारण स्पष्ट रूप से बढ़ सकता है। लिथियम बहुलक बैटरी की सुरक्षा विशेषताएं लिथियम आयरन फॉस्फेट बैटरी सुरक्षा से भिन्न होती हैं।

बहुलक इलेक्ट्रोलाइट्स

बहुलक इलेक्ट्रोलाइट्स को दो बड़ी श्रेणियों शुष्क ठोस बहुलक इलेक्ट्रोलाइट्स (एसपीई) और जेल बहुलक इलेक्ट्रोलाइट्स (जीपीई) में विभाजित किया जा सकता है।[17] तरल इलेक्ट्रोलाइट्स और ठोस कार्बनिक इलेक्ट्रोलाइट्स की तुलना में, बहुलक इलेक्ट्रोलाइट, प्रभार और निर्वहन प्रक्रियाओं के समय इलेक्ट्रोड की मात्रा में भिन्नता के प्रतिरोध में वृद्धि, सुरक्षा सुविधाओं में संशोधन। उत्कृष्ट लचीलापन और प्रक्रियात्मकता जैसे लाभ प्रदान करते हैं।

ठोस बहुलक इलेक्ट्रोलाइट को प्रारंभ में लिथियम लवण के साथ सूजन वाले बहुलक आव्यूह के रूप में परिभाषित किया जाता है, जिसे अब सूखे ठोस बहुलक इलेक्ट्रोलाइट के रूप में जाना जाता है।[17] आयनिक चालकता प्रदान करने के लिए लिथियम लवण बहुलक आव्यूह में घुल जाते हैं। इसके भौतिक चरण के कारण, गुणहीन आयन स्थानांतरण होता है जिसके परिणामस्वरूप कमरे के तापमान पर गुणहीन चालकता होती है। कमरे के तापमान पर आयनिक चालकता में संशोधन करने के लिए, गेल इलेक्ट्रोलाइट जोड़ा जाता है जिसके परिणामस्वरूप जीपीई का निर्माण होता है। बहुलक आव्यूह में कार्बनिक तरल इलेक्ट्रोलाइट को सम्मिलित करके जीपीई का गठन किया जाता है। तरल इलेक्ट्रोलाइट बहुलक नेटवर्क की छोटी मात्रा में फंस जाता है, इसलिए जीपीई के गुणों को तरल और ठोस इलेक्ट्रोलाइट्स के बीच गुणों की विशेषता होती है।[18] चालन तंत्र तरल इलेक्ट्रोलाइट्स और बहुलक जैल के लिए समान है, लेकिन जीपीई में उच्च तापीय स्थिरता और कम वाष्पशील प्रकृति होती है जो सुरक्षा में भी योगदान देती है।[19]

जीपीई पर आधारित लिथियम बहुलक बैटरी का आरेख।[20]

ठोस बहुलक इलेक्ट्रोलाइट के साथ लिथियम सेल

ठोस बहुलक इलेक्ट्रोलाइट्स वाले सेल पूर्ण व्यावसायीकरण तक नहीं पहुंचे हैं[21] और अभी भी शोध का विषय हैं।[22] इस प्रकार की प्रोटोटाइप सेल को पारंपरिक लिथियम-आयन बैटरी (तरल इलेक्ट्रोलाइट के साथ) और पूरी तरह से प्लास्टिक, ठोस-अवस्था लिथियम-आयन बैटरी के बीच माना जा सकता है।[23]

पॉलीविनाइलिडीन फ्लोराइड (पीवीडीएफ) या पॉली (एक्रिलोनाइट्राइल) (पीएएन) जैसे बहुलक आव्यूह का उपयोग करना सबसे सरल विधि है, जो एथिलीन कार्बोनेट/डाइमिथाइल कार्बोनेट/डायथाइल कार्बोनेट में LiPF6 जैसे पारंपरिक लवणों और सॉल्वैंट्स से युक्त होता है।

निशि ने उल्लेख किया है कि सोनी ने 1991 में तरल-इलेक्ट्रोलाइट लिथियम-आयन सेल के व्यावसायीकरण से पहले 1988 में गेल बहुलक इलेक्ट्रोलाइट्स (जीपीई) के साथ लिथियम-आयन सेल पर शोध प्रारंभ किया था।Cite error: Closing </ref> missing for <ref> tag अंततः, इस प्रकार की सेल 1998 में व्यापार में आई।[24] चूंकि, स्क्रोसैटी का तर्क है कि, कठोर अर्थों में, जेल झिल्ली को वास्तविक बहुलक इलेक्ट्रोलाइट्स के रूप में वर्गीकृत नहीं किया जा सकता है,बल्कि हाइब्रिड प्रणालियों के रूप में वर्गीकृत किया जा सकता है, जहां बहुलक आव्यूह के अंदर तरल चरण समाहित होते हैं।[23] चूंकि ये बहुलक इलेक्ट्रोलाइट्स स्पर्श करने के लिए शुष्क हो सकते हैं, फिर भी उनमें 30% से 50% तरल विलायक हो सकता है।Cite error: Closing </ref> missing for <ref> tag इस संबंध में, वास्तव में कैसे परिभाषित किया जाए कि "बहुलक बैटरी" क्या है, यह खुला प्रश्न है।[25]

इस प्रणाली के लिए साहित्य में प्रयुक्त अन्य शब्दों में हाइब्रिड बहुलक इलेक्ट्रोलाइट (एचपीई) सम्मिलित है, जहां "हाइब्रिड" बहुलक आव्यूह, तरल विलायक और नमक के संयोजन को दर्शाता है। यह इस तरह की प्रणाली थी जिसे बेलकोर ने 1996 में प्रारंभिक लिथियम-बहुलक सेल विकसित करने के लिए उपयोग किया था, जिसे "प्लास्टिक" लिथियम-आयन सेल (पीएलआईओएन) कहा जाता था, और बाद में 1999 में इसका व्यवसायीकरण किया गया।[25]

ठोस बहुलक इलेक्ट्रोलाइट (एसपीई) बहुलक माध्यम में विलायक मुक्त नमक समाधान है। यह हो सकता है, उदाहरण के लिए, लिथियम बीआईएस (फ्लोरोसल्फोनील) इमाइड (एलआईएफएसआई) और उच्च आणविक भार पॉली (एथिलीन ऑक्साइड) (पीईओ) का यौगिक,[26] उच्च आणविक भार पॉली (ट्राइमेथिलीन कार्बोनेट) (पीटीएमसी),[27] पॉलीप्रोपाइलीन ऑक्साइड (पीपीओ), पॉली [बीआईएस (मेथॉक्सी-एथॉक्सी-एथॉक्सी) फॉस्फेज़ीन] (एमईईपी), आदि।

पीईओ लिथियम नमक के लिए ठोस विलायक के रूप में सबसे आशाजनक प्रदर्शन प्रदर्शित करता है, मुख्य रूप से इसके लचीले एथिलीन ऑक्साइड खंडों और अन्य ऑक्सीजन परमाणुओं के कारण जो ठोस दाता चरित्र, सरलता से Li+ उद्धरणों को हल करते हैं। पीईओ व्यावसायिक रूप से भी बहुत ही उचित व्यय पर उपलब्ध है।[17]

इन प्रस्तावित इलेक्ट्रोलाइट्स का प्रदर्शन सामान्यतः धातु लिथियम के इलेक्ट्रोड के विरुद्ध आधा सेल विन्यास में मापा जाता है, जिससे प्रणाली "लिथियम-धातु" सेल बन जाता है, लेकिन इसका परीक्षण जैसे सामान्य लिथियम-आयन कैथोड सामग्री जैसे कि लिथियम आयरन-फॉस्फेट (LiFePO4 ) के साथ भी किया जाता है।

बहुलक इलेक्ट्रोलाइट सेल को डिजाइन करने के अन्य प्रयासों में अकार्बनिक आयनिक तरल पदार्थ जैसे 1-ब्यूटाइल-3-मिथाइलिमिडाजोलियम टेट्राफ्लोरोबोरेट ([BMIM]BF4) का उपयोग पॉली (विनाइलिडीन फ्लोराइड-को-हेक्साफ्लोरोप्रोपीलीन)/पॉली (मिथाइल मेथैक्रिलेट) (पीवीडीएफ-एचएफपी/पीएमएमए) जैसे माइक्रोपोरस बहुलक आव्यूह में प्लास्टिसाइज़र के रूप में सम्मिलित है।[28]


यह भी देखें

संदर्भ

  1. 1.0 1.1 "Lithium-Ion Battery". Clean Energy Institute (in English). Retrieved 2022-01-06.
  2. Bruno Scrosati, K. M. Abraham, Walter A. van Schalkwijk, Jusef Hassoun (ed), Lithium Batteries: Advanced Technologies and Applications, John Wiley & Sons, 2013 ISBN 1118615395,page 44
  3. "Lithium Battery Configurations and Types of Lithium Cells". Power Sonic (in English). 2021-03-25. Retrieved 2021-10-14.
  4. M. B. Armand; J. M. Chabagno; M. Duclot (20–22 September 1978). "Extended Abstracts". Second International Meeting on Solid Electrolytes. St. Andrews, Scotland.{{cite book}}: CS1 maint: location missing publisher (link)
  5. M. B. Armand, J. M. Chabagno & M. Duclot (1979). "Poly-ethers as solid electrolytes". In P. Vashitshta; J.N. Mundy & G.K. Shenoy (eds.). सॉलिड्स में फास्ट आयन ट्रांसपोर्ट। इलेक्ट्रोड और इलेक्ट्रोलाइट्स. North Holland Publishers, Amsterdam.
  6. 6.0 6.1 6.2 Murata, Kazuo; Izuchi, Shuichi; Yoshihisa, Youetsu (3 January 2000). "ठोस बहुलक इलेक्ट्रोलाइट बैटरी के अनुसंधान और विकास का अवलोकन". Electrochimica Acta. 45 (8–9): 1501–1508. doi:10.1016/S0013-4686(99)00365-5.
  7. 7.0 7.1 Yazami, Rachid (2009). "Chapter 5: Thermodynamics of Electrode Materials for Lithium-Ion Batteries". In Ozawa, Kazunori (ed.). लिथियम आयन रिचार्जेबल बैटरी. Wiley-Vch Verlag GmbH & Co. KGaA. ISBN 978-3-527-31983-1.</रेफरी><ref name="book_2">Nagai, Aisaku (2009). "Chapter 6: Applications of Polyvinylidene Fluoride-Related Materials for Lithium-Ion Batteries". In Yoshio, Masaki; Brodd, Ralph J.; Kozawa, Akiya (eds.). लिथियम आयन बैटरी. Springer. Bibcode:2009liba.book.....Y. doi:10.1007/978-0-387-34445-4. ISBN 978-0-387-34444-7.
  8. Cite error: Invalid <ref> tag; no text was provided for refs named book_2
  9. 9.0 9.1 Vetter, J.; Novák, P.; Wagner, M.R.; Veit, C. (9 September 2005). "Ageing mechanisms in lithium-ion batteries". Journal of Power Sources. 147 (1–2): 269–281. Bibcode:2005JPS...147..269V. doi:10.1016/j.jpowsour.2005.01.006.
  10. Cannarella, John; Arnold, Craig B. (1 January 2014). "Stress evolution and capacity fade in constrained lithium-ion pouch cells". Journal of Power Sources. 245: 745–751. Bibcode:2014JPS...245..745C. doi:10.1016/j.jpowsour.2013.06.165.
  11. "Lithium Polymer Battery Technology" (PDF). Retrieved 14 March 2016.
  12. Dunn, Terry (5 March 2015). "Battery Guide: The Basics of Lithium-Polymer Batteries". Tested. Whalerock Industries. Retrieved 15 March 2017. I've not yet heard of a LiPo that burst into flames during storage. All of the fire incidents that I'm aware of occurred during charge or discharge of the battery. Of those cases, the majority of problems happened during charge. Of those cases, the fault usually rested with either the charger or the person who was operating the charger…but not always.
  13. "A LIPO BATTERY GUIDE TO UNDERSTAND LIPO BATTERY". Retrieved 3 September 2021.
  14. Brown, Warren (3 November 2011). "2011 Hyundai Sonata Hybrid: Hi, tech. Bye, performance". Washington Post. Retrieved 25 November 2011.
  15. "Sustainability | Kia Global Brand Site".
  16. "Lithium-ion vs Lithium Iron: Which is the most suitable for a UPS system?".
  17. 17.0 17.1 17.2 Mater, J (2016). "Polymer electrolytes for lithium polymer batteries". Journal of Materials Chemistry A. 4: 10038–10069 – via Royal Society of Chemistry.
  18. Cho, Yoon‐Gyo; Hwang, Chihyun; Cheong, Do Sol; Kim, Young‐Soo; Song, Hyun‐Kon (May 2019). "Gel Polymer Electrolytes: Gel/Solid Polymer Electrolytes Characterized by In Situ Gelation or Polymerization for Electrochemical Energy Systems (Adv. Mater. 20/2019)". Advanced Materials. 31 (20): 1970144. doi:10.1002/adma.201970144. ISSN 0935-9648.
  19. Naskar, Anway; Ghosh, Arkajit; Roy, Avinava; Chattopadhyay, Kinnor; Ghosh, Manojit (2022), "Polymer-Ceramic Composite Electrolyte for Li-Ion Batteries", Encyclopedia of Materials: Plastics and Polymers, Elsevier, pp. 1031–1039, retrieved 2022-11-22
  20. Hoang Huy, Vo Pham; So, Seongjoon; Hur, Jaehyun (2021-03-01). "Inorganic Fillers in Composite Gel Polymer Electrolytes for High-Performance Lithium and Non-Lithium Polymer Batteries". Nanomaterials. 11 (3): 614. doi:10.3390/nano11030614. ISSN 2079-4991.
  21. Blain, Loz (27 November 2019). "Solid state battery breakthrough could double the density of lithium-ion cells". New Atlas. Gizmag. Retrieved 6 December 2019.
  22. Wang, Xiaoen; Chen, Fangfang; Girard, Gaetan M.A.; Zhu, Haijin; MacFarlane, Douglas R.; Mecerreyes, David; Armand, Michel; Howlett, Patrick C.; Forsyth, Maria (November 2019). "Poly(Ionic Liquid)s-in-Salt Electrolytes with Co-coordination-Assisted Lithium-Ion Transport for Safe Batteries". Joule. 3 (11): 2687–2702. doi:10.1016/j.joule.2019.07.008.
  23. 23.0 23.1 Scrosati, Bruno (2002). "Chapter 8: Lithium polymer electrolytes". In van Schalkwijk, Walter A.; Scrosati, Bruno (eds.). लिथियम-आयन बैटरी में अग्रिम. Kluwer Academic Publishers. ISBN 0-306-47356-9.
  24. Cite error: Invalid <ref> tag; no text was provided for refs named book_6
  25. 25.0 25.1 Cite error: Invalid <ref> tag; no text was provided for refs named Nature_01
  26. Zhang, Heng; Liu, Chengyong; Zheng, Liping (1 July 2014). "Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte". Electrochimica Acta. 133: 529–538. doi:10.1016/j.electacta.2014.04.099.
  27. Sun, Bing; Mindemark, Jonas; Edström, Kristina; Brandell, Daniel (1 September 2014). "Polycarbonate-based solid polymer electrolytes for Li-ion batteries". Solid State Ionics. 262: 738–742. doi:10.1016/j.ssi.2013.08.014.
  28. Zhai, Wei; Zhu, Hua-jun; Wang, Long (1 July 2014). "Study of PVDF-HFP/PMMA blended micro-porous gel polymer electrolyte incorporating ionic liquid [BMIM]BF4 for Lithium ion batteries". Electrochimica Acta. 133: 623–630. doi:10.1016/j.electacta.2014.04.076.


बाहरी संबंध